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Abstract 

Most of the work on the combination of unification algorithms for 

the union of disjoint equational theories has been restricted to al­

gorithms which compute finite complete sets of unifiers. Thus the 

developed combination methods usually cannot be used to combine 

decision procedures, i.e ., algorithms which just decide solvability of 

unification problems without computing unifiers. In this paper we de­

scribe a combination algorithm for decision procedures which works 

for arbitrary equational theories , provided that solvability of so-called 

unification problems with constant restrictions-a slight generaliza­

tion of unification problems with constants-is decidable for these 

theories . A,S a consequence of this new method, we can for example 

show that general A-unifiability, i.e., solvability of A-unification prob­

lems with free function symbols, is decidable. Here A stands for the 

equational theory of one associative function symbol. 

Our method can also be used to combine algorithms which compute 

finite complete sets of unifiers , Manfred Schmidt-SchauB' combination 

result, the until now most general result in this direction, can be 

obtained as a consequence of this fact. We also get the new result 

that unification in the union of disjoint equational theories is finitary, 

if general unification-i .e., unification of terms with additional free 

function symbols-is finitary in the single theories . 
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1 Introduction 

E-unification is concerned with solving term equations modulo an equational 

theory E. The theory is called "unitary" ("finitary") if the solutions of a 

system of equations can always be represented by one (finitely many) so­

lution(s). Otherwise the theory is of type "infinitary" or "zero" (see e.g., 

[Si89,JK90,Ba91j for an introduction to unification theory). Equational the­

ories which are of unification type unitary or finitary play an important role 

in automated theorem provers with "built in" theories (see e.g., [PI72,St85]), 

in generalizations of the Knuth-Bendix algorithm (see e.g., [JK86,Bc87]), 

and in logic programming with equality (see e.g., [JL84]). The reason is that 

these applications usually require algorithms which compute finite complete 

sets of unifiers, i.e. , finite sets of unifiers from which all unifiers can be gen­

erated by instantiation. However, with the recent development of constraint 

approaches to theorem proving (see e.g., [Bii90]), term rewriting (see e.g., 

[KK89j), and logic programming (see e.g., [JL87,C090j), the computation of 

finite complete sets of unifiers is no longer indespensable for these applica­

tions. It is enough to decide satisfiability of the constraints, that means e.g., 

solvability of the unification problems. In the present paper, the design of 

decision procedures for unification probleins will be a major issue. 

The signature matters 

When considering unification in equational theories one has to be careful with 

regard to the signature over which the terms of the unification problems can 

be built. This leads to the distinction between elementary unification (where 

the terms to be unified are built over the signature of the equational theory, 

i.e., the function symbols occurring in the axioms of the theory), unifica­

tion with constants (where additional free constant symbols may occur), and 

general unification (where additional free function symbols of arbitrary arity 

may occur). 

The following facts show that there really is a difference between the three 

types of E-unification: 

• There exist theories which are unitary with respect to elementary uni­

fication , but finitary with respect to unification with constants. An 

example for such a theory is the theory of abelian monoids, i.e., the 

theory of an associat ive-commutative (AC) function symbol with a unit 

element (see e.g., [He87]). 
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• There exists an equational theory for which elementary unification is 

decidable, but unification with constants is undecidable (see [Bii86]) . 

• From the development of the first algorithm for AC-unification with 

constants [St75,LS75j it took almost a decade until the termination of 

an algorithm for general AC-unification was shown by Fages [Fa84]. 

The applications of theory unification mentioned above require algorithms 

for general unification. This fact is illustrated by the following example. 

Example 1.1 The theory A = {f(J(x, y), z) = f(x, f(y, z))} only contains 

the binary symbol f. When talking about A-unification, one first thinks of 

unifying modulo A terms built by using just the symbol f and variables, or 

equivalently, of unifying words over the alphabet V of all variables. 

However, suppose that a resolution theorem prover-which has built in 

the theory A-gets the formula 

:3x: (Vy : f(x,y) = y 1\ Vy:3z: f(z,y) = x) 

as axiom. In a first step, this formula has to be Skolemized, i.e., the existen­

tial quantifiers have to be replaced by new function symbols. In our example, 

we need a nullary symbol e and a unary symbol i in the Skolemized form 

Vy:f(e,y)=y 1\ Vy:f(i(y),y)=e 

of the axiom. This shows that, even if we start with formulae containing 

only terms built over f, our theorem prover has to handle terms containing 

additional free symbols. 

The combination problem 

We have seen that the question of how algorithms for elementary unification 

(or for unification with constants) can be used to get algorithms for general 

unification is nontrivial and important for applications. Even more general, 

one often would like to derive algorithms for unification in the union of 

disjoint equational theories, i.e., in the union of several equational theories 

over disjoint signatures, from unification algorithms in the single theories. 

The importance for applications of this so-called "combination problem" is 

illustrated by the following example. 

Example 1.2 Assume that we want to compute a canonical term rewriting 

system for the theory of Boolean rings. Thus we have a signature consisting 
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of two binary symbols. "+" and "*", a unary symbol "-", and two nullary 

symbols "0" and "1". Since the addition and multiplication in Boolean rings 

is associative and commutative, and since commutativity cannot be oriented 

into a terminating rewrite rule, we have to use rewriting modulo associativity 

and c.ommutativity of "+" and "*". 
But then critical pairs also must be computed modulo associativity and 

commutativity of these two symbols. To be more precise, we consider the 

theories AC+ := {(x + y) + z = x + (y + z),x + y = y + x}, and AC. := 

{(x * y) * z = x * (y * z), x * y = y * x}. Critical pairs are computed with the 

help of general unification modulo AC+ U AC., i.e., modulo the union of the 

two disjoint equational theories AC+ and AC •. 

This example can also be used to demonstrate that going from elementary 

unification to general unification is in fact an instance of the combination 

problem. If we define the free theory for "-", "0" and "I" to be FO,l,- = 
{-x = -x,O = 0, 1 = I}, then one can \1se elementary unification modulo 

AC+ U AC. U FO,l ,- instead of general unification modulo AC+ U AC. for 

computing critical pairs. 

When considering the combination problem, until now the attention was 

mostly restricted to finitary unifying theories, and by unification algorithm 

one meant a procedure which computes a finite complete set of unifiers. The 

problem was first considered in [St75,St81,Fa84,HS87] for the case where 

'several AC-symbols and free symbols may occur in the terms to be unified. 

More general combination problems were, for example, treated in [Ki85, Ti86, 

He86,Ye87,BJ89], but the theories considered in these papers always had to 

satisfy certain restrictions (such as collapse-freeness or regularityl) on the 

syntactic form of their defining identities. 

The problem was finally solved in its until now most general form by 

Schmidt-SchauB [Sc89]. His combination algorithm imposes no restriction on 

the syntactic form of the identities. The only requirements for a combination 

of disjoint theories E, Fare: 

• All unification problems with constants must be finitary solvable in E 

and F. 

• All constant elimination problems must be finitary solvable in E and 

F. 

1 A theory E is called collapse-free if it does not contain an identity of the form :z: = t 
where :z: is a variable and t is a non-variable term, and it is called regular if the left and 

right hand sides of the identities contain the same variables . 
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A more efficient version of this combination algorithm has been described by 

Boudet [B090]. 

The method of Schmidt-SchauB can also handle theories which are not 

finitary. In this case, procedures which enumerate complete sets of unifiers for 

the single theories can be combined to a procedure enumerating a complete 

set of unifiers for their union. However, even if unification in the single 

theories is decidable, this does not show how to get a decision algorithm for 

unifiability in the combined theory. 

The infinitary theory A = {f(J(x, y), z) = f(x, f(y, z))} is an example for 

this case. In 1972, Plotkin [PI72] has described a procedure which enumer­

ates minimal complete sets of A-unifiers for general A-unification problems, 

and in 1977 Makanin [Ma77] has shown that A-unification with constants is 

decidable. But in 1991, decidability of general A-unification was still men­

tioned as an open problem by Kapur and Narendran [KN91] in their table 

of known decidability and complexity results for uriification. Such a decision 

procedure could, for example, be useful when building associativity into a the­

orem prover via constraint resolution; and it could be used to make Plotkin's 

enumeration procedure terminating for equations having finite complete sets 

of A-unifiers. 

In his paper on unification in the combination of arbitrary disjoint equa­

tional theories [Sc89], Schmidt-SchauB also treats the problem of how to 

combine decision procedures. But in this case he needs decision procedures 

for general unification in the single theories as prerequisites for his combina­

tion algorithm. Thus his result cannot be used to solve the above mentioned 

open problem of decidability of general A-unification. 

The research which will be presented in this paper builds up on the ideas 

of Schmidt-SchauB and Boudet. It was motivated by the question of how to 

get a decision procedure for general A-unification. However, the results we 

have obtained are more general. We shall present a method which allows 

one to decide unifiability in the union of arbitrary disjoint equational theo­

ries, provided that solvability of so-called unification problems with constant 

restrictions- a slight generalization of unification problems with constants­

is decidable for the single theories. In addition, our method can also be used 

to combine algorithms which compute finite complete sets of unifiers. 

These main results and some of the interesting consequences will be de­

scribed in the next section. Among these consequences are the new results 

that general A-unification is in fact decidable, and that the union of disjoint 

equational theories is finitary if the single theories are finitary with respect 
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to general unification. 

In Section 3 we shall present the combination algorithm for the decision 

problem, and describe how it can also be used to generate complete sets of 

unifiers. Section 4 proves the correctness of the method. In the fifth section 

we shall describe conditions under which algorithms for solving unification 

problems with constant restrictions exist. Some of the consequences men­

tioned in Section 2 depend on these results. 

2 Main results and consequences 

As mentioned in the introduction, we have to consider a slight generalization 

of E-unification problems with constants, so-called E-unification problems 

with constant restriction, which will be introduced below. Having an algo­

rithm which solves these kind of problems is the only prerequisite necessary 

for our combination method. 

Recall that an E-unification problem with constants is a finite set of equa­

tions r = {81 ::::::: t 1 , . . . ,8n ::::::: tn}, where the terms 81, ... ,tn are built from 

variables, the function symbols occurring in the axioms of E, and additional 

free constant symbols . Now, an E-unification problem with constant restric­

tion is an ordinary E-unification problem with constants, r, where each free 

constant c occurring in the problem r is equipped with a set Ve of variables, 

namely, the variables in whose image c must not occur. A solution of the 

problem is an E-unifier u of r such that for all c, x with x EVe, the constant 

c does not occur in xu. Complete sets of solutions of unification problems 

with constant restriction are defined as in the case of ordinary unification 

problems. 

It turns out that our combination method does not really need an al­

gorithm which can handle E-unification problems with arbitrary constant 

restrictions; it is enough to deal with problems with a so-called linear con­

stant restriction. Such a restriction is induced by a linear ordering on the 

variables and free constants as follows: Let X be the set of all variables and 

C be the set of all free constants occurring in r. For a given linear ordering 

< on xu C, the sets Vc are defined as {x I x is a variable with x < c}. 

We are now ready to formulate our first main result, which is concerned 

with combining decision algorithms. The combination algorithm which is 

used to establish this result will be described in the next section. 
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Theorem 2.1 Let Ell' .. ,En be equational theories over disjoint signatures 

such that solvability of Ei-unification problems with linear constant restriction 

is decidable for i = 1, ... , n. Then unifiability is decidable for the combined 

theory EI U ... U En. 

By "unifiability" we mean here solvability of elementary unification prob­

lems. However, we shall see below that the result can be lifted to general 

unification, and to solvability of unification problems with linear constant re­

striction. The theorem also has several other interesting consequences, which 

are listed below. 

1. Let E be an equational theory such that solvability of E-unification prob­

lems with linear constant restriction is decidable. Then solvability of gen­

eral E-unification problems is decidable. 

In fact, for a given set n of function symbols we can always build the 

free theory Fn as exemplified in Example 1.2. It is easy to see that 

Fn satisfies the assumption of the theorem; and obviously, any general 

unification problem modulo E can be seen as an elementary unification 

modulo E U Fn (if n contains all the additional free function symbols 

occurring in the problem). 

2. This argument also shows why the result of the theorem can be lifted 

to general unification: in order to get decidability of general unification 

modulo EI U ... U En, apply the theorem to E I, ... , En, Fn. 

3. General A-unifiability is decidable. 

For A, decidability of unification problems with constant restriction is 

an easy consequence of a result by Schulz [Sh91] on a generalization of 

Makanin's procedure. This result shows that it is still decidable whether 

a given A-unification problem with constants has a solution for which the 

words substituted for the variables in the problem are elements of given 

regular languages over the constants. It is easy to see that problems with 

constant restriction are a special case of these more generally restricted 

problems. 

4. General AI-unifiability, where AI:= AU {f(x , x) = x}, is decidable. 

This was also stated as an open problem in [KN91]. For AI, decidabil­

ity of unification problems with constant restriction easily follows from 

the well-known fact (see e.g., [H076]) that finitely generated idempotent 

semigroups are finite. 
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5. If solvability of th6 Ei-unification problems with linear constant restric­

tion can be decided by an NP-algorithm, then unifiability in the combined 

theory is also NP-decidable. 

This fact will become obvious once we have described our. combination 

algorithm. As a consequence one gets easy proofs of Kapur and Naren­

dran's results [KN91] that solvability of general AC- and ACI-unification 

problems can be decided by NP-algorithms. For these theories, NP­

decidability of unification problems with constant restriction can be shown 

very similarly as in the case of ordinary unification problems with con­

stants. 

6. Let E 1 , • •. ,En be equational theories over disjoint signatures such that 

solvability of general Ei-unification problems is decidable for i = 1, ... ,n. 

Then unifiability is decidable for the combined theory El U ... U En. This 

result, which was first proved by Schmidt-SchauB (see [Sc89], Theorem 

10.6), can also be obtained as a corollary to our theorem. In fact, we 

can show that solvability of E-unification problems with linear constant 

restrictio~ can be reduced to solvability of general E-unification problems 

(see Section 5). 

7. Together with the second consequence mentioned above, this reduction 
also shows that the result of Theorem 2.1 can be lifted to unification prob­

lems with linear constant restriction. 

The algorithm which will be introduced for proving Theorem 2.1 can also 

be used to compute complete sets of unifiers. 

Theorem 2.2 Let E1 , ... ,En be equational theories over disjoint signatures 

such that all Ei-unification problems with linear constant restriction have 

finite complete set of solutions (i = 1, ... , n). Then the combined theory 

El U ... U En is finitary. 

Again, we are talking about elementary unification for the combined the­

ory; but as for the case of the decision problem, the result can easily be 

lifted to general unification, and to unification problems with linear constant 

restriction. It should be noted that this result is effective in the sense that 

we really get an algorithm computing finite complete set of unifiers for the 

combined theory, provided that for the single theories there exist algorithms 

computing finite complete sets of solutions of unification problems with lin­

ear constant restriction. In the following, we mention two other interesting 

consequences of the theorem. 
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8. Let E1, . .. ,En be equational theories over disjoint signatures which are 

finitary with respect to general unification. Then the combined theory 

E1 U ... U En is finitary. 

In fact, we can show how finite complete sets of unifiers for general E;­

unification problems can be used to construct finite complete sets of so­

lutions for unification problems with linear constant restriction (see Sec­

tion 5). 

9. Algorithms which compute finite complete sets of unifiers for unification 
with constants, and finite complete sets of constant eliminators can be 

used to get an algorithm which computes finite complete sets of solutions 

for unification problems with constant restriction (see Section 5). As a 

consequence, the combination result of Schmidt-SchaujJ ([Sc89], Corollary 

7.14) mentioned in the introduction can also be obtained as a corollary to 

Theorem 2.2. 

3 The combination algorithm 

For the sake of convenience we shall restrict the presentation to the combi­

nation of two theories. The c0mbination of more than two theories can be 

treated analogously. Before we can start with the description of the algorithm 

we have to introduce some notation. 

Let E1, E2 be two equational theories built over the disjoint signatures 

0 1 , O2 , and let E = E1 U E2 denote their union. Since we are only interested 

in elementary E-unification, we can restrict our attention to terms built from 

variables and symbols of 0 1 U02 . The elements of 0 1 will be called I-symbols 

and the elements of O2 2-symbols. A term t is called i-term iff it is of the 

form t = f(th ... , tn) for an i-symbol f (i = 1,2). A subterm s of a I-term t 

is called alien subterm of t iff it is a 2-term such that every proper superterm 

of s in t is a I-term. Alien sub terms of 2-terms are defined analogously. An 

i-term s is pure iff it contains only i-symbols and variables. An equation 

s ~ t is pure iff there exists an i, 1 ~ i ~ 2, such that sand t are pure 

i-terms or variables; this equation is then called an i-equation. Please note 

that according to this definition equations of the form x ~ y where x and 

yare variables are both 1- and 2-equations. In the following, the symbols 

x, y, z, with or without indices, will always stand for variables. 

Example 3.1 Let 0 1 consist of the binary (infix) symbol "0" and O2 of the 

unary symbol "h", letE1 := {x 0 (y 0 z) = (x 0 y) 0 z} be the theory which 
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says that "0" is associ(~.tive, and let E2 := {h( x) = h( x)} be the free theory 

for "h". 

The term yoh(zoh(x)) is a I-term which has h(zoh(x)) as its only alien 

subterm. The equation h(X1) 0 X2 == Y is not pure, but it can be replaced 

by two pure equations as follows. We replace the alien subterm h(xd of 

h(X1) 'a X2 by a new variable z. This yields the pure equation z 0 X2 == y. In 

addition, we consider the new equation z == h(X1). This process of replacing 

alien sub terms by new variables is called variable abstraction. It will be the 

first of the five steps of our combination algorithm. 

The main procedure 

The input for the combination algorithm is an elementary E-unification prob­

lem, i.e., a system r 0 = {S1 == tIl . .. , 8 n == t n}, where the terms 81l ... ,tn are 

built from variables and the function symbols occurring in 0 1 U02 , the signa­

ture of E = E1 U E 2 • The first two steps of the algorithm are deterministic, 

i.e., they transform the given system of equations into one new system. 

Step 1: variable abstraction. Alien subterms are successively replaced 

by new variables until all terms occurring in the system are pure. To 

be more precise, assume that 8 == t or t == 8 is an equation in the current 

system, and that 8 contains the alien subterm 81. Let x be a variable 

not occurring in the current system, and let 8' be the term obtained 

from 8 by replacing 81 by x. Then the original equation is replaced by 

the two equat ions 8' == t and x == 81. This process has to be iterated 

until all terms occurring in the system are pure. It is easy to see that 

this can be achieved after finitely many iterations. Now all the terms 

in the system are pure, but there may still exist non-pure equations, 

consisting of a I-term on one side and a 2-term on the other side. 

Step 2: split non-pure equations. Each non-pure equations of the form 

8 == t is replaced by two equations x == 8, X == t where the x are always 

new variables. 

It is quite obvious that these two steps do not change solvability of the 

system. The result is a system which consists of pure equations. The third 

and the fourth step are nondeterministic, i.e., a given system is transformed 

into finitely many new systems . Here the idea is that the original system is 

solvable iff at least one of the new systems is solvable. 
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Step 3: variable identification. Consider all possible partitions of the 

set of all variables occurring in the system. Each of these partitions 

yields one of the new systems as follows. The variables in each class of 

the partition are "identified" with each other by choosing an element of 

the class as representative, and replacing in the system all occurrences 

of variables of the class by this representative. 

Step 4: choose ordering and theory indices. This step doesn't change 

a given system, it just adds some information which will be important 

in the next step. For a given system, consider all possible strict lin­

ear orderings < on the variables of the system, and all mappings ind 

from the set of variables into the set of theory indices {I, 2}. Each pair 

«, ind) yields one of the new systems obtained from the given one. 

The last step is again deterministic. It splits each of the systems already 

obtained into a pair of pure systems. 

Step 5: split systems. A given system r is split into two systems r 1 and 

r 2 such that r 1 contains only I-equations and r 2 only 2-equations. 

These systems can now be considered as unification problems with lin­

ear constant restriction . .In the system fi' the variables with index i 

are still treated as variables, but the variables with alien index j =I i 

are treated as free constants. The linear constant restriction for r i is 

induced by the linear ordering chosen in the previous step. 

The output of the algorithm is thus a finite set of pairs (r 1, r 2) where 

the first component r 1 is an E1-unification problem with linear constant 

restriction, and the second component r 2 is an E 2-unification problem with 

linear constant restriction. 

Proposition 3.2 The input system r 0 is solvable if and o-nly if there exists 

a pair (r1,r2 ) in the output set such that r 1 and r 2 are solvable. 

A proof of this proposition is described in the next section. Obviously, 

if solvability of Er and Erunification problems with linear constant re­

strictions is decidable, the proposition implies decidability of elementary E­

unifiability, which proves Theorem 2.1. 
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An example 

We consider the theories El and E2 of Example 3.1, and the unification 

problem 

{h(x) 0 y = y 0 h(Zl 0 Z2)}' 

Step 1: variable abstraction. This step results in the new system 

{Xl 0 Y = yo X2,Xl = h(X),X2 = h(X3),X3 = Zl 0 Z2}' 

Step 2: split non-pure equations. Since all equations are already pure, 

nothing is done in this step. 

Step 3: variable identification. As an example, we consider the parti­

tion where Xl and X2 are in one class, and all the other variables are in 

singleton classes. Choosing Xl as representative for its class, we obtain 

the new system 

Step 4: choose ordering and theory indices. As an example, we take 

the linear ordering 

and the theory indices 

Step 5: split systems. On the one hand, we get the system 

r 1 = {Xl 0 Y = yo XI, X3 = Zl 0 Z2} 

consisting of pure I-equations. In this system the variables with index 

1, i.e., X3 and y, are still treated as variables, but the variables of index 

2, i.e., Xl, Zl and Z2, are treated as free constants. The linear constant 

restriction induced by the linear ordering is given by VX1 = {X3}, Vzl = 

VZ2 = 0. 
On the other hand, we obtain the system 

consisting of pure 2-equations. Here X and Xl are treated as variables, 

and X3 is treated as free constant. The constant restriction is given by 

VX3 = 0. 
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This pair (r}, r 2) is one element in the set which is the output of the algo­

rithm. It is easy to see that r 1 has the solution {X3 1-+ Zl 0 Z2, Y 1-+ xd, and 

r 2 has the solution {Xl 1-+ h(X3),X 1-+ X3}. Consequently, the proposition 

implies that the original system has a solution. 

Combination of unifiers 

The combination algorithm can also be used to compute complete sets of 

unifiers for elementary (El U E2)-unification problems, provided that one can 

compute finite complete sets of solutions for all Ei-unification problems with 

linear constant restriction (i = 1,2). The reason is that solutions of the 

problems r 1, r 2 in the output of the algorithm can be combined to solutions 

of the original input system. This combined solution is defined inductively 

over the linear ordering chosen in Step 4 of the algorithm. 

Assume that Ul is a solution of r 1 and U2 is a solution of r 2. Without loss 

of generality we may assume that the substitution Ui maps all variables of 

index i to terms containing only variables of index j =I i (which are treated 

as free constants in r i ) or new variables, i.e., variables not occurring in r 0, 

r 1, or r 2. This can simply be achieved by renaming variables if necessary. 

First, we define the combined solution u on the variables occurring in the 

system obtained after Step 4 of the algorithm. Note that the input system 

r 0 may contain additional variables which have been replaced during the 

variable identification step. 

Let X be the least variable with respect to the linear ordering chosen 

In Step 4, and let i be its index. Since the solution Ui of r i satisfies the 

constant restriction induced by the linear ordering, the term XUi does not 

contain any variables of index j =I i (Recall that these variables are treated 

as free constants in r i.) Thus we can simply define xu := XUi. 

Now let x be an arbitrary variable with index i, and let Yb ... ,Ym be the 

variables with index j =I i occurring in XUi. Since Ui satisfies the constant 

restriction induced by the linear ordering, the variables Yl, ... ,Ym (which are 

treated as free constants in r i ) have to be smaller than x. That means that 

YIU, . .. ,YmU are already defined. The term xu is now obtained from xu; by 

replacing the Yk by YkU (k = 1, ... , m). Because we have assumed that the 

other variables occurring in xu; are new variables, we thus have xu = XUiU. 

Finally, let x be a variable of the input system which has been replaced 

by the variable Y during the variable identification step. Thus yu is already 

defined, and we can simply set xu := yu. 
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For all variables Z not occurring in the input system, or in f I or f 2, we 

define za := z. 

Example 3.3 For the above example, the solutions al = {X3 1--+ Zl 0 Z2, Y 1--+ 

xd and a2 = {Xl 1--+ h(X3),X 1--+ X3} of ft, f2 are combined to {Zl 1--+ Zt, Z2 1--+ 

Z2, X3 1--+ ZI 0 Z2, X 1--+ Zl 0 Z2, Xl 1--+ h(zl 0 Z2), X2 1--+ h(zl 0 Z2), Y 1--+ h(zl 0 Z2)}. 

This construction can now be used to generate complete sets of unifiers 

for elementary (EI U E 2 )-unification problems. For a given input system fo, 

let {(f I,ll f 1,2), ... , (f n,ll f n,2)} be the output of the combination algorithm. 

For i = 1, ... , nand j = 1,2, let MiJ be a complete set of solutions of the 

E;-unification problem with linear constant restriction, f;,j. 

Proposition 3.4 The set of substitutions 

n 

U {a I a is the combined solution obtained from al E Mi,l and a2 E M i,2} 
;:::1 

is a complete set of (ElU Ez)-unifiers of the input system f o. 

A proof of this proposition will be given in the next section. Obviously, 

if all the sets Mi,j are finite, then the complete set given by the proposition 

is also finite, which proves Theorem 2.2. 

4 Correctness of the combination algorithm 

In this section we shall prove Proposition 3.2 and Proposition 3.4, which 

shows that our combination method is correct when applied to decision prob­

lems. Before we can start with our task, we have to introduce a useful tool, 

which has first been utilized in connection with the combination problem in 

[BJ89], namely unfailing completion of the combined theory. 

Let Ell E2 be equational theories over disjoint signatures n}, n2 • We 

assume that both theories are consistent, that means, they have at least one 

model of cardinality greater than one, or equivalently, the identity X =Ei Y 

does not hold in either theory. One can now apply unfailing completion 

(see e.g., [DJ87] for definitions and properties) to the combined theory E = 

El U Ez. This yields a possibly infinite ordered-rewriting system R which is 

confluent and terminating on ground terms. In the following, we shall also 

apply this system to terms containing variables from a fixed countable set of 
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variables Xo; but this is not a problem because these variables can simply 

be treated like constants. In particular, this means that the simplification 

ordering used during the completion must also take care of these additional 

"constants." The ordered-rewriting system R consists of (possibly infinitely 

many) equations 9 = d. Such an equation can be applied to a term s E 

T(OI U O2 , Xo) iff there exists an occurrence u in t and a substitution r such 

that s = s[u f- grj (s = s[u f- dr], resp.) and gr is greater than dr (dr 

is greater than gr, resp.) with respect to the simplification ordering. This 

application results in the new term s[u f- drj (s[u f- gr], resp.). 

It is easy to see that, because the signatures of EI and E2 are disjoint, 

the system R is the union of two systems Rl and R2 , where the terms in Ri 

are built over the signature Oi (i = 1,2). The Ri is just the system which 

would be obtained by applying unfailing completion to E i . This is an easy 

consequence of the definition of critical pairs used for unfailing completion, 

and of the fact that E1 and E2 are assumed to be consistent. 

Let T(01 U O2 , Xo) be the set of terms built from function symbols in 

0 1 U O2 and variables in X o, and let T1R denote its R-irreducible elements. 

We consider an arbitrary bijection 7r : T1R ----+ Y where Y is a set of vari­

ables which is disjoint to Xo. This bijection induces mappings 7r}, 7r2 of 

terms in T(OI U O2 , Xo) to terms in T(01 U O2 , Y) as follows. For vari­

ables x E X O, X1!"1 := 7r(x) (Note that variables are always R-irreducible.) If 

t = J(tI, . .. ,tn ) for a I-symbol J, then t1!"1 := J(t~I, . .. ,t~I). Finally, if t is a 

2-term then t1!"1 := y where y = 7r(s) for the unique R-irreducible element s 

of the =E-class of t. The mapping 7r2 is defined analogously. The mappings 

7ri may be regarded as projections which map a possibly mixed term to an i­

pure term. We write these mappings as superscripts to distinguish them from 

substitutions. The inverse 7r-
1 of 7r can be seen as a substitution which map 

the variables y in Y back to the terms 7r-
1 (y), and is the identity on all other 

variables. Obviously, we have t1!"i 7r-
1 =E t for all terms t E T(OI U O2 , X o), 

and if t is an R-irreducible term or an i-term such that all its alien subterms 

are R-irreducible, then (t1!"i)7r-1 = t. 

A substitution (7 is called R-normalized on a finite set of variables Z iff 

Z(7 E T1R for all variables Z E Z. The next lemma will be important in the 

proof of Proposition 3.2. 

Lemma 4.1 Let s, t be pure i-terms or variables, and let (7 be a substitution 

which is R-normalized on the variables occurring in s, t. Then 
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Proof. (1) The if-direction is easy to prove. Obviously, (sO'y' =E. (to')1I"· 

implies (sO')1I"· =E (to'y·, and thus (sO'Y'7r- 1 
=E (to'Y'7r-1

. By our assump­

tions on s, t and 0', the j-terms (for j =I- i) in sO' and to' are R-irreducible, 

which finally yields sO' = (sO')1I"'7r- 1 =E (to')1I"'7r- 1 = to'. 

(2) From sO' =E to' follows the existence of an R-irreducible term r which 

is a common R-descendant of sO' and to'. Let us now consider the derivation 

So := sO' -+R SI -+R . . . r more closely. The goal is to show s~· =E. s~· =E • 

. . . r1l"·. Symmetrically, we could then also deduce (to' )11". = E. r1l"·, which finally 

would prove the lemma. 

The case where s is a variable is trivial since then So is R-irreducible, 

which yields So = r. Thus assume that s is a pure i-term. Since all alien 

subterms of sO' are R-irreducible, the first step of the derivation from So to 

r must take place at an occurrence u which is not inside an alien subterm 

of So = SO'. In particular, this means that it is done by applying a rule 

9 = d of R i . To be more precise, there exists a substitution r such that 

So = so[u +-- grj, SI = so[u +-- drj, and gr is greater than dr with respect 

to the simplification ordering. From the fact that u is not inside an alien 

subterm of So we get that s~· = s~'[u +-- (gr)1I"·j and sr' = s~'[u +-- (dr)1I"·j. 

In order to conclude s~· = E. sr', it thus remains to be shown that 
(gr) 1r

i = E i (dr) 1r i . To see this, we define the substitution r1ri := {x t---+ 

(xry' I x occurs in 9 or d}. Since g, d are pure i-terms or variables, we have 

g(r1l"i) = (gr)1r' and d(r 1r·) = (dr)1I"·. Because 9 = dE Ri implies 9 =E. d, we 

thus get (gr)1ri = g(r1l"·) =E. d(r 1r·) = (drY'. 

If we want to continue by induction, we have to know that all alien sub­

terms of SI are R-irreducible. This need not be the case for arbitrary deriva­

tions from sO' to r. The problem is that we only have an ordered-rewriting 

system which is t.erminating on ground terms. For this reason it may well 

be the case that d contains variables not contained in gj and in general we 

cannot be sure that the image of these variables under r does not introduce 

reducible alien subterms into SI. However, if we assume that the derivation 

from sO' to r is a bottom-up derivation where all the matching substitutions 

(such as our r) are R-normalized, then r cannot introduce reducible alien 

subterms. This assumption can be made without loss of generality because 

it is easy to see that, whenever a term is not R-irreducible, then we can 

apply a rule of R to this term in a way that satisfies the constraints of the 

assumption. 0 
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Proof of Proposition 3.2 

First, we shall show soundness of the combination algorithm, that means, we 

have to demonstrate that r 0 is solvable if there exists a pair (r b r 2) in the 

output set such that r 1 and r 2 are solvable. 

Assume that 0"1 is a solution of r 1 and 0"2 is a solution of r 2. In the 

previous section we have already described how these two solutions of the 

single problems can be combined to a substitution 0", which we have called 

the combined solution. It remains to be shown that 0" is in fact a solution of 

roo Obviously, it is sufficient to prove that 0" is a solution of the system r' 

which was obtained by Step 4 of the algorithm, and which in Step 5 was split 

into r 1 and r 2. Let s == t be an equation in r', and assume without loss of 

generality that this equation was put into r 1 in Step 5. Thus we know that 

SO"I = EJ to"I' As an easy consequence of the definition of 0", one gets that 

0" = 0"10". Since SO"I = EJ tO"I obviously implies SO"IO" = EJ tO"I 0", and thus also 

sO"} 0" = E to"} 0", this shows that sO" = E to". 

In the second part of the proof we have to show completeness of the 

combination algorithm, that means, we have to demonstrate that there exists 

a pair (r}, r2 ) in the output set such that r} and r 2 are solvable if ro is 

solvable. 

Let 0" be a solution of roo Without loss of generality we assume that 

0" is also a solution of the system obtained after the first two steps of the 

algorithm, that the set Yo of all variables occurring in this system is disjoint 

to Xo, and that 0" is R-normalized on Yo. In particular, this implies that the 

variables occurring in yO" for y E Yo are elements of Xo. The solution 0" can 

be used to define the correct alternatives in the nondeterministic steps of the 

combination algorithm: 

• The partition of the set of all variables, which has to be chosen in the 

third step, is defined as follows. Two variables y and z are in the same 

class iff yo" = ZO". Obviously, this means that 0" is also a solution of the 

system obtained after the variable identification step corresponding to 

this partition. 

• In the fourth step, the variable y gets index i if yo" is an i-term. If yo" is 

itself a variable, y gets index 1 (This is arbitrary, we could have taken 

index 2 as well.) 

• In the fourth step, we also have to choose an appropriate linear ordering 

on the variables occurring in the system. Consider the strict partial 
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ordering defined by y < z iff yu is a strict subterm of zu. We take an 

arbitrary extension of this partial ordering to a linear ordering on the 

variables occurring in the system. 

The ~hoices we have just described determine a system f' in the set 

of systems obtained after Step 4 of the algorithm, and thus a particular 

pair of systems (fl' f 2) in the output set of the combination algorithm. It 

remains to be shown that f b f 2 are solvable. In order to define solutions Ui 

of these systems, we consider a bijection 'Tr from the R-irreducible elements 

of T(OI U O2 , X o) onto a set of variables Y. 

This bijection has to satisfy two conditions. First, Y should contain all 

the variables occurring in f'. Since u is assumed to be R-normalized on 

Yo, we have that yu is R-irreducible for all variables y occurring in f'. The 

second condition on 'Tr is that 'Tr(yu) = y for all these variables y. For the 

satisfiability of these conditions, the variable identification step is important. 

The reason is that only because of this step we can be sure that f' does not 

contain two different variables y, y' with yu = y' u. 

As described above, t he bijection 'Tr induces mappings 'Trt, 'Tr2. These map­

pings will now be used to construct the solutions Ui, i = 1,2. The substitution 

Ui is defined on the variables y occurring in f' by YUi := (yu )1I"i. 

If y is a variable of index j #- i, the term yu is either a variable in Xo or 

a j~term. In both cases we get YUi = (yU)1I"i = 'Tr(yu) = y by definition of Ui 

and 'Tri. This shows that Ui really treats the variables of index j as constants. 

Now assume that S == t is an equation in fi. Since this equation is also 

contained in f', and since U solves f', we know that su = E tu. Since u was 

assumed to be R-normalized on Yo, and since S == t is an i-equation, we can 

apply the lemma ·to get (su )1I"i = Ei (t-u )1I"i • Using the definition of Ui and 

the fact that s == t is an i-equation, it is easy to see that (su )1I"i = SUi and 

(tu yi = tUi. Thus Ui really solves the equation s == t. 

It remains to be shown that Ui satisfies the constant restriction. Assume 

that x is a variable of index i, and that the variable y of index j =/: i (which 

is treated as a constant in f i ) occurs in XUi. We have to show that x is not 

an element of Vy , i.e. , that x f. y. Recall that XUi = (XU)1I"i, and that xu 

is R-irreducible. Thus, since y ¢ X o, the occurrence of y in XUi must come 

from the occurrence of yu as a subterm of xu. Because of the identification 

step, the fact that x and yare different variables also implies that xu and 

yu are different terms. Thus yu is a strict subterm of xu, which yields y < x 

because of the way the linear ordering was chosen. 0 
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Proof of Proposition 3.4 

In the first part of the proof of Proposition 3.2 we have already shown that 

the elements of the set of substitution defined in the formulation of Proposi­

tion 3.4 are solutions of f o. It remains to be shown that this set is complete. 

Let 7 be a solution of fo. Without loss of generality we assume that 

7 is also a solution of the system obtained after the first two steps of the 

algorithm, that the set Yo of all variables occurring in this system is disjoint 
to X o, and that 7 is R-normalized on Yo. In the second part of the proof of 

Proposition 3.2 we have shown that 7 can be used to find a pair of systems 

(f 1, f 2) in the output set of the combination algorithm, and to construct so­

lutions 71 and 72 of these systems. This construction makes use of a bijection 

7r and mappings 7rl) 7r2 induced by this bijection as described above. 

Since 7i is a solution of fi' there exist an element O'i in the complete set 

of solutions of fi and a substitution Ai such that 7i =Ej O'iAi (Yi),2 where 

Yi denotes the set of variables occurring in fi (i.e., the variables of index i). 
Without loss of generality we may assume that the substitution O'i maps the 

variables in Yi to terms containing only variables of index j =I- i (which are 

treated as constants by Ai) or new variables from a set of variables Zi. We 

may assume that the domain of Ai is Zi, and that the sets Xo, Yo, Zl) Z2 are 

pairwise disjoint . 

As described in the first part of the proof of Proposition 3.2, the solutions 

O'I, 0'2 of f 1, f 2 can be combined to a solution a of f. Since this combined 

solution is an element of the set of substitution defined in the formulation 

of Proposition 3.4, it remains to be shown that there exists a substitution 

A such that 7 =E O'A (X), where X denotes the set of variables occurring 

in f o. We define A := (AI U A2)7r-
1

, where (AI U A2) is meant to denote the 

substitution which is equal to Ai on Zi (i = 1,2), and the identity on all 

variables not contained in ZI U Z2. 

First, we show 7 =E O'A (Yl U Y2). The proof is by induction on the 

linear ordering < chosen in Step 4 of the combination algorithm. Without 

loss of generality, we consider a variable y E Yi. By the definition of a, we 

have yo' A = (YO'dO' A. The variables occurring in the term YO'l are either 

variables of index 2, i.e., elements of Y2, or new variables, i.e., elements of 

ZI. We want to show that on these variables, the substitutions a A and AI7r-1 

coincide modulo E. 

2Recall that, for a finite set Z of variables, 61 =E 62 (Z) means that z61 =E z62 for all 

z E Z . 
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Let Zl be an element of Zl occurring in YUl' Since we have assumed that 

the elements of Zl ~re new variables, Zl is not in the domain of u, which yields 

Zl U A = ZlA. By definition of ..\, and since Zl E ZI, we get ZIA = ZIA 17r-
1 

. 

If Y is the least variable with respect to the linear ordering <, then the 

term YUl does not contain a variable of Y;. This is so because Ul satisfies the 

linear constant restriction induced by <. Now assume that Y is an arbitrary 

variable in Y1 , and let Y2 be an element of Y; occurring in YUl. Since Ul 

satisfies the linear constant restriction, we know that Y2 < y. By induction, 

we thus get Y2U A = E Y2T. We also have Y2T = (Y2T )1f l 7r-l = Y2Tl7r-1. Since 

Tl and Al treat variables of index 2 as constants, we get Y2Tl7r-1 = Y27r-1 = 

Y2Al7r-1. Thus we have shown Y2UA =E Y2Al7r-1. 

To sum up, we have just shown that, for all variables Z occurrmg m 

YUI, we have ZUA =E Z Al 7r-1. Consequently, we get YUA = (YUl)UA =E 

(YUl)Al7r-1 =E YTl7r-1 = (YT)1fl 7r-l = yT as required. 

Finally, assume that x is a variable occurring in r 0, but x f/. Yi U Y2• 

This means that x has been substituted by a variable Y E Y1 U Y2 during the 

variable identification step of the algorithm. On the one hand, this means 

that yT = XT (since this must have triggered the identification). On the other 

hand , because of this identification step, we have defined xu := yu. Thus we 

have XT = yT =E YUA = XUA. This completes the proof of the proposition. 

o 

5 Solving unification problems with constant 

restriction 

We have seen that algorithms for E-unification with linear constant restric­

tion may be used to obtain- via our combination method-algorithms for 

general unification. In the firs t part of this section we shall describe how, 

conversely, algorithms for general unification can be used to solve unification 

problems with linear constant restrictions. In the second part, constant elim­

ination algorithms together with algorithms for unification with constants are 

used to solve unification problems with arbitrary constant restriction. In the 

following , F is assumed to be an arbitrary consistent equational theory. 
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5.1 Using algorithms for general unification 

In this subsection we shall consider both the problem of deciding solvability 

and of generating complete sets of solutions of unification problems with 

linear constant restrictions. 

The decision problem 

Let r be an F -unification problem with a linear constant restriction, and let 

< be the linear ordering by which this restriction is induced. In the following, 

let X denote the set of all variables and C denote the set of all free constants 

occurring in r. Our goal is to construct a general F-unification problem r' 
such that r is solvable iff r' is solvable. 

In this new system r', the free constants of r will be treated as variables, 

i.e. , the solutions are allowed to substitute terms for these "constants." For 

any free constant c of r we introduce a new (free) function symbol Ie of arity 

1 Vc I· Recall that Vc = {x E X 1 x < c} is the set of variables in whose a-image 

c must not occur for a solution a of the problem r. The general F-unification 

problem- in which the free constants of r are treated as variables- is now 

defined as 

Proposition 5.1 The F -unification problem with linear constant restric­

tion, r , is solvable iff the general F -unification problem r' is solvable. 

Please note that the proposition only holds for unification problems with 

linear constant restriction. The following example demonstrates that the 

construction described above cannot be used for unification problems with 

arbitrary constant restriction. 

Example 5.2 Let F be the empty theory, and let x, y be variables and c, d 

be free constants. We consider the following F-unification problem with 

constant restriction: 

r={x::::d,y::::c}, Vc={x},Vd={y}. 

It is easy to see that the restriction cannot be induced by a linear ordering 

on {x, y , c, d}. Obviously, the problem has the solution {x f-t d, y f-t c}. 
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The corresponding e;eneral F-unification problem is 

r' = {x::':: d,y::':: c,c::':: fe(x),d::':: h(y)}, 

where c, d are now treated as variables. It is easy to see that this problem 

does not have a solution. 

However, as we shall prove below, our construction is correct for unifica­

tion problems with linear constant restriction, r. 

Generating complete sets of solutions 

Now we shall describe how this construction can be used to get a finite 

complete set of solutions of r, provided that a finite complete set of F-unifiers 

of r' exists. 

Let R be the possibly infinite ordered-rewriting system which is obtained 

when applying unfailing completion to F. We assume that the simplification 

ordering used during the completion also takes the additional symbols fe and 

variables (which are however treated as constants by the ordering) out of a 

countable set Xo of new variables into account. This means that we can 

apply R to terms built out of symbols in the signature of F, the additional 

symbols fe, and variables in Xo. Let T1R be the R-irreducible elements of 

the set of these terms. 

Now we shall show how an element 0-' of a complete set of F-unifiers of 

r' can be used to define a solution 0- of r. Without loss of generality we 

may assume that 0-' is R-normalized on the variables occurring in r'. In 

fact, ' for any substitution there exists an =F-equivalent substitution which 

is R-normalized on the variables occurring in r'j and exchanging an element 

of a complete set of F-unifiers of r' by an =F-equivalent substitution still 

leaves us with a complete set of F-unifiers of r'. 

Let 7r be a bijection from T1R onto a set of variables Y. This bijection 

has to satisfy two conditions. First, Y should contain all the free constants 

occurring in r (which are treated as variables in r'). Since 0-' is assumed 

to be R-normalized on the variables occurring in r', we have that co-' is 

R-irreducible for all these constants c. The second condition on 7r is that 

7r( co-') = c for these constants c. The two conditions are satisfiable because 

for c i- c' we have co-' i- c'o-'. In fact, since 0-' solves r', we know that 

co-' =F fe(XIo-', .. . , xno-') and c'o-' =F fe/(XIo-', ... , xno-'). But this implies 

that co-' has fe as root symbol , and c' 0-' the different symbol fel. 
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As described in Section 4, the bijection 7r induces a mapping 7rl' To this 

purpose we treat the symbols of the signature of F as I-symbols and the 

symbols fe as 2-symbols. The mapping 7rl is now used to define our solution 

a of r. For all variables x occurring in r we define xa := (xa')1r1
• The 

constants C of r are really treated as constants by a, i.e., ca = c. However, 

note that c = (ca')1r l holds, anyway. 

Proposition 5.3 Let C(r') be a complete set of F -unifiers of r', which are 

(without loss of generality) assumed to be R-normalized on the variables oc­

curring in f'. Then the set C(r) := {a I a' E C(f')}, where a is constructed 

out of a' as described above, is a complete set of solutions of the F -unification 

problem with linear constant restriction, r. 

Again, the proposition only holds for unification problems with linear 

constant restriction. 

Proof of Proposition 5.1 

Recall that X denote the set of all variables and C denote the set of all free 

constants occurring in f. 

To prove the "only-if" direction, assume that a is a solution of f. Without 

loss of generality we may assume that for all x E X the variables occurring 

in xa are new variables (i.e., variables not contained in X), and that a is the 

identity on all variables y rt x. We define a substitution a' on xu C (whe~e 

the elements of C are now treated as variables) by, induction on the linear 

ordering < which induces the constant restriction of f. 

First, we consider the least element of X U C with respect to <. If this 

is a variable x EX, then for all c E C we have x E v". This implies that xa 

does not contain any of these free constants, and we can define xa' := xa. 

If the least element of X U C is a constant c E C, then v.: .= 0. This means 

that f e is a constant symbol, and we define ca' := fe. 

Now let x be an arbitrary element of X, and let Ct, ... ,Cm E C be the 

free constants occurring in xa. Since a satisfies the constant restriction 

induced by the linear ordering, the constants Ct, ... ,Cm (which are treated as 

variables in f') have to be smaller than x . That means that we may assume 

by induction that Cta', ... , cma' are already defined. The term xa' is now 

obtained from xa by replacing the Ck by Cka' (k = I, ... , m). 
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Finally, let c be an arbitrary element of C. By definition, the system 

r' contains the equat\on c == fc(xI, ... , xn), where XI, ... , xnare the el­

ements of X which are smaller than c with respect to <. Thus we can 

assume by induction that Xta', ... , xna' are already defined, and we set 

ca' := fc(xta', ... ,xna'). 

It remains to be shown that a' is a solution of r'. Obviously, the definition 

of a' implies that it solves the equations c == fc(xI, ... , xn) in r'. Now let 

8 == t be an equation of r. Since a solves r, we get sa =F ta. In addition, 

it is easy to see that for all c E C we have ca' = caa' and for all X E X we 

have xa' = xaa'. But then sa' = 8aa' =F taa' = ta'. 

To prove the "if" direction, assume that a' is a solution of r'. Without 

loss of generality, we assume that a' is R-normalized on the set X U C of 

all variables occurring in r'. As described above, a' can be used to define a 

new substitution a as follows: For all variables x occurring in r one defines 

xa := (xa'Y1. We have to show that a so~ves r. 

Let 8 == t be an equation of r. Since a' solves r', we know that sa' =F ta'. 

Now we can apply Lemma 4.1 to get (8a')11"1 =F (ta')1I"1. Using the definition 

of a and the fact that the terms 8, t do not contain the symbols fc, it is easy 

to see that (80"')11"1 = 80" and (to"')1I"1 = to". Thus 0" really solves the equation 

8 == t. 

It remains to be shown that a satisfies the constant restriction. Let c E C 

be a free constant. Since a' solves r', we know that ca' =F fc(xta', ... ,xna'), 

where {Xt, ... ,xn} = Vc . In addition, a' was assumed to be R-normalized 

on XU C, which implies that ca', Xta', ... , xna' are R-irreducible terms; and 

since the symbol fc does not occur in any rule of R, the term fc(xta', . .. , xna') 

is also R-irreducible. Thus we have ca' = fc(xta', ... , xna'), which shows 

that ca' is not a subterm of any of the terms Xta', ... , xna'. But then c 

cannot occur in Xia = (Xia'Y1 (i = 1, ... , n). 0 

Proof of Proposition 5.3 

Now we shall show that the set C(r), as defined in the formulation of Propo­

sition 5.3, is a complete set of solutions of r. In the second part of the proof 

of Proposition 5.1 we have already shown that the substitution a constructed 

from a solution a' of r' is itself a solution of r. Thus C(r) is a set of solu­

tions of r. It remains to be shown that it is a complete set. As before, let 

X denote the set of variables and C the set of free constants occurring in r. 
Recall that the elements of C are treated as variables in r'. 
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Let T be a solution of f. Without loss of generality we assume that, for 

all x EX, the variables occurring in XT are elements of Xo. As shown in the 

first part of the proof of Proposition 5.1, T can be used to define a solution T' 

of f'. Because of our assumption on T, it is easy to see that for all Z E XU C, 

the variables occurring in ZT' are elements of Xo. 

Since C(f') is a complete set of F-unifiers of f', there exists an element 

a' of C(f') and a substitution>.' such that T' =F a'>.' (X U C). Let a be the 

element of C(f) constructed out of a'. Our aim is to define a substitution 

). which satisfies T = Fa). (X). Let Yo ~ Y denote the set of all variables 

occurring in the terms xa for x EX. These terms may also contain elements 

of C, which however have to be treated as constants by .A. 

In the construction of a out of a' we have used a bijection 1r from T!R 

onto a set of variables Y which contains C. In addition, this bijection had 

to satisfy 1r( ca') = c for all c E C. The substitution a was then defined by 

xa := (xa're l for all x EX. In order to be able to reverse the construction 

of T' out of T we shall now consider an analogous bijection I" from T!R onto 

Y. The condition on I" is that 1"((a')!R) = c for all c E C. Here (CT')!R 

denotes the unique R-irreducible element of the =F-class of a'. As an easy 

consequence of this condition together with the definition of T', we get that 

XT = (XT')I-'I for all x E X. 

The substitution ,\ is now defined on all y E Yo as y'\ := (Y1r- 1 ,\')i£I. To 

complete the proof of the proposition we have to show that T =F a'\ (X). 

In this proof we need a lemma which is a stronger version of Lemma 4.1 

for the special case of the union of an arbitrary equational theory F with a 

disjoint free theory. 

Lemma 5.4 Let s, t be terms built out of symbols in the signature of F, the 

additional symbols fe, and variables in Xo. Then s =F t iff Sl-'I =F tl-'I. 

Proof. (1) From Sl-'I =F tI-'l we can deduce SI-'II"-1 =F tI-'l 1"-1, and we also 

have s =F SI-'II"-l and t =F tI-'l 1"-1. 

(2) Obviously, it is sufficient to prove the "only-if" direction for the case 

where t is obtained from s by one application of an identity of F. Thus assume 

that 9 = d is an identity of F, u is an occurrence in s, and T is a substitution 

such that s = s[u f- gT], t = s[u f- dTJ. If the occurrence u is strictly below 

an occurrence of a free function symbol, then it is easy to see that Sl-'I = tl-'I. 

Otherwise, we have Sl-'I = Sl-'I [u f- (gT )1-'1 J and Sl-'I = Sl-'I [u f- (dT )1-'1 J. What 

remains to be shown is (gT )1-'1 = F (dT )1-'1, and this can be done as in the 

proof of Lemma 4.1. 0 
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We can now continue with the proof of the proposition. For all x E X 

we have xr' =F xu')..' = (xu')1rI 7r -l)..' = XU7r- 1)..,. But then the lemma yields 

xr = (xr')/l1 =F (XU7r- 1 )..')/lI. It remains to be shown that (XU7r-
1 )..')/l1 =F 

xu).. . 

For this purpose, we define a substitution (7r-
1 )..')/l1 on Yo U C as follows: 

for aIr z E Yo U C, z( 7r-1 )..')/l1 := (Z7r- 1 )..')/lI. Because the terms xu for x E X 

do not contain any of the free function symbols fe, it is easy to see that 

(xu7r- 1 )..')/l1 = (xu)(7r- 1 )..')/lI. 

Obviously, the substitutions).. and (7r-
1 )..')/l1 coincide on Yo, but for c E C 

we need not have c( 7r-
1 )..')/l1 = c. However, we can show that c( 7r-

1 )..')/l1 =F c. 

In fact, C7r-1 )..' = CU')..' =F cr' , and thus the lemma yields (C7r-
1 )..')/l1 =F 

(cr')/lI. But our assumption on J.l yields (cr')/l1 = c. To sum up, we have just 

seen that).. =F (7r-
1)..')/l1 (Yo U C), which implies (xu)).. =F (xu)(7r-

1
)"')/lI. 

This completes the proof of the proposition. 0 

5.2 Using algorithms for constant elimination and for 

unification with constants 

In this subsection we shall consider unification problems with arbitrary con­

stant restrictions. It will be shown how to reduce solving this kind of prob­

lems to solving both unification problems with constants and constant elim­

ination problems. 

A constant elimination problem in the theory F is a finite set ~ = 

{(c},t1 ), ... , (cn,tn)} where the Ci'S are free constants (i.e., constant sym­

bols not occurring in the signature of F) and the ti's are terms (built over 

the signature of F , variables, and free constants). A solution to such a 

problem is callea a constant eliminator. It is a substitution U such that for 

all i, 1 ~ i ~ n, there exists a term t~ not containing the free constant Ci 

with t~ =F tiU. The notion complete set of constant eliminators is defined 

analogously to the notion complete set of unifiers. 

Let r be an F-unification problem with arbitrary constant restriction. 

The goal is to construct a complete set of solutions of this problem. In 

the first step, we just ignore the constant restriction, and solve r as an 

ordinary F-unification problem with constants. Let C(r) be a complete set 

of F-unifiers of this problem. In the second step, we define for all unifiers 

U E C(r) a constant elimination problem ~q as follows: 

~q := {(c,xu) I c is a free constant in r and x E Vc}. 
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For all a E C(r), let Cu be a complete set of solutions of the constant 

elimination problem ~u. 

Before we can describe the complete set of solutions of the F-unification 

problem with constant restriction, r, we have to define a slightly modified 

composition "0" of substitutions. Let a be an element of C(r), and let r 

be a constant eliminator in Cu' Without loss of generality we assume that 

r is the identity on variables not occurring in ~u, and that the terms yr 

for variables y occurring in ~u contain only new variables. In particular, we 
will need for technical reasons that they do not contain variables occurring 

in terms xa for variables x occurring in r. 

For a given variable x, let {Cl,"" cn } be the set of all constants Ci oc­

curring in r such that x E Vc., If this set is empty (i.e., n = 0,) we 

define x(a 0 r) := xar. Now assume that n > O. Obviously, we have 

{(Cl,Xa), ... ,(cn,xa)} ~ ~u. Since r is a solution of ~u, there exist terms 

s}, ... ,Sn such that for all i, 1 :::; i :::; n, xar =F Si and Ci does not occur in 

Si. It is easy to see that this also implies the existence of a single term S such 

Cl, ... , Cn do not occur in sand xar =F s. We define x(a0r) := s. 

Proposition 5.5 The set 

u {a 0 r IrE Cu } 

uEC(r) 

is a complete set of solutions of the F -unification problem with constant re­

striction) r . 

Proof. First, we have to show that the elements a0r of this set solve all the 

equations s == t of r. Since a is an F-unifier of r, we have sa =F ta, which 

implies sar =F tar. But the definition of a0r was such that ur =F a 0 r, 

and thus we get s(a0 r) =F t(a 0 r). 

Second, we must prove that a@r satisfies the constant restriction. Assume 

that x E Vc. Then the constant elimination problem ~u contains the tuple 

(c, xa). By definition of a0 r, we get that x(a0r) is a term s not containing 

c. 

Finally, it remains to be shown that the set is complete. Assume that 

() is a solution of the F-unification problem with constant restriction, r. In 

particular, this means that () solves the F-unification problem r (where the 

restrictions are ignored). Hence there exist an element a of the complete set 

C(r) and a substitution A such that () =F aA (X), where X denotes the set 

of all variables occurring in r. Thus we have 
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• for all x E X: xO =F (xu)., and 

• for all c with x EVe: C does not occur in xO, 

which shows that ). solves the constant elimination problem ~q. Conse­

quently, there exist an element T of the complete set Cq and a substitution 

)..' such that). =F T).' (Y), where Y denotes the set of all variables occurring 

in ~(1' Without loss of generality, we assume that z).' = z). for all variables 

z not occurring in one of the terms yT with y E Y. 

We want to show that for all x E X we have xO =F X(U®T).'. For 

all x EX, we know that x() = F xu)., and since UT = F U ® T we also have 

X(U ® T).' =F XUT).' . Thus it remains to be shown that xu). =F XUT).'. We 

have to distinguish two cases. First, assume that (c, xu) E ~q for some c. 

In this case all variables occurring in xu are elements of Y, and thus). =F 

T).' (Y) yields xu). = F XUT ).'. For the second case, assume that xu contains 

a variable z which is not an element of Y, the set of all variables occurring in 

~q. We are finished if we can show that, nevertheless, z). =F ZT).' holds for 

all such varIables z . Since T was assumed to be the identity on variables not 

occurring in ~q, we have ZT = z. Since Z occurs in xu for a variable x EX, 

our second assumption on T implies that Z does not occur in any term yT 

with y E Y. But then z)" = z )' by our assumption on ).', which completes 

the proof of XU). = F XUT ).'. 0 

6 Conclusion 

We have presented a new method for treating the problem of unification in 

the union of disjoint equational theories. Unlike most of the other methods 

developed for this purpose, it can be used to combine decision procedures as 

well as procedures computing finite complete sets of unifiers. Applicability of 

our method depends on a new type of prerequisite, namely on the solvability 

of unification problems with linear constant restrictions. Presupposing the 

existence of a constant elimination algorithm-as necessary for the method 

of Schmidt-SchauB- seems to be a stronger requirement. In fact, we have 

seen that constant elimination procedures can be used to solve unification 

problems with arbitrary constant restrictions. However, it is still an open 

problem whether there exists an equational theory for which solving unifica­

tion problems with linear constant restrictions is finitary (or decidable) but 

solving unification problems with arbitrary constant restrictions is not. 
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Our main results together with the results described in the previous sec­

tion show that there is a close correspondence between solving unification 

problems with linear constant restrictions and solving general unification 

problems. For a given equational theory, the first kind of problems is decid­

able (finitary solvable) if and only if the second kind of problems is. As an 

interesting open problem it remains to be shown whether there exists an equa­

tional theory for which unification with constants is decidable (finitary) but 

general unification-or equivalently, solving unification problems with linear 

constant restrictions-is not. One should note that there already exist such 

results for the case of single equations, i.e., unification problems of cardinality 

one. Narendran and Otto [N090] have shown that there exists an equational 

theory E such that solvability is decidable for E-unification problems (with 

constants) of cardinality one, but is undecidable for E-unification problems 

of cardinality greater than one, and thus also for general E-unification prob­

lems. 

To make the presentation and the proof of correctness of the combination 

method more concise, we did not consider possible optimizations which would 

rule out certain partitions in Step 3 and certain linear orderings in Step 4 of 

the algorithm. 
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