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INTRODUCTION 

The unification problem has been studied 
in a number of fields of computer science, 
including theorem proving, logic program- 
ming, natural language processing, compu- 
tational complexity, and computability 
theory. Often, researchers in a particular 
field have been unaware of work outside 
their specialty. As a result, the problem has 
been formulated and studied in a variety of 
ways, and there is a need for a general 
presentation. In this paper, I will elucidate 
the relationships among the various con- 
ceptions of unification. 

The sections are organized as follows. 
The three sections The Unification Prob- 

lem, Unification and Computational Com- 
plexity, and Unification: Data Structures 
and Algorithms introduce unification. Def- 
initions are made, basic research is re- 
viewed, and two unification algorithms, 
along with the data structures they require, 
are presented. Next, there are four sections 
on applications of unification. These appli- 
cations are theorem proving, logic pro- 
gramming, higher order logic, and natural 
language processing. The section Unifica- 
tion and Feature Structures is placed before 
the section on natural language processing 
and is required for understanding that sec- 
tion. Following are four sections covering 
various topics of interest. Unification and 
Equational Theories presents abstract 
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work on unification as equation solving. 
Parallel Algorithms for Unification reviews 
recent literature on unification and paral- 
lelism. Unification, Generalization, and 
Lattices discusses unification and its dual 
operation, generalization, in another ab- 
stract setting. Finally, in Other Applica- 
tions of Unification, research that connects 
unification to research in abstract data 
types, programming languages, and ma- 
chine learning is briefly surveyed. The 

conclusion gives an abstract of some gen- 
eral properties of unification and projects 
research trends into the future. 

Dividing this paper into sections was a 
difficult task. Some research involving 
unification straddles two fields. Take, for 
example, higher order logic and theorem 
proving-should this work be classified as 
Unification and Higher Order Logic or 
Unification and Theorem Proving? Or 
consider ideas from logic programming put 
to work in natural language processing-is 
it Unification and Logic Programming or 
Unification and Natural Language Pro- 
cessing? Likewise, some researchers work 
in multiple fields, making their work hard 
to classify. Finally, it is sometimes difficult 
to define the boundary between two disci- 
plines; for example, logic programming 
grew out of classical theorem proving, and 
the origin of a particular contribution to 
unification is not always clear. I have pro- 
vided a balanced classification, giving cross 
references when useful. 

Finally, the literature on unification is 
enormous. I present all of the major results, 
if not the methods used to reach them. 

1. THE UNIFICATION PROBLEM 

Abstractly, the unification problem is the 
following: Given two descriptions x and y, 
can we find an object z that fits both 
descriptions? 

The unification problem is most often 
stated in the following context: Given two 
terms of logic built up from function sym- 
bols, variables, and constants, is there a 
substitution of terms for variables that will 
make the two terms identical? As an ex- 
ample consider the two terms f(x, y) and 
f(g(y, a), h(a)). They are said to be unifi- 
able, since replacing x by g(h(a), a) and y 
by h(u) will make both terms look like 
f(g(h(a), a), h(u)). The nature of such 
unifying substitutions, as well as the means 
of computing them, makes up the study of 
unification. 

In order to ensure the consistency, con- 
ciseness, and independence of the various 
sections of this paper, I introduce a few 
formal definitions: 
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Definition 1.1 

A variable symbol is one of (x, y, z, . . .). 
A constant symbol is one of (a, b, c, . . .). A 
function symbol is one of ( f, g, h, . . .I. 

Definition 1.2 

A term is either a variable symbol, a con- 
stant symbol, or a function symbol followed 
by a series of terms, separated by commas, 
enclosed in parentheses. Sample terms are 

a, x7 fix, Y), fi&, Y), hiz)). Terms are 
denoted by the symbols (s, t, u, . . .).’ 

Definition 1.3 

A substitution is first a function from vari- 
ables into terms. Substitutions are denoted 
by the symbols {a, 7, 0, . . .). A substitution 
u in which a(x) is g(h(a), a) and a(y) is 
h(a) can be written as a set of bindings 
enclosed in curly braces; that is, (X t 
g(h(a), a), y t h(a)]. This set of bindings 
is usually finite. A substitution is also a 
function from terms to terms via its appli- 
cation. The application of substitution u 
to term t is also written u(t) and denotes 
the term in which each variable xi in t is 
replaced by a(s). 

Substitutions can be composed: a0 (t) de- 
notes the term t after the application of the 
substitutions of 19 followed by the applica- 
tion of the substitutions of u. The substi- 
tution a0 is a new substitution built from 
old substitutions u and (3 by (1) modifying 
0 by applying u to its terms, then (2) adding 
variable-term pairs in u not found in 8. 
Composition of substitutions is associative, 
that is, (&3)7(s) = a(&)(s) but is not in 
general commutative, that is, ad(s) # &is). 

Definition 1.4 

Two terms s and t are unifiable if there 
exists a substitution u such that u(s) = 
u(t). In such a case, u is called a unifier of 

’ I will often use the word “term” to describe the 
mathematical object just defined. Do not confuse these 
terms with terms of predicate logic, which include 
things like V(n)V(y):(f(x) + f(y)) c, (if(y) - 

Y(x)). 

s and t, and u(s) is called a unification of s 
and t. 

Definition 1.5 

A unifier u of terms s and t is called a most 
general unifier (MGU) of s and t if for any 
other unifier 0, there is a substitution 7 

such that 7u = 8. Consider, for example, the 
two terms f(x) and fig(y)). The MGU is 
(X t g(y)], but there are many non-MGU 
unifiers such as (x t g(a), y t a), Intui- 
tively, the MGU of two terms is the sim- 
plest of all their unifiers. 

Definition 1.6 

Two terms s and tare said to match if there 
is a substitution u such that u(s) = t. 
Matching is an important variant of 
unification. 

Definition 1.7 

Two terms s and t are infinitely unifiable if 
there is a substitution, possibly containing 
infinitely long terms, that is a unifier of s 
and t. For example, x and f(x) are not 
unifiable, but they are infinitely unifi- 
able under the substitution u = (X t 
fififi . . . )))I, since 4x1 and dfix)) are 
both equal to f (f (f ( . . . ))). An infinitely 
long term is essentially one whose string 
representation (to be discussed in the next 
section) requires an infinite number of 
symbols-for a formal discussion, see 
Courcelle [ 19831. 

These general definitions will be used 
often throughout the paper. Concepts spe- 
cific to particular areas of study will be 
defined in their respective sections. 

2. UNIFICATION AND COMPUTATIONAL 
COMPLEXITY 

In his 1930 thesis, Herbrand [1971] pre- 
sented a nondeterministic algorithm to 
compute a unifier of two terms. This work 
was motivated by Herbrand’s interest in 
equation solving. The modern utility and 
notation of unification, however, originated 
with Robinson. In his pioneering paper 
Robinson [1965] introduced a method of 
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theorem proving based on resolution, a 
powerful inference rule. Central to the meth- 
od was unification of first-order terms. 
Robinson proved that two first-order terms, 
if unifiable, have a unique most general 
unifier. He gave an algorithm for comput- 
ing the MGU and proved it correct. 

Guard [ 19641 independently studied the 
unification problem under the name of 
matching. Five years later, Reynolds [ 19701 
discussed first-order terms using lattice 
theory and showed that there is also a 
unique “most specific generalization” of 
any two terms. See Section 11 for more 
details. 

Robinson’s original algorithm was inef- 
ficient, requiring exponential time and 
space. A great deal of effort has gone into 
improving the efficiency of unification. The 
remainder of this section will review that 
effort. The next section will discuss basic 
algorithmic and representational issues in 
detail. 

Robinson himself began the research on 
more efficient unification. He wrote a note 
[Robinson 19711 about unification in which 
he argued that a more concise representa- 
tion for terms was needed. His formulation 
greatly improved the space efficiency of 
unification. Boyer and Moore [1972] gave 
a unification algorithm that shares struc- 
ture; it was also space efficient but was still 
exponential in time complexity. 

In 1975, Venturini-Zilli [ 19751 intro- 
duced a marking scheme that reduced the 
complexity of Robinson’s algorithm to 
quadratic time. 

Huet’s [1976] work on higher order uni- 
fication (see also Section 6) led to an 
improved time bound. His algorithm is 
based on maintaining equivalence classes 
of subterms and runs in O(na(n)) time, 
where a(n) is an extremely slow-growing 
function. We call this an almost linear 
algorithm. Robinson also discovered this 
algorithm, but it was not published in 
accessible form until Vitter and Simons’ 
[1984, 19861 study of parallel unification. 
The algorithm is a variant of the algorithm 
used to test the equivalence of two finite 
automata. Ait-Kaci [1984] came up with a 
similar, more general algorithm in his dis- 
sertation. Baxter [ 19731 also discovered an 
almost-linear algorithm. He presented the 

algorithm in his thesis [Baxter 19761, in 
which he also discussed restricted and 
higher order versions of unification. 

In 1976, Paterson and Wegman [1976, 
19781 gave a truly linear algorithm for uni- 
fication. Their method depends on a careful 
propagation of the equivalence-class rela- 
tion of Huet’s algorithm. The papers of 
Paterson and Wegman are rather brief; 
de Champeaux [1986] helps to clarify the 
issues involved. 

Martelli and Montanari [1976] inde- 
pendently discovered another linear al- 
gorithm for unification. They further 
improved efficiency [Martelli and Monta- 
nari 19771 by updating Boyer and Moore’s 
structure-sharing approach. In 1982, they 
gave a thorough description of an efficient 
unification algorithm [Martelli and Mon- 
tanari 19821. This last algorithm is no 
longer truly linear but runs in time 
O(n + m log m), where m is the number of 
distinct variables in the terms. The paper 
includes a practical comparison of this al- 
gorithm with those of Huet and Paterson 
and Wegman. Martelli and Montanari also 
cite a study by Trum and Winterstein 
[ 19781, who implemented several unifica- 
tion algorithms in Pascal in order to com- 
pare actual running times. 

Kapur et al. [ 19821 reported a new linear 
algorithm for unification. They also related 
the unification problem to the connected 
components problem (graph theory) and 
the online/offline equivalence problems 
(automata theory). Unfortunately, their 
proof contained an error, and the running 
time is actually nonlinear (P. Narendran, 
personal communication, 1988). 

Corbin and Bidoit [ 19831 “rehabilitated” 
Robinson’s original unification algorithm 
by using new data structures. They reduced 
the exponential time complexity of the al- 
gorithm to O(n’) and claimed that the al- 
gorithm is simpler than Martelli and 
Montanari’s and superior in practice. 

The problem of unifying with infinite 
terms has received some attention. (Recall 
the definition of infinitely unifiable.) In his 
thesis, Huet [1976] showed that in the case 
of infinite unification, there still exists a 
single MGU-he gave an almost-linear 
algorithm for computing it. Colmerauer 
[ 1982b] gave two unification algorithms for 
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function UNIFY(t1, t2) + (unifiable: Boolean, Q: substitution) 
begin 

if tl or t2 is a variable then 
begin 

let x be the variable, and let t be the other term 
if n = t, then (unifiable, a) c (true, 0) 
else if occur(x, t) then unifiable + false 
else(unifiable, o) +-- (true, {x + t)) 

end 
else 

begin 
assume tl = f (xl, . . , x”) and t2 = g(y,, . . . , ym) 
if f # g or m # n then unifiable t false 
else 

begin 
kc0 
unifiable c true 
o c nil 
while k < m and unifiable do 

begin 
ktk+l 
(unifiable, 7) - UNIFY(o(xk), u(yk)) 
if unifiable then CT t compose(7, u) 

end 
end 

end 
return (unifiable, a) 

end 

Figure 1. A version of Robinson’s original unification algorithm. 

infinite terms, one “theoretical” and one 
“practical”: The practical version is faster 
but may not terminate. Mukai [1983] gave 
a new variation of Colmerauer’s practical 
algorithm and supplied a termination 
proof. Jaffar [ 19841 presented another 
algorithm, designed along the lines of 
Martelli and Montanari. Jaffar claimed 
that his algorithm is simple and practical, 
even for finite terms; he discussed the rel- 
ative merits of several unification algo- 
rithms, including Colmerauer [ 1982b], 
Corbin and Bidoit [ 19831, Martelli and 
Montanari [1977], Mukai [1983], and Pa- 
terson and Wegman [1976]. None of these 
algorithms is truly linear: The theoretical 
question of detecting infinite unifiability in 
linear time was left open by Paterson and 
Wegman and has yet to be solved. 

3. UNIFICATION: DATA STRUCTURES AND 
ALGORITHMS 

As mentioned in the previous section, 
Robinson [ 19651 published the first modern 
unification algorithm. A version of that 
algorithm appears in Figure 1. (This ver- 
sion is borrowed in large part from Corbin 

and Bidoit [1983].) The function UNIFY 
takes two terms (tl and t2) as arguments 
and returns two items: (1) the Boolean- 
valued unifiable, which is true if and only 
if the two terms unify and (2) u, the unify- 
ing substitution. The algorithm proceeds 
from left to right, making substitutions 
when necessary. The routines “occur” and 
“compose” need some explanation. The 
“occur” function reports true if the first 
argument (a variable) occurs anywhere in 
the second argument (a term). This func- 
tion call is known as the occur check and is 
discussed in more detail in Section 5. The 
“compose” operator composes two substi- 
tutions according to the definition given in 
the Introduction of this paper. 

Robinson’s original algorithm was expo- 
nential in time and space complexity. The 
major problem is one of representation. 
Efficient algorithms often turn on special 
data structures; such is the case with uni- 
fication. This paper will now discuss the 
various data structures that have been 
proposed. 

First-order terms have one obvious rep- 
resentation, namely, the sequence of sym- 
bols we have been using to write them 
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Figure 2. Tree representation of the term f(g(f(x)), h(f(x))). 

down. (Recall the inductive definition given 
at the beginning of this paper.) In other 
words, a term can be represented as a linear 
array whose elements are taken from func- 
tion symbols, variables, constants, commas, 
and parentheses. We call this the string 
representation of a term. (As an aside, it is 
a linguistic fact that commas and parenthe- 
ses may be eliminated from a term without 
introducing any ambiguity.) Robinson’s 
[ 19651 unification algorithm (Figure 1) uses 
this representation. 

The string representation is equivalent 
to the tree representation, in which a func- 
tion symbol stands for the root of a subtree 
whose children are represented by that 
function’s arguments. Variables and con- 
stants end up as the leaves of such a tree. 
Figure 2 shows the tree representation of 

the term fMf(x)), W(x))). 
The string and tree representations are 

acceptable methods for writing down terms, 
and they find applications in areas in which 
the terms are not very complicated, for 
example, Tomita and Knight [ 19881. They 
have drawbacks, however, when used in 
general unification algorithms. The prob- 
lem concerns structure sharing. 

Consider the terms f(g(f(x)), h(f(x))) 
andf(g(f(a)), h(f(a))). Any unification al- 
gorithm will ensure that the function sym- 
bols match and ensure that corresponding 
arguments to the functions are unifiable. 
In our case, after processing the subterms 
f(x) and f(a), the substitution {x t al will 
be made. There is, however, no need to 
process the second occurrences of f(x) and 
f(a), since we will just be doing the same 
work over again. What is needed is a 
more concise representation for the terms: 
a graph representation. Figure 3 shows 
graphs for this pair of terms. 

The subterm f(x) is shared; the work to 
unify it with another subterm need be done 
only once. If f(x) were a much larger struc- 
ture, the duplication of effort would be 
more serious of course. In fact, if subterms 
are not shared, it may be necessary to gen- 
erate exponentially large structures during 
unification (see Corbin and Bidoit [1983], 
de Champeaux [1986], and Huet [1976]). 

The algorithms of Huet [1976], Baxter 
[1973, 19761, and Jaffar [ 19841 all use the 
graph representation. Paterson and Weg- 
man’s linear algorithm [1976, 19781 uses a 
graph representation modified to include 
parent pointers so that leaves contain in- 
formation about their parents, grandpar- 
ents, and so on. The Paterson-Wegman 
algorithm is still linear for terms repre- 
sented as strings, since terms can be con- 
verted from string representation to graph 
representation (and vice versa) in linear 
time [de Champeaux 19861. Corbin and 
Bidoit [1983] also use a graph representa- 
tion that includes parent pointers. The al- 
gorithms of Martelli and Montanari [ 19861 
and of Kapur et al. [ 19821 both deal directly 
with sets of equations produced by a unifi- 
cation problem. Their representations also 
share structure. 

What I have called the graph represen- 
tation is known in combinatorics as a 
directed acyclic graph, or dag, in which all 
vertices of the graph are labeled. If we allow 
our graphs to contain cycles, we can model 
infinitely long terms, and unification may 
product substitutions involving such terms. 
This matter is discussed in connection with 
the occur check in Section 5. 

Before closing this section, I will present 
a unification algorithm more efficient than 
the one in Figure 1. I have chosen a variant 
of Huet’s algorithm, since it is rather simple 
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Figure 3. Term graphs for f(g(f (x)), h(f (x))) and f(g(f (a)), h(f (a))). 

function UNIFY(t1, t2) =+ (unifiable: Boolean, (T: substitution) 
begin 

pairs-to-unify + {(tl, t2)) 

for each node z in tl and t2, 
z.class + * 

while pairs-to-unify # 0 do 
begin 

(31, y) -pop (pairs-to-unify) 
u + FIND(r) 
u + FIND(y) 
ifu#uthen 

if u and u are not variables, and u.symbol f v.symbol or 
numberof(u.subnodes) # numberof(u.subnodes) then 

return (false, nil) 
else 

begin 
w c UNION(u, u) 
if w = u and u is a variable then 

u.class + v 
if neither u nor u is a variable then 

begin 
let(u,,..., un) be u.subnodes 
let(u,,..., vn) be vsubnodes 
foricltondo 

push ((IA:, ui), pairs-to-unify) 
end 

end 
end 

Form a new graph composed of the root nodes of the equivalence classes. 
This graph is the result of the unification. 
If the graph has a cycle, return (false, nil), but the terms are infinitely unifiable. 
If the graph is acyclic, return (true, CT), where c is a substitution in which any variable x is mapped on to the 

root of its equivalence class, that is, FIND(r). 
end 

Figure 4. A version of Huet’s unification algorithm. 

and uses the graph representation of terms. 
The algorithm is shown in Figure 4. 

Terms are represented as graphs whose 
nodes have the following structure: 

type = node 
symbol: a function, variable, or constant 

symbol 
subnodes: a list of nodes that are children of 

this node 
class: a node that represents this node’s 

equivalence class 
end 

Huet’s algorithm maintains a set of 
equivalence classes of nodes using the 
FIND and UNION operations for merging 
disjoint sets (for an explanation of these 
operations, see Aho et al. [1974]). Each 
node starts off in its own class, but as the 
unification proceeds, classes are merged 
together. If nodes with different function 
symbols are merged, failure occurs. At the 
end, the equivalence classes over the nodes 
in the two-term graphs form a new graph, 
namely, the result of the unification. If this 
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graph contains a cycle, the terms are infi- 
nitely unifiable; if the graph is acyclic, the 
terms are unifiable. Omitting the acyclicity 
test corresponds to omitting the occur 
check discussed in Section 5. 

The running time of Huet’s algorithm is 
O(na(n)), where n is the number of nodes 
and al(n) is an extremely slow-growing 
function. a(n) never exceeds 5 in practice, 
so the algorithm is said to be almost linear. 
Note also that it is nonrecursive, which may 
increase efficiency. For more details, see 
Huet [1976] and Vitter and Simons [1984, 
19861. A version of this algorithm, which 
includes inheritance-based information 
(see Section 7), can be found in Ait-Kaci 
[ 19841 and Ait-Kaci and Nasr [ 19861. 

4. UNIFICATION AND THEOREM PROVING 

Robinson’s [ 19651 work on resolution theo- 
rem proving served to introduce the uni- 
fication problem into computer science. 
Automatic theorem proving (a.k.a. com- 
putational logic or automated deduction) 
became an area of concentrated research, 
and unification suddenly became a topic of 
interest. In this section, I will only discuss 
first-order theorem proving, although there 
are theorem-proving systems for higher or- 
der logic. Higher order unification will be 
discussed in a later section. 

4.1 The Resolution Rule 

I will briefly demonstrate, using an exam- 
ple, how unification is used in resolution 
theorem proving. In simplest terms, reso- 
lution is a rule of inference that allows one 
to conclude from “A or B” and “not-A or 
C” that “B or C.” In real theorem proving, 
resolution is more complex. For example, 
from the two facts 

(1) Advisors get angry when students don’t 
take their advice. 

(2) If someone is angry, then he doesn’t take 
advice. 

The first job is to put these three state- 
ments into logical form: 

(la) Vz : student(z) + [?akesadvice(z, 
advisor(z)) + angry(advisor(z))] 

(2a) Vx, y: angry(x) + ltakesadvice(x, y) 

(3a) VW: student(w) + [angry(w) -+ 
angry(advisor(w))] 

Next, we drop the universal quantifiers 
and remove the implication symbols (z + 
y is equivalent to lx V y): 

(lb) lstudent(z) V takesadvice(z, 
advisor(z)) V angry(advisor(z)) 

(2b) langry(x) V ltakesaduice(x, y) 

(3b) lstudent(w) V langry(w) V 
angry(advisor(w)) 

(lb), (2b), and (3b) are said to be in clausal 

form. Resolution is a rule of inference that 
will allow us to conclude the last clause 
from the first two. Here it is in its simplest 
form: 

The Resolution Rule 

If clause A contains some term s and clause 
B contains the negation of some term t and 
if s and t are unifiable by a substitution c, 
then a resolvent of A and B is generated by 
(1) combining the clauses from A and B, 
(2) removing terms s and t, and (3) applying 
the substitution u to the remaining terms. 
If clauses A and B have a resolvent C, then 
C may be inferred from A and B. 

In our example, let s be takesadvice(z, 
advisor(z)) and let t be takesadvice(x, y). 
(lb) contains s, and (2b) contains the 
negation of t. Terms s and t are unifi- 
able under the substitution {x t z, y t 
advisor(z)]. Removing s from (lb) and the 
negation of t from (2b) and applying the 
substitution to the rest of the terms in (lb) 
and (2b), we get the resolvent: 

(4) lstudent(z) V angry(advisor(z)) V 
~angry(z) 

We want to infer the third fact: Expression (4) is the same as (3b), subject 
to disjunct reordering and renaming of the 

(3) If a student is angry, then so is his unbound variable, and therefore resolution 
advisor. has made the inference we intended. 
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Resolution is a powerful inference rule- 
so powerful that it is the only rule needed 
for a sound and complete system of logic. 
The simple example here is intended only 
to illustrate the use of unification in the 
resolution method; for more details about 
resolution, see Robinson’s paper [ 19651 and 
Chapter 4 of Nilsson’s book [1980]. 

4.2 Research 

Much of the theorem-proving community 
has recently moved into the field of logic 
programming, while a few others have 
moved into higher order theorem proving. 
I will present the work of these two groups 
in different sections: Unification and 
Higher Order Logic and Unification and 
Logic Programming. 

5. UNIFICATION AND LOGIC 

PROGRAMMING 

The idea of “programming in logic” came 
directly out of Robinson’s work: The origi- 
nal (and still most popular) logic program- 
ming language, Prolog, was at first a tightly 
constrained resolution theorem prover. 
Colmerauer and Roussel turned it into a 
useful language [Battani and Meloni 1973; 
Colmerauer et al. 1973; Roussel 19751, and 
van Emden and Kowaiski [1976] provided 
an elegant theoretical model based on Horn 
clauses. Warren et al. [1977] presented an 
accessible early description of Prolog. 

Through its use of resolution, Prolog in- 
herited unification as a central operation. 
A great deal of research in logic program- 
ming focuses on efficient implementation, 
and unification has therefore received some 
attention. I will first give an example of 
how unification is used in Prolog; then I 
will review the literature on unification and 
Prolog, finishing with a discussion of the 
logic programming languages Concurrent 
Prolog, LOGIN, and CIL. 

5.1 Example of Unification in Prolog 

I turn now to unification as it is used in 
Prolog. Consider a set of four Prolog asser- 
tions (stored in a “database”) followed by a 

query. (One example is taken from Clocksin 
and Mellish [ 19811.) 

likes(mary, food). 
likes(mary, wine). 
likes(john, wine). 
likes(john, mary). 

?-likes(mary,X),likes(john,X). 

The query at the end asks, Does Mary 
like something that John likes? Pro- 
log takes the first term of the query 
likes (mary, X) and tries to unify it with 
some assertion in the database. It succeeds 
in unifying the terms likes(mary, X) and 
likes (mar-y, food) by generating the sub- 
stitution (X t food ). Prolog applies this 
substitution to every term in the query. 
Prolog then moves on to the second term, 
which is now likes(john, food). This term 
fails to unify with any other term in the 
database. 

Upon failure, Prolog backtracks. That is, 
it “undoes” a previous unification, in this 
case, the unification of likes (mar-y, X) with 
likes (mar-y, food). It attempts to unify 
the first query term with another term in 
the database: the only other choice is 
likes(mary, wine). The terms unify under 
the substitution (X t wine], which is 
also applied to the second query term 
likes( john, X) to give likes( john, wine). 
This term can now unify with a term in 
the database, namely, the third assertion, 
likes(john, wine). Done with all query 
terms, Prolog outputs the substitutions it 
has found; in this case, “X = wine.” 

I used such a simple example only to be 
clear. The example shows how Prolog 
makes extensive use of unification as a 
pattern-matching facility to retrieve rele- 
vant facts from a database. Unification it- 
self becomes nontrivial when the terms are 
more complicated. 

5.2 Research 

Colmerauer’s original implementation of 
unification differed from Robinson’s in one 
important respect: Colmerauer deliberately 
left out the “occur check,” allowing Prolog 
to attempt unification of a variable with 
a term already containing that variable. 
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foo(X, X). 

‘?- fdf(Y), Y). 

y = f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f( 
f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f( . . . 

Figure 5. Infinite unification in Prolog. 

Version 1. 

less(X, s(X)). /* any number is less than its successor */ 

?- less(s( Y), Y). /* is there a Y whose successor is less than Y? */ 

Y=s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s( 

s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s~s~s~s~s~s~s~s~s~s~~~s~s~s~s~s~s~s~s~s~s~s~s~s~s~s~s~s~s~s~s~s~s~ 
s(s(s(s(s(s . . . 

Version 2. 

less(X, s(X)). 

foe :- less(s( Y), Y). /* we don’t care about the value of Y */ 

?- foe. /* is there a number whose successor is less than it? */ 

yes. /* there is?! ‘/ 

Figure 6. Prolog draws the wrong conclusion because it lacks an occur check. 

For example, Prolog will unify the 
terms xand f(x), using the substitution 
{x t f(f(f(. . .)))I; Robinson’s occur 
check, on .the other hand, would instantly 
report nonunifiability. 

Discarding the occur check corresponds 
to moving from unification to infinite uni- 
fication. Figure 5 shows Prolog’s infinite 
unification in action. In unifying f(Y) 
and Y, Prolog comes up with an infinite 
substitution. 

Omitting the occur check results in effi- 
ciency gains that outweigh the risk in- 
curred. For example, the concatentation of 
two lists, a linear-time operation without 
the occur check, becomes an O(n2) time 
operation with the occur check [Colmer- 
auer 1982b]. For this reason, most current 
Prolog interpreters omit the occur check. 

But since its unification is really infinite 
unification, in this respect, Prolog can be 
said to be “unsound.” Figure 6 (adapted 
from Plaisted [ 19841) shows a case in which 
Prolog draws an unexpected conclusion, 
one that would be blocked by an occur 
check. 

Colmerauer [1982b, 19831 studied infi- 
nite terms in an effort to provide a theoret- 
ical model for real Prolog implementations 

that lack the occur check. He examined 
the termination problem and produced a 
unification algorithm for infinite terms. 
Plaisted [ 19841 presented a preprocessor 
for Prolog programs that detects poten- 
tial problems due to Prolog’s lack of an 
occur check. See the end of Section 2 for 
a discussion of algorithms for infinite 
unification. 

As noted above, Prolog is a search engine, 
and when a particular search path fails, 
backtracking is necessary. As a result, some 
of the unifications performed along the way 
must be “undone.” Studies of efficient 
backtracking can be found in Bruynooghe 
and Pereira [ 19841, Chen et al. [ 19861, Cox 
[ 19841, Matwin and Pietrzykowski [ 19821, 
and Pietrzykowski and Matwin [ 19821. 
Mannila and Ukkonen [1986] viewed 
Prolog execution as a sequence of unifi- 
cation and deunifications, relating it to 
the UNION/FIND (disjoint set union) 
problem. They showed how standard (fast) 
unification algorithms can have poor 
asymptotic performance when we consider 
deunifications; algorithms with better per- 
formance are given. 

Concurrent Prolog [Shapiro 19831 ex- 
tends Prolog to concurrent programming 
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and parallel execution. In this model, uni- 
fication may have one of three possible 
outcomes: succeed, fail, or suspend. Unifi- 
cation suspends when a special “read-only 
variable” is encountered-execution of the 
unification call is restarted when that vari- 
able takes on some value. It is not possible 
to rely on backtracking in the Concurrent 
Prolog model because all computations run 
independently and in parallel. Thus, unifi- 
cations cannot simply be “undone” as in 
Prolog, and local copies of structures must 
be maintained at each unification. Strate- 
gies for minimizing these copies are dis- 
cussed in Levy [ 19831. 

ematical vein, here is a statement of the 
induction property of natural numbers: 

V(f) : [(f (0) A V(x)[f (x) ---, f(x + Ul) 

+ V(x)f (x)1 

Alt-Kaci and Nasr [1986] present a 
new logic programming language called 
LOGIN, which integrates inheritance- 
based reasoning directly into the uni- 
fication process. The language is based on 
ideas from A’it-Kaci’s dissertation [ 19841, 
described in more detail in Section 7. 

Mukai [1985a, 1985b] and Mukai and 
Yasukawa [1985] introduce a variant of 
Prolog called CIL aimed at natural lan- 
guage applications, particularly those in- 
volving situation semantics [Barwise and 
Perry 19831. CIL is based on an extended 
unification that uses conditional state- 
ments, roles, and types and contains many 
of the ideas also present in LOGIN. Hasida 
[1986] presents another variant of unifica- 
tion that handles conditions on patterns to 
be unified. 

That is, for any predicate f, if f holds for 0 
and if f (x) implies f (x + l), then f holds for 
all natural numbers. 

For a theorem prover to deal with such 
statements, it is natural to work with ax- 
ioms and inference rules of a higher order 
logic. In such a case, unification of higher 
order terms has great utility. 

Unification in higher order logic requires 
some special notation for writing down 
higher order terms. The typed X-calculus 
[Church 1940; Henkin 19501 is one com- 
monly used method. I will not introduce 
any formal definitions, but here is an ex- 
ample: “A (u, v)(u)” stands for a function of 
two arguments, u and v, whose value is 
always equal to the first argument, u. Uni- 
fication of higher order terms involves h- 
conversion in conjunction with application 
of substitutions. 

Finally, we must distinguish between 
functibn constants (denoted A, B, C, . . . ) 
and function variables (denoted f, g, h, . . . ), 
which range over those constants. Now we 
can look at unification in the higher order 
realm. 

6. UNIFICATION AND HIGHER ORDER 
LOGIC 

First-order logic is sometimes too limited 
or too unwieldy for a given problem. 
Second-order logic, which allows variables 
to range over functions (and predicates) as 
well as constants, can be more useful. Con- 
sider the statement “Cats have the same 
annoying properties as dogs.” We can ex- 
press this in second-order logic as 

6.1 Example of Second-Order Unification 

Consider the two terms f (x, b) and A(y). 
Looking for a unifying substitution for vari- 
ables f, x, and y, we find 

f + X(u, v)(u) 

x+A(y) 

Y+Y 

This substitution produces the unifica- 
tion A(y). But if we keep looking, we find 
another unifier: 

V(x)~(y)V(f) : 

[cat(x) A dog(y) A annoying(f)] 

--, [f(x) * f(Y)1 

f +- Nu, v)A(g(u, v)) 
. 

X+X 

Y - dx, b) 

Note that the variable f ranges over pred- In this case, the unification is A (g(x, b)). 
icates, not constant values. In a more math- Notice that neither of the two unifiers is 
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more general than the other! A pair of 
higher order terms, then, may have more 
than one “most” general unifier. Clearly, 
the situation is more complex than that of 
first-order unification. 

6.2 Research 

Gould [1966a, 1966b] was the first to inves- 
tigate higher order unification in his disser- 
tation. He showed that some pairs of 
higher order terms possess many general 
unifiers, as opposed to the first-order case, 
where terms always (if unifiable) have a 
unique MGU. Gould gave an algorithm to 
compute general unifiers, but his algorithm 
did not return a complete set of such uni- 
fiers. He conjectured that the unifiability 
problem for higher order logic was solvable. 

Robinson [1968], urged that research in 
automatic theorem proving be moved into 
the higher order realm. Robinson was non- 
plussed by Godel’s incompleteness results 
and maintained that Henkin’s [ 19501 inter- 
pretation of logical validity would provide 
the completeness needed for a mechaniza- 
tion of higher order logic. Robinson [1969, 
19701 followed up these ideas. His theorem 
provers, however, were not completely 
mechanized; they worked in interactive 
mode, requiring a human to guide the 
search for a proof. 

Andrews [ 19711 took Robinson’s original 
resolution idea and applied it rigorously to 
higher order logic. But, like Robinson, he 
only achieved partial mechanization: Sub- 
stitution for predicate variables could not 
be done automatically. Andrews describes 
an interactive higher order theorem prover 
based on generalized resolution in Andrews 
and Cohen [1977] and Andrews et al. 
[1984]. 

Darlington [ 1968, 19711 chose a different 
route. He used a subset of second-order 
logic that allowed him only a little more 
expressive power than first-order logic. He 
was able to mechanize this logic completely 
using a new unification algorithm (first 
called f-matching). To repeat, he was not 
using full second-order logic; his algorithm 
could only unify a predicate variable with 
a predicate constant of greater arity. 

* The above example is taken from that dissertation. 

Huet [ 19721 in his dissertation presented 
a new refutational system for higher order 
logic based on a simple unification algo- 
rithm for higher order terms. A year later, 
part of that dissertation was published as 
Huet [1973b]. It showed that the unifica- 
tion problem for third-order logic was un- 
decidable; that is, there exists no effective 
procedure to determine whether two third- 
(or higher) order terms are unifiable. 
Lucchesi [ 19721 independently made this 
same discovery. 

Baxter [1978] extended Huet’s and 
Lucchesi’s undecidability results to third- 
order dyadic unification. Three years later, 
Goldfarb [1981] demonstrated the unde- 
cidability of the unification problem for 
second-order terms by a reduction of 
Hilbert’s Tenth Problem to it. 

Huet’s refutational system is also de- 
scribed in Huet [1973a], and his higher 
order unification algorithm can be found in 
Huet [1975]. Since w-order unification is in 
general undecidable, Huet’s algorithm may 
not halt if the terms are not unifiable. The 
algorithm first searches for the existence of 
a unifier, and if one is shown to exist, a 
very general preunifier is returned. 

Huet’s system was based on the typed 
X-calculus introduced by Church [1940]. 
The X-calculus was the basis for Henkin’s 
[1950] work on higher order completeness 
mentioned above in connection with 
Robinson [1968]. Various types of mathe- 
matical theorems can be expressed natu- 
rally and compactly in the typed X-calculus, 
and for this reason almost all work on 
higher order unification uses this formal- 
ism. 

Pietrzykowski and Jensen also studied 
higher order theorem proving. Pietrzy- 
kowski [1973] gave a complete mechaniza- 
tion of second-order logic, which he and 
Jensen extended to w-order logic in Jensen 
and Pietrzykowski [1976] and Pietrzy- 
kowski and Jensen [ 1972,1973]. Like Huet, 
they based their mechanization on higher 
order unification. Unlike Huet, however, 
they presented an algorithm that computes 
a complete set of general unifiers3 The 
algorithm is more complicated than Huet’s, 

3 Of course, the algorithm still may not terminate if 
the terms are nonunifiable. 
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using five basic types of substitutions as 
opposed to Huet’s two, and is generally 
redundant. 

Winterstein [ 19761 reported that even for 
the simple case of monadic(one argument 
per function) second-order terms unifica- 
tion could require exponential time under 
the algorithms proposed by Huet, Pietrzy- 
kowski, and Jensen. Winterstein and Huet 
independently arrived at better algorithms 
for monadic second-order unification. 

Darlington [1977] attempted to improve 
the efficiency of higher order unification by 
sacrificing completeness. If two terms 
unify, Darlington’s algorithm may not re- 
port this fact, but he claims that in the 
usual case unification runs more swiftly. 

As mentioned above, Goldfarb [1981] 
showed that higher order unification is in 
general undecidable. There are, however, 
variants that are decidable. Farmer [1987] 
shows that second-order monadic unifica- 
tion (discussed two paragraphs ago) is ac- 
tually decidable. Siekmann [1984] suggests 
that higher order unification under some 
theory T might be solvable (see Section 9), 
but there has been no proof to this effect. 

7. UNIFICATION AND FEATURE 
STRUCTURES 

First-order terms turn out to be too limited 
for many applications. In this section, I will 
present structures of a somewhat more gen- 
eral nature. The popularity of these struc- 
tures has resulted in a line of research that 
has split away from mainstream work in 
theorem proving and logic programming. 
An understanding of these structures is 
necessary for an understanding of much 
research on unification. 

Kay [1979] introduced the idea of using 
unification for manipulating the syntac- 
tic structures of natural languages (e.g., 
English and Japanese). He formalized the 
linguistic notion of “features” in what are 
now known as “feature structures.” 

Feature structures resemble first-order 
terms but have several restrictions lifted: 

l Substructures are labeled symbolically, 
not inferred by argument position. 

l Fixed arity is not required. 

Figure 7. A feature structure. 

l The distinction between function and 
argument is removed. 

l Variables and coreference are treated 
separately. 

I will now discuss each of these differ- 
ences. 

Substructure labeling. Features are 
labeled symbolically, not inferred by argu- 
ment position within a term. For example, 
we might want the term “person (john, 23, 
70, spouse(mary, 25))” to mean “There is a 
person named John, who is 23 years old, 70 
inches tall, and who has a 25-year-old 
spouse named Mary.” If so, we must re- 
member the convention that the third ar- 
gument of such a term represents a person’s 
height. An equivalent feature structure, 
using explicit labels for substructure, is 
shown in Figure 7. (I have used a standard, 
but not unique, representation for writing 
down feature structures.) 

Fixed arity. Feature structures do not 
have the fixed arity of terms. Traditionally, 
feature structures have been used to rep- 
resent partial information-unification 
combines partial structures into larger 
structures, assuming no conflict occurs. In 
other words, unification can result in new 
structures that are wider as well as deeper 
than the old structures. Figure 8 shows 
an example (the square cup stands for 
unification). 

Notice how all of the information con- 
tained in the first two structures ends up 
in the third structure. If the type features 
of the two structures had held different 
values, however, unification would have 
failed. 

The demoted functor. In a term, the 
functor (the function symbol that begins 
the term) has a special place. In feature 
structures, all information has equal status. 
Sometimes one feature is “primary” for a 
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type: person 
age: 23 

Figure 8. Unification of two feature structures. 

I 
type : person 
name: john 
age: 
height: 1; 

Figure 9. A feature structure with variables and internal coreference constraints. 

particular use, but this is not built into the 
syntax. 

Variables and coreference. Variables 
in a term serve two purposes: (1) They are 
place holders for future instantiation, and 
(2) they enforce equality constraints among 
different parts of the term. For example, 
the term person (john, Y, 2, spouse ( W, Y)) 
expresses the idea “John can marry anyone 
exactly as old as he is” (because the variable 
Y appears in two different places). Note, 
however, that equality constraints are re- 
stricted to the leaves of a term.4 Feature 
structures allow within-term coreferences 
to be expressed by separating the two roles 
of variables. 

If we wished, for example, to express the 
constraint that John must marry his best 
friend, we might start with a term such as 

person(john, Y, 2, spouse( W, X), 

bestfriend( W, X)) 

This is awkward and unclear, however; it 
is tedious to introduce new variables for 
each possible leaf, and moreover, the term 
seems to imply that John can marry anyone 
as long as she has the same name and age 
as his best friend. What we really want is a 
“variable” to equate the fourth and fifth 
arguments without concern for their inter- 
nal structures. Figure 9 shows the feature 
structure formalization. 

The boxed number indicates coreference. 
Features with values marked by the same 

4 This is construed in the sense of the term’s graph 
representation. 

ACM Computing Surveys, Vol. 21, No. 1, March 1989 

coreference label share the same value (in 
the sense of LISP’s EQ, not EQUAL). The 
value itself can be placed after any one of 
the coreference labels, the choice of which 
is arbitrary. The symbol [ ] indicates a vari- 
able. A variable [ ] can unify with any other 
feature structure s. 

Like terms, feature structures can also 
be represented as directed graphs (see Sec- 
tion 3). This representation is often more 
useful for implementation or even presen- 
tation. Whereas term graphs are labeled on 
uertices, feature structure graphs have la- 
bels on arcs and leaves. Figure 10 shows the 
graph version of the feature structure of 
Figure 7. The graph of Figure 10, of course, 
is just a tree. In order to express something 
such as “John must marry a woman exactly 
as old as he is,” we need coreference, indi- 
cated by the graph in Figure 11. 

This ends the discussion of feature struc- 
tures and terms. At this point, a few other 
structures are worth mentioning: frames, #- 
terms, and LISP functions. Frames [Min- 
sky 19751, a popular representation in ar- 
tifical intelligence, can be modeled with 
feature structures. We view a feature as a 
slot: Feature labels become slot names and 
feature values become slot values. As in the 
frame conception, a value may be either 
atomic or complex, perhaps having sub- 
structure of its own. 

The $-terms of Ait-Kaci [1984, 19861 
and Ait-Kaci and Nasr [1986] are very 
similar to feature structures. Subterms are 
labeled symbolically, and fixed arity is 
not required, as in feature structures, but 
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mary 25 

Figure 10. Graph representation of the feature kructure shown in Figure 7. 

Figure 11. Graph 

[I II 

representation of a feature structure with variables 

the functor is retained. And like feature 
structures, variables and coreference are 
handled separately. Although feature struc- 
tures predate q-terms, Ait-Kaci’s discus- 
sion of arity, variables, and coreference is 
superior to those found in the feature struc- 
ture literature. 

As an example, suppose we have the fol- 
lowing inheritance information: Birds and 
fish are animals, a fish-eater is an animal, 
a trout is a fish, and a pelican is both a bird 

The novel aspect of G-terms is the use of 
type inheritance information. Ait-Kaci 
views a term’s functions and variables as 
filters under unification, since two struc- 
tures with different functors can never 
unify, whereas variables can unify with 
anything. He questions and relaxes this 
“open/closed” behavior by allowing type 
information to be attached to functions 
and variables. Unification uses information 
from a taxonomic hierarchy to achieve a 
more gradual filtering. 

and coreference. 

and a fish-eater. Then unifying the follow- 
ing two q-terms, 

fish-eater (likes + trout) 

bird (color + brown; likes * fish) 

yields the new $-term 

pelican (color =$ brown; likes j trout) 

As a third structure, I turn to the function 
in the programming language LISP. Func- 
tions are not directly related to the feature 

Unification does not fail when it sees 

structures, but some interesting parallels 

conflicts between “fish-eater” and “bird” 
or between “trout” and “fish.” Instead, 
it resolves the conflict by finding the 
greatest lower bound on the two items in 
the taxonomic hierarchy, in this case 
“pelican” and “trout,” respectively. In this 
way, Ait-Kaci’s system naturally ex- 
tends the information-merging nature of 
unification. 
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can be drawn. Older dialects of LISP re- 
quired that parameters to functions be 
passed in an arbitrary, specified order. 
Common LISP [Steele 19841, however, in- 
cludes the notion of keyword parameter. 
This allows parameters to be passed along 
with symbolic names; for example, 

(make-node: state/( 1 2 3 ) : 

score 12 : successors nil) 

which is equivalent to 

(make-node : score 12 : state’( 1 2 3 ) : 

successors nil) 

Keyword parameters correspond to the 
explicit labeling of substructure discussed 
above. Note that Common LISP functions 
are not required to use the keyword param- 
eter format. Common LISP also allows for 
optional parameters to a function, which 
seems to correspond to the lack of fixed 
arity in feature structures. Common LISP, 
however, is not quite as flexible, since 
all possible optional parameters must be 
specified in advance. 

Finally, feature structures may contain 
variables. LISP is a functional language, 
and that means a function’s parameters 
must be fully instantiated before the function 
can begin its computation. In other words, 
variable binding occurs in only one direc- 
tion, from parameters to their values. Con- 
trast this behavior with that of Prolog, in 
which parameter values may be temporarily 
unspecified. 

8. UNIFICATION AND NATURAL LANGUAGE 

PROCESSING 

This section makes extensive use of the 
ideas covered in Section 7. Only with this 
background am I able to present examples 
and literature on unification in natural 
language processing. 

8.1 Parsing with a Unification-Based 
Grammar 

Unification-based parsing systems typi- 
cally contain grammar rules and lexical 
entries. Lexical entries define words, and 

grammar rules define ways in which words 
may be combined with one another to form 
larger units of language called constituents. 
Sample constituent types are the noun 
phrase (e.g., “the man”) and the verbphrase 
(e.g., “kills bugs”). Grammar rules in nat- 
ural language systems share a common pur- 
pose with grammar rules found in formal 
language theory and compiler theory: The 
description of how smaller constituents can 
be put together into larger ones. 

Figure 12 shows a rule (called an aug- 
mented context-free grammar rule) taken 
from a sample unification-based grammar. 
It is called an augmented context-free 
grammar rule because at its core is the 
simple context-free rule S * NP VP, 
meaning that we can build a sentence (S) 
out of a noun phrase (NP) and a verb 
phrase (VP). The equations (the augmen- 
tation) serve two purposes: (1) to block 
applications of the rule in unfavorable cir- 
cumstances and (2) to specify structures 
that should be created when the rule is 
applied. 

The idea is this: The rule builds a feature 
structure called X0 using (already existent) 
feature structures Xl and X2. Each feature 
structure, in this case, has two substruc- 
tures, one labeled category, the other la- 
beled head. Category tells what general type 
of syntactic object a structure is, and head 
stores more information. 

Let us walk through the equations. The 
first equation states that the feature struc- 
ture X0 will have the category of S (sen- 
tence). The next two equations state that 
the rule only applies if the categories of X 1 
and X2 are NP and VP, respectively. 

The fourth equation states that the num- 
ber agreement feature of the head of Xl 
must be the same as the number agreement 
feature of the head of X2. Thus, this rule 
will not apply to create a sentence like 
“John swim.” The fifth equation states that 
the subject feature of the head of X0 must 
be equal to Xl; that is, after the rule has 
applied, the head of X0 should be a struc- 
ture with at least one feature, labeled sub- 
ject, and the value of that feature should be 
the head of the structure Xl. 

The sixth equation states that the head 
of X0 should contain all of the features of 
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x0=%.x1x2 

(X0 category) = S 
(Xl category) = NP 
(X2 category) = VP 
(Xl head agreement) = (X2 head agreement ) 
(X0 head subject) = (Xl head) 
(X0 head) = (X2 head) 
(X0 head mood) = declarative 

Figure 12. Sample rule from a unification-based grammar. 

category: NP 1 

held 

root: kill 

tense: present 

agreement: singular 

object: bug 
agreement: plural 11 1 

I [ 
det: the 

head: root: man 
agreement: singular 11 

category: VP 

Figure 13. Feature structures representing analyses of “the man” and “kills bugs.” 

category: NP 

det: the 
root : man 
agreement: singulnr 

category: VP 
root: 
tense: 

kill 

present 
22: 

head: I r 
agreement: singular 

11 

Figure 14. Two feature structures combined with “dummy” features xl and x2. 

the head of X2 (i.e., the sentence inherits 

the features of the verb phrase). The last 
equation states that the head of X0 should 
have a mood feature whose (atomic) value 
is declarative. 

Now where does unification come in? 
Unification is the operation that simulta- 
neously performs the two tasks of building 
up structure and blocking rule applications. 
Rule application works as follows: 

(1) Gather constituent structures. Suppose 
we have already built up the two struc- 
tures shown in Figure 13. These struc- 
tures represent analyses of the phrases 

“the man” and “kills bugs.” In parsing, 
we want to combine these structures 
into a larger structure of category S. 

(2) Temporarily combine the constituent 
structures. NP and VP are combined 
into a single structure by way of 
“dummy” features 3tl and x2 (Figure 
14). 

(3) Represent the grammar rule itself as a 
feature structure. The feature structure 
for the sample rule given above is 
shown in Figure 15. The boxed corefer- 
ence labels enforce the equalities ex- 
pressed in the rule’s augmentation. 
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declarative II- 
Figure 15. Feature structure representation of the grammar rule in Figure 12. 

x0: 
[ 

category: S 
head: q I 

Xl: 

r category: NP 

det : the 
head: pJ root: man 

L agreement: II q singular 

r category: VP 
root: kill 
tense: present 
mood: declarative 

x2: head: q 
subject: q 
agreement: q 

category: Np 

object: root : bw 
agreement: plural 11 

Figure 16. Result of unifying constituent and rule structures (Figures 14 and 15). 

(4) Unify the constituent structure with 
the rule structure. We then get the 
structure shown in Figure 16. In this 
manner, unification builds larger syn- 
tactic constituents out of smaller ones. 

(5) Retrieve the substructure labeled X0. 
In practice, this is the only information 
in which we are interested. (The final 
structure is shown in Figure 17.) 

Now suppose the agreement feature of 
the original VP had been plural. Unifica- 
tion would have failed, since the NP has 
the same feature with a different (atomic) 
value-and the rule would fail to apply, 
blocking the parse of “The man kills bugs.” 

A few issues bear discussion. First, where 
did the structures Xl and X2 come from? 
In unification-based grammar, the lexicon, 
or dictionary, contains basic feature struc- 
tures for individual words. Figure 18, for 
example, shows a possible lexical entry 

for the word “man.” All higher level feature 
structures are built up from these lexical 
structures (and the grammar rules). 

Second, how are grammar rules chosen? 
It seems that only a few rules can possibly 
apply successfully to a given set of struc- 
tures. Here is where the category feature 
comes into play. Any parsing method, such 
as Earley’s algorithm [Earley 1968, 19701 
or generalized LR parsing [Tomita 1985a, 
1985b,1987], can direct the choice of gram- 
mar rules to apply, based on the categories 
of the constituents generated. 

Third, what are the structures used for? 
Feature structures can represent syntactic, 
semantic, or even discourse-based infor- 
mation. Unification provides a kind of 
constraint-checking mechanism for merg- 
ing information from various sources. The 
feature structure built up from the last rule 
application is typically the output of the 
parser. 
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category: 

head : 

s 
root: kill 

tense: present 

mood: declarative 
det: the 

subject: root: man 

agreement: q singular I 
agreement: q 

object: bug 
agreement: plural 11 

Figure 17. Feature structure analysis of “The man kills bugs.” 

category: N 

[ 

root: man 
head: agreement: singular 11 

Figure 18. Sample lexical entry for the word “man.” 

Finally, why do the rules use equations 
rather than explicit tests and structure- 
building operations? Recall that unifica- 
tion both blocks rule applications if certain 
tests are not satisfied and builds up new 
structures. Another widely used grammar 
formalism, the Augmented Transition Net- 
work (ATN) of Woods [1970], separates 
these two activities. An ATN grammar is a 
network of states, and parsing consists of 
moving from state to state in that network. 
Along the way, the parser maintains a set 
of registers, which are simply variables that 
contain arbitrary values. When the parser 
moves from one state to another, it may 
test the current values of any registers and 
may, if the tests succeed, change the values 
of any registers. Thus, testing and building 
are separate activities. 

An advantage of using unification, how- 
ever, is that it is, by its nature, bidirec- 
tional. Since the equations are stated 
declaratively, a rule could be used to cre- 
ate smaller constituents from larger ones. 
One interesting aspect of unification- 
based grammars is the possibility using the 
same grammar to parse and generate nat- 
ural language. 

8.2 Research 

An excellent, modern introduction to the 
use of unification in natural language pro- 
cessing is Shieber’s [ 19861 book. This book 

presents motivations and examples far be- 
yond the above exposition. The reader in- 
terested in this area is urged to find this 
source. Now I will discuss research on fea- 
ture structures, unification algorithms, and 
unification-based grammar formalisms. 

Karttunen [ 19841 discusses features and 
values at a basic level and provides linguis- 
tic motivation for both unification and 
generalization (see also Section 11). 
Structure-sharing approaches to speeding 
up unification are discussed by Karttunen 
and Kay [ 19851 and by Pereira [ 19851, who 
imports Boyer and Moore’s [1972] ap- 
proach for terms. Wroblewski [1987] gives 
a simple nondestructive unification algo- 
rithm that minimizes copying. 

Much unpublished research has dealt 
with extensions to unification. For exam- 
ple, it is often useful to check for the 
presence or absence of a feature during 
unification rather than simply merging 
features. Other extensions include (1) 
multiple-valued features-a feature may 
take on more than one value, for example, 
“big, red, round “; (2) negated features:-a 
feature may be specified by the values it 
cannot have rather than one it can have; 
and (3) disjunctive features:-a feature may 
be specified by a set of values, at least one 
of which must be its true value. 

Disjunctive feature structures are of 
great utility in computational linguistics, 
but their manipulation is difficult. Fig- 
ure 19 shows an example of unification of 
disjunctive feature structures. 

The curly brackets indicate disjunction; 
a feature’s value may be any one of the 
structures inside the brackets. When per- 
forming unification, one must make sure 
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c: 2 [ 1 d: 1 

[e: 41 

d: 2 

c: 2 
b: 

Figure lg. Unification of disjunctive feature structures. 

that all possibilities are maintained. This 
usually involves cross multiplying the val- 
ues of the two disjunctive features. In the 
above example, there are four possible ways 
to combine the values of the “b” feature; 
three are successful, and one fails (because 
of the conflicting assignment to the “d” 
feature). 

The mathematical basis of feature struc- 
tures has been the subject of intensive 
study. Pereira and Shieber [1984] devel- 
oped a denotational semantics for unifica- 
tion grammar formalisms. Kasper and 
Rounds [1986] and Rounds and Kasper 
[ 19861 presented a logical model to describe 
feature structures. Using their formal se- 
mantics, they were able to prove that the 
problem of unifying disjunctive structures 
is flp-complete. Disjunctive unification 
has great utility, however, and several re- 
searchers, including Kasper [ 19871 and 
Eisele and Dorre [ 19881, have come up with 
algorithms that perform well in the average 
case. Rounds and Manaster-Ramer [ 19871 
discussed Kay’s Functional Grammar in 
terms of his logical model. Moshier and 
Rounds [1987] extended the logic to deal 
with negation and disjunction by means of 
intuitionistic logic. Finally, in his disserta- 
tion, Ait-Kaci [1984] gave a semantic ac- 
count of $-terms, logical constructs very 
close to feature structures-these con- 
structs were discussed in Section 7. 

The past few years have seen a number 
of new grammar formalisms for natural 
languages. A vast majority of these formal- 
isms use unification as the central opera- 
tion for building larger constituents out of 
smaller ones. Gazdar [ 19871 enumerated 
them in a brief survey, and Sells [1985] 
described the theories underlying two of the 
more popular unification grammar formal- 
isms. Gazdar et al. [1987a] present a more 
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complete bibliography. The formalisms can 
be separated roughly into families: 

In the “North American Family,” we 
have formalisms arising from work in com- 
putational linguistics in North America in 
the late 1970s. Functional Unification 
Grammar (FUG; previously FG and UG) 
is described by Kay [1979, 1984, 1985aJ. 
Lexical Functional Grammar (LFG) is 
introduced in Bresnan’s [ 19821 book. 

The “Categorial Family” comes out of 
theoretical linguistic research on categorial 
grammar. Representatives are Unification 
Categorial Grammar (UCG), Categorial 
Unification Grammar (CUG), Combina- 
tory Categorial Grammar (CCG), and 
Meta-Categorial Grammar (MCG). UCG 
was described by Zeevat [1987], CUG by 
Uzkoreit [1986], and CCG by Wittenburg 
[ 19861. Karttunen [ 1986131 also presented 
work in this area. 

The “GPSG Family” begins with Gener- 
alized Phrase Structure Grammar (GPSG), 
a modern version of which appears in 
Gazdar and Pullum [1985]. Work at 
ICOT in Japan resulted in a formalism 
called JPSG [Yokoi et al. 19861. Pollard 
and colleagues have been working recently 
on Head-Driven Phrase Structure Gram- 
mar (HPSG); references include Pollard 
[1985] and Sag and Pollard [1987]. 
Ristad [1987] introduces Revised GPSG 
(RGPSG). 

The “Logic Family” consists of grammar 
formalisms arising from work in logic pro- 
gramming. Interestingly, Prolog was devel- 
oped with natural language applications in 
mind: Colmerauer’s [1978, 1982a] Meta- 
morphosis Grammars were the first gram- 
mars in this family. Pereira and Warren’s 
[1980] Definite Clause Grammar (DCG) 
has become extremely popular. Other logic 
grammars include Extraposition Grammar 
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(XC) [Pereira, 19811, Gapping Grammars, 
[Dahl1984; Dahl and Abramson 19841 Slot 
Grammar [McCord 19801, and Modular 
Logic Grammar (MLG) [McCord 19851. 

Prolog has been used in a variety of ways 
for analyzing natural languages. Definite 
Clause Grammar (DCG) is a basic exten- 
sion of Prolog, for example. Bottom-up par- 
sers for Prolog are described in Matsumoto 
and Sugimura [1987], Matsumoto et al. 
[ 19831, and Stabler [ 19831. Several articles 
on logic programming and natural language 
processing are collected in Dahl and Saint- 
Dizier [1985]. Implementations of LFG in 
Prolog are described in Eisele and Dorre 
[ 19861 and Reyle and Frey [ 19831. 

Pereira [ 19871 presented an interesting 
investigation of unification grammars from 
a logic programming perspective. In a sim- 
ilar vein, Kay [1985b] explained the need 
to go beyond the capabilities of unification 
present in current logic programming 
systems. 

Finally, in the “miscellaneous” category, 
we have PATR-II, an (implemented) gram- 
mar formalism developed by Karttunen 
[1986b], Shieber [1984, 19851, and others. 
PATR is actually an environment in which 
grammars can be developed for a wide va- 
riety of unification-based formalisms. In 
fact, many of the formalisms listed above 
are so similar that they can be translated 
into each other automatically; for example, 
see Reyle and Frey [1983]. Hirsh [1986] 
described a compiler for PATR grammars. 

9. UNIFICATION AND EQUATIONAL 
THEORIES 

Unification under equational theories is a 
very active area of research. The research 
has been so intense that there are several 
papers devoted entirely to classifying 
previous research results [e.g., Siekmann 
1984, 1986; Walther 19861. Many open 
problems remain, and the area promises to 
provide new problems for the next decade. 

9.1 Unification as Equation Solving 

At the very beginning of this paper, I pre- 
sented an example of unification. The 
terms were s = f (x, y) and t = f (g(y, a), 

h(a)), and the most general unifier u was 

x +--Ah(a), a) 

y + h(a) 

From an algebraic viewpoint, we can think 
of this unification as solving the equation 
s = t by determining appropriate values for 
the variables n and y. 

Now, for a moment, assume that f 
denotes the function add, g denotes the 
function multiply, h denotes the function 
successor, and a denotes the constant 
zero. Also assume that all the axioms of 
number theory hold. In this case, the equa- 
tion s = t is interpreted as add(x, y) = 
add(mult(y, O), succ(0)). It turns out that 
there are many solutions to the equation, 
including the substitution r: 

x t h(a) 

Y+-a 

Notice that 7(s) is f(h(a), a) and that 
7(t) is f (g(a, a), h(a)). These resulting two 
terms are not textually identical, but under 
the interpretation of f, g, h, and a given 
above, they are certainly equivalent. The 
former is succ(0) + 0, or succ(0); the latter 
is (0 . 0) + succ(O), or succ(0). Therefore, 
we say that r unifies s and t under the 
axioms of number theory. It is clear that 
determining whether two terms are unifia- 
ble under the axioms of number theory is 
the same problem as solving equations in 
number theory. 

Number theory has complex axioms and 
inference rules. Of special interest to 
unification are simpler equational axioms 
such as 

f (f (x, y), 2) = f (x, f (y, 2)) associativity 

fb,Y) =f(y,x) commutativity 

f(&X)=x idempotence 

A theory is a finite collection of axioms 
such as the ones above. The problem of 
unifying two terms under theory T is writ- 
ten (s = t)T. 

Consider the problem of unification 
under commutativity: (s = t)c. To unify 
f(x, y) with f(a, b) we have two substi- 
tutions available to us: 1~ t a; y t b} and 
(x t b; y c a}. With commutativity, we no 
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longer get the unique most general unifier 
of Robinson’s null-theory unification- 
compare this situation to Gould’s findings 
on higher order unification. 

There are many applications for unifi- 
cation algorithms specialized for certain 
equational theories. A theorem prover, for 
example, may be asked to prove theorems 
about the multiplicative properties of inte- 
gers, in which case it is critical to know 
that the multiplication function is associa- 
tive. One could add an “associativity 
axiom” to the theorem prover, but it might 
waste precious inferences simply bracket- 
ing and rebracketing multiplication for- 
mulas. A better approach would be to “build 
in” the notion of associativity at the core 
of the theorem prover: the unification al- 
gorithm. Plotkin [ 19721 pioneered this 
area, and it has since been the subject of 
much research. 

9.2 Research 

Siekmann’s [ 19841 survey of unification 
under equational theories is comprehen- 
sive. The reader is strongly urged to seek 
out this source. I will mention here only a 
few important results. 

We saw above that unification under 
commutativity can produce more than one 
general unifier; however, there are always 
a finite number of general unifiers [Livesey 
et al. 19791. Under associativity, on the 
other hand, there may be an infinite num- 
ber of general unifiers [Plotkin 19721. 
Baader [ 19861 and Schmidt-Schauss [ 19861 
independently showed that unification un- 
der associativity and idempotence has the 
“unpleasant” feature that no complete set 
of general unifiers even exists. (That is, 
there are two unifiable terms s and t, but 
for every unifier u, there is a more general 
unifier 7.) 

Results of this kind place any equational 
theory T into a “hierarchy” of theories, 
according to the properties of unification 
under T. Theories may be unitary (one 
MGU), finitary (finite number of general 
unifiers), infinitary (infinite number of gen- 
eral unifiers), or nullury (no complete set 
of general unifiers). Siekmann [1984] sur- 
veys the classifications of many naturally 

arising theories. The study of Universal 
Unification seeks to discover properties of 
unification that hold across a wide variety 
of equational theories, just as Universal 
Algebra abstracts general properties from 
individual algebras. 

To give a flavor for results in Universal 
Unification, I reproduce a recent theorem 
due to Book and Siekmann [1986]: 

Theorem 9.1 

If T is a suitable first-order equation theory 
that is not unitary, then T is not bounded. 

This means the following: Suppose that 
unification under theory T produces a finite 
number of general unifiers but no MGU (as 
with commutativity). Then, there is no par- 
ticular integer n such that for every pair s 
and t, the number of general unifiers is less 
than n (T is not bounded). 

Term-rewriting systems, systems for 
translating sets of equations into sets of 
rewrite rules, are basic components of uni- 
fication algorithms for equational theories. 
Such systems were the object of substantial 
investigation in Knuth and Bendix [1970]. 
A survey of work in this area is given in 
Huet and Oppen [ 19801. 

Some recent work [Goguen and Mese- 
guer 1987; Meseguer and Goguen 1987; 
Smolka and Ait-Kaci 1987; Walther 19861 
investigates the equational theories of or- 
der-sorted and many-sorted algebras. 
Smolka and Ait-Kaci [1987] show how 
unification of Ait-Kaci’s $-terms (see Sec- 
tion 7) is an instance of unification in 
order-sorted Horn logic. In other words, 
unification with inheritance can be seen as 
unification with respect to a certain set of 
equational axioms. 

Unification algorithms have been con- 
structed for a variety of theories. Algo- 
rithms for particular theories, however, 
have usually been handcrafted and based 
on completely different techniques. There 
is interest in building more general (but 
perhaps inefficient) “universal” algorithms 
[e.g., Fages and Huet 1986; Fay 1979; 
Gallier and Snyder 1988; Kirchner 19861. 
There is also interest in examining the 
computational complexity of unification 
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under various theories [e.g., Kapur and 
Narendran 19861. 

10. PARALLEL ALGORITHMS FOR 

UNIFICATION 

Lewis and Statman [1982] wrote a note 
showing that nonunifiability could be com- 
puted in nondeterministic log space (and 
thus, by Savitch’s theorem, in deterministic 
log2 space). By way of the parallel compu- 
tation thesis [Goldschlager 19781, which re- 
lates sequential space to parallel time, this 
result could have led to a log2 n parallel 
time algorithm for unification. 

In the process of trying to find such an 
algorithm, Dwork et al. [1984] found an 
error in the above-mentioned note. They 
went on to prove that unifiability is actually 
log space complete for 9, which means that 
it is difficult to compute unification using 
a small amount of space. This means that 
it is highly unlikely that unification can be 
computed in O(logk n) parallel time using 
a polynomial number of processors (in com- 
plexity terminology, unification is in the 
class &%? only if 9 = Jy^%?). 

In other words, even massive parallelism 
will not significantly improve the speed of 
unification-it is an inherently sequential 
process. This lower bound result has a wide 
range of consequences; for example, using 
parallel hardware to speed up Prolog exe- 
cution is unlikely to bring significant gains 
(but see Robinson [1985] for a hardware 
implementation of unification). 

Yasuura [ 19841 independently derived 
a complexity result similar to that of 
Dwork et al. [1984] and gave a parallel 
unification algorithm that runs in time 
O(log’ n + m log m), where m is the total 
number of variables in the two terms. 

Dwork et al. [1984] mentioned the exist- 
ence of a polylog parallel algorithm for term 
matching, the variant of unification in 
which substitution is allowed into only one 
of the two terms. They gave an O(log2 n) 
time bound but required about O(n5) 
processors. Using randomization tech- 
niques, Dwork et al. [1986] reduced the 
processor bound to O(n3). 

Maluszynski and Komorowski [ 19851, 
motivated by Dwork et al.‘s [ 19841 negative 

results, investigated a form of logic pro- 
gramming based on matching rather than 
unification. 

Vitter and Simons [1984, 19861 argued 
that unification can be helped by multiple 
processors in a practical setting. They de- 
veloped complexity classes to formalize this 
notion of “practical” speedup and gave a 
parallel unification algorithm that runs in 
time O(E/P + V log P), where P is the 
number of processors, E the number of 
edges in the term graph, and V the number 
of vertices. 

Harland and Jaffar [ 19871 introduced an- 
other measure for parallel efficiency and 
compared several parallel algorithms in- 
cluding Yasuura’s algorithm [ 19841, Vitter 
and Simon’s algorithm [1984, 19861, and 
a parallel version of Jaffar’s algorithm 
[1984]. 

11. UNIFICATION, GENERALIZATION, AND 

LATTICES 

Generalization is the dual of unification, 
and it finds applications in many areas in 
which unification is used. Abstractly, the 
generalization problem is the following: 
Given two objects x and y, can we find a 
third object z of which both x and y are 
instances? Formally it is as follows: 

Definition 11.1 

An antisubstitution (denoted y, 17, 5; . . .), is 
a mapping from terms into variables. 

Definition 11.2 

Two terms s and t are general&able if there 
exists an antisubstitution y such that 
y(s) = y(t). In such a case, y is called a 
generalizer of s and t, and y(s) is called 
a generalization of s and t. 

Generalizability is a rather vacuous con- 
cept, since any two terms are generalizable 
under the antisubstitution that maps all 
terms onto the variable X. Of more interest 
is the following: 

Definition 

A generalizer y of terms s and t is called 
the most specific generalizer (MSG) of s and 
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fk b) 

Figure 20. A portion of the lattice of first-order terms. 

fk b) fb, Y) 

Figure 21. Unification of terms f(x, b) and f (a, y), 

t if for any other generalizer 7, there is an 
antisubstitution {such that {y(s) = v(s). 

Intuitively, the most specific generaliza- 
tion of two terms retains information that 
is common to both terms, introducing new 
variables when information conflicts. For 
example, the most specific generaliza- 
tion of f(a, g(b, c)) and f(b, g(2c, c)) is 
f(z, g(x, c)). Since the second argument to 
f can be a or b, generalization “makes an 
abstraction” by introducing the variable Z. 
Unification, on the other hand, would fail 
because of this conflict. 

came up with a generalization algorithm. 
(Plotkin [ 19701 independently discovered 
this algorithm.) Reynolds used the natural 
lattice structure of first-order terms, a par- 
tial ordering based on “subsumption” of 
terms. General terms subsume more spe- 
cific terms; for example, f (x, a) subsumes 
f(b, a). Many pairs of terms, of course, do 
not stand in any subsumption relation, and 
this is where unification and generalization 
come in. Figure 20 shows a portion of 
the lattice of first-order terms augmented 
with two special terms called top (T) and 
bottom (I). 

As mentioned in a previous section, Unification corresponds to finding the 
Reynolds [1970] proved the existence of greatest lower bound (or meet) of two terms 
a unique MSG for first-order terms and in the lattice. Figure 21 illustrates the 
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T 

fh b) fh Y) 

Figure 22. Generalization of terms f(x, b) and f(a, c). 

unification of f(x, b) and f(a, y). The bot- 
tom of the lattice (I), to which all pairs of 
terms can unify, represents inconsistency. 
If the greatest lower bound of two terms 
is I, then they are not unifiable. 

Generalization corresponds to finding 
the least upper bound (or join) of two terms 
in the lattice. Figure 22 illustrates the gen- 
eralization of f(x, b) and f (a, c). The top of 
the lattice (T), to which all pairs of terms 
can generalize, is called the universal term. 
Everything is an instance of this term. 

Feature structures, previously discussed 
in Section 7, make up a more complex 
lattice structure. 

Inheritance hierarchies, common struc- 
tures in artificial intelligence, can be seen 
as lattices that admit unification and gen- 
eralization. For example, the generalization 
of concepts “bird” and “fish-eater” in a 
certain knowledge base might be “animal,” 
whereas the unification might be “pelican.” 
Ait-Kaci extends this kind of unification 
and generalization to typed record struc- 
tures (#-terms), as discussed in Section 7. 

12. OTHER APPLICATIONS OF 
UNIFICATION 

I have already discussed three application 
areas for unification: automatic theorem 
proving, logic programming, and natural 
language processing. Other areas are listed 
here. 

12.1 Type Inference 

Milner [1978] presented work on compile- 
time type checking for programming lan- 
guages, with the goal of equating syntactic 
correctness with well typedness. His algo- 
rithm for well typing makes use of unifica- 
tion, an idea originally due to Hindley 
[1969]. More recent research in this area 
includes the work of Cardelli [1984], 
MacQueen et al. [1984], and Moshier and 
Rounds [ 19871. 

12.2 Programming Languages 

Pattern matching is a very useful feature 
of programming languages. Logic program- 
ming languages make extensive use of 
pattern matching, as discussed above, 
but some functional languages also pro- 
vide matching facilities (e.g., PLANNER, 
QA4/QLISP). In these cases, functions 
may be invoked in a pattern-directed 
manner, making use of unification as a 
pattern-matcher/variable-binder. Stickel 
[ 19781 discusses pattern-matching lan- 
guages and specialized unification algo- 
rithms in his dissertation. 

12.3 Machine Learning 

Learning concepts from training instances 
is a task that requires the ability to gener- 
alize. Generalization, the dual of unifica- 
tion, is an operation widely used in machine 
learning. 
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Plotkin [ 19701, who opened up work in 
unification under equational theories, also 
produced work on inductive generalization, 
that is, abstracting general properties from 
a set of specific instances. Mitchell’s [ 19791 
work on version spaces investigated the 
same problem using both positive and 
negative training instances. Positive ex- 
amples force the learner to generate more 
general hypotheses, whereas negative ex- 
amples force more specific hypotheses. 
The general-to-specific lattice (see Sec- 
tion 11) is especially useful, and Mitchell’s 
algorithms make use of operations on this 
lattice. 

13. CONCLUSION 

This section contains a list of properties 
that unification possesses along with a 
summary of the trends in research on uni- 
fication. 

13.1 Some Properties of Unification 

The following properties hold for first- 
order unification: 

Unification is monotonic. Unification 
adds information, but never subtracts. It is 
impossible to remove information from one 
structure by unifying it with another. This 
is not the case with generalization. 

Unification is commutative and asso- 
ciative. The order of unifications is irrel- 
evant to the final result. Unification and 
generalization are not, however, distribu- 
tive with respect to each other [Shieber 
19861. 

Unification is a constraint-merging 
process. If structures are viewed as en- 
coding constraint information, then uni- 
fication should be viewed as merging 
constraints. Unification also detects when 
combinations of certain constraint sets are 
inconsistent. 

Unification is a pattern-matching 
process. Unification determines whether 
two structures match, using the mechanism 
of variable binding. 

Unification is bidirectional since vari- 
able binding may occur in both of the 
structures to be unified. Matching is the 

unidirectional variant of unification and 
appears in the “function call” of imperative 
programming languages. 

Unification deals in partially defined 
structures. Unification, unlike many 
other operations, accepts inputs that con- 
tain uninstantiated variables. Its output 
may also contain uninstantiated variables. 

13.2 Trends in Unification Research 

One trend in unification research seeks to 
discover faster algorithms for first-order 
unification.5 Over the past two decades, 
many quite different algorithms have been 
presented, and although the worst-case 
complexity analyses are very interesting, it 
is still unclear which algorithms work best 
in practice. There seems to be no better 
way to compare algorithms than to imple- 
ment and test them on practical problems. 
As it stands, which algorithm is fastest 
depends on the kinds of structures that are 
typically unified. 

Another trend, begun by Robinson 
[1968], tackles the problems of unification 
in higher order logic. Such problems are in 
general unsolvable, and the behaviors of 
unification algorithms are less quantifiable. 
Systems that deal with higher order logic, 
for example theorem provers and other AI 
systems [Miller and Nadathur 19871, stand 
to gain a great deal from research in higher 
order unification. 

A third trend runs toward incorporating 
more features into the unification opera- 
tion. Automatic theorem provers once in- 
cluded separate axioms for commutativity, 
associativity, and so on, but research begun 
by Plotkin [I9721 showed that building 
these notions directly into the unification 
routine yields greater efficiency. Logic pro- 
gramming languages are often called on to 
reason about hierarchically organized data, 
but they do so in a step-by-step fashion. 
Ait-Kaci and Nasr [1986] explain how to 
modify unification to use inheritance infor- 
mation, again improving efficiency. Many 
unification routines for natural language 
parsing perform unification over negated, 

’ This trend toward efficiency also explores topics such 
as structure sharing and space efficiency. 
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multiple-valued, and disjunctive structures. 
New applications for unification will no 
doubt drive further research into new, more 
powerful unification algorithms. 
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