
Deutsches
Forschungszentrum
fOr KOnstliche
Intelllgenz GmbH

Research
Report

RR-91-33

Unification in the Union of Disjoint
Equational Theories:

Combining Decision Procedures

Franz Baader, Klaus Schulz

November 1991

Deutsches Forschungszentrum fOr KOnstliche Intelligenz

GmbH

Postfach 20 80
0-6750 Kaiserslautern, FRG
Tel. : (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
0-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fUr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarbrOcken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Philips, Siemens
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

Q Intelligent Engineering Systems
Q Intelligent User Interfaces
Q Intelligent Communication Networks
Q Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Unification in the Union of Disjoint Equational Theories:
Combining Decision Procedures

Franz Baader, Klaus Schulz

DFKI-RR-91-33

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8903 0) .

© Deutsches Forschungszentrum fOr Kunstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following : a notice that such copying is by
permission of Deutsches Forschungszentrum fur Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying , reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr Kunstliche Intelligenz.

Unification in the Union of Disjoint

Equational Theories: Combining Decision

Procedures

Franz Baader

DFKI

Postfach 2080

6750 Kaiserslautern, Germany

baader@dfki.uni-kl.de

Klaus Schulz

CIS

University Munich, Leopoldstr. 139

8000 Miinchen 40, Germany

schulz@cis.uni-muenchen.dbp.de

Abstract

Most of the work on the combination of unification algorithms for

the union of disjoint equational theories has been restricted to al­

gorithms which compute finite complete sets of unifiers. Thus the

developed combination methods usually cannot be used to combine

decision procedures, i.e ., algorithms which just decide solvability of

unification problems without computing unifiers. In this paper we de­

scribe a combination algorithm for decision procedures which works

for arbitrary equational theories , provided that solvability of so-called

unification problems with constant restrictions-a slight generaliza­

tion of unification problems with constants-is decidable for these

theories . A,S a consequence of this new method, we can for example

show that general A-unifiability, i.e., solvability of A-unification prob­

lems with free function symbols, is decidable. Here A stands for the

equational theory of one associative function symbol.

Our method can also be used to combine algorithms which compute

finite complete sets of unifiers , Manfred Schmidt-SchauB' combination

result, the until now most general result in this direction, can be

obtained as a consequence of this fact. We also get the new result

that unification in the union of disjoint equational theories is finitary,

if general unification-i .e., unification of terms with additional free

function symbols-is finitary in the single theories .

Contents

1 Introduction 3

2 Main results and consequences 7

3 The combination algorithm 10

4 Correctness of the combination algorithm 15

5 Solving unification problems with constant restriction 21

5.1 Using algorithms for general unification. 22

5.2 Using algorithms for constant elimination and for unification

with constants 27

6 Conclusion 29

2

1 Introduction

E-unification is concerned with solving term equations modulo an equational

theory E. The theory is called "unitary" ("finitary") if the solutions of a

system of equations can always be represented by one (finitely many) so­

lution(s). Otherwise the theory is of type "infinitary" or "zero" (see e.g.,

[Si89,JK90,Ba91j for an introduction to unification theory). Equational the­

ories which are of unification type unitary or finitary play an important role

in automated theorem provers with "built in" theories (see e.g., [PI72,St85]),

in generalizations of the Knuth-Bendix algorithm (see e.g., [JK86,Bc87]),

and in logic programming with equality (see e.g., [JL84]). The reason is that

these applications usually require algorithms which compute finite complete

sets of unifiers, i.e. , finite sets of unifiers from which all unifiers can be gen­

erated by instantiation. However, with the recent development of constraint

approaches to theorem proving (see e.g., [Bii90]), term rewriting (see e.g.,

[KK89j), and logic programming (see e.g., [JL87,C090j), the computation of

finite complete sets of unifiers is no longer indespensable for these applica­

tions. It is enough to decide satisfiability of the constraints, that means e.g.,

solvability of the unification problems. In the present paper, the design of

decision procedures for unification probleins will be a major issue.

The signature matters

When considering unification in equational theories one has to be careful with

regard to the signature over which the terms of the unification problems can

be built. This leads to the distinction between elementary unification (where

the terms to be unified are built over the signature of the equational theory,

i.e., the function symbols occurring in the axioms of the theory), unifica­

tion with constants (where additional free constant symbols may occur), and

general unification (where additional free function symbols of arbitrary arity

may occur).

The following facts show that there really is a difference between the three

types of E-unification:

• There exist theories which are unitary with respect to elementary uni­

fication , but finitary with respect to unification with constants. An

example for such a theory is the theory of abelian monoids, i.e., the

theory of an associat ive-commutative (AC) function symbol with a unit

element (see e.g., [He87]).

3

• There exists an equational theory for which elementary unification is

decidable, but unification with constants is undecidable (see [Bii86]) .

• From the development of the first algorithm for AC-unification with

constants [St75,LS75j it took almost a decade until the termination of

an algorithm for general AC-unification was shown by Fages [Fa84].

The applications of theory unification mentioned above require algorithms

for general unification. This fact is illustrated by the following example.

Example 1.1 The theory A = {f(J(x, y), z) = f(x, f(y, z))} only contains

the binary symbol f. When talking about A-unification, one first thinks of

unifying modulo A terms built by using just the symbol f and variables, or

equivalently, of unifying words over the alphabet V of all variables.

However, suppose that a resolution theorem prover-which has built in

the theory A-gets the formula

:3x: (Vy : f(x,y) = y 1\ Vy:3z: f(z,y) = x)

as axiom. In a first step, this formula has to be Skolemized, i.e., the existen­

tial quantifiers have to be replaced by new function symbols. In our example,

we need a nullary symbol e and a unary symbol i in the Skolemized form

Vy:f(e,y)=y 1\ Vy:f(i(y),y)=e

of the axiom. This shows that, even if we start with formulae containing

only terms built over f, our theorem prover has to handle terms containing

additional free symbols.

The combination problem

We have seen that the question of how algorithms for elementary unification

(or for unification with constants) can be used to get algorithms for general

unification is nontrivial and important for applications. Even more general,

one often would like to derive algorithms for unification in the union of

disjoint equational theories, i.e., in the union of several equational theories

over disjoint signatures, from unification algorithms in the single theories.

The importance for applications of this so-called "combination problem" is

illustrated by the following example.

Example 1.2 Assume that we want to compute a canonical term rewriting

system for the theory of Boolean rings. Thus we have a signature consisting

4

of two binary symbols. "+" and "*", a unary symbol "-", and two nullary

symbols "0" and "1". Since the addition and multiplication in Boolean rings

is associative and commutative, and since commutativity cannot be oriented

into a terminating rewrite rule, we have to use rewriting modulo associativity

and c.ommutativity of "+" and "*".
But then critical pairs also must be computed modulo associativity and

commutativity of these two symbols. To be more precise, we consider the

theories AC+ := {(x + y) + z = x + (y + z),x + y = y + x}, and AC. :=

{(x * y) * z = x * (y * z), x * y = y * x}. Critical pairs are computed with the

help of general unification modulo AC+ U AC., i.e., modulo the union of the

two disjoint equational theories AC+ and AC •.

This example can also be used to demonstrate that going from elementary

unification to general unification is in fact an instance of the combination

problem. If we define the free theory for "-", "0" and "I" to be FO,l,- =
{-x = -x,O = 0, 1 = I}, then one can \1se elementary unification modulo

AC+ U AC. U FO,l ,- instead of general unification modulo AC+ U AC. for

computing critical pairs.

When considering the combination problem, until now the attention was

mostly restricted to finitary unifying theories, and by unification algorithm

one meant a procedure which computes a finite complete set of unifiers. The

problem was first considered in [St75,St81,Fa84,HS87] for the case where

'several AC-symbols and free symbols may occur in the terms to be unified.

More general combination problems were, for example, treated in [Ki85, Ti86,

He86,Ye87,BJ89], but the theories considered in these papers always had to

satisfy certain restrictions (such as collapse-freeness or regularityl) on the

syntactic form of their defining identities.

The problem was finally solved in its until now most general form by

Schmidt-SchauB [Sc89]. His combination algorithm imposes no restriction on

the syntactic form of the identities. The only requirements for a combination

of disjoint theories E, Fare:

• All unification problems with constants must be finitary solvable in E

and F.

• All constant elimination problems must be finitary solvable in E and

F.

1 A theory E is called collapse-free if it does not contain an identity of the form :z: = t
where :z: is a variable and t is a non-variable term, and it is called regular if the left and

right hand sides of the identities contain the same variables .

5

A more efficient version of this combination algorithm has been described by

Boudet [B090].

The method of Schmidt-SchauB can also handle theories which are not

finitary. In this case, procedures which enumerate complete sets of unifiers for

the single theories can be combined to a procedure enumerating a complete

set of unifiers for their union. However, even if unification in the single

theories is decidable, this does not show how to get a decision algorithm for

unifiability in the combined theory.

The infinitary theory A = {f(J(x, y), z) = f(x, f(y, z))} is an example for

this case. In 1972, Plotkin [PI72] has described a procedure which enumer­

ates minimal complete sets of A-unifiers for general A-unification problems,

and in 1977 Makanin [Ma77] has shown that A-unification with constants is

decidable. But in 1991, decidability of general A-unification was still men­

tioned as an open problem by Kapur and Narendran [KN91] in their table

of known decidability and complexity results for uriification. Such a decision

procedure could, for example, be useful when building associativity into a the­

orem prover via constraint resolution; and it could be used to make Plotkin's

enumeration procedure terminating for equations having finite complete sets

of A-unifiers.

In his paper on unification in the combination of arbitrary disjoint equa­

tional theories [Sc89], Schmidt-SchauB also treats the problem of how to

combine decision procedures. But in this case he needs decision procedures

for general unification in the single theories as prerequisites for his combina­

tion algorithm. Thus his result cannot be used to solve the above mentioned

open problem of decidability of general A-unification.

The research which will be presented in this paper builds up on the ideas

of Schmidt-SchauB and Boudet. It was motivated by the question of how to

get a decision procedure for general A-unification. However, the results we

have obtained are more general. We shall present a method which allows

one to decide unifiability in the union of arbitrary disjoint equational theo­

ries, provided that solvability of so-called unification problems with constant

restrictions- a slight generalization of unification problems with constants­

is decidable for the single theories. In addition, our method can also be used

to combine algorithms which compute finite complete sets of unifiers.

These main results and some of the interesting consequences will be de­

scribed in the next section. Among these consequences are the new results

that general A-unification is in fact decidable, and that the union of disjoint

equational theories is finitary if the single theories are finitary with respect

6

to general unification.

In Section 3 we shall present the combination algorithm for the decision

problem, and describe how it can also be used to generate complete sets of

unifiers. Section 4 proves the correctness of the method. In the fifth section

we shall describe conditions under which algorithms for solving unification

problems with constant restrictions exist. Some of the consequences men­

tioned in Section 2 depend on these results.

2 Main results and consequences

As mentioned in the introduction, we have to consider a slight generalization

of E-unification problems with constants, so-called E-unification problems

with constant restriction, which will be introduced below. Having an algo­

rithm which solves these kind of problems is the only prerequisite necessary

for our combination method.

Recall that an E-unification problem with constants is a finite set of equa­

tions r = {81 ::::::: t 1 , . . . ,8n ::::::: tn}, where the terms 81, ... ,tn are built from

variables, the function symbols occurring in the axioms of E, and additional

free constant symbols . Now, an E-unification problem with constant restric­

tion is an ordinary E-unification problem with constants, r, where each free

constant c occurring in the problem r is equipped with a set Ve of variables,

namely, the variables in whose image c must not occur. A solution of the

problem is an E-unifier u of r such that for all c, x with x EVe, the constant

c does not occur in xu. Complete sets of solutions of unification problems

with constant restriction are defined as in the case of ordinary unification

problems.

It turns out that our combination method does not really need an al­

gorithm which can handle E-unification problems with arbitrary constant

restrictions; it is enough to deal with problems with a so-called linear con­

stant restriction. Such a restriction is induced by a linear ordering on the

variables and free constants as follows: Let X be the set of all variables and

C be the set of all free constants occurring in r. For a given linear ordering

< on xu C, the sets Vc are defined as {x I x is a variable with x < c}.

We are now ready to formulate our first main result, which is concerned

with combining decision algorithms. The combination algorithm which is

used to establish this result will be described in the next section.

7

Theorem 2.1 Let Ell' .. ,En be equational theories over disjoint signatures

such that solvability of Ei-unification problems with linear constant restriction

is decidable for i = 1, ... , n. Then unifiability is decidable for the combined

theory EI U ... U En.

By "unifiability" we mean here solvability of elementary unification prob­

lems. However, we shall see below that the result can be lifted to general

unification, and to solvability of unification problems with linear constant re­

striction. The theorem also has several other interesting consequences, which

are listed below.

1. Let E be an equational theory such that solvability of E-unification prob­

lems with linear constant restriction is decidable. Then solvability of gen­

eral E-unification problems is decidable.

In fact, for a given set n of function symbols we can always build the

free theory Fn as exemplified in Example 1.2. It is easy to see that

Fn satisfies the assumption of the theorem; and obviously, any general

unification problem modulo E can be seen as an elementary unification

modulo E U Fn (if n contains all the additional free function symbols

occurring in the problem).

2. This argument also shows why the result of the theorem can be lifted

to general unification: in order to get decidability of general unification

modulo EI U ... U En, apply the theorem to E I, ... , En, Fn.

3. General A-unifiability is decidable.

For A, decidability of unification problems with constant restriction is

an easy consequence of a result by Schulz [Sh91] on a generalization of

Makanin's procedure. This result shows that it is still decidable whether

a given A-unification problem with constants has a solution for which the

words substituted for the variables in the problem are elements of given

regular languages over the constants. It is easy to see that problems with

constant restriction are a special case of these more generally restricted

problems.

4. General AI-unifiability, where AI:= AU {f(x , x) = x}, is decidable.

This was also stated as an open problem in [KN91]. For AI, decidabil­

ity of unification problems with constant restriction easily follows from

the well-known fact (see e.g., [H076]) that finitely generated idempotent

semigroups are finite.

8

5. If solvability of th6 Ei-unification problems with linear constant restric­

tion can be decided by an NP-algorithm, then unifiability in the combined

theory is also NP-decidable.

This fact will become obvious once we have described our. combination

algorithm. As a consequence one gets easy proofs of Kapur and Naren­

dran's results [KN91] that solvability of general AC- and ACI-unification

problems can be decided by NP-algorithms. For these theories, NP­

decidability of unification problems with constant restriction can be shown

very similarly as in the case of ordinary unification problems with con­

stants.

6. Let E 1 , • •. ,En be equational theories over disjoint signatures such that

solvability of general Ei-unification problems is decidable for i = 1, ... ,n.

Then unifiability is decidable for the combined theory El U ... U En. This

result, which was first proved by Schmidt-SchauB (see [Sc89], Theorem

10.6), can also be obtained as a corollary to our theorem. In fact, we

can show that solvability of E-unification problems with linear constant

restrictio~ can be reduced to solvability of general E-unification problems

(see Section 5).

7. Together with the second consequence mentioned above, this reduction
also shows that the result of Theorem 2.1 can be lifted to unification prob­

lems with linear constant restriction.

The algorithm which will be introduced for proving Theorem 2.1 can also

be used to compute complete sets of unifiers.

Theorem 2.2 Let E1 , ... ,En be equational theories over disjoint signatures

such that all Ei-unification problems with linear constant restriction have

finite complete set of solutions (i = 1, ... , n). Then the combined theory

El U ... U En is finitary.

Again, we are talking about elementary unification for the combined the­

ory; but as for the case of the decision problem, the result can easily be

lifted to general unification, and to unification problems with linear constant

restriction. It should be noted that this result is effective in the sense that

we really get an algorithm computing finite complete set of unifiers for the

combined theory, provided that for the single theories there exist algorithms

computing finite complete sets of solutions of unification problems with lin­

ear constant restriction. In the following, we mention two other interesting

consequences of the theorem.

9

8. Let E1, . .. ,En be equational theories over disjoint signatures which are

finitary with respect to general unification. Then the combined theory

E1 U ... U En is finitary.

In fact, we can show how finite complete sets of unifiers for general E;­

unification problems can be used to construct finite complete sets of so­

lutions for unification problems with linear constant restriction (see Sec­

tion 5).

9. Algorithms which compute finite complete sets of unifiers for unification
with constants, and finite complete sets of constant eliminators can be

used to get an algorithm which computes finite complete sets of solutions

for unification problems with constant restriction (see Section 5). As a

consequence, the combination result of Schmidt-SchaujJ ([Sc89], Corollary

7.14) mentioned in the introduction can also be obtained as a corollary to

Theorem 2.2.

3 The combination algorithm

For the sake of convenience we shall restrict the presentation to the combi­

nation of two theories. The c0mbination of more than two theories can be

treated analogously. Before we can start with the description of the algorithm

we have to introduce some notation.

Let E1, E2 be two equational theories built over the disjoint signatures

0 1 , O2 , and let E = E1 U E2 denote their union. Since we are only interested

in elementary E-unification, we can restrict our attention to terms built from

variables and symbols of 0 1 U02 . The elements of 0 1 will be called I-symbols

and the elements of O2 2-symbols. A term t is called i-term iff it is of the

form t = f(th ... , tn) for an i-symbol f (i = 1,2). A subterm s of a I-term t

is called alien subterm of t iff it is a 2-term such that every proper superterm

of s in t is a I-term. Alien sub terms of 2-terms are defined analogously. An

i-term s is pure iff it contains only i-symbols and variables. An equation

s ~ t is pure iff there exists an i, 1 ~ i ~ 2, such that sand t are pure

i-terms or variables; this equation is then called an i-equation. Please note

that according to this definition equations of the form x ~ y where x and

yare variables are both 1- and 2-equations. In the following, the symbols

x, y, z, with or without indices, will always stand for variables.

Example 3.1 Let 0 1 consist of the binary (infix) symbol "0" and O2 of the

unary symbol "h", letE1 := {x 0 (y 0 z) = (x 0 y) 0 z} be the theory which

10

says that "0" is associ(~.tive, and let E2 := {h(x) = h(x)} be the free theory

for "h".

The term yoh(zoh(x)) is a I-term which has h(zoh(x)) as its only alien

subterm. The equation h(X1) 0 X2 == Y is not pure, but it can be replaced

by two pure equations as follows. We replace the alien subterm h(xd of

h(X1) 'a X2 by a new variable z. This yields the pure equation z 0 X2 == y. In

addition, we consider the new equation z == h(X1). This process of replacing

alien sub terms by new variables is called variable abstraction. It will be the

first of the five steps of our combination algorithm.

The main procedure

The input for the combination algorithm is an elementary E-unification prob­

lem, i.e., a system r 0 = {S1 == tIl . .. , 8 n == t n}, where the terms 81l ... ,tn are

built from variables and the function symbols occurring in 0 1 U02 , the signa­

ture of E = E1 U E 2 • The first two steps of the algorithm are deterministic,

i.e., they transform the given system of equations into one new system.

Step 1: variable abstraction. Alien subterms are successively replaced

by new variables until all terms occurring in the system are pure. To

be more precise, assume that 8 == t or t == 8 is an equation in the current

system, and that 8 contains the alien subterm 81. Let x be a variable

not occurring in the current system, and let 8' be the term obtained

from 8 by replacing 81 by x. Then the original equation is replaced by

the two equat ions 8' == t and x == 81. This process has to be iterated

until all terms occurring in the system are pure. It is easy to see that

this can be achieved after finitely many iterations. Now all the terms

in the system are pure, but there may still exist non-pure equations,

consisting of a I-term on one side and a 2-term on the other side.

Step 2: split non-pure equations. Each non-pure equations of the form

8 == t is replaced by two equations x == 8, X == t where the x are always

new variables.

It is quite obvious that these two steps do not change solvability of the

system. The result is a system which consists of pure equations. The third

and the fourth step are nondeterministic, i.e., a given system is transformed

into finitely many new systems . Here the idea is that the original system is

solvable iff at least one of the new systems is solvable.

11

Step 3: variable identification. Consider all possible partitions of the

set of all variables occurring in the system. Each of these partitions

yields one of the new systems as follows. The variables in each class of

the partition are "identified" with each other by choosing an element of

the class as representative, and replacing in the system all occurrences

of variables of the class by this representative.

Step 4: choose ordering and theory indices. This step doesn't change

a given system, it just adds some information which will be important

in the next step. For a given system, consider all possible strict lin­

ear orderings < on the variables of the system, and all mappings ind

from the set of variables into the set of theory indices {I, 2}. Each pair

«, ind) yields one of the new systems obtained from the given one.

The last step is again deterministic. It splits each of the systems already

obtained into a pair of pure systems.

Step 5: split systems. A given system r is split into two systems r 1 and

r 2 such that r 1 contains only I-equations and r 2 only 2-equations.

These systems can now be considered as unification problems with lin­

ear constant restriction . .In the system fi' the variables with index i

are still treated as variables, but the variables with alien index j =I i

are treated as free constants. The linear constant restriction for r i is

induced by the linear ordering chosen in the previous step.

The output of the algorithm is thus a finite set of pairs (r 1, r 2) where

the first component r 1 is an E1-unification problem with linear constant

restriction, and the second component r 2 is an E 2-unification problem with

linear constant restriction.

Proposition 3.2 The input system r 0 is solvable if and o-nly if there exists

a pair (r1,r2) in the output set such that r 1 and r 2 are solvable.

A proof of this proposition is described in the next section. Obviously,

if solvability of Er and Erunification problems with linear constant re­

strictions is decidable, the proposition implies decidability of elementary E­

unifiability, which proves Theorem 2.1.

12

An example

We consider the theories El and E2 of Example 3.1, and the unification

problem

{h(x) 0 y = y 0 h(Zl 0 Z2)}'

Step 1: variable abstraction. This step results in the new system

{Xl 0 Y = yo X2,Xl = h(X),X2 = h(X3),X3 = Zl 0 Z2}'

Step 2: split non-pure equations. Since all equations are already pure,

nothing is done in this step.

Step 3: variable identification. As an example, we consider the parti­

tion where Xl and X2 are in one class, and all the other variables are in

singleton classes. Choosing Xl as representative for its class, we obtain

the new system

Step 4: choose ordering and theory indices. As an example, we take

the linear ordering

and the theory indices

Step 5: split systems. On the one hand, we get the system

r 1 = {Xl 0 Y = yo XI, X3 = Zl 0 Z2}

consisting of pure I-equations. In this system the variables with index

1, i.e., X3 and y, are still treated as variables, but the variables of index

2, i.e., Xl, Zl and Z2, are treated as free constants. The linear constant

restriction induced by the linear ordering is given by VX1 = {X3}, Vzl =

VZ2 = 0.
On the other hand, we obtain the system

consisting of pure 2-equations. Here X and Xl are treated as variables,

and X3 is treated as free constant. The constant restriction is given by

VX3 = 0.

13

This pair (r}, r 2) is one element in the set which is the output of the algo­

rithm. It is easy to see that r 1 has the solution {X3 1-+ Zl 0 Z2, Y 1-+ xd, and

r 2 has the solution {Xl 1-+ h(X3),X 1-+ X3}. Consequently, the proposition

implies that the original system has a solution.

Combination of unifiers

The combination algorithm can also be used to compute complete sets of

unifiers for elementary (El U E2)-unification problems, provided that one can

compute finite complete sets of solutions for all Ei-unification problems with

linear constant restriction (i = 1,2). The reason is that solutions of the

problems r 1, r 2 in the output of the algorithm can be combined to solutions

of the original input system. This combined solution is defined inductively

over the linear ordering chosen in Step 4 of the algorithm.

Assume that Ul is a solution of r 1 and U2 is a solution of r 2. Without loss

of generality we may assume that the substitution Ui maps all variables of

index i to terms containing only variables of index j =I i (which are treated

as free constants in r i) or new variables, i.e., variables not occurring in r 0,

r 1, or r 2. This can simply be achieved by renaming variables if necessary.

First, we define the combined solution u on the variables occurring in the

system obtained after Step 4 of the algorithm. Note that the input system

r 0 may contain additional variables which have been replaced during the

variable identification step.

Let X be the least variable with respect to the linear ordering chosen

In Step 4, and let i be its index. Since the solution Ui of r i satisfies the

constant restriction induced by the linear ordering, the term XUi does not

contain any variables of index j =I i (Recall that these variables are treated

as free constants in r i.) Thus we can simply define xu := XUi.

Now let x be an arbitrary variable with index i, and let Yb ... ,Ym be the

variables with index j =I i occurring in XUi. Since Ui satisfies the constant

restriction induced by the linear ordering, the variables Yl, ... ,Ym (which are

treated as free constants in r i) have to be smaller than x. That means that

YIU, . .. ,YmU are already defined. The term xu is now obtained from xu; by

replacing the Yk by YkU (k = 1, ... , m). Because we have assumed that the

other variables occurring in xu; are new variables, we thus have xu = XUiU.

Finally, let x be a variable of the input system which has been replaced

by the variable Y during the variable identification step. Thus yu is already

defined, and we can simply set xu := yu.

14

For all variables Z not occurring in the input system, or in f I or f 2, we

define za := z.

Example 3.3 For the above example, the solutions al = {X3 1--+ Zl 0 Z2, Y 1--+

xd and a2 = {Xl 1--+ h(X3),X 1--+ X3} of ft, f2 are combined to {Zl 1--+ Zt, Z2 1--+

Z2, X3 1--+ ZI 0 Z2, X 1--+ Zl 0 Z2, Xl 1--+ h(zl 0 Z2), X2 1--+ h(zl 0 Z2), Y 1--+ h(zl 0 Z2)}.

This construction can now be used to generate complete sets of unifiers

for elementary (EI U E 2)-unification problems. For a given input system fo,

let {(f I,ll f 1,2), ... , (f n,ll f n,2)} be the output of the combination algorithm.

For i = 1, ... , nand j = 1,2, let MiJ be a complete set of solutions of the

E;-unification problem with linear constant restriction, f;,j.

Proposition 3.4 The set of substitutions

n

U {a I a is the combined solution obtained from al E Mi,l and a2 E M i,2}
;:::1

is a complete set of (ElU Ez)-unifiers of the input system f o.

A proof of this proposition will be given in the next section. Obviously,

if all the sets Mi,j are finite, then the complete set given by the proposition

is also finite, which proves Theorem 2.2.

4 Correctness of the combination algorithm

In this section we shall prove Proposition 3.2 and Proposition 3.4, which

shows that our combination method is correct when applied to decision prob­

lems. Before we can start with our task, we have to introduce a useful tool,

which has first been utilized in connection with the combination problem in

[BJ89], namely unfailing completion of the combined theory.

Let Ell E2 be equational theories over disjoint signatures n}, n2 • We

assume that both theories are consistent, that means, they have at least one

model of cardinality greater than one, or equivalently, the identity X =Ei Y

does not hold in either theory. One can now apply unfailing completion

(see e.g., [DJ87] for definitions and properties) to the combined theory E =

El U Ez. This yields a possibly infinite ordered-rewriting system R which is

confluent and terminating on ground terms. In the following, we shall also

apply this system to terms containing variables from a fixed countable set of

15

variables Xo; but this is not a problem because these variables can simply

be treated like constants. In particular, this means that the simplification

ordering used during the completion must also take care of these additional

"constants." The ordered-rewriting system R consists of (possibly infinitely

many) equations 9 = d. Such an equation can be applied to a term s E

T(OI U O2 , Xo) iff there exists an occurrence u in t and a substitution r such

that s = s[u f- grj (s = s[u f- dr], resp.) and gr is greater than dr (dr

is greater than gr, resp.) with respect to the simplification ordering. This

application results in the new term s[u f- drj (s[u f- gr], resp.).

It is easy to see that, because the signatures of EI and E2 are disjoint,

the system R is the union of two systems Rl and R2 , where the terms in Ri

are built over the signature Oi (i = 1,2). The Ri is just the system which

would be obtained by applying unfailing completion to E i . This is an easy

consequence of the definition of critical pairs used for unfailing completion,

and of the fact that E1 and E2 are assumed to be consistent.

Let T(01 U O2 , Xo) be the set of terms built from function symbols in

0 1 U O2 and variables in X o, and let T1R denote its R-irreducible elements.

We consider an arbitrary bijection 7r : T1R ----+ Y where Y is a set of vari­

ables which is disjoint to Xo. This bijection induces mappings 7r}, 7r2 of

terms in T(OI U O2 , Xo) to terms in T(01 U O2 , Y) as follows. For vari­

ables x E X O, X1!"1 := 7r(x) (Note that variables are always R-irreducible.) If

t = J(tI, . .. ,tn) for a I-symbol J, then t1!"1 := J(t~I, . .. ,t~I). Finally, if t is a

2-term then t1!"1 := y where y = 7r(s) for the unique R-irreducible element s

of the =E-class of t. The mapping 7r2 is defined analogously. The mappings

7ri may be regarded as projections which map a possibly mixed term to an i­

pure term. We write these mappings as superscripts to distinguish them from

substitutions. The inverse 7r-
1 of 7r can be seen as a substitution which map

the variables y in Y back to the terms 7r-
1 (y), and is the identity on all other

variables. Obviously, we have t1!"i 7r-
1 =E t for all terms t E T(OI U O2 , X o),

and if t is an R-irreducible term or an i-term such that all its alien subterms

are R-irreducible, then (t1!"i)7r-1 = t.

A substitution (7 is called R-normalized on a finite set of variables Z iff

Z(7 E T1R for all variables Z E Z. The next lemma will be important in the

proof of Proposition 3.2.

Lemma 4.1 Let s, t be pure i-terms or variables, and let (7 be a substitution

which is R-normalized on the variables occurring in s, t. Then

16

Proof. (1) The if-direction is easy to prove. Obviously, (sO'y' =E. (to')1I"·

implies (sO')1I"· =E (to'y·, and thus (sO'Y'7r- 1
=E (to'Y'7r-1

. By our assump­

tions on s, t and 0', the j-terms (for j =I- i) in sO' and to' are R-irreducible,

which finally yields sO' = (sO')1I"'7r- 1 =E (to')1I"'7r- 1 = to'.

(2) From sO' =E to' follows the existence of an R-irreducible term r which

is a common R-descendant of sO' and to'. Let us now consider the derivation

So := sO' -+R SI -+R . . . r more closely. The goal is to show s~· =E. s~· =E •

. . . r1l"·. Symmetrically, we could then also deduce (to')11". = E. r1l"·, which finally

would prove the lemma.

The case where s is a variable is trivial since then So is R-irreducible,

which yields So = r. Thus assume that s is a pure i-term. Since all alien

subterms of sO' are R-irreducible, the first step of the derivation from So to

r must take place at an occurrence u which is not inside an alien subterm

of So = SO'. In particular, this means that it is done by applying a rule

9 = d of R i . To be more precise, there exists a substitution r such that

So = so[u +-- grj, SI = so[u +-- drj, and gr is greater than dr with respect

to the simplification ordering. From the fact that u is not inside an alien

subterm of So we get that s~· = s~'[u +-- (gr)1I"·j and sr' = s~'[u +-- (dr)1I"·j.

In order to conclude s~· = E. sr', it thus remains to be shown that
(gr) 1r

i = E i (dr) 1r i . To see this, we define the substitution r1ri := {x t---+

(xry' I x occurs in 9 or d}. Since g, d are pure i-terms or variables, we have

g(r1l"i) = (gr)1r' and d(r 1r·) = (dr)1I"·. Because 9 = dE Ri implies 9 =E. d, we

thus get (gr)1ri = g(r1l"·) =E. d(r 1r·) = (drY'.

If we want to continue by induction, we have to know that all alien sub­

terms of SI are R-irreducible. This need not be the case for arbitrary deriva­

tions from sO' to r. The problem is that we only have an ordered-rewriting

system which is t.erminating on ground terms. For this reason it may well

be the case that d contains variables not contained in gj and in general we

cannot be sure that the image of these variables under r does not introduce

reducible alien subterms into SI. However, if we assume that the derivation

from sO' to r is a bottom-up derivation where all the matching substitutions

(such as our r) are R-normalized, then r cannot introduce reducible alien

subterms. This assumption can be made without loss of generality because

it is easy to see that, whenever a term is not R-irreducible, then we can

apply a rule of R to this term in a way that satisfies the constraints of the

assumption. 0

17

Proof of Proposition 3.2

First, we shall show soundness of the combination algorithm, that means, we

have to demonstrate that r 0 is solvable if there exists a pair (r b r 2) in the

output set such that r 1 and r 2 are solvable.

Assume that 0"1 is a solution of r 1 and 0"2 is a solution of r 2. In the

previous section we have already described how these two solutions of the

single problems can be combined to a substitution 0", which we have called

the combined solution. It remains to be shown that 0" is in fact a solution of

roo Obviously, it is sufficient to prove that 0" is a solution of the system r'

which was obtained by Step 4 of the algorithm, and which in Step 5 was split

into r 1 and r 2. Let s == t be an equation in r', and assume without loss of

generality that this equation was put into r 1 in Step 5. Thus we know that

SO"I = EJ to"I' As an easy consequence of the definition of 0", one gets that

0" = 0"10". Since SO"I = EJ tO"I obviously implies SO"IO" = EJ tO"I 0", and thus also

sO"} 0" = E to"} 0", this shows that sO" = E to".

In the second part of the proof we have to show completeness of the

combination algorithm, that means, we have to demonstrate that there exists

a pair (r}, r2) in the output set such that r} and r 2 are solvable if ro is

solvable.

Let 0" be a solution of roo Without loss of generality we assume that

0" is also a solution of the system obtained after the first two steps of the

algorithm, that the set Yo of all variables occurring in this system is disjoint

to Xo, and that 0" is R-normalized on Yo. In particular, this implies that the

variables occurring in yO" for y E Yo are elements of Xo. The solution 0" can

be used to define the correct alternatives in the nondeterministic steps of the

combination algorithm:

• The partition of the set of all variables, which has to be chosen in the

third step, is defined as follows. Two variables y and z are in the same

class iff yo" = ZO". Obviously, this means that 0" is also a solution of the

system obtained after the variable identification step corresponding to

this partition.

• In the fourth step, the variable y gets index i if yo" is an i-term. If yo" is

itself a variable, y gets index 1 (This is arbitrary, we could have taken

index 2 as well.)

• In the fourth step, we also have to choose an appropriate linear ordering

on the variables occurring in the system. Consider the strict partial

18

ordering defined by y < z iff yu is a strict subterm of zu. We take an

arbitrary extension of this partial ordering to a linear ordering on the

variables occurring in the system.

The ~hoices we have just described determine a system f' in the set

of systems obtained after Step 4 of the algorithm, and thus a particular

pair of systems (fl' f 2) in the output set of the combination algorithm. It

remains to be shown that f b f 2 are solvable. In order to define solutions Ui

of these systems, we consider a bijection 'Tr from the R-irreducible elements

of T(OI U O2 , X o) onto a set of variables Y.

This bijection has to satisfy two conditions. First, Y should contain all

the variables occurring in f'. Since u is assumed to be R-normalized on

Yo, we have that yu is R-irreducible for all variables y occurring in f'. The

second condition on 'Tr is that 'Tr(yu) = y for all these variables y. For the

satisfiability of these conditions, the variable identification step is important.

The reason is that only because of this step we can be sure that f' does not

contain two different variables y, y' with yu = y' u.

As described above, t he bijection 'Tr induces mappings 'Trt, 'Tr2. These map­

pings will now be used to construct the solutions Ui, i = 1,2. The substitution

Ui is defined on the variables y occurring in f' by YUi := (yu)1I"i.

If y is a variable of index j #- i, the term yu is either a variable in Xo or

a j~term. In both cases we get YUi = (yU)1I"i = 'Tr(yu) = y by definition of Ui

and 'Tri. This shows that Ui really treats the variables of index j as constants.

Now assume that S == t is an equation in fi. Since this equation is also

contained in f', and since U solves f', we know that su = E tu. Since u was

assumed to be R-normalized on Yo, and since S == t is an i-equation, we can

apply the lemma ·to get (su)1I"i = Ei (t-u)1I"i • Using the definition of Ui and

the fact that s == t is an i-equation, it is easy to see that (su)1I"i = SUi and

(tu yi = tUi. Thus Ui really solves the equation s == t.

It remains to be shown that Ui satisfies the constant restriction. Assume

that x is a variable of index i, and that the variable y of index j =/: i (which

is treated as a constant in f i) occurs in XUi. We have to show that x is not

an element of Vy , i.e. , that x f. y. Recall that XUi = (XU)1I"i, and that xu

is R-irreducible. Thus, since y ¢ X o, the occurrence of y in XUi must come

from the occurrence of yu as a subterm of xu. Because of the identification

step, the fact that x and yare different variables also implies that xu and

yu are different terms. Thus yu is a strict subterm of xu, which yields y < x

because of the way the linear ordering was chosen. 0

19

Proof of Proposition 3.4

In the first part of the proof of Proposition 3.2 we have already shown that

the elements of the set of substitution defined in the formulation of Proposi­

tion 3.4 are solutions of f o. It remains to be shown that this set is complete.

Let 7 be a solution of fo. Without loss of generality we assume that

7 is also a solution of the system obtained after the first two steps of the

algorithm, that the set Yo of all variables occurring in this system is disjoint
to X o, and that 7 is R-normalized on Yo. In the second part of the proof of

Proposition 3.2 we have shown that 7 can be used to find a pair of systems

(f 1, f 2) in the output set of the combination algorithm, and to construct so­

lutions 71 and 72 of these systems. This construction makes use of a bijection

7r and mappings 7rl) 7r2 induced by this bijection as described above.

Since 7i is a solution of fi' there exist an element O'i in the complete set

of solutions of fi and a substitution Ai such that 7i =Ej O'iAi (Yi),2 where

Yi denotes the set of variables occurring in fi (i.e., the variables of index i).
Without loss of generality we may assume that the substitution O'i maps the

variables in Yi to terms containing only variables of index j =I- i (which are

treated as constants by Ai) or new variables from a set of variables Zi. We

may assume that the domain of Ai is Zi, and that the sets Xo, Yo, Zl) Z2 are

pairwise disjoint .

As described in the first part of the proof of Proposition 3.2, the solutions

O'I, 0'2 of f 1, f 2 can be combined to a solution a of f. Since this combined

solution is an element of the set of substitution defined in the formulation

of Proposition 3.4, it remains to be shown that there exists a substitution

A such that 7 =E O'A (X), where X denotes the set of variables occurring

in f o. We define A := (AI U A2)7r-
1

, where (AI U A2) is meant to denote the

substitution which is equal to Ai on Zi (i = 1,2), and the identity on all

variables not contained in ZI U Z2.

First, we show 7 =E O'A (Yl U Y2). The proof is by induction on the

linear ordering < chosen in Step 4 of the combination algorithm. Without

loss of generality, we consider a variable y E Yi. By the definition of a, we

have yo' A = (YO'dO' A. The variables occurring in the term YO'l are either

variables of index 2, i.e., elements of Y2, or new variables, i.e., elements of

ZI. We want to show that on these variables, the substitutions a A and AI7r-1

coincide modulo E.

2Recall that, for a finite set Z of variables, 61 =E 62 (Z) means that z61 =E z62 for all

z E Z .

20

Let Zl be an element of Zl occurring in YUl' Since we have assumed that

the elements of Zl ~re new variables, Zl is not in the domain of u, which yields

Zl U A = ZlA. By definition of ..\, and since Zl E ZI, we get ZIA = ZIA 17r-
1

.

If Y is the least variable with respect to the linear ordering <, then the

term YUl does not contain a variable of Y;. This is so because Ul satisfies the

linear constant restriction induced by <. Now assume that Y is an arbitrary

variable in Y1 , and let Y2 be an element of Y; occurring in YUl. Since Ul

satisfies the linear constant restriction, we know that Y2 < y. By induction,

we thus get Y2U A = E Y2T. We also have Y2T = (Y2T)1f l 7r-l = Y2Tl7r-1. Since

Tl and Al treat variables of index 2 as constants, we get Y2Tl7r-1 = Y27r-1 =

Y2Al7r-1. Thus we have shown Y2UA =E Y2Al7r-1.

To sum up, we have just shown that, for all variables Z occurrmg m

YUI, we have ZUA =E Z Al 7r-1. Consequently, we get YUA = (YUl)UA =E

(YUl)Al7r-1 =E YTl7r-1 = (YT)1fl 7r-l = yT as required.

Finally, assume that x is a variable occurring in r 0, but x f/. Yi U Y2•

This means that x has been substituted by a variable Y E Y1 U Y2 during the

variable identification step of the algorithm. On the one hand, this means

that yT = XT (since this must have triggered the identification). On the other

hand , because of this identification step, we have defined xu := yu. Thus we

have XT = yT =E YUA = XUA. This completes the proof of the proposition.

o

5 Solving unification problems with constant

restriction

We have seen that algorithms for E-unification with linear constant restric­

tion may be used to obtain- via our combination method-algorithms for

general unification. In the firs t part of this section we shall describe how,

conversely, algorithms for general unification can be used to solve unification

problems with linear constant restrictions. In the second part, constant elim­

ination algorithms together with algorithms for unification with constants are

used to solve unification problems with arbitrary constant restriction. In the

following , F is assumed to be an arbitrary consistent equational theory.

21

5.1 Using algorithms for general unification

In this subsection we shall consider both the problem of deciding solvability

and of generating complete sets of solutions of unification problems with

linear constant restrictions.

The decision problem

Let r be an F -unification problem with a linear constant restriction, and let

< be the linear ordering by which this restriction is induced. In the following,

let X denote the set of all variables and C denote the set of all free constants

occurring in r. Our goal is to construct a general F-unification problem r'
such that r is solvable iff r' is solvable.

In this new system r', the free constants of r will be treated as variables,

i.e. , the solutions are allowed to substitute terms for these "constants." For

any free constant c of r we introduce a new (free) function symbol Ie of arity

1 Vc I· Recall that Vc = {x E X 1 x < c} is the set of variables in whose a-image

c must not occur for a solution a of the problem r. The general F-unification

problem- in which the free constants of r are treated as variables- is now

defined as

Proposition 5.1 The F -unification problem with linear constant restric­

tion, r , is solvable iff the general F -unification problem r' is solvable.

Please note that the proposition only holds for unification problems with

linear constant restriction. The following example demonstrates that the

construction described above cannot be used for unification problems with

arbitrary constant restriction.

Example 5.2 Let F be the empty theory, and let x, y be variables and c, d

be free constants. We consider the following F-unification problem with

constant restriction:

r={x::::d,y::::c}, Vc={x},Vd={y}.

It is easy to see that the restriction cannot be induced by a linear ordering

on {x, y , c, d}. Obviously, the problem has the solution {x f-t d, y f-t c}.

22

The corresponding e;eneral F-unification problem is

r' = {x::':: d,y::':: c,c::':: fe(x),d::':: h(y)},

where c, d are now treated as variables. It is easy to see that this problem

does not have a solution.

However, as we shall prove below, our construction is correct for unifica­

tion problems with linear constant restriction, r.

Generating complete sets of solutions

Now we shall describe how this construction can be used to get a finite

complete set of solutions of r, provided that a finite complete set of F-unifiers

of r' exists.

Let R be the possibly infinite ordered-rewriting system which is obtained

when applying unfailing completion to F. We assume that the simplification

ordering used during the completion also takes the additional symbols fe and

variables (which are however treated as constants by the ordering) out of a

countable set Xo of new variables into account. This means that we can

apply R to terms built out of symbols in the signature of F, the additional

symbols fe, and variables in Xo. Let T1R be the R-irreducible elements of

the set of these terms.

Now we shall show how an element 0-' of a complete set of F-unifiers of

r' can be used to define a solution 0- of r. Without loss of generality we

may assume that 0-' is R-normalized on the variables occurring in r'. In

fact, ' for any substitution there exists an =F-equivalent substitution which

is R-normalized on the variables occurring in r'j and exchanging an element

of a complete set of F-unifiers of r' by an =F-equivalent substitution still

leaves us with a complete set of F-unifiers of r'.

Let 7r be a bijection from T1R onto a set of variables Y. This bijection

has to satisfy two conditions. First, Y should contain all the free constants

occurring in r (which are treated as variables in r'). Since 0-' is assumed

to be R-normalized on the variables occurring in r', we have that co-' is

R-irreducible for all these constants c. The second condition on 7r is that

7r(co-') = c for these constants c. The two conditions are satisfiable because

for c i- c' we have co-' i- c'o-'. In fact, since 0-' solves r', we know that

co-' =F fe(XIo-', .. . , xno-') and c'o-' =F fe/(XIo-', ... , xno-'). But this implies

that co-' has fe as root symbol , and c' 0-' the different symbol fel.

23

As described in Section 4, the bijection 7r induces a mapping 7rl' To this

purpose we treat the symbols of the signature of F as I-symbols and the

symbols fe as 2-symbols. The mapping 7rl is now used to define our solution

a of r. For all variables x occurring in r we define xa := (xa')1r1
• The

constants C of r are really treated as constants by a, i.e., ca = c. However,

note that c = (ca')1r l holds, anyway.

Proposition 5.3 Let C(r') be a complete set of F -unifiers of r', which are

(without loss of generality) assumed to be R-normalized on the variables oc­

curring in f'. Then the set C(r) := {a I a' E C(f')}, where a is constructed

out of a' as described above, is a complete set of solutions of the F -unification

problem with linear constant restriction, r.

Again, the proposition only holds for unification problems with linear

constant restriction.

Proof of Proposition 5.1

Recall that X denote the set of all variables and C denote the set of all free

constants occurring in f.

To prove the "only-if" direction, assume that a is a solution of f. Without

loss of generality we may assume that for all x E X the variables occurring

in xa are new variables (i.e., variables not contained in X), and that a is the

identity on all variables y rt x. We define a substitution a' on xu C (whe~e

the elements of C are now treated as variables) by, induction on the linear

ordering < which induces the constant restriction of f.

First, we consider the least element of X U C with respect to <. If this

is a variable x EX, then for all c E C we have x E v". This implies that xa

does not contain any of these free constants, and we can define xa' := xa.

If the least element of X U C is a constant c E C, then v.: .= 0. This means

that f e is a constant symbol, and we define ca' := fe.

Now let x be an arbitrary element of X, and let Ct, ... ,Cm E C be the

free constants occurring in xa. Since a satisfies the constant restriction

induced by the linear ordering, the constants Ct, ... ,Cm (which are treated as

variables in f') have to be smaller than x . That means that we may assume

by induction that Cta', ... , cma' are already defined. The term xa' is now

obtained from xa by replacing the Ck by Cka' (k = I, ... , m).

24

Finally, let c be an arbitrary element of C. By definition, the system

r' contains the equat\on c == fc(xI, ... , xn), where XI, ... , xnare the el­

ements of X which are smaller than c with respect to <. Thus we can

assume by induction that Xta', ... , xna' are already defined, and we set

ca' := fc(xta', ... ,xna').

It remains to be shown that a' is a solution of r'. Obviously, the definition

of a' implies that it solves the equations c == fc(xI, ... , xn) in r'. Now let

8 == t be an equation of r. Since a solves r, we get sa =F ta. In addition,

it is easy to see that for all c E C we have ca' = caa' and for all X E X we

have xa' = xaa'. But then sa' = 8aa' =F taa' = ta'.

To prove the "if" direction, assume that a' is a solution of r'. Without

loss of generality, we assume that a' is R-normalized on the set X U C of

all variables occurring in r'. As described above, a' can be used to define a

new substitution a as follows: For all variables x occurring in r one defines

xa := (xa'Y1. We have to show that a so~ves r.

Let 8 == t be an equation of r. Since a' solves r', we know that sa' =F ta'.

Now we can apply Lemma 4.1 to get (8a')11"1 =F (ta')1I"1. Using the definition

of a and the fact that the terms 8, t do not contain the symbols fc, it is easy

to see that (80"')11"1 = 80" and (to"')1I"1 = to". Thus 0" really solves the equation

8 == t.

It remains to be shown that a satisfies the constant restriction. Let c E C

be a free constant. Since a' solves r', we know that ca' =F fc(xta', ... ,xna'),

where {Xt, ... ,xn} = Vc . In addition, a' was assumed to be R-normalized

on XU C, which implies that ca', Xta', ... , xna' are R-irreducible terms; and

since the symbol fc does not occur in any rule of R, the term fc(xta', . .. , xna')

is also R-irreducible. Thus we have ca' = fc(xta', ... , xna'), which shows

that ca' is not a subterm of any of the terms Xta', ... , xna'. But then c

cannot occur in Xia = (Xia'Y1 (i = 1, ... , n). 0

Proof of Proposition 5.3

Now we shall show that the set C(r), as defined in the formulation of Propo­

sition 5.3, is a complete set of solutions of r. In the second part of the proof

of Proposition 5.1 we have already shown that the substitution a constructed

from a solution a' of r' is itself a solution of r. Thus C(r) is a set of solu­

tions of r. It remains to be shown that it is a complete set. As before, let

X denote the set of variables and C the set of free constants occurring in r.
Recall that the elements of C are treated as variables in r'.

25

Let T be a solution of f. Without loss of generality we assume that, for

all x EX, the variables occurring in XT are elements of Xo. As shown in the

first part of the proof of Proposition 5.1, T can be used to define a solution T'

of f'. Because of our assumption on T, it is easy to see that for all Z E XU C,

the variables occurring in ZT' are elements of Xo.

Since C(f') is a complete set of F-unifiers of f', there exists an element

a' of C(f') and a substitution>.' such that T' =F a'>.' (X U C). Let a be the

element of C(f) constructed out of a'. Our aim is to define a substitution

). which satisfies T = Fa). (X). Let Yo ~ Y denote the set of all variables

occurring in the terms xa for x EX. These terms may also contain elements

of C, which however have to be treated as constants by .A.

In the construction of a out of a' we have used a bijection 1r from T!R

onto a set of variables Y which contains C. In addition, this bijection had

to satisfy 1r(ca') = c for all c E C. The substitution a was then defined by

xa := (xa're l for all x EX. In order to be able to reverse the construction

of T' out of T we shall now consider an analogous bijection I" from T!R onto

Y. The condition on I" is that 1"((a')!R) = c for all c E C. Here (CT')!R

denotes the unique R-irreducible element of the =F-class of a'. As an easy

consequence of this condition together with the definition of T', we get that

XT = (XT')I-'I for all x E X.

The substitution ,\ is now defined on all y E Yo as y'\ := (Y1r- 1 ,\')i£I. To

complete the proof of the proposition we have to show that T =F a'\ (X).

In this proof we need a lemma which is a stronger version of Lemma 4.1

for the special case of the union of an arbitrary equational theory F with a

disjoint free theory.

Lemma 5.4 Let s, t be terms built out of symbols in the signature of F, the

additional symbols fe, and variables in Xo. Then s =F t iff Sl-'I =F tl-'I.

Proof. (1) From Sl-'I =F tI-'l we can deduce SI-'II"-1 =F tI-'l 1"-1, and we also

have s =F SI-'II"-l and t =F tI-'l 1"-1.

(2) Obviously, it is sufficient to prove the "only-if" direction for the case

where t is obtained from s by one application of an identity of F. Thus assume

that 9 = d is an identity of F, u is an occurrence in s, and T is a substitution

such that s = s[u f- gT], t = s[u f- dTJ. If the occurrence u is strictly below

an occurrence of a free function symbol, then it is easy to see that Sl-'I = tl-'I.

Otherwise, we have Sl-'I = Sl-'I [u f- (gT)1-'1 J and Sl-'I = Sl-'I [u f- (dT)1-'1 J. What

remains to be shown is (gT)1-'1 = F (dT)1-'1, and this can be done as in the

proof of Lemma 4.1. 0

26

We can now continue with the proof of the proposition. For all x E X

we have xr' =F xu')..' = (xu')1rI 7r -l)..' = XU7r- 1)..,. But then the lemma yields

xr = (xr')/l1 =F (XU7r- 1)..')/lI. It remains to be shown that (XU7r-
1)..')/l1 =F

xu).. .

For this purpose, we define a substitution (7r-
1)..')/l1 on Yo U C as follows:

for aIr z E Yo U C, z(7r-1)..')/l1 := (Z7r- 1)..')/lI. Because the terms xu for x E X

do not contain any of the free function symbols fe, it is easy to see that

(xu7r- 1)..')/l1 = (xu)(7r- 1)..')/lI.

Obviously, the substitutions).. and (7r-
1)..')/l1 coincide on Yo, but for c E C

we need not have c(7r-
1)..')/l1 = c. However, we can show that c(7r-

1)..')/l1 =F c.

In fact, C7r-1)..' = CU')..' =F cr' , and thus the lemma yields (C7r-
1)..')/l1 =F

(cr')/lI. But our assumption on J.l yields (cr')/l1 = c. To sum up, we have just

seen that).. =F (7r-
1)..')/l1 (Yo U C), which implies (xu)).. =F (xu)(7r-

1
)"')/lI.

This completes the proof of the proposition. 0

5.2 Using algorithms for constant elimination and for

unification with constants

In this subsection we shall consider unification problems with arbitrary con­

stant restrictions. It will be shown how to reduce solving this kind of prob­

lems to solving both unification problems with constants and constant elim­

ination problems.

A constant elimination problem in the theory F is a finite set ~ =

{(c},t1), ... , (cn,tn)} where the Ci'S are free constants (i.e., constant sym­

bols not occurring in the signature of F) and the ti's are terms (built over

the signature of F , variables, and free constants). A solution to such a

problem is callea a constant eliminator. It is a substitution U such that for

all i, 1 ~ i ~ n, there exists a term t~ not containing the free constant Ci

with t~ =F tiU. The notion complete set of constant eliminators is defined

analogously to the notion complete set of unifiers.

Let r be an F-unification problem with arbitrary constant restriction.

The goal is to construct a complete set of solutions of this problem. In

the first step, we just ignore the constant restriction, and solve r as an

ordinary F-unification problem with constants. Let C(r) be a complete set

of F-unifiers of this problem. In the second step, we define for all unifiers

U E C(r) a constant elimination problem ~q as follows:

~q := {(c,xu) I c is a free constant in r and x E Vc}.

27

For all a E C(r), let Cu be a complete set of solutions of the constant

elimination problem ~u.

Before we can describe the complete set of solutions of the F-unification

problem with constant restriction, r, we have to define a slightly modified

composition "0" of substitutions. Let a be an element of C(r), and let r

be a constant eliminator in Cu' Without loss of generality we assume that

r is the identity on variables not occurring in ~u, and that the terms yr

for variables y occurring in ~u contain only new variables. In particular, we
will need for technical reasons that they do not contain variables occurring

in terms xa for variables x occurring in r.

For a given variable x, let {Cl,"" cn } be the set of all constants Ci oc­

curring in r such that x E Vc., If this set is empty (i.e., n = 0,) we

define x(a 0 r) := xar. Now assume that n > O. Obviously, we have

{(Cl,Xa), ... ,(cn,xa)} ~ ~u. Since r is a solution of ~u, there exist terms

s}, ... ,Sn such that for all i, 1 :::; i :::; n, xar =F Si and Ci does not occur in

Si. It is easy to see that this also implies the existence of a single term S such

Cl, ... , Cn do not occur in sand xar =F s. We define x(a0r) := s.

Proposition 5.5 The set

u {a 0 r IrE Cu }

uEC(r)

is a complete set of solutions of the F -unification problem with constant re­

striction) r .

Proof. First, we have to show that the elements a0r of this set solve all the

equations s == t of r. Since a is an F-unifier of r, we have sa =F ta, which

implies sar =F tar. But the definition of a0r was such that ur =F a 0 r,

and thus we get s(a0 r) =F t(a 0 r).

Second, we must prove that a@r satisfies the constant restriction. Assume

that x E Vc. Then the constant elimination problem ~u contains the tuple

(c, xa). By definition of a0 r, we get that x(a0r) is a term s not containing

c.

Finally, it remains to be shown that the set is complete. Assume that

() is a solution of the F-unification problem with constant restriction, r. In

particular, this means that () solves the F-unification problem r (where the

restrictions are ignored). Hence there exist an element a of the complete set

C(r) and a substitution A such that () =F aA (X), where X denotes the set

of all variables occurring in r. Thus we have

28

• for all x E X: xO =F (xu)., and

• for all c with x EVe: C does not occur in xO,

which shows that). solves the constant elimination problem ~q. Conse­

quently, there exist an element T of the complete set Cq and a substitution

)..' such that). =F T).' (Y), where Y denotes the set of all variables occurring

in ~(1' Without loss of generality, we assume that z).' = z). for all variables

z not occurring in one of the terms yT with y E Y.

We want to show that for all x E X we have xO =F X(U®T).'. For

all x EX, we know that x() = F xu)., and since UT = F U ® T we also have

X(U ® T).' =F XUT).' . Thus it remains to be shown that xu). =F XUT).'. We

have to distinguish two cases. First, assume that (c, xu) E ~q for some c.

In this case all variables occurring in xu are elements of Y, and thus). =F

T).' (Y) yields xu). = F XUT).'. For the second case, assume that xu contains

a variable z which is not an element of Y, the set of all variables occurring in

~q. We are finished if we can show that, nevertheless, z). =F ZT).' holds for

all such varIables z . Since T was assumed to be the identity on variables not

occurring in ~q, we have ZT = z. Since Z occurs in xu for a variable x EX,

our second assumption on T implies that Z does not occur in any term yT

with y E Y. But then z)" = z)' by our assumption on).', which completes

the proof of XU). = F XUT).'. 0

6 Conclusion

We have presented a new method for treating the problem of unification in

the union of disjoint equational theories. Unlike most of the other methods

developed for this purpose, it can be used to combine decision procedures as

well as procedures computing finite complete sets of unifiers. Applicability of

our method depends on a new type of prerequisite, namely on the solvability

of unification problems with linear constant restrictions. Presupposing the

existence of a constant elimination algorithm-as necessary for the method

of Schmidt-SchauB- seems to be a stronger requirement. In fact, we have

seen that constant elimination procedures can be used to solve unification

problems with arbitrary constant restrictions. However, it is still an open

problem whether there exists an equational theory for which solving unifica­

tion problems with linear constant restrictions is finitary (or decidable) but

solving unification problems with arbitrary constant restrictions is not.

29

Our main results together with the results described in the previous sec­

tion show that there is a close correspondence between solving unification

problems with linear constant restrictions and solving general unification

problems. For a given equational theory, the first kind of problems is decid­

able (finitary solvable) if and only if the second kind of problems is. As an

interesting open problem it remains to be shown whether there exists an equa­

tional theory for which unification with constants is decidable (finitary) but

general unification-or equivalently, solving unification problems with linear

constant restrictions-is not. One should note that there already exist such

results for the case of single equations, i.e., unification problems of cardinality

one. Narendran and Otto [N090] have shown that there exists an equational

theory E such that solvability is decidable for E-unification problems (with

constants) of cardinality one, but is undecidable for E-unification problems

of cardinality greater than one, and thus also for general E-unification prob­

lems.

To make the presentation and the proof of correctness of the combination

method more concise, we did not consider possible optimizations which would

rule out certain partitions in Step 3 and certain linear orderings in Step 4 of

the algorithm.

References

[Ba91] F. Baader, "Unification Theory," Proceedings of the First Interna­

tional Workshop on Word Equations and Related Topics, to appear

as Springer LNCS.

[Bc87] L. Bachmair, Proof Methods for Equational Theories, Ph.D. Thesis,

Dept. of Compo Sci., University of Illinois at Urbana-Champaign,

1987.

[B090] A. Boudet, "Unification in a Combination of Equational Theories:

An Efficient Algorithm," Proceedings of the 10th International Con­

ference on Automated Deduction, LNCS 449, 1990.

[BJ89] A. Boudet, J.P. Jouannaud, M. Schmidt-SchauB, "Unification in

Boolean Rings and Abelian Groups," J. Symbolic Computation 8,

1989.

[Bii86] H.-J. Biirckert, "Some Relationships Between Unification, Re­

stricted Unification, and Matching," Proceedings of the 8th Inter­

national Conference on Automated Deduction, LNCS 230, 1986.

30

[Bu90] H.-J. Burckert, "A Resolution Principle for Clauses with Con­

straints," Proceedings of the 10th International Conference on Au­

tomated Deduction, LNCS 449, 1990.

[Co90] A. Colmerauer, "An Introduction to PROLOG III," C. ACM 33,

1990.

[DJ87] N. Dershowitz, J.P. Jouannaud, "Rewrite Systems," Unite Associee

au CNRS UA 410: AL KHOWARIZMI, Rapport de Recherche nO

478, 1989. To appear in Volume B of "Handbook of Theoretical

Computer Science," North-Holland.

[Fa84] F. Fages, "Associative-Commutative Unification," Proceedings of

the 7th International Conference on Automated Deduction, LNCS

170, 1984.

[He86] A. Herold, "Combination of Unification Algorithms," Proceedings of

the 8th International Conferenc~ on Automated Deduction, LNCS

230, 1986.

[He87] A. Herold, Combination of Unification Algorithms in Equational

Theories, Dissertation, Fachbereich Informatik, Universitat Kaiser­
slautern, 1987.

[HS87] A. Herold, J.H. Siekmann, "Unification in Abelian Semigroups," J.

Automated Reasoning 3, 1987.

[Ho76] J.M. Howie, An Introduction to Semigroup Theory, London: Aca­

demic Press, 1976.

[JL84] J. Jaffar, J.L. Lassez, M. Maher, "A Theory of Complete Logic

Prog~ams with Equality," J. Logic Programming 1, 1984.

[JL87] J. Jaffar, J.L. Lassez, "Constraint Logic Programming," Proceed­

ings of 14th POPL Conference, Munich, 1987.

[JK86] J .P. Jouannaud, H. Kirchner, "Completion of a Set of Rules Modulo

a Set of Equations," SIAM J. Computing 15, 1986.

[JK90] J.P. Jouannaud, C. Kirchner, "Solving Equations in Abstract Al­

gebras: A Rule-Based Survey of Unification," Preprint, 1990. To

appear in the Festschrift to Alan Robinson's birthday.

[KN91] D. Kapur, P. Narendran, "Complexity of Unification Problems with

Associative-Commutative Operators," Preprint, 1991. To appear in

J. Automated Reasoning.

31

[Ki85] C. Kirchner, Methodes et Outils de Conception Systematique

d'Algorithmes d'Unification dans les Theories equationnelles, These

d'Etat, Univ. Nancy, France, 1985.

[KK89] C. Kirchner, H. Kirchner, "Constrained Equational Reasoning,"

Proceedings of SIGSAM 1989 International Symposium on Sym­

bolic and Algebraic Computation, ACM Press, 1989.

[LS75] M. Livesey, J.H. Siekmann, "Unification of AC-Terms (bags) and
ACI-Terms (sets)," Internal Report, University of Essex, 1975, and

Technical Report 3-76, Universitat Karlsruhe, 1976.

[Ma77] G.S. Makanin, "The Problem of Solvability of Equations in a Free

Semigroup," Mat. USSR Sbornik 32, 1977.

[N090] P. Narendran, F. Otto, "Some Results on Equational Unification,"

Proceedings of the 10th Conference on Automated Deduction, LNCS

449, 1990.

[PI72] G. Plotkin, "Building in Equational Theories," Machine Intelligence

7, 1972.

[Sc89] M. Schmidt-SchauB, "Combination of Unification Algorithms," J.

Symbolic Computation 8, 1989.

[Sh91] K. Schulz, "Makanin's Algorithm - Two Improvements and a Gen­

eralization," CIS-Report 91-39, CIS , University of Munich, 1991.

[Si89] J.H. Siekmann, "Unification Theory: A Survey," in C. Kirchner

(ed.), Special Issue on Unification, Journal of Symbolic Computa­

tion 7, 1989.

[St75] M. Stickel, "A Complete Unification Algorithm for Associative­

Commutative Functions," Proceedings of the International Joint

Conference on Artificial Intelligence, 1975.

[St81] M. Stickel, "A Unification Algorithm for Associative-Commutative

Functions," J. ACM 28, 1981.

[St85] M. Stickel, "Automated Deduction by Theory Resolution," J. Au­

tomated Reasoning 1, 1985.

[Ti86] E. Tiden, "Unification in Combinations of Collapse Free Theories

with Disjoint Sets of Function Symbols," Proceedings of the 8th In­

ternational Conference on Automated Deduction, LNCS 230, 1986.

32

[Ye87] K. Yelick, "JJnification in Combinations of Collapse Free Regular

Theories," J. Symbolic Computation 3, 1987.

33

Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen

Adresse bezogen werden.

Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-90-03
Andreas Dengel, Nelson M. Mattos : Integration of

Document Representation, Processing and
Management
18 pages

RR-90-04
Bernhard Hol/under, Werner Nutt: Subsumption

Algorithms for Concept Languages
34 pages

RR-90-0S
Franz Baader: A Formal Definition for the

Expressive Power of Knowledge Representation
Languages
22 pages

RR-90-06
Bernhard Hol/under: Hybrid Inferences in KL-ONE­

based Knowledge Representation Systems
21 pages

RR-90-07
Elisabeth Andre, Thomas Rist: Wissensbasierte

Informationsprasentation:
Zwei Beitrage zum Fachgesprach Graphik und KI:

1. Ein planbasierler Ansatz zur Synthese

illustrierter Dokumente

2. Wissensbasierte Perspektivenwahl fUr die
automatische Erzeugung von 30-
Objektdarstellungen

24 Seiten

RR-90-08
Andreas Dengel: A Step Towards Understanding
Paper Documents
25 pages

RR -90 -09
Susanne Biundo: Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

DFKI
-Bi bliothek­
PF 2080
6750 Kaiserslautern
FRO

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the

above address.
The reports are distributed free of charge except if

otherwise indicated.

RR-90-10
Franz Baader. Hans-Jurgen Burckert. Bernhard
Hol/under. Werner NUll. Jorg H. Siekmann:
Concept Logics
26 pages

RR-90-11
Elisabeth Andre. Thomas Rist: Towards a Plan­
Based Synthesis of Illustrated Documents
14 pages

RR-90-12
II arold Boley: Dedarati ve Operations on Nets
43 pages

RR-90-13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to

Terminological Cycles
40 pages

RR-90-14
Franz Schmalhofer. Otto Kuhn. Gabriele Schmidt:
Integrated Knowledge Acquisition from Text,

Previously Solved Cases, and Expert Memories
20 pages

RR-90-1S
Harald Trost : The Application of Two-level

Morphology to Non-concatenative German

Morphology
13 pages

RR-90-16
Franz Baader. Werner Nutt : Adding Homomor­

phisms to CommutativelMonoidal Theories. or:
How Algebra Can Help in Equational Unification
25 pages

RR-90-17
Stephan Busemann: Generalisierte
Phasenstrukturgrammatiken und ihre Verwendung

zur maschinellen Sprachverarbeitung
114 Seiten

RR·91·01
Franz Baader, Hans-Jiirgen Burckert, Bernhard

Nebel , Werner NUll, Gert Smolka: On.the
Expressivity of Feature Logics with Negation,
Functional Uncertainty, and Sort Equations
20 pages

RR·91·02 .
Francesco Donini, Bernhard Hollunder, Maurizio

Lenzerini , Alberto Marchetti Spaccamela, Daniele

Nardi , Werner Nutt : The Complexity of Existential
Quantification in Concept Languages
22 pages

RR·91·03
BHollunder, Franz Baader: Qualifying Number
Restrictions in Concept Languages
34 pages

RR·91·04
Harald Trost: X2MORF: A Morphological
Component Based on Augmented Two-Level
Morphology
19 pages

RR·91·05
Wolfgang Wahlster , Elisabeth Andre. Winfried

Graf. Thomas Rist: Designing Illustrated TexL<;:
How Language Production is inOuenced by
Graphics Generation.
17 pages

RR·91·06
ElisabethAndre. Thomas Rist: Synthesizing
Illustrated Documents A Plan-Based Approach
11 pages

RR·91·07

Gunter Neumann . Wolfgang Finkler: A Head­
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR·91-08

Wolfgang Wahlster . Elisabeth Andre. Som

Bandyopadhyay. Winfried Graf. Thomas Rist:

WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

RR·91·09
Hans-Jurgen Burckert, Jurgen Muller.

Achim Schupeta: RA TMAN and its Relation to

Other Multi-Agent Testbeds
31 pages

RR·91·10
Franz Baader, Philipp Hanschke: A Scheme for
Integrating Concrete Domains into Concept
Languages
31 pages

RR·91·11
Bernhard Nebel: Belief Revision and Default
Reasoning: Syntax-Based Approaches
37 pages

RR·91·12
J.Mark Gawron. John Nerbonne, Stanley Peters:

The Absorption Principle andE-Type Anaphora
33 pages

RR·91·13
Gert Smolka: Residuation and Guarded Rules for
Constraint Logic Programming
17 pages

RR·91·14

Peter Breuer. Ji.i.rgen Muller: A Two Level
Representation for Spatial Relations, Part I
27 pages

RR·91·15
Bernhard Nebel. Gert Smolka : Attributive
Description Formalisms .. . and the Rest of the
World
20 pages

RR·91·16
Stephan Busemann: Using Pattern-Action Rules for
the Generation of GPSG Structures from Separate
Semantic Representations
18 pages

RR·91·17
Andreas Dengel. Nelson M. Mattos :

The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR·91·18

John Nerbonne. Klaus Netter. Abdel Kader Diagne,

Ludwig Dickmann. Judith Klein:

A Diagnostic Tool for German Syntax
20 pages

RR·91·19

Munindar P. Singh: On the Commitments and
Precommitrnents of Limited Agents
15 pages

RR·91·20

Christoph Klauck. Ansgar Bernardi, Ralf Legleitner

FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR·91-21

Klaus Netter: Clause Union and Verb Raising
Phenomena in German
38 pages

RR-91-22
Andreas Dengel: Self-Adapting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter, Ansgar Bernardi, Christoph

Klauck, Ralf Legleitner: Akquisition und
Reprasentation von technischem Wissen fUr
Planungsaufgaben im Bereich der Fertigungstechnik
24 Seiten

RR-91-24
Jochen Heinsohn : A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages

RR-91-25
Karin Harbusch, Wolfgang Finkler, Anne Schauder:

Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M . Bauer, S. Biundo, D. Dengler, M. Necking,

1. Koehler, G. Merziger:

Integrated Plan Generation and Recognition
- A Logic-Based Approach -

17 pages

RR-91-27
A. Bernardi, H. Boley, Ph.llanschke,

K. Hinkelmann, Ch . Klauck, O. Kahn ,

R . Legleitner, M. Meyer, M. M. Richter,

F. Schmalhojer, G. Schmidt, W. Sommer:

ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf Backojen, Harald Trost , Ilans Uszkoreit :

Linking Typed Feature Formalisms and
Terminological Knowledge Representation
Languages in Natural Language Front-Ends
11 pages

RR-91-29
Hans Uszkoreit: Strategies for Adding Control
Information to Declarative Grammars
17 pages

RR-91-30
Dan Flickinger, John Nerbonne:

Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39pages

RR-91-31
H.-v. Krieger, 1. Nerbonne :

Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
Rolf Backojen, Lutz Euler, Gunther Gorz:

Towards the Integration of Functions, Relations and
Types in an AI Programming Language
14 pages

RR-91-33
Franz Baader, Klaus Schulz:

Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-35
Winjried Graj, Wolfgang Maaj3: Constraint-basierte
Verarbcitung graphischen Wissens
14 Seiten

DFKI Technical Memos

TM-90-03
Franz Baader, Bernhard Hollunder: KRIS:
Knowledge Representation and Inference System
-System Description-
15 pages

TM-90-04
Franz Baader, Hans-Jurgen Burckert, Jochen

Heinsohn, Bernhard Hollunder, Jurgen Muller.

Bernhard Nebel, Werner Nutt . Hans-Jurgen

Profltlich: Terminological Knowledge Represen­
tation : A Proposal for a Terminological Logic
7 pages

TM-91-01
Jana Kohler: Approaches to the Reuse of Plan
Schemata in Planning Formalisms
52 pages

TM-91-02
Knutllinkelmann : Bidirectional Reasoning of Hom
Clause Programs: Transformation and Compilation
20 pages

TM-91-03
Olto Kuhn, Marc Unster. Gabriele Schmidt:

Clamping. COKAM. KADS, and OMOS:
The Construction and Operationalization
of a KADS Conceptual Model
20 pages

TM-91-04
Harold Boley (Ed.):

A sampler of Relational/Functional Definitions
12 pages

TM-91-05
Jay C. Weber. Andreas Dengel. Rainer Bleisinger:

Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters
10 pages

TM·91·06
Johannes Stein: Aspects of Cooperating Agents
22 pages

TM·91·08
Munindar P. Singh: Social and Psychological
Commitments in Multiagent Systems
11 pages

TM·91·09
Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents
18 pages

TM·91·10
Bela Buschauer. Peter Poller. Anne Schauder. Karin
Harbusch: Tree Adjoining Grammars mit

Unifikation
149 pages

TM·91·11
Peter Wazinski: Generating Spatial Descriptions for
Cross-modal References
21 pages

TM·91·12
Klaus Becker . Christoph Klau ck . Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seilen

TM·91·13
Knut Hinkelmann :
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

OFKI Oocuments

0·90·05
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: Formalismus zur Reprtisentmion von

Geo-metrie- und Technologieinfonnationen als Teil
eines Wissensbasierten Produktmodells
66 Seilen

0·90·06
Andreas Becker: The Window Tool Kit
66 Seilen

D·91·0 1
Werner Stein. Michael Sintek: Relfun/X - An

Experimental Prolog Implementation of Rcl fun
48 pages

0·91·03
Harold Boley. Klaus Elsbernd. I-Ians-Gunther Hein.
Thomas Krause: RFM Manual: Compil ing

RELFUN into the RelationallFunctional Machine
43 pages

0·91·04
DFK1 Wissenschaftiich-Technischer Jahresbericht

1990
93 Seilen

0·91·06
Gerd Kamp: Entwurf, vergleichende Beschreibung

und Integration eines ArbeitsplanersteUungssystems

fUr Drehteile
130 Seilen

0·91·07
Ansgar Bernardi. Christoph Klauck. Ralf Legleitner
TEC-REP: Reprasentation von Geometrie- und
Technologieinformationen
70 Seilen

0·91·08
Thomas Krause: Globale Datentlu/3analyse und

horizontale Compilation der relational-funktionalen
Sprache RELFUN
137 pages

0·91·09
David Powers and Lary Reeker (Eds):
Proceedings MLNLO'91 - Machine Learning of

Natural Language and Ontology
211 pages

Note: This document is available only for a
nominal charge of 25 OM (or 15 US-$).

0·91·10
Donald R. Steiner. Ji1.rgen Mi1.11er (Eds.) :
MAAMA W'91: Pre-Proceedings of the 3rd

European Workshop on "Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages

Note: This document is available only for a
nominal charge of 25 OM (or 15 US-$).

0-91·11
Thilo C. I-Iorstmann:Distributed Truth Maintenance
61 pages

0·91·12
Bernd Bachmann:

Hieracon - a Knowledge Representation System

with Typed Hierarchies and Constraints
75 pages

D·91·13
International Workshop on Terminological Logics

Organizers: Bernhard Nebel. Christo! Peltason. Kai
von Luck

131 pages

D·91·14
Erich Achilles. Bernhard Hollunder. Armin Law:.
J6rg-Peter MOhren: WS: ~owledge

~presentation and Ii1ference System

- Benutzerhandbuch -
28 Seilen

Unlflcatlon- lil- the un lcfri or o-Islolnt Equafionall heorles:
Combining Decision Procedures

RR-91-33
Research Report

Franz Baader, Klaus Schulz

