
Unification: A Multidisciplinary Survey

KEVIN KNIGHT

Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213-3890

The unification problem and several variants are presented. Various algorithms and data

structures are discussed. Research on unification arising in several areas of computer

science is surveyed, these areas include theorem proving, logic programming, and natural

language processing. Sections of the paper include examples that highlight particular uses

of unification and the special problems encountered. Other topics covered are resolution,

higher order logic, the occur check, infinite terms, feature structures, equational theories,

inheritance, parallel algorithms, generalization, lattices, and other applications of

unification. The paper is intended for readers with a general computer science

background-no specific knowledge of any of the above topics is assumed.

Categories and Subject Descriptors: E.l [Data Structures]: Graphs; F.2.2 [Analysis of

Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-

Computations on discrete structures, Pattern matching; Ll.3 [Algebraic Manipulation]:

Languages and Systems; 1.2.3 [Artificial Intelligence]: Deduction and Theorem

Proving; 1.2.7 [Artificial Intelligence]: Natural Language Processing

General Terms: Algorithms

Additional Key Words and Phrases: Artificial intelligence, computational complexity,

equational theories, feature structures, generalization, higher order logic, inheritance,

lattices, logic programming, natural language processing, occur check, parallel algorithms,

Prolog, resolution, theorem proving, type inference, unification

INTRODUCTION

The unification problem has been studied
in a number of fields of computer science,
including theorem proving, logic program-
ming, natural language processing, compu-
tational complexity, and computability
theory. Often, researchers in a particular
field have been unaware of work outside
their specialty. As a result, the problem has
been formulated and studied in a variety of
ways, and there is a need for a general
presentation. In this paper, I will elucidate
the relationships among the various con-
ceptions of unification.

The sections are organized as follows.
The three sections The Unification Prob-

lem, Unification and Computational Com-
plexity, and Unification: Data Structures
and Algorithms introduce unification. Def-
initions are made, basic research is re-
viewed, and two unification algorithms,
along with the data structures they require,
are presented. Next, there are four sections
on applications of unification. These appli-
cations are theorem proving, logic pro-
gramming, higher order logic, and natural
language processing. The section Unifica-
tion and Feature Structures is placed before
the section on natural language processing
and is required for understanding that sec-
tion. Following are four sections covering
various topics of interest. Unification and
Equational Theories presents abstract

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0360-0300/89/0300-0093 $1.50

ACM Computing Surveys, Vol. 21, No. 1, March 1989

94 l Kevin Knight

CONTENTS

INTRODUCTION

1. THE UNIFICATION PROBLEM

2. UNIFICATION AND COMPUTATIONAL

COMPLEXITY

3. UNIFICATION: DATA STRUCTURES AND

ALGORITHMS

4. UNIFICATION AND THEOREM PROVING

4.1 The Resolution Rule

4.2 Research

5. UNIFICATION AND LOGIC

PROGRAMMING

5.1 Example of Unification in Prolog

5.2 Research

6. UNIFICATION AND HIGHER ORDER

LOGIC

6.1 Example of Second-Order Unification

6.2 Research

7. UNIFICATION AND FEATURE

STRUCTURES

8. UNIFICATION AND NATURAL LANGUAGE

PROCESSING

8.1 Parsing with a Unification-Based Grammar

8.2 Research

9. UNIFICATION AND EQUATIONAL

THEORIES

9.1 Unification as Equation Solving

9.2 Research

10. PARALLEL ALGORITHMS FOR

UNIFICATION

11. UNIFICATION, GENERALIZATION, AND

LATTICES

12. OTHER APPLICATIONS OF

UNIFICATION

12.1 Type Inference

12.2 Programming Languages

12.3 Machine Learning

13. CONCLUSION

13.1 Some Properties of Unification

13.2 Trends in Unification Research

ACKNOWLEDGMENTS

REFERENCES

work on unification as equation solving.
Parallel Algorithms for Unification reviews
recent literature on unification and paral-
lelism. Unification, Generalization, and
Lattices discusses unification and its dual
operation, generalization, in another ab-
stract setting. Finally, in Other Applica-
tions of Unification, research that connects
unification to research in abstract data
types, programming languages, and ma-
chine learning is briefly surveyed. The

conclusion gives an abstract of some gen-
eral properties of unification and projects
research trends into the future.

Dividing this paper into sections was a
difficult task. Some research involving
unification straddles two fields. Take, for
example, higher order logic and theorem
proving-should this work be classified as
Unification and Higher Order Logic or
Unification and Theorem Proving? Or
consider ideas from logic programming put
to work in natural language processing-is
it Unification and Logic Programming or
Unification and Natural Language Pro-
cessing? Likewise, some researchers work
in multiple fields, making their work hard
to classify. Finally, it is sometimes difficult
to define the boundary between two disci-
plines; for example, logic programming
grew out of classical theorem proving, and
the origin of a particular contribution to
unification is not always clear. I have pro-
vided a balanced classification, giving cross
references when useful.

Finally, the literature on unification is
enormous. I present all of the major results,
if not the methods used to reach them.

1. THE UNIFICATION PROBLEM

Abstractly, the unification problem is the
following: Given two descriptions x and y,
can we find an object z that fits both
descriptions?

The unification problem is most often
stated in the following context: Given two
terms of logic built up from function sym-
bols, variables, and constants, is there a
substitution of terms for variables that will
make the two terms identical? As an ex-
ample consider the two terms f(x, y) and
f(g(y, a), h(a)). They are said to be unifi-
able, since replacing x by g(h(a), a) and y
by h(u) will make both terms look like
f(g(h(a), a), h(u)). The nature of such
unifying substitutions, as well as the means
of computing them, makes up the study of
unification.

In order to ensure the consistency, con-
ciseness, and independence of the various
sections of this paper, I introduce a few
formal definitions:

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 95

Definition 1.1

A variable symbol is one of (x, y, z, . . .).
A constant symbol is one of (a, b, c, . . .). A
function symbol is one of (f, g, h, . . .I.

Definition 1.2

A term is either a variable symbol, a con-
stant symbol, or a function symbol followed
by a series of terms, separated by commas,
enclosed in parentheses. Sample terms are

a, x7 fix, Y), fi&, Y), hiz)). Terms are
denoted by the symbols (s, t, u, . . .).’

Definition 1.3

A substitution is first a function from vari-
ables into terms. Substitutions are denoted
by the symbols {a, 7, 0, . . .). A substitution
u in which a(x) is g(h(a), a) and a(y) is
h(a) can be written as a set of bindings
enclosed in curly braces; that is, (X t
g(h(a), a), y t h(a)]. This set of bindings
is usually finite. A substitution is also a
function from terms to terms via its appli-
cation. The application of substitution u
to term t is also written u(t) and denotes
the term in which each variable xi in t is
replaced by a(s).

Substitutions can be composed: a0 (t) de-
notes the term t after the application of the
substitutions of 19 followed by the applica-
tion of the substitutions of u. The substi-
tution a0 is a new substitution built from
old substitutions u and (3 by (1) modifying
0 by applying u to its terms, then (2) adding
variable-term pairs in u not found in 8.
Composition of substitutions is associative,
that is, (&3)7(s) = a(&)(s) but is not in
general commutative, that is, ad(s) # &is).

Definition 1.4

Two terms s and t are unifiable if there
exists a substitution u such that u(s) =
u(t). In such a case, u is called a unifier of

’ I will often use the word “term” to describe the
mathematical object just defined. Do not confuse these
terms with terms of predicate logic, which include
things like V(n)V(y):(f(x) + f(y)) c, (if(y) -

Y(x)).

s and t, and u(s) is called a unification of s
and t.

Definition 1.5

A unifier u of terms s and t is called a most
general unifier (MGU) of s and t if for any
other unifier 0, there is a substitution 7

such that 7u = 8. Consider, for example, the
two terms f(x) and fig(y)). The MGU is
(X t g(y)], but there are many non-MGU
unifiers such as (x t g(a), y t a), Intui-
tively, the MGU of two terms is the sim-
plest of all their unifiers.

Definition 1.6

Two terms s and tare said to match if there
is a substitution u such that u(s) = t.
Matching is an important variant of
unification.

Definition 1.7

Two terms s and t are infinitely unifiable if
there is a substitution, possibly containing
infinitely long terms, that is a unifier of s
and t. For example, x and f(x) are not
unifiable, but they are infinitely unifi-
able under the substitution u = (X t
fififi . . .)))I, since 4x1 and dfix)) are
both equal to f (f (f (. . .))). An infinitely
long term is essentially one whose string
representation (to be discussed in the next
section) requires an infinite number of
symbols-for a formal discussion, see
Courcelle [19831.

These general definitions will be used
often throughout the paper. Concepts spe-
cific to particular areas of study will be
defined in their respective sections.

2. UNIFICATION AND COMPUTATIONAL
COMPLEXITY

In his 1930 thesis, Herbrand [1971] pre-
sented a nondeterministic algorithm to
compute a unifier of two terms. This work
was motivated by Herbrand’s interest in
equation solving. The modern utility and
notation of unification, however, originated
with Robinson. In his pioneering paper
Robinson [1965] introduced a method of

ACM Computing Surveys, Vol. 21, No. 1, March 1989

96 l Kevin Knight

theorem proving based on resolution, a
powerful inference rule. Central to the meth-
od was unification of first-order terms.
Robinson proved that two first-order terms,
if unifiable, have a unique most general
unifier. He gave an algorithm for comput-
ing the MGU and proved it correct.

Guard [19641 independently studied the
unification problem under the name of
matching. Five years later, Reynolds [19701
discussed first-order terms using lattice
theory and showed that there is also a
unique “most specific generalization” of
any two terms. See Section 11 for more
details.

Robinson’s original algorithm was inef-
ficient, requiring exponential time and
space. A great deal of effort has gone into
improving the efficiency of unification. The
remainder of this section will review that
effort. The next section will discuss basic
algorithmic and representational issues in
detail.

Robinson himself began the research on
more efficient unification. He wrote a note
[Robinson 19711 about unification in which
he argued that a more concise representa-
tion for terms was needed. His formulation
greatly improved the space efficiency of
unification. Boyer and Moore [1972] gave
a unification algorithm that shares struc-
ture; it was also space efficient but was still
exponential in time complexity.

In 1975, Venturini-Zilli [19751 intro-
duced a marking scheme that reduced the
complexity of Robinson’s algorithm to
quadratic time.

Huet’s [1976] work on higher order uni-
fication (see also Section 6) led to an
improved time bound. His algorithm is
based on maintaining equivalence classes
of subterms and runs in O(na(n)) time,
where a(n) is an extremely slow-growing
function. We call this an almost linear
algorithm. Robinson also discovered this
algorithm, but it was not published in
accessible form until Vitter and Simons’
[1984, 19861 study of parallel unification.
The algorithm is a variant of the algorithm
used to test the equivalence of two finite
automata. Ait-Kaci [1984] came up with a
similar, more general algorithm in his dis-
sertation. Baxter [19731 also discovered an
almost-linear algorithm. He presented the

algorithm in his thesis [Baxter 19761, in
which he also discussed restricted and
higher order versions of unification.

In 1976, Paterson and Wegman [1976,
19781 gave a truly linear algorithm for uni-
fication. Their method depends on a careful
propagation of the equivalence-class rela-
tion of Huet’s algorithm. The papers of
Paterson and Wegman are rather brief;
de Champeaux [1986] helps to clarify the
issues involved.

Martelli and Montanari [1976] inde-
pendently discovered another linear al-
gorithm for unification. They further
improved efficiency [Martelli and Monta-
nari 19771 by updating Boyer and Moore’s
structure-sharing approach. In 1982, they
gave a thorough description of an efficient
unification algorithm [Martelli and Mon-
tanari 19821. This last algorithm is no
longer truly linear but runs in time
O(n + m log m), where m is the number of
distinct variables in the terms. The paper
includes a practical comparison of this al-
gorithm with those of Huet and Paterson
and Wegman. Martelli and Montanari also
cite a study by Trum and Winterstein
[19781, who implemented several unifica-
tion algorithms in Pascal in order to com-
pare actual running times.

Kapur et al. [19821 reported a new linear
algorithm for unification. They also related
the unification problem to the connected
components problem (graph theory) and
the online/offline equivalence problems
(automata theory). Unfortunately, their
proof contained an error, and the running
time is actually nonlinear (P. Narendran,
personal communication, 1988).

Corbin and Bidoit [19831 “rehabilitated”
Robinson’s original unification algorithm
by using new data structures. They reduced
the exponential time complexity of the al-
gorithm to O(n’) and claimed that the al-
gorithm is simpler than Martelli and
Montanari’s and superior in practice.

The problem of unifying with infinite
terms has received some attention. (Recall
the definition of infinitely unifiable.) In his
thesis, Huet [1976] showed that in the case
of infinite unification, there still exists a
single MGU-he gave an almost-linear
algorithm for computing it. Colmerauer
[1982b] gave two unification algorithms for

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 97

function UNIFY(t1, t2) + (unifiable: Boolean, Q: substitution)
begin

if tl or t2 is a variable then
begin

let x be the variable, and let t be the other term
if n = t, then (unifiable, a) c (true, 0)
else if occur(x, t) then unifiable + false
else(unifiable, o) +-- (true, {x + t))

end
else

begin
assume tl = f (xl, . . , x”) and t2 = g(y,, . . . , ym)
if f # g or m # n then unifiable t false
else

begin
kc0
unifiable c true
o c nil
while k < m and unifiable do

begin
ktk+l
(unifiable, 7) - UNIFY(o(xk), u(yk))
if unifiable then CT t compose(7, u)

end
end

end
return (unifiable, a)

end

Figure 1. A version of Robinson’s original unification algorithm.

infinite terms, one “theoretical” and one
“practical”: The practical version is faster
but may not terminate. Mukai [1983] gave
a new variation of Colmerauer’s practical
algorithm and supplied a termination
proof. Jaffar [19841 presented another
algorithm, designed along the lines of
Martelli and Montanari. Jaffar claimed
that his algorithm is simple and practical,
even for finite terms; he discussed the rel-
ative merits of several unification algo-
rithms, including Colmerauer [1982b],
Corbin and Bidoit [19831, Martelli and
Montanari [1977], Mukai [1983], and Pa-
terson and Wegman [1976]. None of these
algorithms is truly linear: The theoretical
question of detecting infinite unifiability in
linear time was left open by Paterson and
Wegman and has yet to be solved.

3. UNIFICATION: DATA STRUCTURES AND
ALGORITHMS

As mentioned in the previous section,
Robinson [19651 published the first modern
unification algorithm. A version of that
algorithm appears in Figure 1. (This ver-
sion is borrowed in large part from Corbin

and Bidoit [1983].) The function UNIFY
takes two terms (tl and t2) as arguments
and returns two items: (1) the Boolean-
valued unifiable, which is true if and only
if the two terms unify and (2) u, the unify-
ing substitution. The algorithm proceeds
from left to right, making substitutions
when necessary. The routines “occur” and
“compose” need some explanation. The
“occur” function reports true if the first
argument (a variable) occurs anywhere in
the second argument (a term). This func-
tion call is known as the occur check and is
discussed in more detail in Section 5. The
“compose” operator composes two substi-
tutions according to the definition given in
the Introduction of this paper.

Robinson’s original algorithm was expo-
nential in time and space complexity. The
major problem is one of representation.
Efficient algorithms often turn on special
data structures; such is the case with uni-
fication. This paper will now discuss the
various data structures that have been
proposed.

First-order terms have one obvious rep-
resentation, namely, the sequence of sym-
bols we have been using to write them

ACM Computing Surveys, Vol. 21. No. 1, March 1989

98 l Kevin Knight

k/l

g h

; :

1 1
n x

Figure 2. Tree representation of the term f(g(f(x)), h(f(x))).

down. (Recall the inductive definition given
at the beginning of this paper.) In other
words, a term can be represented as a linear
array whose elements are taken from func-
tion symbols, variables, constants, commas,
and parentheses. We call this the string
representation of a term. (As an aside, it is
a linguistic fact that commas and parenthe-
ses may be eliminated from a term without
introducing any ambiguity.) Robinson’s
[19651 unification algorithm (Figure 1) uses
this representation.

The string representation is equivalent
to the tree representation, in which a func-
tion symbol stands for the root of a subtree
whose children are represented by that
function’s arguments. Variables and con-
stants end up as the leaves of such a tree.
Figure 2 shows the tree representation of

the term fMf(x)), W(x))).
The string and tree representations are

acceptable methods for writing down terms,
and they find applications in areas in which
the terms are not very complicated, for
example, Tomita and Knight [19881. They
have drawbacks, however, when used in
general unification algorithms. The prob-
lem concerns structure sharing.

Consider the terms f(g(f(x)), h(f(x)))
andf(g(f(a)), h(f(a))). Any unification al-
gorithm will ensure that the function sym-
bols match and ensure that corresponding
arguments to the functions are unifiable.
In our case, after processing the subterms
f(x) and f(a), the substitution {x t al will
be made. There is, however, no need to
process the second occurrences of f(x) and
f(a), since we will just be doing the same
work over again. What is needed is a
more concise representation for the terms:
a graph representation. Figure 3 shows
graphs for this pair of terms.

The subterm f(x) is shared; the work to
unify it with another subterm need be done
only once. If f(x) were a much larger struc-
ture, the duplication of effort would be
more serious of course. In fact, if subterms
are not shared, it may be necessary to gen-
erate exponentially large structures during
unification (see Corbin and Bidoit [1983],
de Champeaux [1986], and Huet [1976]).

The algorithms of Huet [1976], Baxter
[1973, 19761, and Jaffar [19841 all use the
graph representation. Paterson and Weg-
man’s linear algorithm [1976, 19781 uses a
graph representation modified to include
parent pointers so that leaves contain in-
formation about their parents, grandpar-
ents, and so on. The Paterson-Wegman
algorithm is still linear for terms repre-
sented as strings, since terms can be con-
verted from string representation to graph
representation (and vice versa) in linear
time [de Champeaux 19861. Corbin and
Bidoit [1983] also use a graph representa-
tion that includes parent pointers. The al-
gorithms of Martelli and Montanari [19861
and of Kapur et al. [19821 both deal directly
with sets of equations produced by a unifi-
cation problem. Their representations also
share structure.

What I have called the graph represen-
tation is known in combinatorics as a
directed acyclic graph, or dag, in which all
vertices of the graph are labeled. If we allow
our graphs to contain cycles, we can model
infinitely long terms, and unification may
product substitutions involving such terms.
This matter is discussed in connection with
the occur check in Section 5.

Before closing this section, I will present
a unification algorithm more efficient than
the one in Figure 1. I have chosen a variant
of Huet’s algorithm, since it is rather simple

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 99

f f
1(1 1(1

g hg h
Ir(1J

i
f
1

x a

Figure 3. Term graphs for f(g(f (x)), h(f (x))) and f(g(f (a)), h(f (a))).

function UNIFY(t1, t2) =+ (unifiable: Boolean, (T: substitution)
begin

pairs-to-unify + {(tl, t2))

for each node z in tl and t2,
z.class + *

while pairs-to-unify # 0 do
begin

(31, y) -pop (pairs-to-unify)
u + FIND(r)
u + FIND(y)
ifu#uthen

if u and u are not variables, and u.symbol f v.symbol or
numberof(u.subnodes) # numberof(u.subnodes) then

return (false, nil)
else

begin
w c UNION(u, u)
if w = u and u is a variable then

u.class + v
if neither u nor u is a variable then

begin
let(u,,..., un) be u.subnodes
let(u,,..., vn) be vsubnodes
foricltondo

push ((IA:, ui), pairs-to-unify)
end

end
end

Form a new graph composed of the root nodes of the equivalence classes.
This graph is the result of the unification.
If the graph has a cycle, return (false, nil), but the terms are infinitely unifiable.
If the graph is acyclic, return (true, CT), where c is a substitution in which any variable x is mapped on to the

root of its equivalence class, that is, FIND(r).
end

Figure 4. A version of Huet’s unification algorithm.

and uses the graph representation of terms.
The algorithm is shown in Figure 4.

Terms are represented as graphs whose
nodes have the following structure:

type = node
symbol: a function, variable, or constant

symbol
subnodes: a list of nodes that are children of

this node
class: a node that represents this node’s

equivalence class
end

Huet’s algorithm maintains a set of
equivalence classes of nodes using the
FIND and UNION operations for merging
disjoint sets (for an explanation of these
operations, see Aho et al. [1974]). Each
node starts off in its own class, but as the
unification proceeds, classes are merged
together. If nodes with different function
symbols are merged, failure occurs. At the
end, the equivalence classes over the nodes
in the two-term graphs form a new graph,
namely, the result of the unification. If this

ACM Computing Surveys, Vol. 21, No. 1, March 1989

100 l Kevin Knight

graph contains a cycle, the terms are infi-
nitely unifiable; if the graph is acyclic, the
terms are unifiable. Omitting the acyclicity
test corresponds to omitting the occur
check discussed in Section 5.

The running time of Huet’s algorithm is
O(na(n)), where n is the number of nodes
and al(n) is an extremely slow-growing
function. a(n) never exceeds 5 in practice,
so the algorithm is said to be almost linear.
Note also that it is nonrecursive, which may
increase efficiency. For more details, see
Huet [1976] and Vitter and Simons [1984,
19861. A version of this algorithm, which
includes inheritance-based information
(see Section 7), can be found in Ait-Kaci
[19841 and Ait-Kaci and Nasr [19861.

4. UNIFICATION AND THEOREM PROVING

Robinson’s [19651 work on resolution theo-
rem proving served to introduce the uni-
fication problem into computer science.
Automatic theorem proving (a.k.a. com-
putational logic or automated deduction)
became an area of concentrated research,
and unification suddenly became a topic of
interest. In this section, I will only discuss
first-order theorem proving, although there
are theorem-proving systems for higher or-
der logic. Higher order unification will be
discussed in a later section.

4.1 The Resolution Rule

I will briefly demonstrate, using an exam-
ple, how unification is used in resolution
theorem proving. In simplest terms, reso-
lution is a rule of inference that allows one
to conclude from “A or B” and “not-A or
C” that “B or C.” In real theorem proving,
resolution is more complex. For example,
from the two facts

(1) Advisors get angry when students don’t
take their advice.

(2) If someone is angry, then he doesn’t take
advice.

The first job is to put these three state-
ments into logical form:

(la) Vz : student(z) + [?akesadvice(z,
advisor(z)) + angry(advisor(z))]

(2a) Vx, y: angry(x) + ltakesadvice(x, y)

(3a) VW: student(w) + [angry(w) -+
angry(advisor(w))]

Next, we drop the universal quantifiers
and remove the implication symbols (z +
y is equivalent to lx V y):

(lb) lstudent(z) V takesadvice(z,
advisor(z)) V angry(advisor(z))

(2b) langry(x) V ltakesaduice(x, y)

(3b) lstudent(w) V langry(w) V
angry(advisor(w))

(lb), (2b), and (3b) are said to be in clausal

form. Resolution is a rule of inference that
will allow us to conclude the last clause
from the first two. Here it is in its simplest
form:

The Resolution Rule

If clause A contains some term s and clause
B contains the negation of some term t and
if s and t are unifiable by a substitution c,
then a resolvent of A and B is generated by
(1) combining the clauses from A and B,
(2) removing terms s and t, and (3) applying
the substitution u to the remaining terms.
If clauses A and B have a resolvent C, then
C may be inferred from A and B.

In our example, let s be takesadvice(z,
advisor(z)) and let t be takesadvice(x, y).
(lb) contains s, and (2b) contains the
negation of t. Terms s and t are unifi-
able under the substitution {x t z, y t
advisor(z)]. Removing s from (lb) and the
negation of t from (2b) and applying the
substitution to the rest of the terms in (lb)
and (2b), we get the resolvent:

(4) lstudent(z) V angry(advisor(z)) V
~angry(z)

We want to infer the third fact: Expression (4) is the same as (3b), subject
to disjunct reordering and renaming of the

(3) If a student is angry, then so is his unbound variable, and therefore resolution
advisor. has made the inference we intended.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 101

Resolution is a powerful inference rule-
so powerful that it is the only rule needed
for a sound and complete system of logic.
The simple example here is intended only
to illustrate the use of unification in the
resolution method; for more details about
resolution, see Robinson’s paper [19651 and
Chapter 4 of Nilsson’s book [1980].

4.2 Research

Much of the theorem-proving community
has recently moved into the field of logic
programming, while a few others have
moved into higher order theorem proving.
I will present the work of these two groups
in different sections: Unification and
Higher Order Logic and Unification and
Logic Programming.

5. UNIFICATION AND LOGIC

PROGRAMMING

The idea of “programming in logic” came
directly out of Robinson’s work: The origi-
nal (and still most popular) logic program-
ming language, Prolog, was at first a tightly
constrained resolution theorem prover.
Colmerauer and Roussel turned it into a
useful language [Battani and Meloni 1973;
Colmerauer et al. 1973; Roussel 19751, and
van Emden and Kowaiski [1976] provided
an elegant theoretical model based on Horn
clauses. Warren et al. [1977] presented an
accessible early description of Prolog.

Through its use of resolution, Prolog in-
herited unification as a central operation.
A great deal of research in logic program-
ming focuses on efficient implementation,
and unification has therefore received some
attention. I will first give an example of
how unification is used in Prolog; then I
will review the literature on unification and
Prolog, finishing with a discussion of the
logic programming languages Concurrent
Prolog, LOGIN, and CIL.

5.1 Example of Unification in Prolog

I turn now to unification as it is used in
Prolog. Consider a set of four Prolog asser-
tions (stored in a “database”) followed by a

query. (One example is taken from Clocksin
and Mellish [19811.)

likes(mary, food).
likes(mary, wine).
likes(john, wine).
likes(john, mary).

?-likes(mary,X),likes(john,X).

The query at the end asks, Does Mary
like something that John likes? Pro-
log takes the first term of the query
likes (mary, X) and tries to unify it with
some assertion in the database. It succeeds
in unifying the terms likes(mary, X) and
likes (mar-y, food) by generating the sub-
stitution (X t food). Prolog applies this
substitution to every term in the query.
Prolog then moves on to the second term,
which is now likes(john, food). This term
fails to unify with any other term in the
database.

Upon failure, Prolog backtracks. That is,
it “undoes” a previous unification, in this
case, the unification of likes (mar-y, X) with
likes (mar-y, food). It attempts to unify
the first query term with another term in
the database: the only other choice is
likes(mary, wine). The terms unify under
the substitution (X t wine], which is
also applied to the second query term
likes(john, X) to give likes(john, wine).
This term can now unify with a term in
the database, namely, the third assertion,
likes(john, wine). Done with all query
terms, Prolog outputs the substitutions it
has found; in this case, “X = wine.”

I used such a simple example only to be
clear. The example shows how Prolog
makes extensive use of unification as a
pattern-matching facility to retrieve rele-
vant facts from a database. Unification it-
self becomes nontrivial when the terms are
more complicated.

5.2 Research

Colmerauer’s original implementation of
unification differed from Robinson’s in one
important respect: Colmerauer deliberately
left out the “occur check,” allowing Prolog
to attempt unification of a variable with
a term already containing that variable.

ACM Computing Surveys, Vol. 21, NO. 1, March 1989

102 l Kevin Knight

foo(X, X).

‘?- fdf(Y), Y).

y = f(
f(. . .

Figure 5. Infinite unification in Prolog.

Version 1.

less(X, s(X)). /* any number is less than its successor */

?- less(s(Y), Y). /* is there a Y whose successor is less than Y? */

Y=s(

s(s~s~s~s~s~s~s~s~s~s~~~s~
s(s(s(s(s(s . . .

Version 2.

less(X, s(X)).

foe :- less(s(Y), Y). /* we don’t care about the value of Y */

?- foe. /* is there a number whose successor is less than it? */

yes. /* there is?! ‘/

Figure 6. Prolog draws the wrong conclusion because it lacks an occur check.

For example, Prolog will unify the
terms xand f(x), using the substitution
{x t f(f(f(. . .)))I; Robinson’s occur
check, on .the other hand, would instantly
report nonunifiability.

Discarding the occur check corresponds
to moving from unification to infinite uni-
fication. Figure 5 shows Prolog’s infinite
unification in action. In unifying f(Y)
and Y, Prolog comes up with an infinite
substitution.

Omitting the occur check results in effi-
ciency gains that outweigh the risk in-
curred. For example, the concatentation of
two lists, a linear-time operation without
the occur check, becomes an O(n2) time
operation with the occur check [Colmer-
auer 1982b]. For this reason, most current
Prolog interpreters omit the occur check.

But since its unification is really infinite
unification, in this respect, Prolog can be
said to be “unsound.” Figure 6 (adapted
from Plaisted [19841) shows a case in which
Prolog draws an unexpected conclusion,
one that would be blocked by an occur
check.

Colmerauer [1982b, 19831 studied infi-
nite terms in an effort to provide a theoret-
ical model for real Prolog implementations

that lack the occur check. He examined
the termination problem and produced a
unification algorithm for infinite terms.
Plaisted [19841 presented a preprocessor
for Prolog programs that detects poten-
tial problems due to Prolog’s lack of an
occur check. See the end of Section 2 for
a discussion of algorithms for infinite
unification.

As noted above, Prolog is a search engine,
and when a particular search path fails,
backtracking is necessary. As a result, some
of the unifications performed along the way
must be “undone.” Studies of efficient
backtracking can be found in Bruynooghe
and Pereira [19841, Chen et al. [19861, Cox
[19841, Matwin and Pietrzykowski [19821,
and Pietrzykowski and Matwin [19821.
Mannila and Ukkonen [1986] viewed
Prolog execution as a sequence of unifi-
cation and deunifications, relating it to
the UNION/FIND (disjoint set union)
problem. They showed how standard (fast)
unification algorithms can have poor
asymptotic performance when we consider
deunifications; algorithms with better per-
formance are given.

Concurrent Prolog [Shapiro 19831 ex-
tends Prolog to concurrent programming

ACM Computing Surveys, Vol. 21. No. 1, March 1989

Unification: A Multidisciplinary Survey l 103

and parallel execution. In this model, uni-
fication may have one of three possible
outcomes: succeed, fail, or suspend. Unifi-
cation suspends when a special “read-only
variable” is encountered-execution of the
unification call is restarted when that vari-
able takes on some value. It is not possible
to rely on backtracking in the Concurrent
Prolog model because all computations run
independently and in parallel. Thus, unifi-
cations cannot simply be “undone” as in
Prolog, and local copies of structures must
be maintained at each unification. Strate-
gies for minimizing these copies are dis-
cussed in Levy [19831.

ematical vein, here is a statement of the
induction property of natural numbers:

V(f) : [(f (0) A V(x)[f (x) ---, f(x + Ul)

+ V(x)f (x)1

Alt-Kaci and Nasr [1986] present a
new logic programming language called
LOGIN, which integrates inheritance-
based reasoning directly into the uni-
fication process. The language is based on
ideas from A’it-Kaci’s dissertation [19841,
described in more detail in Section 7.

Mukai [1985a, 1985b] and Mukai and
Yasukawa [1985] introduce a variant of
Prolog called CIL aimed at natural lan-
guage applications, particularly those in-
volving situation semantics [Barwise and
Perry 19831. CIL is based on an extended
unification that uses conditional state-
ments, roles, and types and contains many
of the ideas also present in LOGIN. Hasida
[1986] presents another variant of unifica-
tion that handles conditions on patterns to
be unified.

That is, for any predicate f, if f holds for 0
and if f (x) implies f (x + l), then f holds for
all natural numbers.

For a theorem prover to deal with such
statements, it is natural to work with ax-
ioms and inference rules of a higher order
logic. In such a case, unification of higher
order terms has great utility.

Unification in higher order logic requires
some special notation for writing down
higher order terms. The typed X-calculus
[Church 1940; Henkin 19501 is one com-
monly used method. I will not introduce
any formal definitions, but here is an ex-
ample: “A (u, v)(u)” stands for a function of
two arguments, u and v, whose value is
always equal to the first argument, u. Uni-
fication of higher order terms involves h-
conversion in conjunction with application
of substitutions.

Finally, we must distinguish between
functibn constants (denoted A, B, C, . . .)
and function variables (denoted f, g, h, . . .),
which range over those constants. Now we
can look at unification in the higher order
realm.

6. UNIFICATION AND HIGHER ORDER
LOGIC

First-order logic is sometimes too limited
or too unwieldy for a given problem.
Second-order logic, which allows variables
to range over functions (and predicates) as
well as constants, can be more useful. Con-
sider the statement “Cats have the same
annoying properties as dogs.” We can ex-
press this in second-order logic as

6.1 Example of Second-Order Unification

Consider the two terms f (x, b) and A(y).
Looking for a unifying substitution for vari-
ables f, x, and y, we find

f + X(u, v)(u)

x+A(y)

Y+Y

This substitution produces the unifica-
tion A(y). But if we keep looking, we find
another unifier:

V(x)~(y)V(f) :

[cat(x) A dog(y) A annoying(f)]

--, [f(x) * f(Y)1

f +- Nu, v)A(g(u, v))
.

X+X

Y - dx, b)

Note that the variable f ranges over pred- In this case, the unification is A (g(x, b)).
icates, not constant values. In a more math- Notice that neither of the two unifiers is

ACM Computing Surveys, Vol. 21, No. 1, March 1989

104 l Kevin Knight

more general than the other! A pair of
higher order terms, then, may have more
than one “most” general unifier. Clearly,
the situation is more complex than that of
first-order unification.

6.2 Research

Gould [1966a, 1966b] was the first to inves-
tigate higher order unification in his disser-
tation. He showed that some pairs of
higher order terms possess many general
unifiers, as opposed to the first-order case,
where terms always (if unifiable) have a
unique MGU. Gould gave an algorithm to
compute general unifiers, but his algorithm
did not return a complete set of such uni-
fiers. He conjectured that the unifiability
problem for higher order logic was solvable.

Robinson [1968], urged that research in
automatic theorem proving be moved into
the higher order realm. Robinson was non-
plussed by Godel’s incompleteness results
and maintained that Henkin’s [19501 inter-
pretation of logical validity would provide
the completeness needed for a mechaniza-
tion of higher order logic. Robinson [1969,
19701 followed up these ideas. His theorem
provers, however, were not completely
mechanized; they worked in interactive
mode, requiring a human to guide the
search for a proof.

Andrews [19711 took Robinson’s original
resolution idea and applied it rigorously to
higher order logic. But, like Robinson, he
only achieved partial mechanization: Sub-
stitution for predicate variables could not
be done automatically. Andrews describes
an interactive higher order theorem prover
based on generalized resolution in Andrews
and Cohen [1977] and Andrews et al.
[1984].

Darlington [1968, 19711 chose a different
route. He used a subset of second-order
logic that allowed him only a little more
expressive power than first-order logic. He
was able to mechanize this logic completely
using a new unification algorithm (first
called f-matching). To repeat, he was not
using full second-order logic; his algorithm
could only unify a predicate variable with
a predicate constant of greater arity.

* The above example is taken from that dissertation.

Huet [19721 in his dissertation presented
a new refutational system for higher order
logic based on a simple unification algo-
rithm for higher order terms. A year later,
part of that dissertation was published as
Huet [1973b]. It showed that the unifica-
tion problem for third-order logic was un-
decidable; that is, there exists no effective
procedure to determine whether two third-
(or higher) order terms are unifiable.
Lucchesi [19721 independently made this
same discovery.

Baxter [1978] extended Huet’s and
Lucchesi’s undecidability results to third-
order dyadic unification. Three years later,
Goldfarb [1981] demonstrated the unde-
cidability of the unification problem for
second-order terms by a reduction of
Hilbert’s Tenth Problem to it.

Huet’s refutational system is also de-
scribed in Huet [1973a], and his higher
order unification algorithm can be found in
Huet [1975]. Since w-order unification is in
general undecidable, Huet’s algorithm may
not halt if the terms are not unifiable. The
algorithm first searches for the existence of
a unifier, and if one is shown to exist, a
very general preunifier is returned.

Huet’s system was based on the typed
X-calculus introduced by Church [1940].
The X-calculus was the basis for Henkin’s
[1950] work on higher order completeness
mentioned above in connection with
Robinson [1968]. Various types of mathe-
matical theorems can be expressed natu-
rally and compactly in the typed X-calculus,
and for this reason almost all work on
higher order unification uses this formal-
ism.

Pietrzykowski and Jensen also studied
higher order theorem proving. Pietrzy-
kowski [1973] gave a complete mechaniza-
tion of second-order logic, which he and
Jensen extended to w-order logic in Jensen
and Pietrzykowski [1976] and Pietrzy-
kowski and Jensen [1972,1973]. Like Huet,
they based their mechanization on higher
order unification. Unlike Huet, however,
they presented an algorithm that computes
a complete set of general unifiers3 The
algorithm is more complicated than Huet’s,

3 Of course, the algorithm still may not terminate if
the terms are nonunifiable.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 105

using five basic types of substitutions as
opposed to Huet’s two, and is generally
redundant.

Winterstein [19761 reported that even for
the simple case of monadic(one argument
per function) second-order terms unifica-
tion could require exponential time under
the algorithms proposed by Huet, Pietrzy-
kowski, and Jensen. Winterstein and Huet
independently arrived at better algorithms
for monadic second-order unification.

Darlington [1977] attempted to improve
the efficiency of higher order unification by
sacrificing completeness. If two terms
unify, Darlington’s algorithm may not re-
port this fact, but he claims that in the
usual case unification runs more swiftly.

As mentioned above, Goldfarb [1981]
showed that higher order unification is in
general undecidable. There are, however,
variants that are decidable. Farmer [1987]
shows that second-order monadic unifica-
tion (discussed two paragraphs ago) is ac-
tually decidable. Siekmann [1984] suggests
that higher order unification under some
theory T might be solvable (see Section 9),
but there has been no proof to this effect.

7. UNIFICATION AND FEATURE
STRUCTURES

First-order terms turn out to be too limited
for many applications. In this section, I will
present structures of a somewhat more gen-
eral nature. The popularity of these struc-
tures has resulted in a line of research that
has split away from mainstream work in
theorem proving and logic programming.
An understanding of these structures is
necessary for an understanding of much
research on unification.

Kay [1979] introduced the idea of using
unification for manipulating the syntac-
tic structures of natural languages (e.g.,
English and Japanese). He formalized the
linguistic notion of “features” in what are
now known as “feature structures.”

Feature structures resemble first-order
terms but have several restrictions lifted:

l Substructures are labeled symbolically,
not inferred by argument position.

l Fixed arity is not required.

Figure 7. A feature structure.

l The distinction between function and
argument is removed.

l Variables and coreference are treated
separately.

I will now discuss each of these differ-
ences.

Substructure labeling. Features are
labeled symbolically, not inferred by argu-
ment position within a term. For example,
we might want the term “person (john, 23,
70, spouse(mary, 25))” to mean “There is a
person named John, who is 23 years old, 70
inches tall, and who has a 25-year-old
spouse named Mary.” If so, we must re-
member the convention that the third ar-
gument of such a term represents a person’s
height. An equivalent feature structure,
using explicit labels for substructure, is
shown in Figure 7. (I have used a standard,
but not unique, representation for writing
down feature structures.)

Fixed arity. Feature structures do not
have the fixed arity of terms. Traditionally,
feature structures have been used to rep-
resent partial information-unification
combines partial structures into larger
structures, assuming no conflict occurs. In
other words, unification can result in new
structures that are wider as well as deeper
than the old structures. Figure 8 shows
an example (the square cup stands for
unification).

Notice how all of the information con-
tained in the first two structures ends up
in the third structure. If the type features
of the two structures had held different
values, however, unification would have
failed.

The demoted functor. In a term, the
functor (the function symbol that begins
the term) has a special place. In feature
structures, all information has equal status.
Sometimes one feature is “primary” for a

ACM Computing Surveys, Vol. 21, No. 1, March 1989

106 . Kevin Knight

type: person
age: 23

Figure 8. Unification of two feature structures.

I
type : person
name: john
age:
height: 1;

Figure 9. A feature structure with variables and internal coreference constraints.

particular use, but this is not built into the
syntax.

Variables and coreference. Variables
in a term serve two purposes: (1) They are
place holders for future instantiation, and
(2) they enforce equality constraints among
different parts of the term. For example,
the term person (john, Y, 2, spouse (W, Y))
expresses the idea “John can marry anyone
exactly as old as he is” (because the variable
Y appears in two different places). Note,
however, that equality constraints are re-
stricted to the leaves of a term.4 Feature
structures allow within-term coreferences
to be expressed by separating the two roles
of variables.

If we wished, for example, to express the
constraint that John must marry his best
friend, we might start with a term such as

person(john, Y, 2, spouse(W, X),

bestfriend(W, X))

This is awkward and unclear, however; it
is tedious to introduce new variables for
each possible leaf, and moreover, the term
seems to imply that John can marry anyone
as long as she has the same name and age
as his best friend. What we really want is a
“variable” to equate the fourth and fifth
arguments without concern for their inter-
nal structures. Figure 9 shows the feature
structure formalization.

The boxed number indicates coreference.
Features with values marked by the same

4 This is construed in the sense of the term’s graph
representation.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

coreference label share the same value (in
the sense of LISP’s EQ, not EQUAL). The
value itself can be placed after any one of
the coreference labels, the choice of which
is arbitrary. The symbol [] indicates a vari-
able. A variable [] can unify with any other
feature structure s.

Like terms, feature structures can also
be represented as directed graphs (see Sec-
tion 3). This representation is often more
useful for implementation or even presen-
tation. Whereas term graphs are labeled on
uertices, feature structure graphs have la-
bels on arcs and leaves. Figure 10 shows the
graph version of the feature structure of
Figure 7. The graph of Figure 10, of course,
is just a tree. In order to express something
such as “John must marry a woman exactly
as old as he is,” we need coreference, indi-
cated by the graph in Figure 11.

This ends the discussion of feature struc-
tures and terms. At this point, a few other
structures are worth mentioning: frames, #-
terms, and LISP functions. Frames [Min-
sky 19751, a popular representation in ar-
tifical intelligence, can be modeled with
feature structures. We view a feature as a
slot: Feature labels become slot names and
feature values become slot values. As in the
frame conception, a value may be either
atomic or complex, perhaps having sub-
structure of its own.

The $-terms of Ait-Kaci [1984, 19861
and Ait-Kaci and Nasr [1986] are very
similar to feature structures. Subterms are
labeled symbolically, and fixed arity is
not required, as in feature structures, but

Unification: A Multidisciplinary Survey 107

mary 25

Figure 10. Graph representation of the feature kructure shown in Figure 7.

Figure 11. Graph

[I II

representation of a feature structure with variables

the functor is retained. And like feature
structures, variables and coreference are
handled separately. Although feature struc-
tures predate q-terms, Ait-Kaci’s discus-
sion of arity, variables, and coreference is
superior to those found in the feature struc-
ture literature.

As an example, suppose we have the fol-
lowing inheritance information: Birds and
fish are animals, a fish-eater is an animal,
a trout is a fish, and a pelican is both a bird

The novel aspect of G-terms is the use of
type inheritance information. Ait-Kaci
views a term’s functions and variables as
filters under unification, since two struc-
tures with different functors can never
unify, whereas variables can unify with
anything. He questions and relaxes this
“open/closed” behavior by allowing type
information to be attached to functions
and variables. Unification uses information
from a taxonomic hierarchy to achieve a
more gradual filtering.

and coreference.

and a fish-eater. Then unifying the follow-
ing two q-terms,

fish-eater (likes + trout)

bird (color + brown; likes * fish)

yields the new $-term

pelican (color =$ brown; likes j trout)

As a third structure, I turn to the function
in the programming language LISP. Func-
tions are not directly related to the feature

Unification does not fail when it sees

structures, but some interesting parallels

conflicts between “fish-eater” and “bird”
or between “trout” and “fish.” Instead,
it resolves the conflict by finding the
greatest lower bound on the two items in
the taxonomic hierarchy, in this case
“pelican” and “trout,” respectively. In this
way, Ait-Kaci’s system naturally ex-
tends the information-merging nature of
unification.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

108 l Kevin Knight

can be drawn. Older dialects of LISP re-
quired that parameters to functions be
passed in an arbitrary, specified order.
Common LISP [Steele 19841, however, in-
cludes the notion of keyword parameter.
This allows parameters to be passed along
with symbolic names; for example,

(make-node: state/(1 2 3) :

score 12 : successors nil)

which is equivalent to

(make-node : score 12 : state’(1 2 3) :

successors nil)

Keyword parameters correspond to the
explicit labeling of substructure discussed
above. Note that Common LISP functions
are not required to use the keyword param-
eter format. Common LISP also allows for
optional parameters to a function, which
seems to correspond to the lack of fixed
arity in feature structures. Common LISP,
however, is not quite as flexible, since
all possible optional parameters must be
specified in advance.

Finally, feature structures may contain
variables. LISP is a functional language,
and that means a function’s parameters
must be fully instantiated before the function
can begin its computation. In other words,
variable binding occurs in only one direc-
tion, from parameters to their values. Con-
trast this behavior with that of Prolog, in
which parameter values may be temporarily
unspecified.

8. UNIFICATION AND NATURAL LANGUAGE

PROCESSING

This section makes extensive use of the
ideas covered in Section 7. Only with this
background am I able to present examples
and literature on unification in natural
language processing.

8.1 Parsing with a Unification-Based
Grammar

Unification-based parsing systems typi-
cally contain grammar rules and lexical
entries. Lexical entries define words, and

grammar rules define ways in which words
may be combined with one another to form
larger units of language called constituents.
Sample constituent types are the noun
phrase (e.g., “the man”) and the verbphrase
(e.g., “kills bugs”). Grammar rules in nat-
ural language systems share a common pur-
pose with grammar rules found in formal
language theory and compiler theory: The
description of how smaller constituents can
be put together into larger ones.

Figure 12 shows a rule (called an aug-
mented context-free grammar rule) taken
from a sample unification-based grammar.
It is called an augmented context-free
grammar rule because at its core is the
simple context-free rule S * NP VP,
meaning that we can build a sentence (S)
out of a noun phrase (NP) and a verb
phrase (VP). The equations (the augmen-
tation) serve two purposes: (1) to block
applications of the rule in unfavorable cir-
cumstances and (2) to specify structures
that should be created when the rule is
applied.

The idea is this: The rule builds a feature
structure called X0 using (already existent)
feature structures Xl and X2. Each feature
structure, in this case, has two substruc-
tures, one labeled category, the other la-
beled head. Category tells what general type
of syntactic object a structure is, and head
stores more information.

Let us walk through the equations. The
first equation states that the feature struc-
ture X0 will have the category of S (sen-
tence). The next two equations state that
the rule only applies if the categories of X 1
and X2 are NP and VP, respectively.

The fourth equation states that the num-
ber agreement feature of the head of Xl
must be the same as the number agreement
feature of the head of X2. Thus, this rule
will not apply to create a sentence like
“John swim.” The fifth equation states that
the subject feature of the head of X0 must
be equal to Xl; that is, after the rule has
applied, the head of X0 should be a struc-
ture with at least one feature, labeled sub-
ject, and the value of that feature should be
the head of the structure Xl.

The sixth equation states that the head
of X0 should contain all of the features of

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 109

x0=%.x1x2

(X0 category) = S
(Xl category) = NP
(X2 category) = VP
(Xl head agreement) = (X2 head agreement)
(X0 head subject) = (Xl head)
(X0 head) = (X2 head)
(X0 head mood) = declarative

Figure 12. Sample rule from a unification-based grammar.

category: NP 1

held

root: kill

tense: present

agreement: singular

object: bug
agreement: plural 11 1

I [
det: the

head: root: man
agreement: singular 11

category: VP

Figure 13. Feature structures representing analyses of “the man” and “kills bugs.”

category: NP

det: the
root : man
agreement: singulnr

category: VP
root:
tense:

kill

present
22:

head: I r
agreement: singular

11

Figure 14. Two feature structures combined with “dummy” features xl and x2.

the head of X2 (i.e., the sentence inherits

the features of the verb phrase). The last
equation states that the head of X0 should
have a mood feature whose (atomic) value
is declarative.

Now where does unification come in?
Unification is the operation that simulta-
neously performs the two tasks of building
up structure and blocking rule applications.
Rule application works as follows:

(1) Gather constituent structures. Suppose
we have already built up the two struc-
tures shown in Figure 13. These struc-
tures represent analyses of the phrases

“the man” and “kills bugs.” In parsing,
we want to combine these structures
into a larger structure of category S.

(2) Temporarily combine the constituent
structures. NP and VP are combined
into a single structure by way of
“dummy” features 3tl and x2 (Figure
14).

(3) Represent the grammar rule itself as a
feature structure. The feature structure
for the sample rule given above is
shown in Figure 15. The boxed corefer-
ence labels enforce the equalities ex-
pressed in the rule’s augmentation.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

110 l Kevin Knight

declarative II-
Figure 15. Feature structure representation of the grammar rule in Figure 12.

x0:
[

category: S
head: q I

Xl:

r category: NP

det : the
head: pJ root: man

L agreement: II q singular

r category: VP
root: kill
tense: present
mood: declarative

x2: head: q
subject: q
agreement: q

category: Np

object: root : bw
agreement: plural 11

Figure 16. Result of unifying constituent and rule structures (Figures 14 and 15).

(4) Unify the constituent structure with
the rule structure. We then get the
structure shown in Figure 16. In this
manner, unification builds larger syn-
tactic constituents out of smaller ones.

(5) Retrieve the substructure labeled X0.
In practice, this is the only information
in which we are interested. (The final
structure is shown in Figure 17.)

Now suppose the agreement feature of
the original VP had been plural. Unifica-
tion would have failed, since the NP has
the same feature with a different (atomic)
value-and the rule would fail to apply,
blocking the parse of “The man kills bugs.”

A few issues bear discussion. First, where
did the structures Xl and X2 come from?
In unification-based grammar, the lexicon,
or dictionary, contains basic feature struc-
tures for individual words. Figure 18, for
example, shows a possible lexical entry

for the word “man.” All higher level feature
structures are built up from these lexical
structures (and the grammar rules).

Second, how are grammar rules chosen?
It seems that only a few rules can possibly
apply successfully to a given set of struc-
tures. Here is where the category feature
comes into play. Any parsing method, such
as Earley’s algorithm [Earley 1968, 19701
or generalized LR parsing [Tomita 1985a,
1985b,1987], can direct the choice of gram-
mar rules to apply, based on the categories
of the constituents generated.

Third, what are the structures used for?
Feature structures can represent syntactic,
semantic, or even discourse-based infor-
mation. Unification provides a kind of
constraint-checking mechanism for merg-
ing information from various sources. The
feature structure built up from the last rule
application is typically the output of the
parser.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 111

category:

head :

s
root: kill

tense: present

mood: declarative
det: the

subject: root: man

agreement: q singular I
agreement: q

object: bug
agreement: plural 11

Figure 17. Feature structure analysis of “The man kills bugs.”

category: N

[

root: man
head: agreement: singular 11

Figure 18. Sample lexical entry for the word “man.”

Finally, why do the rules use equations
rather than explicit tests and structure-
building operations? Recall that unifica-
tion both blocks rule applications if certain
tests are not satisfied and builds up new
structures. Another widely used grammar
formalism, the Augmented Transition Net-
work (ATN) of Woods [1970], separates
these two activities. An ATN grammar is a
network of states, and parsing consists of
moving from state to state in that network.
Along the way, the parser maintains a set
of registers, which are simply variables that
contain arbitrary values. When the parser
moves from one state to another, it may
test the current values of any registers and
may, if the tests succeed, change the values
of any registers. Thus, testing and building
are separate activities.

An advantage of using unification, how-
ever, is that it is, by its nature, bidirec-
tional. Since the equations are stated
declaratively, a rule could be used to cre-
ate smaller constituents from larger ones.
One interesting aspect of unification-
based grammars is the possibility using the
same grammar to parse and generate nat-
ural language.

8.2 Research

An excellent, modern introduction to the
use of unification in natural language pro-
cessing is Shieber’s [19861 book. This book

presents motivations and examples far be-
yond the above exposition. The reader in-
terested in this area is urged to find this
source. Now I will discuss research on fea-
ture structures, unification algorithms, and
unification-based grammar formalisms.

Karttunen [19841 discusses features and
values at a basic level and provides linguis-
tic motivation for both unification and
generalization (see also Section 11).
Structure-sharing approaches to speeding
up unification are discussed by Karttunen
and Kay [19851 and by Pereira [19851, who
imports Boyer and Moore’s [1972] ap-
proach for terms. Wroblewski [1987] gives
a simple nondestructive unification algo-
rithm that minimizes copying.

Much unpublished research has dealt
with extensions to unification. For exam-
ple, it is often useful to check for the
presence or absence of a feature during
unification rather than simply merging
features. Other extensions include (1)
multiple-valued features-a feature may
take on more than one value, for example,
“big, red, round “; (2) negated features:-a
feature may be specified by the values it
cannot have rather than one it can have;
and (3) disjunctive features:-a feature may
be specified by a set of values, at least one
of which must be its true value.

Disjunctive feature structures are of
great utility in computational linguistics,
but their manipulation is difficult. Fig-
ure 19 shows an example of unification of
disjunctive feature structures.

The curly brackets indicate disjunction;
a feature’s value may be any one of the
structures inside the brackets. When per-
forming unification, one must make sure

ACM Computing Surveys, Vol. 21, No. 1, March 1989

112 l Kevin Knight

c: 2 [1 d: 1

[e: 41

d: 2

c: 2
b:

Figure lg. Unification of disjunctive feature structures.

that all possibilities are maintained. This
usually involves cross multiplying the val-
ues of the two disjunctive features. In the
above example, there are four possible ways
to combine the values of the “b” feature;
three are successful, and one fails (because
of the conflicting assignment to the “d”
feature).

The mathematical basis of feature struc-
tures has been the subject of intensive
study. Pereira and Shieber [1984] devel-
oped a denotational semantics for unifica-
tion grammar formalisms. Kasper and
Rounds [1986] and Rounds and Kasper
[19861 presented a logical model to describe
feature structures. Using their formal se-
mantics, they were able to prove that the
problem of unifying disjunctive structures
is flp-complete. Disjunctive unification
has great utility, however, and several re-
searchers, including Kasper [19871 and
Eisele and Dorre [19881, have come up with
algorithms that perform well in the average
case. Rounds and Manaster-Ramer [19871
discussed Kay’s Functional Grammar in
terms of his logical model. Moshier and
Rounds [1987] extended the logic to deal
with negation and disjunction by means of
intuitionistic logic. Finally, in his disserta-
tion, Ait-Kaci [1984] gave a semantic ac-
count of $-terms, logical constructs very
close to feature structures-these con-
structs were discussed in Section 7.

The past few years have seen a number
of new grammar formalisms for natural
languages. A vast majority of these formal-
isms use unification as the central opera-
tion for building larger constituents out of
smaller ones. Gazdar [19871 enumerated
them in a brief survey, and Sells [1985]
described the theories underlying two of the
more popular unification grammar formal-
isms. Gazdar et al. [1987a] present a more

ACM Computing Surveys, Vol. 21, No. 1, March 1989

complete bibliography. The formalisms can
be separated roughly into families:

In the “North American Family,” we
have formalisms arising from work in com-
putational linguistics in North America in
the late 1970s. Functional Unification
Grammar (FUG; previously FG and UG)
is described by Kay [1979, 1984, 1985aJ.
Lexical Functional Grammar (LFG) is
introduced in Bresnan’s [19821 book.

The “Categorial Family” comes out of
theoretical linguistic research on categorial
grammar. Representatives are Unification
Categorial Grammar (UCG), Categorial
Unification Grammar (CUG), Combina-
tory Categorial Grammar (CCG), and
Meta-Categorial Grammar (MCG). UCG
was described by Zeevat [1987], CUG by
Uzkoreit [1986], and CCG by Wittenburg
[19861. Karttunen [1986131 also presented
work in this area.

The “GPSG Family” begins with Gener-
alized Phrase Structure Grammar (GPSG),
a modern version of which appears in
Gazdar and Pullum [1985]. Work at
ICOT in Japan resulted in a formalism
called JPSG [Yokoi et al. 19861. Pollard
and colleagues have been working recently
on Head-Driven Phrase Structure Gram-
mar (HPSG); references include Pollard
[1985] and Sag and Pollard [1987].
Ristad [1987] introduces Revised GPSG
(RGPSG).

The “Logic Family” consists of grammar
formalisms arising from work in logic pro-
gramming. Interestingly, Prolog was devel-
oped with natural language applications in
mind: Colmerauer’s [1978, 1982a] Meta-
morphosis Grammars were the first gram-
mars in this family. Pereira and Warren’s
[1980] Definite Clause Grammar (DCG)
has become extremely popular. Other logic
grammars include Extraposition Grammar

Unification: A Multidisciplinary Survey l 113

(XC) [Pereira, 19811, Gapping Grammars,
[Dahl1984; Dahl and Abramson 19841 Slot
Grammar [McCord 19801, and Modular
Logic Grammar (MLG) [McCord 19851.

Prolog has been used in a variety of ways
for analyzing natural languages. Definite
Clause Grammar (DCG) is a basic exten-
sion of Prolog, for example. Bottom-up par-
sers for Prolog are described in Matsumoto
and Sugimura [1987], Matsumoto et al.
[19831, and Stabler [19831. Several articles
on logic programming and natural language
processing are collected in Dahl and Saint-
Dizier [1985]. Implementations of LFG in
Prolog are described in Eisele and Dorre
[19861 and Reyle and Frey [19831.

Pereira [19871 presented an interesting
investigation of unification grammars from
a logic programming perspective. In a sim-
ilar vein, Kay [1985b] explained the need
to go beyond the capabilities of unification
present in current logic programming
systems.

Finally, in the “miscellaneous” category,
we have PATR-II, an (implemented) gram-
mar formalism developed by Karttunen
[1986b], Shieber [1984, 19851, and others.
PATR is actually an environment in which
grammars can be developed for a wide va-
riety of unification-based formalisms. In
fact, many of the formalisms listed above
are so similar that they can be translated
into each other automatically; for example,
see Reyle and Frey [1983]. Hirsh [1986]
described a compiler for PATR grammars.

9. UNIFICATION AND EQUATIONAL
THEORIES

Unification under equational theories is a
very active area of research. The research
has been so intense that there are several
papers devoted entirely to classifying
previous research results [e.g., Siekmann
1984, 1986; Walther 19861. Many open
problems remain, and the area promises to
provide new problems for the next decade.

9.1 Unification as Equation Solving

At the very beginning of this paper, I pre-
sented an example of unification. The
terms were s = f (x, y) and t = f (g(y, a),

h(a)), and the most general unifier u was

x +--Ah(a), a)

y + h(a)

From an algebraic viewpoint, we can think
of this unification as solving the equation
s = t by determining appropriate values for
the variables n and y.

Now, for a moment, assume that f
denotes the function add, g denotes the
function multiply, h denotes the function
successor, and a denotes the constant
zero. Also assume that all the axioms of
number theory hold. In this case, the equa-
tion s = t is interpreted as add(x, y) =
add(mult(y, O), succ(0)). It turns out that
there are many solutions to the equation,
including the substitution r:

x t h(a)

Y+-a

Notice that 7(s) is f(h(a), a) and that
7(t) is f (g(a, a), h(a)). These resulting two
terms are not textually identical, but under
the interpretation of f, g, h, and a given
above, they are certainly equivalent. The
former is succ(0) + 0, or succ(0); the latter
is (0 . 0) + succ(O), or succ(0). Therefore,
we say that r unifies s and t under the
axioms of number theory. It is clear that
determining whether two terms are unifia-
ble under the axioms of number theory is
the same problem as solving equations in
number theory.

Number theory has complex axioms and
inference rules. Of special interest to
unification are simpler equational axioms
such as

f (f (x, y), 2) = f (x, f (y, 2)) associativity

fb,Y) =f(y,x) commutativity

f(&X)=x idempotence

A theory is a finite collection of axioms
such as the ones above. The problem of
unifying two terms under theory T is writ-
ten (s = t)T.

Consider the problem of unification
under commutativity: (s = t)c. To unify
f(x, y) with f(a, b) we have two substi-
tutions available to us: 1~ t a; y t b} and
(x t b; y c a}. With commutativity, we no

ACM Computing Surveys, Vol. 21, No. 1, March 1989

114 l Kevin Knight

longer get the unique most general unifier
of Robinson’s null-theory unification-
compare this situation to Gould’s findings
on higher order unification.

There are many applications for unifi-
cation algorithms specialized for certain
equational theories. A theorem prover, for
example, may be asked to prove theorems
about the multiplicative properties of inte-
gers, in which case it is critical to know
that the multiplication function is associa-
tive. One could add an “associativity
axiom” to the theorem prover, but it might
waste precious inferences simply bracket-
ing and rebracketing multiplication for-
mulas. A better approach would be to “build
in” the notion of associativity at the core
of the theorem prover: the unification al-
gorithm. Plotkin [19721 pioneered this
area, and it has since been the subject of
much research.

9.2 Research

Siekmann’s [19841 survey of unification
under equational theories is comprehen-
sive. The reader is strongly urged to seek
out this source. I will mention here only a
few important results.

We saw above that unification under
commutativity can produce more than one
general unifier; however, there are always
a finite number of general unifiers [Livesey
et al. 19791. Under associativity, on the
other hand, there may be an infinite num-
ber of general unifiers [Plotkin 19721.
Baader [19861 and Schmidt-Schauss [19861
independently showed that unification un-
der associativity and idempotence has the
“unpleasant” feature that no complete set
of general unifiers even exists. (That is,
there are two unifiable terms s and t, but
for every unifier u, there is a more general
unifier 7.)

Results of this kind place any equational
theory T into a “hierarchy” of theories,
according to the properties of unification
under T. Theories may be unitary (one
MGU), finitary (finite number of general
unifiers), infinitary (infinite number of gen-
eral unifiers), or nullury (no complete set
of general unifiers). Siekmann [1984] sur-
veys the classifications of many naturally

arising theories. The study of Universal
Unification seeks to discover properties of
unification that hold across a wide variety
of equational theories, just as Universal
Algebra abstracts general properties from
individual algebras.

To give a flavor for results in Universal
Unification, I reproduce a recent theorem
due to Book and Siekmann [1986]:

Theorem 9.1

If T is a suitable first-order equation theory
that is not unitary, then T is not bounded.

This means the following: Suppose that
unification under theory T produces a finite
number of general unifiers but no MGU (as
with commutativity). Then, there is no par-
ticular integer n such that for every pair s
and t, the number of general unifiers is less
than n (T is not bounded).

Term-rewriting systems, systems for
translating sets of equations into sets of
rewrite rules, are basic components of uni-
fication algorithms for equational theories.
Such systems were the object of substantial
investigation in Knuth and Bendix [1970].
A survey of work in this area is given in
Huet and Oppen [19801.

Some recent work [Goguen and Mese-
guer 1987; Meseguer and Goguen 1987;
Smolka and Ait-Kaci 1987; Walther 19861
investigates the equational theories of or-
der-sorted and many-sorted algebras.
Smolka and Ait-Kaci [1987] show how
unification of Ait-Kaci’s $-terms (see Sec-
tion 7) is an instance of unification in
order-sorted Horn logic. In other words,
unification with inheritance can be seen as
unification with respect to a certain set of
equational axioms.

Unification algorithms have been con-
structed for a variety of theories. Algo-
rithms for particular theories, however,
have usually been handcrafted and based
on completely different techniques. There
is interest in building more general (but
perhaps inefficient) “universal” algorithms
[e.g., Fages and Huet 1986; Fay 1979;
Gallier and Snyder 1988; Kirchner 19861.
There is also interest in examining the
computational complexity of unification

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey 115

under various theories [e.g., Kapur and
Narendran 19861.

10. PARALLEL ALGORITHMS FOR

UNIFICATION

Lewis and Statman [1982] wrote a note
showing that nonunifiability could be com-
puted in nondeterministic log space (and
thus, by Savitch’s theorem, in deterministic
log2 space). By way of the parallel compu-
tation thesis [Goldschlager 19781, which re-
lates sequential space to parallel time, this
result could have led to a log2 n parallel
time algorithm for unification.

In the process of trying to find such an
algorithm, Dwork et al. [1984] found an
error in the above-mentioned note. They
went on to prove that unifiability is actually
log space complete for 9, which means that
it is difficult to compute unification using
a small amount of space. This means that
it is highly unlikely that unification can be
computed in O(logk n) parallel time using
a polynomial number of processors (in com-
plexity terminology, unification is in the
class &%? only if 9 = Jy^%?).

In other words, even massive parallelism
will not significantly improve the speed of
unification-it is an inherently sequential
process. This lower bound result has a wide
range of consequences; for example, using
parallel hardware to speed up Prolog exe-
cution is unlikely to bring significant gains
(but see Robinson [1985] for a hardware
implementation of unification).

Yasuura [19841 independently derived
a complexity result similar to that of
Dwork et al. [1984] and gave a parallel
unification algorithm that runs in time
O(log’ n + m log m), where m is the total
number of variables in the two terms.

Dwork et al. [1984] mentioned the exist-
ence of a polylog parallel algorithm for term
matching, the variant of unification in
which substitution is allowed into only one
of the two terms. They gave an O(log2 n)
time bound but required about O(n5)
processors. Using randomization tech-
niques, Dwork et al. [1986] reduced the
processor bound to O(n3).

Maluszynski and Komorowski [19851,
motivated by Dwork et al.‘s [19841 negative

results, investigated a form of logic pro-
gramming based on matching rather than
unification.

Vitter and Simons [1984, 19861 argued
that unification can be helped by multiple
processors in a practical setting. They de-
veloped complexity classes to formalize this
notion of “practical” speedup and gave a
parallel unification algorithm that runs in
time O(E/P + V log P), where P is the
number of processors, E the number of
edges in the term graph, and V the number
of vertices.

Harland and Jaffar [19871 introduced an-
other measure for parallel efficiency and
compared several parallel algorithms in-
cluding Yasuura’s algorithm [19841, Vitter
and Simon’s algorithm [1984, 19861, and
a parallel version of Jaffar’s algorithm
[1984].

11. UNIFICATION, GENERALIZATION, AND

LATTICES

Generalization is the dual of unification,
and it finds applications in many areas in
which unification is used. Abstractly, the
generalization problem is the following:
Given two objects x and y, can we find a
third object z of which both x and y are
instances? Formally it is as follows:

Definition 11.1

An antisubstitution (denoted y, 17, 5; . . .), is
a mapping from terms into variables.

Definition 11.2

Two terms s and t are general&able if there
exists an antisubstitution y such that
y(s) = y(t). In such a case, y is called a
generalizer of s and t, and y(s) is called
a generalization of s and t.

Generalizability is a rather vacuous con-
cept, since any two terms are generalizable
under the antisubstitution that maps all
terms onto the variable X. Of more interest
is the following:

Definition

A generalizer y of terms s and t is called
the most specific generalizer (MSG) of s and

ACM Computing Surveys, Vol. 21, No. 1, March 1989

116 l Kevin Knight

fk b)

Figure 20. A portion of the lattice of first-order terms.

fk b) fb, Y)

Figure 21. Unification of terms f(x, b) and f (a, y),

t if for any other generalizer 7, there is an
antisubstitution {such that {y(s) = v(s).

Intuitively, the most specific generaliza-
tion of two terms retains information that
is common to both terms, introducing new
variables when information conflicts. For
example, the most specific generaliza-
tion of f(a, g(b, c)) and f(b, g(2c, c)) is
f(z, g(x, c)). Since the second argument to
f can be a or b, generalization “makes an
abstraction” by introducing the variable Z.
Unification, on the other hand, would fail
because of this conflict.

came up with a generalization algorithm.
(Plotkin [19701 independently discovered
this algorithm.) Reynolds used the natural
lattice structure of first-order terms, a par-
tial ordering based on “subsumption” of
terms. General terms subsume more spe-
cific terms; for example, f (x, a) subsumes
f(b, a). Many pairs of terms, of course, do
not stand in any subsumption relation, and
this is where unification and generalization
come in. Figure 20 shows a portion of
the lattice of first-order terms augmented
with two special terms called top (T) and
bottom (I).

As mentioned in a previous section, Unification corresponds to finding the
Reynolds [1970] proved the existence of greatest lower bound (or meet) of two terms
a unique MSG for first-order terms and in the lattice. Figure 21 illustrates the

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 117

T

fh b) fh Y)

Figure 22. Generalization of terms f(x, b) and f(a, c).

unification of f(x, b) and f(a, y). The bot-
tom of the lattice (I), to which all pairs of
terms can unify, represents inconsistency.
If the greatest lower bound of two terms
is I, then they are not unifiable.

Generalization corresponds to finding
the least upper bound (or join) of two terms
in the lattice. Figure 22 illustrates the gen-
eralization of f(x, b) and f (a, c). The top of
the lattice (T), to which all pairs of terms
can generalize, is called the universal term.
Everything is an instance of this term.

Feature structures, previously discussed
in Section 7, make up a more complex
lattice structure.

Inheritance hierarchies, common struc-
tures in artificial intelligence, can be seen
as lattices that admit unification and gen-
eralization. For example, the generalization
of concepts “bird” and “fish-eater” in a
certain knowledge base might be “animal,”
whereas the unification might be “pelican.”
Ait-Kaci extends this kind of unification
and generalization to typed record struc-
tures (#-terms), as discussed in Section 7.

12. OTHER APPLICATIONS OF
UNIFICATION

I have already discussed three application
areas for unification: automatic theorem
proving, logic programming, and natural
language processing. Other areas are listed
here.

12.1 Type Inference

Milner [1978] presented work on compile-
time type checking for programming lan-
guages, with the goal of equating syntactic
correctness with well typedness. His algo-
rithm for well typing makes use of unifica-
tion, an idea originally due to Hindley
[1969]. More recent research in this area
includes the work of Cardelli [1984],
MacQueen et al. [1984], and Moshier and
Rounds [19871.

12.2 Programming Languages

Pattern matching is a very useful feature
of programming languages. Logic program-
ming languages make extensive use of
pattern matching, as discussed above,
but some functional languages also pro-
vide matching facilities (e.g., PLANNER,
QA4/QLISP). In these cases, functions
may be invoked in a pattern-directed
manner, making use of unification as a
pattern-matcher/variable-binder. Stickel
[19781 discusses pattern-matching lan-
guages and specialized unification algo-
rithms in his dissertation.

12.3 Machine Learning

Learning concepts from training instances
is a task that requires the ability to gener-
alize. Generalization, the dual of unifica-
tion, is an operation widely used in machine
learning.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

118 . Kevin Knight

Plotkin [19701, who opened up work in
unification under equational theories, also
produced work on inductive generalization,
that is, abstracting general properties from
a set of specific instances. Mitchell’s [19791
work on version spaces investigated the
same problem using both positive and
negative training instances. Positive ex-
amples force the learner to generate more
general hypotheses, whereas negative ex-
amples force more specific hypotheses.
The general-to-specific lattice (see Sec-
tion 11) is especially useful, and Mitchell’s
algorithms make use of operations on this
lattice.

13. CONCLUSION

This section contains a list of properties
that unification possesses along with a
summary of the trends in research on uni-
fication.

13.1 Some Properties of Unification

The following properties hold for first-
order unification:

Unification is monotonic. Unification
adds information, but never subtracts. It is
impossible to remove information from one
structure by unifying it with another. This
is not the case with generalization.

Unification is commutative and asso-
ciative. The order of unifications is irrel-
evant to the final result. Unification and
generalization are not, however, distribu-
tive with respect to each other [Shieber
19861.

Unification is a constraint-merging
process. If structures are viewed as en-
coding constraint information, then uni-
fication should be viewed as merging
constraints. Unification also detects when
combinations of certain constraint sets are
inconsistent.

Unification is a pattern-matching
process. Unification determines whether
two structures match, using the mechanism
of variable binding.

Unification is bidirectional since vari-
able binding may occur in both of the
structures to be unified. Matching is the

unidirectional variant of unification and
appears in the “function call” of imperative
programming languages.

Unification deals in partially defined
structures. Unification, unlike many
other operations, accepts inputs that con-
tain uninstantiated variables. Its output
may also contain uninstantiated variables.

13.2 Trends in Unification Research

One trend in unification research seeks to
discover faster algorithms for first-order
unification.5 Over the past two decades,
many quite different algorithms have been
presented, and although the worst-case
complexity analyses are very interesting, it
is still unclear which algorithms work best
in practice. There seems to be no better
way to compare algorithms than to imple-
ment and test them on practical problems.
As it stands, which algorithm is fastest
depends on the kinds of structures that are
typically unified.

Another trend, begun by Robinson
[1968], tackles the problems of unification
in higher order logic. Such problems are in
general unsolvable, and the behaviors of
unification algorithms are less quantifiable.
Systems that deal with higher order logic,
for example theorem provers and other AI
systems [Miller and Nadathur 19871, stand
to gain a great deal from research in higher
order unification.

A third trend runs toward incorporating
more features into the unification opera-
tion. Automatic theorem provers once in-
cluded separate axioms for commutativity,
associativity, and so on, but research begun
by Plotkin [I9721 showed that building
these notions directly into the unification
routine yields greater efficiency. Logic pro-
gramming languages are often called on to
reason about hierarchically organized data,
but they do so in a step-by-step fashion.
Ait-Kaci and Nasr [1986] explain how to
modify unification to use inheritance infor-
mation, again improving efficiency. Many
unification routines for natural language
parsing perform unification over negated,

’ This trend toward efficiency also explores topics such
as structure sharing and space efficiency.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 119

multiple-valued, and disjunctive structures.
New applications for unification will no
doubt drive further research into new, more
powerful unification algorithms.

ACKNOWLEDGMENTS

I would like to thank Yolanda Gil, Ed Clarke, and

Frank Pfenning for their useful comments on earlier

drafts of this paper. My thanks also go to the reviewers

for making many suggestions relating to both accuracy

and clarity. Finally, I would like to thank Masaru

Tomita for introducing me to this topic and for helping

to arrange this survey project.

REFERENCES

AHO, V. A., HOPCROFT, J. E., AND ULLMAN, J. D.
1974. The Design and Analysis of Computer Al-
gorithms. Addison-Wesley, Reading, Mass.

ANDREWS, P. B. 1971. Resolution in type theory.
J. Symbolic Logic 36, pp. 414-432.

ANDREWS, P. B., AND COHEN, E. L. 1977. Theorem
proving in type theory. In Proceedings of Inter-
national Joint Conference on Artificial Intelli-
gence.

ANDREWS, P., MILLER, D., COHEN, E., AND PFEN-
NING, F. 1984. Automating higher-order logic.
Vol. 29. In Automated Theorem Prouing: After 25
Years, W. Bledsoe and D. Loveland, Eds. Amer-
ican Mathematical Society, Providence, R.I.,
Contemporary Mathematics Series.

AiT-KACI, H. 1984. A lattice theoretic approach to
computation based on a calculus of partially or-
dered type structures. Ph.D. dissertation. Univ.
of Pennsylvania, Philadelphia, Pa.

AiT-KACI, H. 1986. An algebraic semantics approach
to the effective resolution of type equations.
Theor. Comput. Sci. 45.

AiT-KACI, H., AND NASR, R. 1986. LOGIN: A logic
programming language with built-in inheritance.
J. Logic Program. 3. (Also MCC Tech. Rep. AI-
068-85, 1985.)

BAADER, F. 1986. The theory of idempotent semi-
groups is of unification type zero. J. Autom. Rea-
soning 2, pp. 283-286.

BAXTER, L. 1978. The undecidability of the third
order dyadic unification problem. Znf. Control 38,
pp. 170-178.

BOOK, R. V., AND SIEKMANN, J. 1986. On unifica-
tion: Equational theories are not bounded. J.
Symbolic Comput. 2, pp. 317-324.

BOYER, R. S., AND MOORE, J. S. 1972. The sharing
of structure in theorem-proving programs. Mach.
Intell. 7.

BRESNAN, J., AND KAPLAN, R. 1982. Lexical-
functional grammar: A formal system for gram-
matical representation. In The Mental Represen-
tation of Grammatical Relations, J. Bresnan, Ed.
MIT Press, Cambridge, Mass.

BRUYNOOGHE, M., AND PEREIRA, L. M. 1984.
Deduction revision by intelligent backtracking.
In Prolog Implementation, J. A. Campbell, Ed.
Elsevier, North-Holland, New York.

CARDELLI, L. 1984. A semantics of multiple inher-
itance. In Semantics of Data Types, Lecture Notes
in Computer Science, No. 173, G. Kahn, D. B.
MacQueen, and G. Plotkin, Eds., Springer-
Verlag, New York.

CHEN, T. Y., LASSEZ, J., AND PORT, G. S. 1986.
Maximal unifiable subsets and minimal non-
unifiable subsets. New Generation Comput. 4, pp.
133-152.

CHURCH, A. 1940. A formulation of the simple theory
of types. J. Symbolic Logic 5, pp. 56-68.

CLOCKSIN, W. F., AND MELLISH, C. S. 1981.
Programming in Prolog. Springer-Verlag, New
York.

COLMERAUER, A. 1978. Metamorphosis grammars.
In Natural Language Communication with Com-
puters, L. Bolt, Ed. Springer-Verlag, New York.

COLMERAUER, A. 1982a. An interesting subset of nat-
ural language. In Logic Programming, K. L. Clark
and S. Tarnlund, Eds. Academic Press, London.

COLMERAUER, A. 1982b. Prolog and infinite trees.
In Logic Programming, K. L. Clark and S.
Timlund, Eds. Academic Press, Orlando, Fla.

COLMERAUER, A. 1983. Prolog in ten figures. In Pro-
ceedings of the International Joint Conference on
Artificial Intelligence.

COLMERAUER, A., KANOUI, H., AND VAN CANEGHEM,

M. 1973. Un systeme de communication
homme-machine en Francais. Research Rep.
Groupe Intelligence Artificielle, Universitb Aix-
Marseille II.

BARWISE, J., AND PERRY, J. 1983. Situations and CORBIN, J., AND BIDOIT, M. 1983. A rehabilita-
Attitudes. MIT Press, Cambridge, Mass. tion of Robinson’s unification algorithm. Inf.

BATTANI, G., AND MELONI, H. 1973. Interpreteur du Process. 83, pp. 73-79.

langage de programmation PROLOG. Groupe In- COURCELLE, B. 1983. Fundamental properties of in-

telligence Artificielle, UniversitG Aix-Marseille II. finite trees. Theor. Comput. Sci. 25, pp. 95-169.

BAXTER, L. 1973. An efficient unification algorithm. COX, P. T. 1984. Finding backtrack points for intel-
Tech. Rea. No. CS-73-23. Univ. of Waterloo. liaent backtracking. In Prolog ImDlementation.
Waterloo,- Ontario, Canada: Jy A. Campbell, I?d. Elsevie;, Nbrth-Holland;

BAXTER, L. 1976. The complexity of unification. New York.

Ph.D. dissertation. Univ. of Waterloo, Waterloo, DAHL, V. 1984. More on gapping grammars. In Pro-
Ontario, Canada. ceedings of the International Conference on Fifth

ACM Computing Surveys, Vol. 21, No. 1, March 1989

120 l Kevin Knight

Generation Computer Systems. Sponsored by In-
stitute for New Generation Computer Technol-
ogy (ICOT).

DAHL, V., AND ABRAMSON. 1984. On gapping gram-
mars. In Proceedings of the 2nd International
Conference on Logic Programming. Sponsored by
Uppsala University, Uppsala, Sweden.

DAHL, V., AND SAINT-DIZIER, P., EDS. 1985. Natural
Language Understanding and Logic Program-
ming. Elsevier North-Holland, New York.

DARLINGTON, J. 1968. Automatic theorem proving
with equality substitutions and mathematical in-
duction. Mach. Zntell. 3. Elsevier, New York.

DARLINGTON, J. 1971. A partial mechanization of
second-order logic. Mach. Intell. 6.

DARLINGTON, J. 1977. Improving the efficiency of
higher order unification. In Proceedings of the
International Joint Conference on Artifical Intel-
ligence.

DE CHAMPEAUX, D. 1986. About the Paterson-
Wegman linear unification algorithm. J. Comput.
Syst. Sci. 32, pp. 79-90.

DWORK, C., KANELLAKIS, P. C., AND MITCHELL,
J. C. 1984. On the sequential nature of unifica-
tion. J. Logic Program. 1, pp. 35-50.

DWORK, C., KANELLAKIS, P. C., AND STOCKMEYER,
L. 1986. Parallel algorithms for term matching.
In Proceedings of the 8th International Conference
on Automated Deduction.

EARLEY, J. 1968. An efficient context-free parsing
algorithm. Ph.D. dissertation, Computer Science
Dept., Carnegie-Mellon Univ., Pittsburgh, Pa.

EARLEY, J. 1970. An efficient context-free parsing
algorithm. Commun. ACM 6, pp. 94-102.

EISELE, A., AND DORRE, J. 1986. A lexical functional
grammar system in Prolog. In Proceedings of the
International Conference on Computational Lin-
guistics. North-Holland, Amsterdam, New York.

EISELE, A., AND D~RRE, J. 1988. Unification of dis-
junctive feature descriptions. In Proceedings of
the 26th Annual Meeting of the Association for
Computational Linguistics.

FAGES, F., AND HUET, G. 1986. Complete sets of
unifiers and matchers in equational theories.
Theor. Comput. Sci. 43, pp. 189-200.

FARMER, W. M. 1987. A unification algorithm for
second-order monadic terms. Tech. Rep. (forth-
coming). The MITRE Corporation, document
MTP-253.

FAY, M. 1979. First order unification in an equa-
tional theory. In Proceedings of the 4th Workshop
on Automated Deduction, Austin, Texas.

GALLIER, J. H., AND SNYDER, W. 1988. Complete
sets of transformations for general E-unification.
Tech. Rep. MS-CIS-88-72-LINCLAB-130. Dent.
of Computer and Information Science, Univ.-of
Pennsylvania, Philadelphia, Pa.

GAZDAR, G. 1987. The new grammar formalisms-
A tutorial survey (abstract). In Proceedings of the
International Joint Conference on Artificial Zntel-
ligence.

GAZDAR, G., AND PULLUM, G. K. 1985.
Computationally relevant properties of natural
languages and their grammars. New Generation
Comput. 3, pp. 273-306.

GAZDAR, G., FRANZ, A., OSBORNE, K., AND EVANS,
R. 1987. Natural Language Processing in the
1980S-A Bibliography. CSLI Lecture Notes
Series, Center for the Study of Language and
Information, Stanford, California.

GOGUEN, J. A., AND MESEGUER, J. 1987. Order-
sorted algebra solves the constructor-selector
multiple representation and coercion problems.
Tech. Rep. CSLI-87-92, Center for the Study of
Language and Information.

GOLDFARB, W. D. 1981. The undecidability of the
second order unification problem. J. Theoret.
Comput. Sci. 13, pp. 225-230.

GOLDSCHLAGER, L. 1978. A unified approach to
models of synchronous parallel machines. In Pro-
ceedings of the Symposium on the Theory of Com-
puting. Sponsored by ACM Special- Interest
Group for Automata and Computabilitv Theorv
(SIGACT).

GOULD, W. E. 1966a. A matching procedure for
w-order logic. Ph.D. dissertation. Princeton
Univ., Princeton, N.J.

GOULD, W. E. 196613. A matching procedure for
w-order logic. Scientific Rep. 4, AFCRL 66-781.

GUARD, J. R. 1964. Automated logic for semi-auto-
mated mathematics. Scientific Rep. 1, AFCRL
64-411.

HARLAND, J., AND JAFFAR, J. 1987. On Parallel Uni-
fication for Prolog. New Generation Comput. 5.

HASIDA, K. 1986. Conditioned unification for natu-
ral language processing. In Proceedings of the
International Conference on Computational
Linguistics. North-Holland, Amsterdam, New
York.

HENKIN, L. 1950. Completeness in the theory of
types. J. Symbolic Logic 15, pp. 81-91.

HERBRAND, J. 1971. Recherches sur la theorie de la
demonstration. Ph.D. dissertation. In Logical
Writings, W. Goldfarb, Ed. Harvard University
Press, Cambridge, Massachusetts.

HINDLEY, R. 1969. The principal type-scheme of an
object in combinatory logic. Trans. Am. Math.
SOC. 146.

HIR~H, S. B. 1986. P-PATR: A compiler for unifi-
cation-based grammars. Center for the Study of
Language and Information.

HUET, G. 1972. Contrained resolution: A complete
method for higher order logic. Ph.D. dissertation.
Case Western Reserve Univ., Cleveland, OH.

HUET, G. 1973a. A mechanization of type theory. In
Proceedings of the International Joint Conference
on Artificial Intelligence.

HUET, G. 1973b. The undecidability of unification
in third order logic. Inf. Control 22, pp. 257-267.

HUET, G. 1975. A unification algorithm for typed
X-calculus. Theoret. Comput. Sci. I, pp. 27-57.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 121

HUET, G. 1976. Resolution d’equations dans les
langages d’ordre 1, 2, . , o. Ph.D. dissertation.
Univ. de Paris VII, France.

HUET, G., AND OPPEN, D. 1980. Equations and
rewrite rules: A survey. In Formal Language
Theory, R. V. Book, Ed. Academic Press,
Orlando, Fla.

JAFFAR, J. 1984. Efficient unification over infinite
terms. New Generation Comput. 2, pp. 207-219.

JENSEN, D. C., AND PIETRZYKOWSKI, T. 1976.
Mechanizing w-order type theory through unifi-
cation. Theoret. Comput. Sci. 3, pp. 123-171.

KAPUR, D., AND NARENDRAN, P. 1986. NP-com-
pleteness of the set unification and matching
problems. In Proceedings of the 8th International
Conference on Automated Deduction. Springer-
Verlag, New York.

KAPUR, D., KRISHNAMOORTHY, M. S., AND NAREN-
DRAN, P. 1982. A new linear algorithm for
unification. Tech. Rep. 82CRD-100, General
Electric.

KARTTUNEN, L. 1984. Features and values. In Pro-
ceedings of the International Conference on Com-
putational Linguistics.

KARTTUNEN, L. 1986a. D-PATR: A development en-
vironment for unification-based grammars. In
Proceedings of the International Conference on
Computational Linguistics. North-Holland,
Amsterdam, New York.

KARTTUNEN, L. 1986b. Radical lexicalism. Tech.
Rep. CSLI-86-68, Center for the Study of Lan-
guage and Information.

KARTTUNEN, L., AND KAY, M. 1985. Structure shar-
ing with binary trees. In Proceedings of the 23rd
Annual Meeting of the of the Association for Com-
putational Linguistics.

KASPER, R. 1987. A unification method for disjunc-
tive feature descriptions. In Proceedings of the
25th Annual Meeting of the Association for Com-
putational Linguistics.

KASPER, R., AND ROUNDS, W. C. 1986. A logical
semantics for feature structures. In Proceedings
of the 24th Annual Meeting of the Association for
Computational Linguistics.

KAY, M. 1979. Functional grammar. In 5th Annual
Meeting of the Berkeley Linguistic Society. Spon-
sored by Berkeley Linguistics Society, Berkeley,
California.

KAY, M. 1984. Functional unification grammar: A
formalism for machine translation. In Proceed-
ings of the International Conference on Compu-
tational Linguistics. North-Holland, Amsterdam,
New York.

KAY, M. 1985a. Parsing in functional grammar. In
Natural Language Parsing, D. Dowty, L. Karttu-
nen, and A. Zwicky, Eds. Cambridge Univ. Press,
Cambridge.

KAY, M. 1985b. Unification in grammar. In Natural
Language Understanding and Logic Program-
ming, V. Dahl and P. Saint-Dizier, Eds. Elsevier,
North-Holland, New York.

KIRCHNER, C. 1986. Computing unification algo-
rithms. In 1st Symposium on Logic in Computer
Science. Co-sponsored by IEEE Computer Soci-
ety, Technical Committee on Mathematical
Foundations of Computing; ACM Special Interest
Group for Automata and Computability Theory
(SIGACT); Association for Symbolic Logic;
European Association for Theoretical Computer
Science.

KNUTH, D., AND BENDIX, P. B. 1970. Simple word
problems in universal algebra. In Computational
Problems in Abstract Algebra, J. Leech, Ed.
Pergamon Press, Oxford.

LEVY, J. 1983. A unification algorithm for concur-
rent Prolog. In Proceedings of the 2nd Logic Pro-
gramming Conference. Sponsored by Uppsala
University, Uppsala, Sweden.

LEWIS, H. R., AND STATMAN, R. 1982. Unifiability
is complete for co-NLogSpace. Info. Process. L&t.
15, pp. 220-222.

LIVESEY, M., SIEKMANN, J., SZABO, P., AND
UNVERICHT, E. 1979. Unification problems for
combinations of associativity, commutatitivity,
distributivity and idempotence axioms. In Pro-
ceedings of the 4th Workshop on Automated De-
duction, Austin, Texas.

LUCCHESI, C. L. 1972. The undecidability of the
unification problem for third order languages.
Tech. Rep. CSRR 2059, Dept. of Applied Analysis
and Computer Science, University of Waterloo,
Waterloo, Ontario, Canada.

MACQUEEN, D., PLOTKIN, G., AND SETHI, R.
1984. An ideal model for recursive polymorphic
types. In Proceedings of the ACM Symposium on
Principles of Programming Languages. ACM,
New York.

MALUSZYNSKI, J., AND KOMOROWSKI, H. J. 1985.
Unification-free execution of Horn-clause pro-
grams. In Proceedings of the 2nd Logic Progrum-
ming Symposium. IEEE, New York. (Also,
Harvard Univ., Computer Science Dept., Tech.
Rep. TR-10-85, 1985.)

MANNILA, H., AND UKKONEN, E. 1986. On the com-
plexity of unification sequences. In Proceedings
of the 3rd International Logic Programming Con-
ference. Springer-Verlag, New York.

MARTELLI, A., AND MONTANARI, U. 1976.
Unification in linear time and space: A structured
presentation. Internal Rep. No. B76-16, 1st. di
Elaborazione delle lnformazione, Consiglio Na-
zionale delle Ricerche, Pisa, Italy.

MARTELLI, A., AND MONTANARI, U. 1977. Theorem
proving with structure sharing and efficient uni-
fication. In Proceedings of International Joint
Conference on Artificial Intelligence. (Also lnter-
nal Rep. No. S-77-7, lstituto di Scienze
dell’lnformazione, Univ. of Pisa, Italy).

MARTELLI, A., AND MONTANARI, U. 1982. An effi-
cient unification algorithm. ACM Trans. Prog.
Lang. Syst. 4.

MATSUMOTO, Y., AND SUGIMURA, R. 1987. A pars-
ing system based on logic programming. In Pro-

ACM Computing Surveys, Vol. 21, No. 1, March 1989

122 ’ Kevin Knight

ceedings of the International Joint Conference on
Artificial Intelligence.

MATSUMOTO, Y., TANAKA, H., HIRAKAWA, H.,
MIYOSHI, H., AND YASUKAWA, H. 1983. BUP:
A bottom-up parser embedded in Prolog. Near
Generation Comput. I, pp. 145-158.

MATWIN, S., AND PIETRZYKOWSKI, T. 1982.
Exponential improvement of exhuastive back-
tracking: Data structure and implementation. In
Proceedings of the 6th International Conference
on Automated Deduction. Springer-Verlag, New
York.

MCCORD, M. C. 1980. Slot grammars. Comput.
Linguist. 6, pp. 31-43.

MCCORD, M. C. 1985. Modular logic grammars. In
Proceedings of the 23rd Annual Meeting of the
Association for Computational Linguistics.

MESEGUER, J., GOGUEN, J. A., AND SMOLKA, G.
1987. Order-sorted unification. Tech. Rep.
CSLI-87-86, Center for the Study of Language
and Information.

MILLER, D. A., AND NADATHUR, G. 1987. Some use
of higher-order logic in computational linguistics.
In Proceedings of the 25rd Annual Meeting of the
Association for Computational Linguistics.

MILNER, R. 1978. A theory of type polymorphism
in programming. J. Comput. Syst. Sci. 17, pp.
348-375.

MITCHELL, T. 1979.

MINSKY, M. 1975. A framework for representing
knowledge. In The Psychology of Computer

Version spaces: An approach to
Vision, P. Winston, Ed. McGraw-Hill, New York.

concept learning, Ph.D. dissertation, Stanford

PEREIRA, F. C. N. 1981. Extraposition grammars.
Comput. Linguist. 7.

PEREIRA, F. C. N. 1985. A structure-sharing repre-
sentation for unification-based grammar formal-
isms. In Proceedings of the 23rd Annual Meeting
of the Association for Computational Linguistics.

PEREIRA, F. C. N. 1987. Grammars and logics of
partial information. In Proceedings of the 4th
International Conference on Logic Programming.
Springer-Verlag, New York.

PEREIRA, F. C. N., AND SHIEBER, S. 1984. The se-
mantics of grammar formalisms seen as computer
languages. In Proceedings of the International
Conference on Computational Linguistics.

PEREIRA, F. C. N., AND WARREN, D. H. D. 1980.
Definite clause grammars for language analysis-
a survey of the formalism and a comparison with
augmented transition networks. Artif. Zntell. 13,
pp. 231-278.

PIETRZYKOWSKI, T. 1973. A complete mechaniza-
tion of second-order type theory. J. ACM, 20, pp.
333-365. (Also Univ. of Waterloo, Research Rep.,
CSRR 2038,197l.)

PIETRZYKOWSKI, T., AND JENSEN, D. 1972. A com-
plete mechanization of w-order logic. Research
Rep. CSRR 2060, Univ. of Waterloo, Waterloo,
Ontario, Canada.

PIETRZYKOWSKI, T., AND MATWIN, S. 1982.
Exponential improvement of efficient backtrack-

PIETRZYKOWSKI, T., AND JENSEN, D. 1973.
Mechanizing w-order type theory through unifi-
cation. Tech. Rep. CS-73-16, Univ. of Waterloo,
Waterloo, Ontario, Canada.

Univ.: Stanford,Calif. ing: A strategy for plan based deduction. In Pro-

MOSHIER, D., AND ROUNDS, W. C. 1987. A logic for ceedings of the 6th Znternatianal Conference on

partially specified data structures. In ACM Sym- Automated Deduction. Springer-Verlag, New

posium on Principles of Programming Languages. York.

ACM, New York. PLAISTED, D. 1984. The occur-check problem in

MUKAI, K. 1983. A unification algorithm for infinite
trees. In Proceedings of the International Joint
Conference on Artificial Intelligence.

MUKAI, K. 1985a. Horn clause logic with parameter-
ized types for situation semantics programming.
Tech. Rep. TR-101, ICOT.

MUKAI, K. 198513. Unification over complex indeter-
minates in Prolog. Tech. Rep. TR-113, ICOT.

MUKAI, K., AND YASUKAWA, H. 1985. Complex in-
determinates in Prolog and its application to
discourse models. New Generation Comput. 3, pp.
441-466.

NILSSON, N. J. 1980. Principles of Artificial Zntelli-
gence. Tioga, Palo Alto.

PATERSON, M. S., AND WEGMAN, M. N. 1976.
Linear unification. In Proceedings of the Sympo-
sium on the Theory of Computing. ACM Special
Interest Group for Automata and Computability
Theory (SIGACT).

PATERSON, M. S., AND WECMAN, M. N. 1978.
Linear unification. J. Comput. Syst. Sci. 16, pp.
158-167.

Prolog. New Generation Comput. 2, pp. 309-322.
PLOTKIN, G. 1970. A note on inductive generaliza-

tion. Mach. Intell. 5.

PLOTKIN. G. 1972. Building-in equational theories.
Mach. Zntell. 7.

POLLARD, C. 1985. Phrase structure grammar with-
out metarules. In Proceedings of the 4th West
Coast Conference on Formal Linguistics.

REYLE, U., AND FREY, W. 1983. A PROLOG imple-
mentation of lexical functional grammar. In Pro-
ceedings of the International Joint Conference on
Artificial Intelligence.

REYNOLDS, J. C. 1970. Transformational systems
and the algebraic structure of atomic formulas.
Mach. Zntell. 5.

RISTAD, E. S. 1987. Revised generalized phrase
structure grammar. In Proceedings of the 25th
Annual Meeting of the Association for Computa-
ticmal Linguistics.

ROBINSON, J. A. 1965. A machine-oriented logic
based on the resolution principle. J. ACM 12, pp.
23-41.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Unification: A Multidisciplinary Survey l 123

ROBINSON, J. A. 1968. New directions in mechanical
theorem proving. In Proceedings of the Znterna-
tional Federation of Information Processing
Congress.

ROBINSON, J. A. 1969. Mechanizing higher-order
logic. Mach. Zntell. 4.

ROBINSON, J. A. 1970. A note on mechanizing higher
order logic. Mach. Zntell. 5.

ROBINSON, J. A. 1971. Computational logic: The
unification computation. Mach. Zntell. 6.

ROBINSON, P. 1985. The SUM: An AI coprocessor.
Byte 10.

ROUNDS, W. C., AND KASPER, R. 1986. A complete
logical calculus for record structures representing
linguistic information. In Proceedings of the 1st
Symposium on Logic in Computer Science. Co-
sponsored by the IEEE Computer Society, Tech-
nical Committee on Mathematical Foundations
of Computing; ACM Special Interest Group for
Automata and Computability Theory (SIGACT);
Association for Symbolic Logic; European Asso-
ciation for Theoretical Computer Science.

ROUNDS, W. C., AND MANASTER-RAMER, A. 1987. A
logical version of functional grammar. In Pro-
ceedings of the 25th Annual Meeting of the Asso-
ciation for Computational Linguistics.

ROUSSEL, P. 1975. PROLOG, Manuel de reference
et d’utilisation. Groupe Intelligence Artificielle,
Universite Aix-Marseille II.

SAG, I. A., AND POLLARD, C. 1987. Head-driven
phrase structure grammar: An informal synopsis.
Tech. Rep. CSLI-87-79, Center for the Study of
Language and Information.

SCHMIDT-SCHAUSS, M. 1986. Unification under asso-
ciativity and idempotence is of type nullary.
J. Autom. Reasoning 2, pp. 277-281.

SELLS, P. 1985. Lectures on Contemporary Syntactic
Theories. Univ. of Chicago, Chicago, Ill. Also,
CSLI Lecture Notes Series.

SHAPIRO, E. 1983. A subset of concurrent Prolog and
its interpreter. Tech. Rep. TR-003, ICOT.

SHIEBER, S. 1984. The design of a computer language
for linguistic information. In Proceedings of
the International Conference on Computationk
Linguistics. North-Holland, Amsterdam, New
York.

SHIEBER, S. 1985. Using restriction to extend pars-
ing algorithms for feature-based formalisms. In

Proceedings of the 23rd Annual Meeting of the
Association for Computational Linguistics. Spon-
sored by International Joint Conference on Ar-
tificial Intelligence.

SHIEBER, S. 1986. An Zntroduction to Unification-
Based Approaches to Grammar. CSLI Lecture
Notes Series, Center for the study of Language
and Information, Stanford, California.

fication, C. Kirchner, Ed., 1988.) Springer-Verlag,
New York.

SIEKMANN, J. 1986. Unification theory. In Proceed-
ings of the 7th European Conference on Artificial
Intelligence. Sponsored by the European Coordi-
nating Committee for Artificial Intelligence.

SMOLKA, G., AND AiT-KACI, H. 1987. Inheritance
hierarchies: Semantics and unification. Tech.
Rep. AI-057-87, Microelectronics and Computer
Technology Corporation (MCC), Austin, Texas.
(To appear in the J. Symbolic Comput. special
issue on unification, C. Kirchner, Ed., 1988.)

STABLER, E. P. 1983. Deterministic and bottom-up
parsing in Prolog. In Proceedings of the Confer-
ence of the American Association for Artificial
Intelligence.

STEELE, G. 1984. Common LISP: The Language.
Digital Press, Bedford, Mass.

STICKEL, M. 1978. Mechanical theorem proving and
artificial intelligence languages, Ph.D. disserta-
tion, Computer Science Dept., Carnegie-Mellon
Univ., Pittsburgh, Pa.

TOMITA, M. 1987. An efficient augmented-context-
free parsing algorithm. Comput. Linguist. 23, pp.
31-46.

TOMITA, M. 1985a. An efficient context-free parsing
algorithm for natural languages. In Proceedings
of the International Joint Conference on Artificial
Intelligence.

TOMITA, M. 1985b. An efficient context-free parsing
algorithm for natural languages and its applica-
tions, Ph.D. dissertation, Computer Science
Dept., Carnegie-Mellon Univ., Pittsburgh, Pa.

TOMITA, M., AND KNIGHT, K. 1988. Full unification
and pseudo unification. Tech. Rep. CMU-CMT-
87-MEMO. Center for Machine Translation,
Carnegie-Mellon Univ., Pittsburgh, Pa.

TRUM, P., AND WINTERSTEIN, G. 1978. Description,
implementation, and practical comparison of uni-
fication algorithms. Internal Rep. No. 6/78, Fach-
bereich Informatik, Universitat Kaiserlautern,
W. Germany.

USZKOREIT, H. 1986. Categorial unification gram-
mars. In Proceedings of the International Confer-
ence on Computational Linguistics. (Also CLSI
Tech. Rep. CSLI-86-66.) North-Holland, Amster-
dam, New York.

VAN EMDEN, M. H., AND KOWALSKI, R. A. 1976. The
semantics of predicate logic as a programming
language. J. ACM 23, pp. 733-742.

VENTURINI-ZILLI, M. 1975. Complexity of the uni-
fication algorithm for first-order expressions.
Res. Ren. Consialio Nazionale Delle Ricerche
Istituto -per le applicazioni de1 calcolo, Rome,
Italy.

VITTER, J. S., AND SIMONS, R. A. 1984. Parallel
algorithms for unification and other complete
problems in P. In ACM ‘84 Conference Proceed-
ings (San Francisco, Calif., Oct. S-10). ACM, New
York.

SIEKMANN, J. 1984. Universal unification. In Pro-
ceedings of the 7th International Conference on
Automated Deduction. (Newer version to appear
in the J. Symbolic Comput. special issue on uni-

ACM Computing Surveys, Vol. 21, No. 1, March 1989

124 l Kevin Knight

VITTER, J. S., AND SIMONS, R. A. 1986. New classes WOODS, W. 1970. Transition network grammars for

for parallel complexity: A study of unification natural language analysis. Commun. ACM 13, pp.
and other complete problems for P. IEEE Trans. 591-606.
Comput. C-35.

WALTHER, C. 1986. A classification of many-sorted
unification problems. In Proceedings of the 8th
International Conference on Automated Deduc-
tion. Springer-Verlag, New York.

WARREN, D. H. D., PEREIRA, F. C. N., AND PEREIRA,
L. M. 1977. Prolog-The language and its im-
plementation compared with LISP. In Sympo-
sium on Artificial Intelligence and Programming
Systems. Co-sponsored by ACM Special Interest
Group on Artificial Intelligence (SIGACI), ACM
Special Interest Group on Programming Lan-
guages (SIGPL).

WINTERSTEIN, G. 1976. Unification in second order
logic. Res. Rep. Fachbereich Informatik, Univer-
sitat Kaiserslautern, W. Germany.

WITTENBURG, K. 1986. Natural language parsing
with combinatory categorial grammar in a graph-
unification-based formalism. Ph.D. dissertation.
Univ. of Texas, Austin, Texas.

Received January 1988; final revision accepted July 1988.

WROBLEWSKI, D. 1987. Nondestructive graph uni-
fication. In Proceedings of the Conference on the
American Association for Artificial Intelligence.

YASUURA, H. 1984. On the parallel computational
complexity of unification. In Fifth Generation
Computer Systems. Sponsored by. the Institute
for New Generation Computer Technology
(ICOT). (Also Yajima Labs, Tech. Rep. ER-83-
01, 1983.)

YOKOI, T., MUKAI, K., MIYOSHI, H., TANAKA, Y.,
AND SUGIMURA, R. 1986. Research activities on
natural language processing of the FGCS project.
ZCOT J. 14, pp. 1-8.

ZEEVAT, H., KLEIN, E., AND CALDER, J. 1987.
Unification categorial grammar. In Categorial
Grammar, Unification Grammar, and Parsing, N.
Haddock. E. Klein. and G. Merrill. Eds. Centre
for Cognitive Science, University df Edinburgh,
Edinburgh, Scotland.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

