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Unidirectional soliton flows in PT -symmetric potentials
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We study the soliton scattering by parity-time- (PT) symmetric potentials and demonstrate that, for a certain
range of parameters, both single and multiple soliton scattering exhibit almost perfect unidirectional flow. We
employ direct numerical simulations of the corresponding nonlinear Schrödinger equation combined with the
analysis of the effective equations derived by the collective-coordinate approach and reveal that the physical
mechanism behind this effect of the unidirectional scattering is related to the energy exchange between the
soliton center of mass and its internal mode.
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I. INTRODUCTION

Quantum mechanics requires that every physical observable
is associated with a real spectrum and, hence, it was postulated
that all operators representing such physical values should be
Hermitian. This axiom guarantees conservation of probability
and also takes care of the unitary temporal evolution of the
system. However, in the past decade considerable attention
[1,2] has been paid to the formulation of a weaker version
of the Hermitian axiom which still requires the spectrum to
be real. In a series of papers by Bender et al. [1], it was
shown that even non-Hermitian Hamiltonians can exhibit real
spectra provided they satisfy both parity and time-reversal
symmetry referred to as a parity-time (PT) symmetry. A
one-dimensional Hamiltonian is PT symmetric when the
corresponding potential fulfils the condition V (x) = V ∗(−x),
where x is the spatial coordinate and the asterisk stands for a
complex conjugation which requires that the real part of the
potential is even while its imaginary part is an odd function of
position x.

The concept of PT-symmetric potentials can be extended
to nonlinear models, and a new class of localized modes was
found to exist below the PT-symmetry-breaking transition [3].
Subsequently, nonlinear modes were also studied in different
types of complex PT symmetric potentials [4,5]. The existence
of periodically oscillating solitons in PT-symmetric nonlinear
couplers with gain or loss were also predicted [6].

Recently, it was proposed that optics can provide a fertile
ground where PT-related concepts can be realized and exper-
imentally tested [2]. This is due to the fact that there is close
similarity between the effective wave propagation equation and
the Schrödinger equation from quantum mechanics where the
role of potential in the Schrödinger equation is played by the
refractive index in optics. Motivated by this connection, optical
systems which exhibit PT symmetry have been formulated [2].
Given that the complex refractive index of an optical one-
dimensional system can be written as n(x) = nR(x) + inI (x),
where nR(x) is the real part and nI (x) is the imaginary part
of the refractive index, respectively, and x is the transverse
coordinate, a PT-symmetric effective optical potential n(x)
can be realized by a suitable design for the distribution of gain
and loss in the medium, nI (x). The PT symmetry condition

will, in this case, be satisfied with the real part of the refractive
index profile of the medium, nR(x), being even and the gain
or loss profile, nI (x), being an odd function of coordinate x.

Reflection and transmission of solitons through scattering
potentials represents an interesting problem, being of the fun-
damental interest in condensed matter physics and nonlinear
optics. For instance, it was shown that a quantum reflection
from barriers and wells has a resonant character, where the
internal modes of solitons and local impurity modes are
interacting [7]. The case when defects exhibit equal gain or
loss coefficients with a specific type of PT symmetry is of great
interest. In this paper, we study the soliton scattering through
a PT-symmetric potential, both analytically and numerically.
Recently, scattering of a broad soliton in a nonlinear lattice
with a PT-symmetric defect has been considered [8], where
amplification of the soliton during the process of scattering
was studied numerically. More recently, unidirectional re-
flectionless flow was demonstrated experimentally near the
spontaneous parity-time symmetry phase transition point [9].
Here we show that under special conditions we can have
nonreciprocity in the soliton transmission or a unidirectional
soliton flow of solitons giving rise to a diode-type transmission
effect.

The paper is organized as follows. In Sec. II we introduce
our model and formulate the problem. In Sec. III, we perform
numerical simulations for the solitons scattering through a PT-
symmetric potential. Section IV is devoted to the collective-
coordinate analysis of the model. Section V concludes the
paper by summarizing our major findings.

II. PROBLEM FORMULATION

We begin our study with the traditional normalized nonlin-
ear Schrödinger (NLS) equation that includes a PT-symmetric
potential,

i
∂ψ

∂t
+ 1

2

∂2ψ

∂x2
+ [V (x) + iW (x)]ψ + |ψ |2ψ = 0 , (1)

where

V (x) = V0 sech2(αx), W (x) = W0 x sech2(αx), (2)
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and V0 and W0 are real-valued constants corresponding to
the depth or amplitude of the real an imaginary parts of the
potential, respectively. The real part of the potential V (x),
known as the Rosen-Morse potential, belongs to the class of
reflectionless potentials. The inverse width α is typically equal
to

√|V0| to maintain the reflectionless property. It is clear that
since V (x) and W (x) are even and odd function, respectively,
the PT symmetry requirement is satisfied. It has been shown
that solitons scattered by this potential exhibit sharp transition
in the transport coefficients at a certain critical incident center-
of-mass speed of the soliton [7,10]. Such a sharp transition is
crucial to the existence of the unidirectional flow described in
this paper. We have investigated the effect of other potential
wells. For instance, we found that the sharp transition in the
transport coefficients is absent for a square potential well and
present for a Gaussian potential well. The unidirectional flow
thus has indeed been seen with the latter but not the former
potential.

Launching a bright soliton on the PT-symmetric potential
given by Eq. (2), we describe the dynamics of the scattered
soliton by Eq. (1). The transport coefficients can then be
calculated for the two directions of incidence showing the
unidirectional flow. In the following section, this effect will
be shown by solving numerically Eq. (1). In Sec. IV, a
collective coordinate approach sheds further light on the
physics underlying this behavior.

III. NUMERICAL RESULTS

Exact soliton solution of the homogeneous version of
Eq. (1) is used to start the numerical evolution of the scattering
process, namely

ψ(x,0) = A
exp{i v0[x − xc.m.(0)]}
cosh{A[x − xc.m.(0)]} , (3)

with A = 1 and xc.m.(0) = x0, where v0 and x0 are the initial
center-of-mass velocity and position, respectively. For the
numerical study of the scattering process the initial position
of the soliton x0 is selected to be considerably far from the
potential well so there is no interaction between them at t = 0.
When the soliton is set in motion with initial center-of-mass
velocity v0 and the collision between the soliton and potential
arises we may have pure transmission (T ), trapping (L),
reflection (R), or a combination of these states. The three
coefficients must satisfy the conservation law R + T + L = 1.
These coefficients are determined long after the scattering from
the potential well, according to the relations

R = 1

N

∫ −h

−∞
|ψ(x)|2dx, T = 1

N

∫ ∞

h

|ψ(x)|2dx,

L = 1

N

∫ h

−h

|ψ(x)|2dx, (4)

where h denotes a position on the x axis at which the influence
of the potential disappears V (h) ∼ 0, andN = ∫ ∞

−∞ |ψ(x)|2dx

is the soliton norm. Notice that the signs of the limits of
integrations implicitly assume a negative initial position and a
positive initial velocity of the soliton, i.e., incident from left to
right. For a soliton incident from right to left, the definitions
of R and T should be interchanged.

FIG. 1. (Color online) (a) Density plot for a single soliton
scattering by a PT-symmetric potential when the soliton is moving
from left to right. (b) Same as in (a) but for the motion from right to
left. Parameters are as follows: |v0| = 0.25, |x0| = 10, V0 = 4, and
W0 = 2.0.

In Fig. 1, the soliton scattered by the PT-symmetric
potential is shown with strength V0 = 4, W0 = 2, initial speed
|v0| = 0.25, and initial position |x0| = 10. When the soliton
collides with the potential moving from the left, it gets reflected
completely as in Fig. 1(a), but when the soliton is incident from
the right, as in Fig. 1(b), the soliton completely transmits to
the other side of the potential. Figure 2 shows the transmission
and reflection coefficients as functions of the initial velocity
v0 for a fixed strength of the PT-symmetric potential with
V0 = 4 and W0 = 2. Solid and dashed lines indicate the
soliton incident from the left and the right, respectively.
Figures 2(a) and 2(b) show the remarkable feature that for the
incident velocity window v0 ∈ [0.24 − 0.32] unidirectional
flow takes place. Further details on the dynamics are shown in
Figs. 3(a)–3(d), where we plot the amplitude, center-of-mass
position, center-of-mass speed, and kinetic energy versus time
for both directions of incidence. Figure 3(a) shows amplitude
oscillations developing post scattering. These are naturally as-
sociated with oscillation in the width of the soliton and, hence,
leading to kinetic energy oscillation, as shown in Fig. 3(d).

Figures 3(b) and 3(c) show a reduction in the center-of-mass
speed as a result of the scattering. It is also noticed, upon
comparing the two curves in each subfigure, that the soliton
acquires considerably larger gain in its amplitude and kinetic
energy when scattered by the left side of the potential. This
asymmetry is inherited from the asymmetry in the imaginary
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FIG. 2. (Color online) [(a) and (b)] Reflection and transmission
coefficients for a soliton moving left (dashed) and right (solid), re-
spectively. Parameters are as follows: V0 = 4, W0 = 2, and |x0| = 10.
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FIG. 3. (Color online) Soliton scattering through a PT-symmetric
potential studied numerically by solving the NLS equation: (a)
amplitude, (b) center of mass, (c) velocity, and (d) kinetic energy
of a soliton moving from left and right (dashed and solid lines,
respectively). Parameters are as follows: V0 = 4, W0 = 2, |x0| = 10,
and |v0| = 0.25.

part of the potential such that a soliton incident from left
will encounter gain [W (x) is negative] and then loss [W (x) is
positive] while the situation is reversed for the soliton incident
from right. Thus, the outcome of the scattering depends on the
order of the sequence of loss and gain regions as encountered
by the traveling soliton. The width of the velocity window,
�v, where the unidirectional flow occurs depends on the
potential strengths, V0 and W0. Figure 4 shows this dependence
where it is observed that larger velocity window is obtained
with smaller V0 and larger W0. That is, in designing such
a unidirectional system the dissipative part of the potential
plays a constructive role while the real part of the potential is
detrimental and should be reduced as much as possible for the
realization of this phenomenon.

Finally, the unidirectional flow was also demonstrated for
a train of six solitons where the distance between center
of masses of adjacent solitons and their initial speed are
|δx0| = 15 and |v0| = 0.25, respectively, as shown in Fig. 5.
Below this value of separation, the scattered solitons start to
interact with incident solitons in a manner that destroys the
unidirectional flow. In particular, the reflected dispersive wave
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FIG. 4. (a) Velocity window for the unidirectional soliton scatter-
ing as a function of W0 for the strength of real part of the PT-symmetric
potential fixed at V0 = 4. (b) Velocity window as a function of V0

while the strength of imaginary part of PT-symmetric potential is
fixed at W0 = 2.

FIG. 5. (Color online) (a) Density plot of a soliton train scattering
through a PT-symmetric potential from left to right. (b) Same as in
(a) but for the scattering from right to left. Parameters are as follows:
|v0| = 0.25, V0 = 4, and W0 = 2.5.

excited from the scattering of one soliton will perturb the
profile of adjacent incident soliton and its center-of-mass speed
leading to a different outcome than for the unperturbed soliton.
For the used values of V0 and W0, a minimum separation
of 15 guarantees that such perturbations will not affect the
unidirectional flow. The potential strength in both cases was
fixed with V0 = 4 and W0 = 2.5. In Fig. 5(a), the soliton train
was transmitted while in Fig. 5(b) it was reflected. It is noticed
that while the amplitude of the transmitted string of solitons is
almost equal to that of the incident one, the amplitude of the
reflected solitons is almost doubled. This asymmetry is again
a consequence of the fact that while in one case the soliton
experience gain followed by loss, in the other case the case it
experiences loss followed by gain.

IV. COLLECTIVE-COORDINATE APPROACH

The numerical results of the previous section have shed
some light on the physics behind the soliton unidirectional
flow. The incoming soliton experiences an increase or a
decrease in its center-of-mass speed depending on the direction
from which it is incident on the PT-symmetric potential. There
are two mechanisms by which the PT-symmetric potential
changes the center-of-mass speed of the incoming soliton, the
first being the mixing of the center-of-mass motion with the
internal modes of the soliton such that breathing modes are
excited from a reduction in the center-of-mass kinetic energy.
This is evident from the oscillations in the amplitude and
kinetic energy of the scattered soliton, as shown in Fig. 3 and
discussed in the previous section. The second mechanism for
center-of-mass speed change is the damping and gain provided
by the imaginary part of the PT-symmetric potential. While
damping acts on one side of the potential, gain acts on the
other. A soliton incident from the damping side will experience
a reduction in its center-of-mass speed such that it experiences
a quantum reflection from the real part of the potential at the
center. On the contrary, a soliton incident from the pumping
side will experience an increase in its center-of-mass speed,
resulting in a full transmission.

To verify this simple explanation we use in the present
section a collective-coordinate approach to derive the equation
of motion for the center-of-mass of the soliton. It turns out that
the imaginary part of the PT-symmetric potential results in a
term that is damping or pumping depending on the direction
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of the incoming soliton. For feasibility of calculations, we use
a PT-symmetric potential composed of δ functions as follows:

V (x) = V0 δ(x), W (x) = W0 [δ(x − L) − δ(x + L)], (5)

which represents a δ-potential well (barrier) at x = −L(L)
with strength W0 and a δ potential well at x = 0 with strength
V0. Notice that the potential in Eq. (1) is given by −V (x) −
i W (x). Clearly, this potential captures the main PT-symmetric
features of the original potential in Eq. (2).

Focusing on the dynamics of the center of mass, we employ
the following ansatz:

ψ(x,t) = η
exp{−iμ(t)[x − ξ (t)]}

cosh{[x − ξ (t)]/α} , (6)

where ξ (t) and μ(t) are time-dependent variational parameters
corresponding to the center-of-mass position and center-of-
mass speed, respectively. The width, α, and amplitude, η, are
taken here independent of time. For completeness, we review
here briefly the collective-coordinate approach [11].

We start by rewriting the NLS equation in the form

i
∂ψ

∂t
= δH0

δψ∗ + R[ψ(x,t); x,t], (7)

where

H0 = 1

2

∫ +∞

−∞
dx(ψxψ

∗
x − ψ2ψ∗2) (8)

and

R[ψ(x,t); x,t] = −[V (x) + iW (x)]ψ. (9)

By assuming ψ(x,t) and its conjugate to vary with time
via a set of time-dependent variational parameters,

−→
Y (t) :=

{η(t),ξ (t),μ(t),α(t),β(t),φ(t)}, the equations of motion for the
variational parameters can be derived from the relations

6∑
j=1

IYnYj
Ẏj = Fn(

−→
Y ) + Rn(

−→
Y ), n = 1,2, . . . 6, (10)

with

IYnYj
= i

∫ +∞

−∞
dx

(
∂ψ

∂Yn

∂ψ∗

∂Yj

− ∂ψ∗

∂Yn

∂ψ

∂Yj

)
, (11)

Fn(
−→
Y ) = −∂H0

∂Yn

, (12)

Rn(
−→
Y ) = −

∫ +∞

−∞
dx

(
R

∂ψ∗

∂Yn

+ R∗ ∂ψ

∂Yn

)
, (13)

where the dot denotes the derivative with respect to time.
The equations of motion for ξ (t) and μ(t) read

ξ̇ (t) = −μ(t) + W0

α

{
[L − ξ (t)] sech2

[
L − ξ (t)

α

]

+ [L + ξ (t)] sech2

[
L + ξ (t)

α

]}
, (14)

μ̇(t) = − V0

2α

d

dξ (t)
sech2

[
ξ (t)

α

]
− W0

a

{
sech2

[
L + ξ (t)

α

]

− sech2

[
L − ξ (t)

α

]}
μ(t). (15)

Eliminating μ(t), the following equation of motion for ξ (t) is
obtained:

ξ̈ + �[ξ ] ξ̇ + f [ξ ] = 0, (16)

where

�[ξ ] = 2W0

α2

[
(L + ξ ) sech2

(
L + ξ

α

)
tanh

(
L + ξ

α

)

− (L − ξ ) sech2

(
L + ξ

α

)
tanh

(
L + ξ

α

)]
(17)

and

f [ξ ] = V0 sech2

(
ξ

α

)
tanh

(
ξ

α

)

− W 2
0

α2

[
sech2

(
L + ξ

α

)
− sech2

(
L − ξ

α

)]2

ξ

− W 2
0

α2

[
sech4

(
L + ξ

α

)
− sech4

(
L − ξ

α

)]
L. (18)

The center-of-mass equation of motion is, thus, similar to
that of a classical particle subject to a velocity-dependent
damping/gain force, �[ξ ] ξ̇ , and a position-dependent effective
force, −f [ξ ]. The sign of the position-dependent damping or
gain coefficient determines weather the soliton will be subject
to damping or gain such that for �[ξ ] > 0(< 0), the soliton will
be subject to damping (gain). Plotting f [ξ ] and �[ξ ] versus
ξ shows that a soliton incident from the left (right) will be
subject to damping (gain), as shown in Fig. 6. This verifies the
above-mentioned asymmetry in damping and gain. Since the
peaks of damping (gain) is off-centered, the velocity reduction
(increase) takes place before the soliton reaches the potential
well at the center and thus reflects (transmits).

To estimate the velocity reduction caused by the damping
part on a soliton incoming from the left, we neglect in Eq. (16)
the terms originating from the δ function on the right, namely
those with L − ξ but keeping the terms with L + ξ . In addition,
we assume, for simplicity, weak damping so we can neglect
terms proportional to W 2

0 . Since the real part of the potential
is symmetric we also ignore the V0 term in order to focus on
the asymmetric imaginary part of the potential. The equation

6 4 2 0 2 4 6
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Ξ

f
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,
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FIG. 6. (Color online) Effective force, −f [ξ ], shown with dashed
curve and damping rate, �[ξ ], shown with solid curve. the curves are
given by Eqs. (17) and (18). Parameters are as follows: α = η = 1,
V0 = 2, L = 2, and W0 = 0.1.
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of motion then simplifies to

ξ̈ + 2W0

α2
(L + ξ ) sech2

(
L + ξ

α

)
tanh

(
L + ξ

α

)
ξ̇ = 0,

(19)

which can be written as

ξ̈ + W0

α

d

dt

[
α tanh

(
L + ξ

α

)
− (L + ξ ) sech2

(
L + ξ

α

)]
= 0.

(20)

Integrating, we obtain

ξ̇ = v0−W0 − W0

α

[
α tanh

(
L + ξ

α

)
− (L+ξ ) sech2

(
L + ξ

α

)]
,

(21)

where the initial condition ξ̇ (−∞) = v0 is satisfied by sub-
stituting ξ (−∞) = −∞ in the previous equation. Assuming
ξ (0) = 0, the velocity reduction thus can be calculated as

�v ≡ ξ̇ (0) − ξ̇ (−∞)

= −W0 − W0

α

[
α tanh

(
L

α

)
− L sech2

(
L

α

)]
, (22)

which is identically negative. Clearly, a soliton incident from
the right direction will experience velocity increase that is
equal to |�v|.

Finally, we note that while the collective-coordinate ap-
proach provides a general theoretical explanation for the
existence of the unidirectional flow, a direct comparison of
its predicted dynamics with the numerical solution of the
NLS equation is not performed for two main reasons. First,
the profiles of the PT-symmetric potentials, Eqs. (2) and (5),
are different. Second, the collective-coordinate approach is an
approximate calculation so no quantitative agreements with

the direct numerical simulations of the soliton directional flow
is expected.

V. CONCLUSIONS

We have predicted and demonstrated numerically the effect
of unidirectional soliton flows for the PT-symmetric potentials.
We have observed that almost perfect transmission of solitons
takes place in one direction and almost perfect reflection occurs
in the other direction. We believe that the asymmetry in the
sequence of pumping and damping is essentially the main
reason for this behavior. In addition, an internal mode is
excited at the expense of the center-of-mass kinetic energy.
Both effects cause a velocity reduction that may or may not
lead to the soliton transmission through the potential. If, for
example, the soliton propagates from the right, it encounters,
first, the gain region accompanied by some velocity increase
that keeps its speed above the critical value for reflection, as
a result, the soliton transmits. On the other hand, in the same
system the soliton scattering from the left will first encounter
the lossy region accompanied by a velocity reduction. Here, the
soliton velocity will reduce becoming lower than the critical
velocity for reflection, and, hence, the soliton will be reflected.

This mechanism has been verified by studying the excitation
of the soliton internal mode and the velocity reduction as
shown in Fig. 3. Furthermore, a collective-coordinate approach
has verified qualitatively that the soliton experiences an asym-
metric position-dependent damping. Finally, the unidirectional
flow was also demonstrated for the multisoliton case. Almost
perfect unidirectional flow was also obtained but under the
requirement of well-separated solitons.
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