
����������
�������

Citation: Wu, M.; Liu, F.; Zhao, D.;

Wang, Y. Unidirectional Invisibility in

PT-Symmetric Cantor Photonic

Crystals. Crystals 2022, 12, 199.

https://doi.org/10.3390/

cryst12020199

Academic Editor: Alessandro

Chiasera

Received: 29 December 2021

Accepted: 26 January 2022

Published: 28 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Unidirectional Invisibility in PT-Symmetric Cantor
Photonic Crystals
Min Wu 1 , Fangmei Liu 2, Dong Zhao 2 and Yang Wang 2,*

1 School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning 437100, China;
wumin@hbust.edu.cn

2 School of Electronic and Information Engineering, Hubei University of Science and Technology,
Xianning 437100, China; liufangmei@hbust.edu.cn (F.L.); zhaodong@hbust.edu.cn (D.Z.)

* Correspondence: wangyang@hbust.edu.cn

Abstract: In this paper, we investigate the nonreciprocity of reflection in parity-time−symmetric
(PT-symmetric) Cantor photonic crystals (PCs). Two one-dimensional PCs abiding by the Cantor
sequence are PT-symmetric about the center. The PT symmetry and defect cavities in Cantor PCs
can induce optical fractal states which are transmission modes. Subsequently, the left and right
reflectionless states are located on both sides of a transmission peak. The invisible effect depends on
the incident direction and the invisible wavelength can be modulated by the gain–loss factor. This
study has potential applications in tunable optical reflectors and invisible cloaks.

Keywords: Cantor sequence; unidirectional invisibility; reflectionless photonic crystal; PT symmetry

1. Introduction

Optical invisibility has been extensively utilized for sensors, filters, and other civilian
facilities [1–3]. The traditional stealth technology is based on the ability of invisibility cloaks’
materials to absorb light wave energy [4,5], but specific materials can only absorb light
waves with specific wavelengths. Therefore, once the probing wavelength changes, the
stealth effect will be greatly reduced. In addition, it is generally difficult for the absorption
rate of light wave energy to reach a hundred percent [6] as there is energy surplus reflected
by objects, meaning that it is necessary to find a new optical structure to realize the stealth
of light waves and achieve a flexible adjustment to the stealth wavelength.

Optical systems are non-Hermitian, as there is gain or loss (or both of them) in the
dielectrics [7]. Exchanges of energy occur between non-Hermitian optical systems and
the outside world [8,9]. The dielectric refractive index in non-Hermitian can be written as
n = nr + i∗ni, where nr is the real part of the refractive index, ni is the imaginary part of the
refractive index, and the letter i represents the imaginary unit.

As a non-Hermitian optical system satisfies parity-time (PT) symmetry, the left and
right incident light waves are non-reciprocal [10]. Specifically, the left and right reflection
spectra do not coincide. The two reflection coefficients’ phase spectra curves are also not
coincident [11]. The conception of PT symmetry is first derived from quantum mechan-
ics [12]. In an optical system, as long as the refractive index of the dielectric meets the
condition of n(r) = n* (−r) in space, where r is the position coordinate, the structure is
PT-symmetric. Many fascinating physical phenomena have been observed in PT-symmetric
and non-Hermitian systems, such as coherent perfect absorbing [13,14], optical bistabil-
ity [15,16], optical solitons [17], optical gradient forces [18], and topological protected or
transmission modes [19–22].

There are some defect modes in defective photonic crystals, such as one of the trans-
mission modes [23]. The transmission mode has great value in transmittance and a very
low reflectivity. The PT-symmetric optical system can enhance the resonance of the defect
mode, so that the maximum transmittance does not coincide with the left and right zero

Crystals 2022, 12, 199. https://doi.org/10.3390/cryst12020199 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12020199
https://doi.org/10.3390/cryst12020199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-4164-8164
https://orcid.org/0000-0002-0874-1749
https://doi.org/10.3390/cryst12020199
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12020199?type=check_update&version=2


Crystals 2022, 12, 199 2 of 9

points of reflection [24]. In other words, the two reflectionless points are not coincident.
This effect is called the unidirectional invisibility of optical propagation. Furthermore, the
left and right reflectivity zero points, viz. the invisibility wavelength, can be regulated by
the imaginary part of the dielectric refractive index [25].

Compared with periodic photonic crystals, quasi-periodic photonic crystals have more
defect cavities and show the optical fractal effect [26,27]. The optical fractal states are
transmission modes. Therefore, one can consider combining PT symmetry and quasi-
periodic photonic crystals to achieve the optical unidirectional invisibility of particular
wavelengths, using the reflection reciprocity of the left and right incident light waves
around the optical fractal states. The optical fractal states are between the left and right
reflectionless points in the reflection spectra. The stealth wavelength may also be adjusted
flexibly by the imaginary refractive index of the dielectrics.

A centrosymmetric composite system was constructed from two quasi-photonic crys-
tals which submit to the Cantor sequence. We modulated the gain–loss factor in systems to
satisfy PT symmetry. An optical fractal state and the mode enhancement phenomenon of
light were demonstrated subsequently. Then, we showed the nonreciprocity of reflection
for incident light from the left and right, respectively. Next, the left and right zero point
trajectories of reflection are given in the parameter space of the gain–loss factor and the
normalized frequency. The dependence of invisible wavelength on the gain–loss factor was
studied as well. Finally, we show the left/right reflectance changing with the gain–loss
factor, as the incident wavelength is equal to the right/left reflectionless wavelength. This
study may be utilized for optical invisibility.

2. PT-Symmetric Cantor Photonic Crystal

The Cantor sequence submits to the substitution rule: S0 = H, S1 = HLH,
S2 = HLHLLLHLH, . . . . . . , SN = SN−1 (LLL)N−1 SN−1, . . . . . . , where N (N = 2, 3, . . . . . . )
is the sequence number, and SN represents the Nth term of the sequence [28].

Figure 1 gives a parity-time-symmetric (PT-symmetric) Cantor photonic crystal with a se-
quence number of N = 2. The S2 Cantor photonic crystal can be expressed as HLHLLLHLH,
where H and L represent two unique dielectric slabs with high and low refractive indices,
respectively. The two dielectrics of H and L arrange along the Z-axis to form two S2 Cantor
photonic crystals which are centrosymmetric about the origin. Then, the imaginary part of
dielectric refractive index is modulated to satisfy PT symmetry. The whole system can also
be denoted by HLHLLLHLHH′L′H′L′L′L′H′L′H′.

Crystals 2022, 12, x FOR PEER REVIEW 2 of 9 
 

 

mode, so that the maximum transmittance does not coincide with the left and right zero 
points of reflection [24]. In other words, the two reflectionless points are not coincident. 
This effect is called the unidirectional invisibility of optical propagation. Furthermore, the 
left and right reflectivity zero points, viz. the invisibility wavelength, can be regulated by 
the imaginary part of the dielectric refractive index [25]. 

Compared with periodic photonic crystals, quasi-periodic photonic crystals have 
more defect cavities and show the optical fractal effect [26,27]. The optical fractal states 
are transmission modes. Therefore, one can consider combining PT symmetry and quasi-
periodic photonic crystals to achieve the optical unidirectional invisibility of particular 
wavelengths, using the reflection reciprocity of the left and right incident light waves 
around the optical fractal states. The optical fractal states are between the left and right 
reflectionless points in the reflection spectra. The stealth wavelength may also be adjusted 
flexibly by the imaginary refractive index of the dielectrics. 

A centrosymmetric composite system was constructed from two quasi-photonic crys-
tals which submit to the Cantor sequence. We modulated the gain–loss factor in systems 
to satisfy PT symmetry. An optical fractal state and the mode enhancement phenomenon 
of light were demonstrated subsequently. Then, we showed the nonreciprocity of reflec-
tion for incident light from the left and right, respectively. Next, the left and right zero 
point trajectories of reflection are given in the parameter space of the gain–loss factor and 
the normalized frequency. The dependence of invisible wavelength on the gain–loss factor 
was studied as well. Finally, we show the left/right reflectance changing with the gain–
loss factor, as the incident wavelength is equal to the right/left reflectionless wavelength. 
This study may be utilized for optical invisibility. 

2. PT-Symmetric Cantor Photonic Crystal 
The Cantor sequence submits to the substitution rule: S0 = H, S1 = HLH, S2 = 

HLHLLLHLH, ……, SN = SN−1 (LLL)N−1 SN−1, ……, where N (N = 2, 3, ……) is the sequence 
number, and SN represents the Nth term of the sequence [28]. 

Figure 1 gives a parity-time-symmetric (PT-symmetric) Cantor photonic crystal with 
a sequence number of N = 2. The S2 Cantor photonic crystal can be expressed as 
HLHLLLHLH, where H and L represent two unique dielectric slabs with high and low 
refractive indices, respectively. The two dielectrics of H and L arrange along the Z-axis to 
form two S2 Cantor photonic crystals which are centrosymmetric about the origin. Then, 
the imaginary part of dielectric refractive index is modulated to satisfy PT symmetry. The 
whole system can also be denoted by HLHLLLHLHH’L’H’L’L’L’H’L’H’. 

 
Figure 1. Schematic of PT-symmetric Cantor photonic crystal. The Cantor photonic crystal is com-
posed of two S2 dielectric multilayers submitted to the Cantor sequence substitution rule and the 
two S2 of Cantor photonic crystal are symmetric about the center. 

For a light incident from the left, the symbols of Iif, Itf, and Irf represent the incident, 
transmitted, and reflected lights, respectively, while for a right incident light beam the 
incident, transmitted, and reflected lights are, respectively, denoted by Iib, Itb, and Irb. The 
alphabet of θ is the incident angle and for a normal incident beam the incident angle is θ 
= 0°. 

Figure 1. Schematic of PT-symmetric Cantor photonic crystal. The Cantor photonic crystal is
composed of two S2 dielectric multilayers submitted to the Cantor sequence substitution rule and the
two S2 of Cantor photonic crystal are symmetric about the center.

For a light incident from the left, the symbols of Iif, Itf, and Irf represent the incident,
transmitted, and reflected lights, respectively, while for a right incident light beam the
incident, transmitted, and reflected lights are, respectively, denoted by Iib, Itb, and Irb. The
alphabet of θ is the incident angle and for a normal incident beam the incident angle is
θ = 0◦.

The host materials of dielectric slabs H and H′ are Si and have relatively high refrac-
tive indices. Their refractive indices are, respectively, expressed as nH = 3.53 + i∗0.01 q and
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nH′ = 3.53 – i∗0.01 q, where i is the imaginary unit and q is the gain–loss factor of mate-
rials. The host materials of the low refractive indices dielectric slabs L and L′ are SiO2,
of which the refractive indices are written as nL = 1.46 + i∗0.01q and nL′ = 1.46 − i∗0.01q,
respectively. The thicknesses of dielectric slabs of H and H′ are 1/4 optical wavelength,
viz. dH = dH′ = λ0/4/Re(nH) = 0.1098 µm, where λ0 = 1.55 µm is the central wavelength and
Re(nH) is the real part of nH. Similarly, the thicknesses of dielectric slabs of L and L′ are
dL = dL′ = λ0/4/Re(nL) = 0.2654 µm. The PT symmetry requires the system refractive index
to meet the condition of n(z) = n*(−z), and the asterisk represents the complex conjugate
operator. If we further write the system refractive index as n(z) = nr(z) + i∗ni(z), the PT-
symmetric condition can be divided into two formulae: nr(z) = nr(−z) and ni(z) = −ni(−z).
That is, the real part of the refractive index is even symmetric with respect to the origin,
while the imaginary part is odd symmetric. Otherwise, the positive imaginary part of
the refractive index represents the optical loss in materials, while the negative value of
the refractive index indicates the optical gain. One can realize optical gain by nonlinear
two-wave mixing and the loss could be modulated through ion doping.

Cantor photonic crystals are quasi-periodic and could induce an optical fractal phe-
nomenon as the sequence number of photonic crystals increases, which is a characteristic
that the periodic photonic crystals cannot possess. The optical fractal states are resonant
transmission modes, of which the electric field power could be greatly confined in the
defect layers of quasi-periodic photonic crystals. The values of transmittance are maximum
and the reflectance values are minimum at the optical fractal states. In particular, as Cantor
photonic crystals satisfy parity-time symmetry, the right and left reflection coefficients are
nonreciprocal. Consequently, the right/left reflectance is zero at the optical fractal states
as the gain–loss factor of materials is q 6= 0, while the left/right reflectance is nonzero for
incident light with the same wavelength. This effect is called unidirectional invisibility.
Here, we only explore the reflection nonreciprocity of light around one of the optical fractal
states near the center of normalized frequency, so the unidirectional invisible effect may
also exist at other fractal states and in other aperiodic photonic crystals, such as Octonacci,
Thue–Morse, Rudin–Shapiro, and period-doubling photonic crystals [29–33]

3. Unidirectional Invisible Phenomenon

As transverse magnetic (TM) polarized light wave is normally incident on the PT-
symmetric structure from the left, Figure 2 demonstrates the transmission spectra for a value
of the gain–loss factor q = 5. The transverse coordinate of (ω − ω0)/ωgap is the normal-
ized angular frequency, where the symbol c is the vacuum velocity of light andω = 2πc/λ,
ω0 = 2πc/λ0, andωgap = 4ω0 arcsin | [Re(nH) – Re(nL)]/[Re(nH) + Re(nL)] | 2/π are, respec-
tively, called the incident angular frequency of light, the central angular frequency, and
the photonic bandgap. The transmission and reflection spectra are derived by the forward
transmission matrix method (FTMM) [22]. The symbol T represents the transmittance,
while Rf and Rb, respectively, represent the reflectance of lights incident from the left
and right.
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The transmission spectra are coincident with each other for lights normally incident
from the left and right, while the reflection spectra are not coincident. There is a peak in
the transmittance curve and the peak value is T = 1.11 at (ω − ω0)/ωgap = 0.0016. The
peak corresponds to a resonant mode which stems from the electric field localization. The
combined effect of the optical gain in materials and the mode field localization causes the
peak transmittance to exceed 1.

For two lights incident from the left and right, there is a valley in each reflection
spectrum. The two valleys are denoted as ZPf and ZPb for the two directions’ incident
lights, respectively. The valley of ZPf is located at (ω − ω0)/ωgap = 0.0018 for the left
incident light, while for the right incident light the reflection valley of ZPb is located at
(ω − ω0)/ωgap = 0.0013. One can find that the maximum transmittance is between the
two reflectivity zeros.

The characteristic is that the reflection curve of the left incident light does not identify
with that of the right incident light. In particular, the left incident reflectance is Rf = 0
at ZPf, while the right incident reflectance is Rb = 0.3896. As light is incident from the
left at the normalized frequency of (ω − ω0)/ωgap = 0.0018, the reflectance is zero, viz.
reflectionless transmission. In this case, the device is invisible to the left incident light
wave, while the reflectance is nonzero and visible for a light incident from the right at
the same frequency. Similarly, the right reflectance is Rb = 0 at ZPb at the normalized
frequency (ω − ω0)/ωgap = 0.0013, while the left reflectance is Rf = 0.3969. In this case, for
the frequency of (ω − ω0)/ωgap = 0.0013, the device is invisible to the right incident light
while it is visible to the left incident light. Therefore, this effect could be utilized for the
unidirectionally optical invisibility of particular wavelengths.

The gain–loss factor can be positive and negative. In PT-symmetric systems, the
imaginary part of the refractive index of the whole structures submits to odd symmetry
ni(z) = − ni(−z). For a specific material, the positive imaginary part of the refractive index
represents loss and the negative imaginary part of the refractive index represents gain. We
have only demonstrated reflectance and transmittance of light for the case of positive q, so
for the case of q < 0, one can derive the reflection and transmission characteristic from the
case of q > 0 by flipping the device horizontally.

As a light is normally incident from the left, Figure 3a gives the reflectance in the pa-
rameter space. The parameter space is composed of the gain–loss factor and the normalized
frequency. The symbol of Rf represents the forward-incident light reflectance and log10(Rf)
is the logarithm of Rf. There is a groove of reflectance in the parameter space cuased by
modulating q and (ω − ω0)/ωgap simultaneously. The value on the path of the reflectance
groove is zero, viz. the groove corresponds to the zero reflection point changing trajectory
and denoted by ZPf.

For a right incident light where the incident is θ = 0◦, the reflectance is labeled by Rb. In
the parameter space, the reflectance is a function of the gain–loss factor and the normalized
frequency as shown in Figure 3b. One can see that, compared with Figure 3a, there is also
a valley trajectory in the parameter space as the gain–loss factor and normalized frequency
change. The minimum value of the right reflection is zero as well and denoted by ZPb. One
can find that the left and right trajectories composed of the zero-reflection points do not
coincide, which manifests that the reflection is direction-dependent and nonreciprocal.

As lights are incident from the left and right, Figure 3c gives the transmittance in
the parameter space. The values of transmittance are the same for the two directions’
incident lights. The transmittance of light is denoted by T and there is a peak transmittance
trajectory in the parameter space denoted by PT. The peak varies with the gain–loss factor
and the normalized frequency. The peak value increases with the increase in the gain–loss
factor and normalized frequency. In other words, the resonance of the transmission mode
is improved by increasing the gain–loss factor, which results from the enhancement of the
electric field localization.
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Figure 3d gives the transmittance peak (PT), with the zero points of the left and
right reflection (ZPf and ZPb) varying with the gain–loss factor. The zero points of these
two direction reflection lights split as the gain–loss increases. Furthermore, as the gain–loss
factor increases, the zero reflection points split more widely. The peak of transmittance is
local between the left and right reflectionless points. This demonstrates that the left and
right reflection nonreciprocity phenomenon is more obvious for a greater gain–loss factor.
Otherwise, zero points of reflection splitting induce the localization enhancement of the
electric field and resonance of the transmission mode.

For a light incident from the left, there are a series of zero-points of reflectance in the pa-
rameter space. We have denoted the zero-point by ZPf which is local at [q, (ωfz − ω0)/ωgap].
For each fixed value of the gain–loss factor, there is a corresponding left reflectionless point.
Meanwhile, this normalized frequency corresponds to a specific wavelength, so we can
denote the reflectionless point by [q, λfz]. The zero-point of reflection changes with the
gain–loss factor; therefore, the corresponding wavelength of the reflectionless point changes
as well. For a given q, the reflectance is Rf = 0 as the incident light wavelength is λ = λfz.
Therefore, people cannot sense the existence of the photonic crystal, and the photonic
device is left invisible to this left incident particular wavelength. Keeping the gain–loss
factor unchanged, the reflectance is Rb > 0 for the right incident light. For a given value of
q, the right reflectance of λfz (the left reflectionless incident wavelength) varies with the
gain–loss factor, as shown in Figure 4a. As the gain–loss factor increases, this modulates
the incident wavelength to leave the left reflectance containing zero unchanged, while the
right reflectance keeps increasing at the same incident wavelength. Therefore, the device is
unidirectionally invisible for the left incident light and visible for the right incident light.

Figure 4b gives the left reflectionless wavelength varying with the gain–loss factor.
The corresponding wavelength is λfz = 1.55 µm for q = 0 and the corresponding wave-
length is λfz = 1.5436 µm for q = 10. The left incident invisibility wavelength decreases
with the increase in the gain–loss factor. Here, we investigate the reflectionless points in
the non-reciprocal left and right reflection spectra of lights. This effect is called unidirec-
tional invisibility and could be utilized for unidirectional invisibility for a given gain–loss
factor q = 10, the reflectance Rf = 0 as a light is incident from the left with a wavelength
of λfz = 1.5436 µm, while the right reflectance is Rb 6= 0 with the same incident wave-
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length. Therefore, this photonic device is invisible for the left incident probing wave of
λfz = 1.5436 µm and visible for the same right incident probing wave, as the gain–loss factor
is q = 10.
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gain–loss factor q = 5, viz. nH = 3.53 + 0.05i, nH’ = 3.53−0.05i, nL = 1.46 + 0.05i, and nL’ = 
1.46−0.05i, Figure 6a gives the transmission spectra of lights derived by two different sim-
ulating methods of TMM and (finite difference time domain) FDTD. One can see that the 
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The zero reflection of the right incident light is denoted by [q, λbz]. In the same
way, for a fixed q the left reflectance is nonzero as the light impinges upon the structure
normally from the right in the corresponding wavelength of λbz, meaning that the device
can be unidirectionally invisible for the right incident light. The left reflectance at the
wavelength of the right reflectionless varies with the gain–loss factor, as shown in Figure 5a.
By modulating the incident wavelength, the right reflectance contains Rbz = 0 as the gain–
loss factor increases. Meanwhile, the reflectance of the left incident light increases with the
increase in the gain–loss factor. Therefore, the device is invisible for the right incident light,
while it is visible for the left incident light.
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Figure 5b provides the corresponding wavelength of the right reflectionless changing
with the gain–loss factor. The invisibility wavelength is λbz = 1.55 µm for q = 0 and the
corresponding wavelength is λbz = 1.5478 µm for q = 10. The right incident invisibility
wavelength decreases with the increase in the gain–loss factor as well.

For 1D photonic crystals with regular geometric structures, the transmittance and
reflectance of plane waves are submitted to the exact mathematical expressions in TMM.
Here, we choose some parameters to verify this conclusion. For a nonzero value of the
gain–loss factor q = 5, viz. nH = 3.53 + 0.05i, nH′ = 3.53−0.05i, nL = 1.46 + 0.05i, and
nL′ = 1.46−0.05i, Figure 6a gives the transmission spectra of lights derived by two different
simulating methods of TMM and (finite difference time domain) FDTD. One can see that
the two simulating results are demonstrated to be coincident with each other. There
is a peak in the transmittance curve and the corresponding wave of the transmission
peak is λ = 1.5487 µm. For the transmission mode, Figure 6b,c provide the distribution
of the electric field in TMM and FDTD, respectively. The electric field power is mainly
restricted around the center defect layers and the results simulated in two different methods
are coincident.
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Figure 6. (a) Transmission spectra for the normally incident light waves for q = 5 in two different
simulating methods. (b,c) Electric field distribution of the transmission mode simulated by TMM
and FDTD, respectively.

The dielectric slabs of 1D photonic crystals are arranged along the Z-axis and the
whole thickness of this structure is 3.5323 µm in the horizontal direction. More practical 2D
and 3D structures can be constructed, since the size of 1D photonic crystals in the X-axis or
Y-axis is approximately two orders of magnitude larger than that in the Z-axis.

For a given value of q, there is a corresponding wavelength at which the reflectance
is zero as the light is incident from the left, while the right reflectance is nonzero at the
same incident wavelength. Similarly, for a light with some other wavelengths, the right
reflectance is zero while the left reflectance is nonzero. This effect can be utilized for optical
unidirectionally invisibility. The invisibility wavelength could be tuned by the gain–loss
factor flexibly.

4. Conclusions

In conclusion, the reflectionless effect and the dependence of reflection on direction
are investigated in PT-symmetric Cantor photonic crystals. Two dielectrics subject to
the Cantor sequence array along the Z-axis and their refractive indices are modulated to
satisfy PT symmetry. The Cantor photonic crystals support optical fractal states which
are resonant states. The left and right reflectionless states are local at around the resonant
mode. The PT symmetry leads to the unidirectional invisibility of light. By modulating the
gain–loss factor, PT symmetry could further improve the resonance of an optical fractal
state. Subsequently, the left and right zero points of reflection are split by tuning the gain–
loss factor of materials. In particular, the unidirectionally invisible wavelength changes
with the gain–loss factor. This study could have applications for optical reflectors and
invisible cloaks, such as spatially tunable modern lasers [34], wavelength splitters [35],
dispersion-controlled optical group delay devices [36], multichannel multiplexors [37], and
rendering objects undetectable [38,39].
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