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In this work we demonstrate that it is possible to describe a primordial bounce with the dark energy era in
a unified way, in the context of Gauss-Bonnet modified gravity. In particular, the early-time bounce has a
nearly scale-invariant power spectrum of primordial scalar curvature perturbations, while the dark energy
era is a viable one, meaning that it mimics the Λ cold dark matter model and is also compatible with the
Planck 2018 data on cosmological parameters. In addition, our analysis indicates that the dark energy era is
free from dark energy oscillations, which occur in the context of fðRÞ gravity. We further address the latter
issue by examining fðRÞ extensions of Gauss-Bonnet models, and we show that the fðRÞ gravity part of the
action actually produces the dark energy oscillations at redshifts z ∼ 4.
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I. INTRODUCTION

The dark sector of the Universe constitutes the most
mysterious problems in theoretical physics and cosmology,
since these two sectors control the evolution of up to 96%
of the Universe. The dark sector consists of two parts—
dark matter and dark energy—both of which still lack a
consistent explanation. With regard to dark matter, it is still
unknown whether it is controlled by a weakly interacting
massive particle [1–6] or if it is simply some manifestation
of a modified version of general relativity [7]. On the other
hand, dark energy refers to the late-time acceleration of
the Universe (first observed in the late 1990s [8]), and this
mysterious dark energy era has attracted a lot of attention
in the literature [9–22]. Out of all of the theoretical
approaches to consistently describe the dark energy era,
modified gravity is to date the most promising description;
see, for example, the reviews [23–28].
Apart from the mysterious dark sector of the Universe,

another major issue (which will hopefully be explained in
the next two decades) is the primordial post-quantum
gravity era of our Universe. To date there are two candidate
descriptions for this primordial era: the inflationary sce-
nario [29–31] and the bouncing cosmology scenario [32–
40]. Both descriptions produce a nearly scale-invariant
power spectrum for the primordial scalar curvature

perturbations, with the cosmological bounces having the
attribute of also producing a cosmological evolution free
from the initial singularity.
In the context of modified gravity it is often possible to

describe the early- and late-time eras of our Universe in a
unified way; see, for example, Refs. [41,42]. In fact,
modified gravity might serve as the only consistent
description of dark energy beyond general relativity. The
reason for this is simple, since general relativity can
describe late-time acceleration in a restricted way by using
a scalar field which produces either quintessential or
phantom evolution, and also a simple cosmological con-
stant may describe a de Sitter evolution at late times. But
phantom scalar fields are not necessarily the best descrip-
tion for the late-time era, since these inevitably drive the
Universe towards a big rip singularity [43], and also
phantom fields can be sources of instabilities. Modified
gravity can successfully provide a consistent late-time era
that can mimic a quintessential, de Sitter, or even a phantom
dark energy era; see, for example, the reviews [23–28] for
more details on these issues.
One promising sector of modified gravity theories is

Gauss-Bonnet gravity [44–59], in which the Gauss-Bonnet
invariant appears in the Lagrangian in a nonlinear way. Also,
extensions of general relativity that contain higher orders of
the Riemann and Ricci tensors can be found in Refs. [60–62].
The general focus of this paper is on fðR;GÞ theories of
gravity [48,59,63–65]; specifically, we mainly focus on
theories of the form Rþ fðGÞ, in order to avoid having
primordial superluminal perturbation modes, but for reasons
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that will be explained shortly we also study the late-time
behavior of an fðRÞ þ gðGÞ model. Our aim is twofold: to
find an appropriate model of Gauss-Bonnet gravity that can
describe the dark energy era in a consistent way, and to
demonstrate that in some Gauss-Bonnet models it is possible
to provide a unified description of the primordial post-
quantum era and the dark energy era with the same model.
One of the models that we present in this paper is capable of
describing a primordial type IV singular bounce and a late-
time dark energy era, which mimics the Λ cold dark matter
(ΛCDM) model and produces values for the cosmological
quantities of interest that are compatiblewith thePlanck 2018
data on cosmological parameters [66]. With regard to the
primordial singular bounce, type IV singularities are smooth
and thus do not affect the evolution of the Universe in an
extreme way (as the crushing types of singularities do). In
addition, it was shown in an earlier work that this particular
singular bounce generates a nearly scale-invariant power
spectrum of the primordial scalar curvature perturbations,
compatible with the latest Planck 2018 constraints on
inflation. Apart from the fact that our Gauss-Bonnet model
of the formRþ fðGÞ can produce both a primordial singular
bounce and a dark energy era compatible with the ΛCDM
model and the latest Planck observations [66], one major
outcome of our work is that this specific type of models
produce a dark energy era free from dark energy oscillations,
known to be present in fðRÞ gravity models at large redshifts
z ∼ 4. In fact, in order to verify this issuewe also examine the
late-time phenomenology of a model of the form fðRÞ þ
gðGÞ and, as we demonstrate, this type of models can also be
compatible with both the Planck 2018 observations and the
ΛCDMmodel, but it is not free fromdark energy oscillations.
Thus, our work indicates the fact that the dark energy
oscillations are possibly due to the fðRÞ gravity sector.

II. MODIFYING THE GAUSS-BONNET
GRAVITY THEORETICAL FRAMEWORK
TO STUDY THE DARK ENERGY ERA

As we already mentioned, in this work we focus on the
unification of a singular bounce with the dark energy era,
and to our knowledge this is the first time that this proposal
has been considered quantitatively. In this section we
present the theoretical framework of a general fðR;GÞ
gravity and appropriately modify the Friedmann equation
by using appropriate statefinder quantities, in order to study
the late-time era in an optimal way. The starting point of our
work is obviously the gravitational action, and we assume
an fðR;GÞ model accompanied by the presence of perfect
matter fluids, with the following gravitational action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðR;GÞ
2κ2

þ LðmÞ

�
; ð1Þ

where R is the Ricci scalar, κ ¼ 1
MP

is the gravitational
constant (whereMP denotes the reduced Planck mass), and

G signifies the Gauss-Bonnet invariant defined as
G ¼ R2 − 4RαβRαβ þ RαβγδRαβγδ, with Rαβ and Rαβγδ being
the Ricci and Riemann tensor, respectively. Last, LðmÞ is the
Lagrangian density of the perfect matter fluids, which
contains all of the information for non-relativistic
matter (CDM), and relativistic matter (radiation). Further-
more, we assume that the cosmological background cor-
responds to that of a flat Friedman-Robertson-Walker
(FRW) metric, with the line element being

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð2Þ

where aðtÞ denotes the scale factor. As a result, the Ricci
and Gauss-Bonnet scalars are reduced to simpler forms,
which read

R ¼ 12H2 þ 6 _H; ð3Þ

G ¼ 24H2ð _H þH2Þ; ð4Þ

where H signifies the Hubble parameter defined as H ¼ _a
a

and, as usual, a dot denotes differentiation with respect to
cosmic time t. Thus, by varying the gravitational action (1)
with respect to the metric tensor gμν, we can derive the
gravitational field equation. Here we separate our equations
into space and time components, and hence the equations of
motion are

3fRH2 ¼ κ2ρðmÞ þ
fRRþ fGG − f − 6H _fR − 24H3 _fG

2
;

ð5Þ

−2fR _H ¼ κ2ðρðmÞ þ PðmÞÞ þ f̈R −H _fR − 4H3 _fG

þ 8H _H _fG þ 4H2f̈G; ð6Þ

where for simplicity we denote differentiation with respect
to a scalar function with a subscript. Furthermore, as stated
before, the matter density is comprised of both relativistic
and nonrelativistic particles and consequently is written as

ρðmÞ ¼ ρd0

�
1

a3ðtÞ þ χ
1

a4ðtÞ
�
; ð7Þ

where ρd0 signifies the current value of the nonrelativistic
density and χ ¼ ρr0

ρd0
is the ratio of the current values of

relativistic and nonrelativistic matter. In addition, PðmÞ
denotes the corresponding pressure, which is connected
to the matter density as

Pi ¼ ωiρi; ð8Þ

PðmÞ ¼
X
i

Pi; ð9Þ
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with ωi being the equation-of-state parameter for a specific
kind of matter and i ¼ d, r, with the subscript “i” indicating
either non-relativistic (d) or relativistic matter (r) perfect
fluids. Both kinds of fluids are treated as barotropic perfect
fluids with continuity equations

_ρi þ 3Hðρi þ PiÞ ¼ 0: ð10Þ

The aim of our study is to derive a functional form for the
Hubble parameter, and hence only a single equation of
motion is necessary. In the following, we aim to solve
Eq. (5) numerically and use it to extract the form of
the Hubble rate during the dark energy era. Before we
continue, however, we make certain changes which will
facilitate our study. Specifically, we use the redshift as a
dynamical variable, and we also introduce a statefinder
variable yHðzÞ (which we will define shortly) in order to
make the late-time study more concrete and easy to tackle
numerically.
So the cosmic time will be replaced by a more conven-

ient variable, which is the redshift z. From the definition of
the redshift,

1þ z ¼ 1

aðtÞ ; ð11Þ

where we assume that at the present time the scale factor is
equal to unity, a new differential operator can be con-
structed by simply performing a differentiation on this
particular relation, which in turn reads

d
dt

¼ −Hð1þ zÞ d
dz

; ð12Þ

where now the Hubble parameter depends solely on the
redshift, that is, H ¼ HðzÞ. This operator is of paramount
importance as each object in the equations of motion that
is differentiated with respect to the cosmic time can be
transformed into a redshift-dependent quantity by using the
above transformation. Below we quote some important

quantities that will be used frequently in this paper, and
these are transformed as

_H ¼ −Hð1þ zÞH0; ð13Þ

_R ¼ 6Hð1þ zÞ2
�
H02 þHH00 −

3HH0

1þ z

�
; ð14Þ

_G ¼ 24ð1þ zÞ2H3

�
3H02 þHH00 −

3HH0

1þ z

�
; ð15Þ

where a prime denotes differentiation with respect to the
redshift. Also, we have

_fX ¼ −Hð1þ zÞf0X; _fX ¼
X
Y

_YfXY; ð16Þ

where X, Y take the values R, G. This is because

d
dt

¼ dR
dt

∂
∂Rþ dG

dt
∂
∂G ; ð17Þ

since R ¼ RðtÞ, G ¼ GðtÞ, and f ¼ fðR;GÞ. Both
approaches are valid so the choice is up to the reader;
however, even for the first case, a similar relation for the
differential operator with respect to redshift applies.
The second change that we make is a function replace-

ment; specifically, instead of using the Hubble rate, we use
an appropriate statefinder function related to it. But before
we continue, it is worth making certain changes in the
equations of motion. Recalling Eq. (5), we treat each
geometric term derived from the expression fðGÞ in the
gravitational action (1) as a fluid, corresponding to dark
energy, which will turn out to be a perfect fluid as well.
Assuming that

ρDE ¼
fRRþ fGG− f − 6H _fR − 24H3 _fG

2κ2
þ 3H2

κ2
ð1− fRÞ;

ð18Þ

PDE ¼ f̈R þ 2H _fR − 3H2ð1 − fRÞ þ 8H3 _fG þ 8H _H _fG þ 4H2f̈G
κ2

þ f − fRR − fGG
2κ2

þ 2 _H
κ2

ðfR − 1Þ; ð19Þ

the continuity equation reads

_ρDE þ 3HðρDE þ PDEÞ ¼ 0: ð20Þ

As mentioned before, this continuity equation implies that
the dark energy fluid is perfect, as is the case with the rest of
the perfect fluids present. Consequently, the equations of
motion obtain the familiar form of the Friedmann and
Raychaudhuri equations,

H2 ¼ κ2

3
ðρðmÞ þ ρDEÞ; ð21Þ

_H ¼ −
κ2

2
ðρðmÞ þ PðmÞ þ ρDE þ PDEÞ: ð22Þ

With these equations at hand, we define the new statefinder
function yHðzÞ as
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yHðzÞ ¼
ρDE
ρd0

: ð23Þ

This is the new dimensionless function that will participate
in the equations of motion instead of the Hubble parameter.
Since the dark energy density was defined in Eq. (18), this
particular function is related to the Hubble rate as follows:

yHðzÞ ¼
H2

m2
s
−
ρðmÞ
ρd0

; ð24Þ

where ms is a mass scale defined as m2
s ¼ κ2ρd0

3
¼ H2

0Ω0
ðmÞ,

where H0 is the current value of the Hubble parameter and
Ω0

ðmÞ is the current value of the matter density parameter.
Their values will be assumed to be equal to H0 ¼ 67.4�
0.5 km

sec×Mpc andΩ
0
ðmÞ ¼ 0.3153, which are both based on the

latest Planck 2018 data [66]. This statefinder function will
be used as a replacement for the Hubble parameter and its
derivatives, as shown below:

H2 ¼ m2
s

�
yH þ ρðmÞ

ρd0

�
; ð25Þ

HH0 ¼ m2
s

2

�
y0H þ

ρ0ðmÞ
ρd0

�
; ð26Þ

H02 þHH00 ¼ m2
s

2

�
y00H þ ρðmÞ00

ρd0

�
: ð27Þ

An observant reader might notice that the Hubble param-
eter derivatives participate in the previous equations with
these exact forms. Indeed, the Ricci scalar and Gauss-
Bonnet invariant time derivative contain the above ex-
pressions, so with this designation all of the previous
equations can be easily rewritten. Furthermore, recalling
Eqs. (7) and (11), the density of matter is rewritten with
respect to the redshift variable as follows:

ρðmÞ ¼ ρd0ðð1þ zÞ3 þ χð1þ zÞ4Þ; ð28Þ

where χ ≃ 3.1 × 10−4, and χ is the fraction of the present
day energy density of the radiation over the cold dark
matter fluids. Finally, we define the following parameters,
which we evaluate during the late-time era. The dark energy
equation-of-state (EoS) parameter is equal to

ωDE ¼ −1þ 1þ z
3

d ln yH
dz

; ð29Þ

while the dark energy density parameter is

ΩDE ¼ yH
yH þ ρðmÞ

ρd0

¼ yH

�
ms

H

�
2

: ð30Þ

Thus, the aim of this paper is to study some appropriate
fðR;GÞ models and compare their behavior with the

ΛCDM model. In order to extract the late-time behavior
of each fðR;GÞ model chosen, we numerically solve the
differential equation (5) with respect to the statefinder
yHðzÞ for appropriately chosen, physically motivated initial
conditions.

III. R+ f ðGÞ GRAVITY: A SINGULAR BOUNCE
AT EARLY TIMES AND A DARK ENERGY

ERA AT LATE TIMES

For an arbitrary fðR;GÞ, the possibility of ghosts being
present is nonzero. We assume that the first model is ghost
free, where the function fðR;GÞ is replaced by Rþ fðGÞ.
As a result, Eq. (5) is rewritten as

3H2

κ2
¼ ρðmÞ þ

GfG − f − 24_fGH3

2κ2
: ð31Þ

This is the general differential equation that must be solved
in the redshift interval ½−0.9; 10� with respect to yHðzÞ
defined in Eq. (24). Now let us assume that the Gauss-
Bonnet function is given by the following expression:

fðGÞ ¼ c1
G
þ c2G

α
3α−1; ð32Þ

where c1 and c2 are auxiliary constants with mass dimen-
sions ½m�6 and ½m�2− 4α

3α−1, respectively (for consistency),
while α is an additional parameter that we assume satisfies
the condition α > 1. This is an interesting model due to the
fact that for small values of G, the inverse term c1

G becomes
dominant during late times, whereas c2G

α
3α−1 is dominant

during early times when the exponent α
3α−1 is less than unity

given that the condition α > 1 holds true. Therefore, this
model is capable of describing both the early- and late-time
eras and thus unifying them smoothly.
The singular bounce cosmology is basically realized by

an Rþ fðGÞ gravity of the form fðGÞ ∼ G
1−2α
3α−1, as it was

shown in Ref. [52]. This particular fðGÞ gravity was able to
realize a type IV singular bounce with a Hubble rate
HðtÞ ∼ ðt − tsÞα, where α is strictly greater than unity (that
is, α > 1) and ts is the cosmic time instant at which the
singular bounce occurs. From Eq. (32) it is apparent that for
α > 1 the term ∼G α

3α−1 is dominant at early times, and the
term ∼G−1 is subdominant during the early-time era. We
shall quantify this shortly, but let us briefly discuss the
singular bounce generated by the term ∼G α

3α−1. Following
Ref. [52], the primordial curvature perturbations are gen-
erated near the bouncing point t ¼ ts, and exit the Hubble
horizon after the singular bouncing point. The Hubble rate
near the bouncing point could be of the order of HI ∼
1013 GeV (borrowing the value of the Hubble rate from
low-scale inflation studies), and thus the term ∼G α

3α−1 for
α ¼ 3.30579 and c2 ¼ 1 eV2− 4α

3α−1 (which are the values of
the parameters α and c2 we use in the following) is of the
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order of c2G
α

3α−1 ∼ 1.11887 × 1030 eV2, while the term
c1G−1 is of the order of c1G−1 ∼ 10−88 eV2, for
c1 ¼ 1 eV6. Thus, the term ∼G−1 is indeed significantly
subdominant during the early-time era, near the singular
bouncing point. In Ref. [52] we calculated in detail the
power spectrum of the primordial scalar curvature pertur-
bations, and we found that it is equal to

PR ∼ k
7
2
þ3þð2−2αþα2Þμ

2ð−1þαÞ : ð33Þ

From the above expression we easily derived the spectral
index of the primordial curvature perturbations, which is
equal to

ns − 1≡ d lnPR

d lnk
¼ 7

2
þ 3þ 2− 2αþ α2

2ðα− 1Þ μ¼ 1−
11

2ðα− 1Þ2 :

ð34Þ

It is easy to see that for α taken in the range
α ¼ ½3.2999; 3.31�, the spectral index becomes compatible
with the latest Planck 2018 data [67], which constrain
the spectral index to be ns ¼ 0.9649� 0.0042. Also, for
α < −1 the spectral index can be compatible with the
Planck data; however, the α < −1 case corresponds to a big
rip singularity, and thus it is not physically acceptable. The
singular bounce with a type IV singularity is more
physically appealing, since the type IV singularity is quite
smooth and does not affect any physical quantities that can
be defined on the three-dimensional spacelike hypersurface
which is defined at the instant that the singularity occurs.
Having determined that the term practically generates the

singular bounce at early times and is dominant during this
primordial era, let us see how things are modified at late
times. Apparently, the late-time era is controlled by the term
∼G−1, but let us see this explicitly in a quantitative way for
the moment. Let us use the current value of the Hubble rate,
which is H0 ∼ 10−33 eV, so the term G

α
3α−1 is approximately

of the order of c2G
α

3α−1 ∼ 8.44947 × 10−46 eV2, while the
term c1G−1 ∼ 10132 eV2. Thus, it is quantitatively apparent
that the term ∼G−1 is quite dominant at late times and
controls the evolution.
In this section we numerically demonstrate that the term

G−1 indeed dominates the late-time era, generating a viable
dark energy era. Our results are robust to changes of the
parameter α for all values larger than unity, but the analysis
will focus on those values of the parameter α that yield a
spectral index of the primordial curvature perturbations
compatible with the Planck 2018 data, i.e., α ¼ 3.30579.
So let us proceed with the analysis of the model and express
all of the differential equations and physical quantities in
terms of the statefinder quantity yHðzÞ. Before going into
the details of our analysis, let us quote some useful
expressions. For the fðGÞ gravity chosen as in Eq. (32),
we have

fG ¼ −
c1
G2

þ c2α
3α − 1

G
1−2α
3α−1; ð35Þ

_fG ¼ _G
�
2c1
G3

þ c2αð1 − 2αÞ
ð3α − 1Þ2 G

2−5α
3α−1

�
; ð36Þ

and thus Eq. (5) reads

3H2 ¼ κ2ρðmÞ þ
2c1ð1 − 3αÞ þ c2ð2α − 1ÞG4α−1

3α−1

2Gð3α − 1Þ

− 12 _G
�
2c1
G3

þ c2αð1 − 2αÞG2−5α
3α−1

ð3α − 1Þ2
�
H3: ð37Þ

This particular differential equation will be solved numeri-
cally1 for redshifts in the range z ¼ ½−0.9; 10�, but for the
statefinder function yHðzÞ introduced as a replacement for
the Hubble parameter in Eq. (24). The initial conditions we

choose for the statefinder yHðzÞ are yHðz ¼ 10Þ ¼ Λ
3m2

s
ð1þ

1þzf
100

Þ and y0Hðz ¼ 10Þ ¼ Λ
3m2

s

1
1000

for zf ¼ 10, and there is a

strong physical motivation for using these initial condi-
tions; see, for example, Ref. [42]. In addition, the choice for
Λ is Λ ¼ 1.1895 × 10−66 eV while the mass scale ms is
ms ¼ 4.32552 × 10−34 eV, and in addition in the following
we take c1 ¼ 1 eV6, c2 ¼ 1 eV2− 4α

3α−1, and α ¼ 3.30579.
Then, by numerically solving the differential equation (37)
using the aforementioned initial conditions and values for
the free parameters, we can analyze several statefinder
quantities of cosmological interest for the late-time era, and
we will compare the results with the ΛCDM model and an
fðRÞ gravity model that is known to produce viable
solutions for the late-time era. The comparison of the
results of the Gauss-Bonnet model with the ΛCDM is
obvious, since the latter is the cornerstone model of late-
time phenomenology, since it is highly compatible with the
cosmic microwave background (CMB). However, we need
to discuss the comparison of the Gauss-Bonnet model with
the fðRÞ gravity theory, since these are apparently two
distinct and phenomenologically competing theories. Our
motivation is simply to investigate whether the dark energy
oscillations at large redshifts (z ≥ 4) persist in the Gauss-
Bonnet theory case. Our results are quite interesting, since
in the Gauss-Bonnet case the oscillations do not occur.
Also, we calculate the predicted values for some quantities
of cosmological interest and compare these values with the
latest constraints from the Planck Collaboration on these
cosmological parameters [66]. For our analysis, we use the
CMB-based value for the Hubble rate, which is [66]

H0 ¼ 67.4� 0.5
km

sec×Mpc
; ð38Þ

1We used Mathematica 11.3®
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so H0 ¼ 67.4 km= sec =Mpc, which is H0 ¼ 1.37187×
10−33 eV. Also, let us briefly discuss the cosmological
quantities and statefinders that we analyze and compare in
this paper, for the ΛCDM, Gauss-Bonnet, and fðRÞ gravity
models. An important quantity is the dark energy EoS
parameter, defined as ωDE ¼ PDE

ρDE
, which in terms of the

statefinder quantity yHðzÞ is expressed as follows:

ωDEðzÞ ¼ −1þ 1

3
ðzþ 1Þ 1

yHðzÞ
dyHðzÞ
dz

: ð39Þ

Basically, the above quantity is itself a statefinder quantity,
since it depends on the geometry through its explicit
dependence on the Hubble rate derivatives. Another
important cosmological quantity is the dark energy density
parameter ΩDEðzÞ, defined as ΩDE ¼ ρDE

ρtot
, which in terms of

the statefinder quantity yHðzÞ is written as

ΩDEðzÞ ¼
yHðzÞ

yHðzÞ þ ðzþ 1Þ3 þ χðzþ 1Þ4 : ð40Þ

Now, for the comparisons with the ΛCDM model, the
Hubble rate for the ΛCDM model is equal to

HΛðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ΩMðzþ 1Þ3 þ Ωrð1þ zÞ4

q
; ð41Þ

where again H0 is the value of the Hubble rate at present
time, namely, H0 ≃ 1.37187 × 10−33 eV [66], while
ΩΛ ≃ 0.681369, and finally ΩM ∼ 0.3153 [66]. Also,
Ωr=ΩM ≃ χ, where we defined the parameter χ below
Eq. (28).
Finally, we examine four statefinder quantities in this

late-time study: the deceleration parameter q, the jerk j, the
snap parameter s, and finally the parameter OmðzÞ, which
in terms of the Hubble rate are defined as

q ¼ −1 −
_H
H2

; ð42Þ

j ¼ Ḧ
H3

− 3q − 2; ð43Þ

s ¼ j − 1

3ðq − 1
2
Þ ; ð44Þ

OmðzÞ ¼
ðHðzÞ
H0

Þ2 − 1

ð1þ zÞ3 − 1
: ð45Þ

Of course, the first three must be expressed in terms of the
redshift variable, so for simplicity we quote the simplest
expressions of the three:

q ¼ −1þ ð1þ zÞH
0

H
; ð46Þ

j ¼ ð1þ zÞ2
��

H0

H

�
2

þH00

H
−

2H0

ð1þ zÞH
�
þ 1: ð47Þ

For the ΛCDM model, the statefinders j, s, and OmðzÞ
have the following simple values: s ¼ 0, j ¼ 1, and
OmðzÞ ¼ ΩM ≃ 0.3153. Let us now proceed to the results
of our numerical analysis. First, we compare the Gauss-
Bonnet model with the ΛCDM model, and in Fig. 1 we
present the comparisons of the deceleration parameter
(upper left), the jerk (upper right), the snap (bottom left),
and the parameter OmðzÞ (bottom right) for the Gauss-
Bonnet model (blue curves) and ΛCDM model (red
curves). As is obvious, in the case of the deceleration
parameter the two curves are indistinguishable, while
differences can be found for the other three statefinders.
Also, it is worth mentioning that for the snap parameter, for
redshifts z ∼ 4 and smaller, the ΛCDM and Gauss-Bonnet
models are indistinguishable.
Now in order to investigate the dark energy oscillations

known to affect fðRÞ gravity theories, we present the
results of our numerical analysis for the Gauss-Bonnet
theory, focusing on the dark energy EoS ωDE and the dark
energy density parameter ΩDEðzÞ, the behaviors of which
are plotted in Fig. 2 for the pure Gauss-Bonnet theory. As
can be seen in Fig. 2, no dark energy oscillations occur, but
in order to make this result more clear we compare the
Gauss-Bonnet theory with a viable fðRÞ gravity theory, the
functional form of which is [42]

fðRÞ ¼ Rþ
�
R
M

�
2

− γΛ
�

R
3m2

s

�
δ

; ð48Þ

where,M is an auxiliary parameter withmass dimension [m]
and is given by the expressionM ¼ 1.5 × 10−5 50

N MP, where
N is the number of e-foldings corresponding to the infla-
tionary era (N ¼ 60) and MP is the reduced Planck mass.
Essentially, theR2 term contributes to the inflationary era and
early times, whereas ð R

3m2
s
Þδ for δ < 1 becomes dominant in

the late-time era. In Fig. 3 we plot the behaviors of the dark
energy EoS ωDE (left) and the dark energy parameter ΩDE
(right) for the fðRÞ model (red curves) and Gauss-Bonnet
gravity (blue curves). As is apparent, the behavior of the dark
energy density parameter is indistinguishable between the
models; however, the dark energy EoS for the fðRÞ gravity
model has strong oscillations for z ≥ 4, which are completely
absent in the Gauss-Bonnet model. Thus, the dark energy
oscillation issue that haunts fðRÞ gravity models is absent in
the Gauss-Bonnet models. This claim is further supported by
the plots appearing in Figs. 4 and 5. In Fig. 4 we compare the
deceleration parameter q and the statefinder yHðzÞ for the
fðRÞ gravity model (red curves) and the Gauss-Bonnet
model (blue). The absence of oscillations in both cases is
obvious for the Gauss-Bonnet case, and the same conclu-
sions can be derived if we look at Fig. 5 where we plot the
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statefinder parameters jðzÞ (upper left), sðzÞ (upper right),
andOmðzÞ (bottom) for the fðRÞ gravity model (red curves)
and Gauss-Bonnet gravity (blue curves). In the upper dia-
grams, it becomes apparent that themain difference lies in the
dark energy oscillations which, as expected, are enhanced in
higher-order derivatives of yH for the fðRÞ gravity case.
Finally, in order to have a concrete idea of how well the

Gauss-Bonnet model behaves, we compare the values of

several statefinders for the ΛCDM model and Gauss-
Bonnet gravity, and also directly compare the dark energy
EoS and dark energy density parameters at present time for
the Gauss-Bonnet model with the latest Planck data. Our
results are summarized in Table I. As can be seen in Table I,
the statefinder values for the Gauss-Bonnet model are quite
close to the corresponding ΛCDM values, and in addition
the Gauss-Bonnet model value for the dark energy density

FIG. 1. Comparison of several statefinder quantities for Rþ fðGÞ gravity and the ΛCDM model.

FIG. 2. Dark energy EoS parameter ωDE (left) and dark energy density parameter ΩDE (right) for the Rþ fðGÞ model. In this case, it
can be easily seen that the EoS of the dark energy density parameter is slowly varying near ωDE ¼ −1, while the density parameter ΩDE
increases until it reaches the value ΩDE ¼ 1.
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parameter isΩDEð0Þ ¼ 0.679553, which is compatible with
the latest Planck constraint ΩDE ¼ 0.6847� 0.0073 [66].
In addition, the dark energy EoS parameter value for
the Gauss-Bonnet model at present time is ωDEð0Þ ¼
−0.999667, which is in good agreement with the corre-
sponding Planck constraint ωDE ¼ −1.018� 0.031 [66].
In conclusion, the Gauss-Bonnet model of Eq. (32) is able
to produce a phenomenologically viable early-time bounce,
while at late times it produces a viable dark energy era,
which is in addition free from dark energy oscillations. In
the next section we also discuss a more complicated
fðR;GÞ model that is, however, less appealing in compari-
son to the model we presented in this section, due to the
primordial ghost modes in those fðR;GÞ models.

A. On the stability of the FðGÞ gravity solutions
and cosmological perturbations in the vicinity

of the bouncing point

Let us now investigate the stability of the fðGÞ gravity
solutions and discuss the stability of the cosmological

perturbations as the general-relativistic limit is approached.
The FRWequations for fðGÞ gravity constitute a dynamical
system, and the stability of the solutions can be examined
if we perturb this dynamical system. We consider linear
perturbations of the cosmological solutions, as functions of
the Hubble rate, and the presence of an instability would
indicate that the solution is not the final attractor for the
theory at hand. For the era near the bouncing point, this is
somewhat expected because the evolution continues after
the bouncing point, but for the late-time era the expected
behavior is rather vague. This is due to the fact that the late-
time era seems to be a de Sitter–like solution by looking at
the dark energy EoS parameter, but eventually it is not an
exact de Sitter solution. So let us explicitly check the
stability of the dynamical system to linear perturbations of
the cosmological solutions, in order to shed some light on
this issue. The Hubble rate in the vicinity of the bouncing
point is

HðtÞ ¼ βðt − tsÞα; ð49Þ

FIG. 3. Dark energy EoS parameter ωDE (left) and the dark energy density parameter ΩDE (right) for the fðRÞ and Rþ fðGÞ cases,
depicted with red and blue curves, respectively.

FIG. 4. Comparison between the fðRÞ (red) and Rþ fðGÞ cases (blue) for the parameters yHðzÞ (left) and qðzÞ (right). While the
statefinder yH is completely different between the two models, the deceleration parameter seems to be the same when dark energy
oscillations are not present, i.e., for z ≤ 5.
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and the fðGÞ gravity that approximately realizes the Hubble rate (49) is

fðGÞ ∼ c2G
α

3α−1: ð50Þ

Following the strategy of Ref. [68], we linearly perturb the solution of the Friedmann equation gðNÞ ¼ H2 in the following
way:

gðNÞ → gðNÞ þ δgðNÞ; ð51Þ

where gðNÞ is a solution of the Friedmann equation and N is the number of e-foldings. By using the function gðNÞ, the
Friedmann equation can be cast in the following form:

288g2ðNÞf00ðGÞ½ððg0ðNÞÞ2 þ gðNÞÞg00ðNÞ þ 4gðNÞg0ðNÞ þ 4gðNÞg0ðNÞ�6gðNÞ
þ fðGÞ − 12gðNÞðg0ðNÞ þ 2gðNÞÞf0ðGÞ ¼ 0: ð52Þ

Now, the actual conditions that ensure that the dynamical system of Eq. (52) is stable to linear perturbations are [68]

J2
J1

> 0;
J3
J1

> 0; ð53Þ

where J1 is

J1 ¼ 288gðNÞ3f00ðGÞ; ð54Þ

FIG. 5. Statefinder parameters jðzÞ (upper left), sðzÞ (upper right), andOmðzÞ (bottom) for the fðRÞ (red) and Rþ fðGÞ (blue) models.
In the upper diagrams, it becomes apparent that the main difference lies in the dark energy oscillations which (as expected) are enhanced
in higher-order derivatives of yH .
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J2 is

J2 ¼ 432gðNÞ2ðð2gðNÞ þ g0ðNÞÞf00ðGÞ þ 8gðNÞðg0ðNÞ2 þ gðNÞð4g0ðNÞ þ g00ðNÞÞÞf00ðGÞÞ; ð55Þ

and finally J3 is

J3 ¼ 6ð1þ 24gðNÞð−8gðNÞ2 þ 3g0ðNÞ2 þ 6gðNÞð3g0ðNÞ þ g00ðNÞÞÞf00ðGÞ
þ 24gðNÞð4gðNÞ þ g0ðNÞÞðg0ðNÞ2 þ gðNÞð4gðNÞ þ g00ðNÞÞÞf00ðGÞÞ: ð56Þ

Now let us explicitly calculate the parameters J1, J2, and J3 for the era corresponding to the bouncing point, so the fðGÞ
gravity is given in Eq. (50). By expressing the Hubble rate (49) as a function of the number of e-foldings N, with the latter
being N ¼ ln a, the function gðNÞ becomes

gðNÞ ¼ β2Nζ

δ
; ð57Þ

with ζ ¼ 2α
1þα. Now we proceed with the stability conditions, and by calculating the parameters J1, J2, and J3 we get

J2
J1

¼ 3ðδ2Nð2N þ ζÞ þ 8N2ζβ4ζð−1þ 4N þ 2ζÞÞ
2δ2N2

; ð58Þ

and J3=J1 is

J3
J1

¼ −
1

c2δαð−1þ 2αÞ 3
1þ α

1−3α4
α

1−3αN−2þζð1 − 3αÞ2β2ðζÞ2
�
N−1þ2ζβ4ðζÞ

δ2

� α
1−3α

×

�
1þ 2

1−α
−1þ3α3

1−2α
−1þ3αc2δN−ζαð−1þ 2αÞðN−1þ2ζβ4ð2NþζÞ

δ2
Þ α
−1þ3αð8N2 − 18Nζ þ 3ð2 − 3ζÞζÞ

ð1 − 3αÞ2β2ð2N þ ζÞ2

−
2

1−α
−1þ3α3

1−2α
−1þ3αc2αð−1þ 2αÞðN−1þ2ζβ4ðζÞ

δ2
Þ α
−1þ3αðζÞðζð−1þ 2ζÞÞ

Nð1 − 3αÞ2ðζÞ2
�
: ð59Þ

Focusing on the vicinity of the bouncing point t → ts,
which corresponds to N → 0, we get

J2
J1

¼ 3þ 3ζ

2N
;

J3
J1

¼ −AN−2þζþα−2αζ
−1þ3α; ð60Þ

where the parameter A is

A ¼ 31þ α
1−3α4

α
1−3αδð1 − 3αÞ2γðβ4γ

δ2
Þ1þ α

1−3α

c2αð−1þ 2αÞβ2 ; ð61Þ

and A is obviously positive. Hence, J2=J1 > 0 and
J3=J1 < 0, and therefore the dynamical system of cosmo-
logical equations is unstable near the bouncing point, as we
anticipated.
Now let us consider the stability of the cosmological

solution for the late-time era, focusing on redshifts z ∼ 0.
Since the late-time evolution results in an EoS for the dark
energy that is approximately equal to −1, the late-time
evolution for redshifts z ∼ 0 can be approximated by a de
Sitter evolution, and it is realized by the approximate fðGÞ
gravity of the form

fðGÞ ∼ c1=G: ð62Þ

Hence, assuming that the late-time Hubble rate has the de
Sitter form HðtÞ ∼H0, in effect the function gðNÞ in this
case has the form gðNÞ ¼ H2

0. Let us repeat the procedure
we followed for the case of the bounce near the bouncing

TABLE I. Cosmological parameters of the Rþ fðGÞ choice at
present time versus the expected value of theΛCDMmodel or the
Planck 2018 data (where available). It becomes apparent that this
particular choice of initial conditions results in values that are
quite close to the expected ones.

Parameter Value ΛCDM Value/ Planck 2018 Data

yH (z ¼ 0) 2.1213 …
y0H (z ¼ 10) 0.002119 …
q (z ¼ 0) −0.51894 −0.535
j (z ¼ 0) 0.99952 1
j (z ¼ 10) 1.00677 1
s (z ¼ 0) −0.00015711 0
Om (z ¼ 0) 0.320707 0.3153� 0.07
ΩDE (z ¼ 0) 0.679553 0.6847� 0.0073
ωDE (z ¼ 0) −0.999667 −1.018� 0.031
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point by perturbing the de Sitter vacuum solution gðNÞ ¼
H2

0 using a linear perturbation of the form (51); the variable
J1 becomes

J1 ¼
c1

24H6
0

; ð63Þ

while the parameter J2 reads

J2 ¼
c1
8H6

0

; ð64Þ

and finally the parameter J3 reads

J3 ¼ 6

�
−

c1
36H6

0

þ c1
18H4

0

þ 1

�
: ð65Þ

Now the fraction J2=J1 is equal to J2=J1 ¼ 3, while the
fraction J3=J1 is equal to

J3
J1

¼ 144H6
0

c1
þ 8H2

0 − 4; ð66Þ

and since for the late-time analysis we took H0 ≃
1.37187 × 10−33 eV and c1 ¼ 1 eV6, this means that
J3=J1 is obviously negative. This means that the dynamical
system corresponding to the linear cosmological perturba-
tions is unstable for the late-time solutions. This means that
the late-time dynamical system has an unstable de Sitter
attractor (fixed point), and thus in the era that lies beyond
z ¼ 0 the system will not remain in the de Sitter vacuum.
Physically, this could mean that the late-time dark energy
EoS will not remain at the fixed value of −1, but might
evolve to the phantom or quintessence regime. In any case,
this result is somewhat interesting since it deviates from the
ΛCDM description, in which case the de Sitter state is
stable and unchanged, and the cosmological constant is
constant.

Before closing, let us briefly discuss the stability of the
cosmological perturbations for the Rþ fðGÞ gravity as the
general-relativistic limit is approached. This issue was
covered in detail in Ref. [65], so we only report their result
which is that the condition f00ðGÞ > 0 suffices to ensure the
stability of any solution in the general-relativistic limit. In
our case, during the late-time era, where fðGÞ ∼ c1=G, the
quantity f00ðGÞ is equal to f00ððGÞÞ ¼ 2c1

G3 , and hence stability
is ensured. However, for the early-time era, inwhich case the
fðGÞ gravity has the form fðGÞ ∼ c2G

α
3α−1, the quantity f00ðGÞ

reads

f00ðGÞ ¼ −
αð2α − 1Þc2G α

3α−1−2

ð1 − 3αÞ2 ; ð67Þ

which is obviously negative for thevalues ofαwe chose, and
hence this solution is unstable in the general-relativistic
limit. However, this is not a problem in this case, because
near the bounce era no consistent general-relativistic limit
exists, since general relativity cannot describe the early-time
era, while during the late times there can be some overlap
between the general-relativistic description and the fðGÞ
description, because the late-time era is approximately
described by a nearly de Sitter evolution.

IV. GENERALIZED f ðR;GÞ GRAVITY
LATE-TIME PHENOMENOLOGY:

THE CASE OF f ðRÞ+ gðGÞ GRAVITY

In the previous section we compared the results of the
Gauss-Bonnet late-time phenomenology with the fðRÞ
model of Eq. (48), and we demonstrated that even though
both the fðRÞ and Rþ fðGÞ models are capable of uniting
early- and late-time eras there exist many differences, in
particular the dark energy oscillations spotted at redshifts
z ≥ 4, which are present in the fðRÞ gravity model but
absent in the Gauss-Bonnet model. It is therefore sensible

FIG. 6. Functions yHðzÞ (left) and qðzÞ (right) for the fðRÞ þ gðGÞ model with the exact same initial conditions as in the previous
section. In this case, we clearly see that dark energy oscillations have not been nullified and, as a matter of fact, the same behavior as in
the pure fðRÞ case is produced. The only difference lies in the numerical values of the statefinders, which will be addressed shortly.
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to try to find out whether combining the aforementioned
fðRÞ model with an appropriately chosen gðGÞ function
makes the dark energy oscillations disappear. Therefore,
let us assume that the fðR;GÞ model is written as
fðR;GÞ ¼ fðRÞ þ gðGÞ, with

fðRÞ ¼ Rþ
�
R
M

�
2

− γΛ
�

R
3m2

s

�
δ

ð68Þ

and

gðGÞ ¼ λffiffiffi
β

p G tan−1
�
G
β

�
; ð69Þ

where M, γ, and δ are the same parameters as in the
previous section, whereas λ and β are extra auxiliary
parameters, with the first being dimensionless and the
latter having mass dimension ½m�4 for consistency, and

FIG. 7. Dark energy EoS parameter ωDE (left) and dark energy density parameter ΩDE (right). As in the pure fðRÞ case, only the EoS
parameter appears to oscillate for large redshifts.

FIG. 8. Direct comparison of several statefinder quantities between the fðRÞ þ gðGÞ model and ΛCDM.
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moreover β is assumed to be positive. The model gðGÞ
seems quite convenient for our approach since it has a
linear part in terms of G, and moreover the derivative of
tan−1ðGÞ produces a term 1

1þG2. Since we assume an fðRÞ þ
gðGÞ gravity, Eq. (5) is written as follows:

3fRH2 ¼ κ2ρðmÞ þ
RfR − f

2
− 3H _fR þ GgG − g

2
− 12_gGH3:

ð70Þ

This is the Friedmann equation, and this particular differ-
ential equation will be solved numerically in the same
redshift interval z ¼ ½−0.9; 10� by expressing the above
differential equation in terms of the statefinder quantity yH.
In the case at hand, we have

fR ¼ 1þ 2R
M2

−
γδΛ

ð3m2
sÞδ

Rδ−1; ð71Þ

_fR ¼ _R

�
2

M2
−
γδð1 − δÞΛ
ð3m2

sÞδ
Rδ−2

�
; ð72Þ

gG ¼ λffiffiffi
β

p
�
tan−1

�
G
β

�
þ βG
β2 þ G2

�
; ð73Þ

_gG ¼ 2
ffiffiffi
β

p
λ _G

G
β2 þ G2

�
1 −

G
β2 þ G2

�
: ð74Þ

Suppose now that the values of M, ms, γ, δ, and Λ remain
the same as in the previous section (hence the reason that
they were not relabeled), and in addition λ ¼ 1, β ¼ 1.
Then, we use exactly the same initial conditions to numeri-
cally solve the differential equation (70), and the results of
our analysis are presented in Figs. 6, 7, and 8.
In particular, in Fig. 6 we plot the deceleration parameter

and statefinder yH as functions of the redshift, and in Fig. 7
we plot the dark energy EoS parameter and dark energy
density parameter as functions of the redshift. Finally, in
Fig. 8 we plot several statefinders for the combined fðRÞ þ
gðGÞ model (blue curves) and we compare these to the
ΛCDM model results (red curves). Also, in Table II we
compare the values of several quantities of cosmological
interest at present time for the combined fðRÞ þ gðGÞ
model, and compare these to the pure fðRÞ gravity model.
An overall apparent result derived from the analysis is that
the presence of the fðRÞ gravity affects the late-time
phenomenology, since it brings along the dark energy
oscillations in several statefinder quantities and cosmologi-
cal quantities. This result seems to be model independent

and thus, in conclusion, the fðRÞ gravity dark energy
oscillations cannot be remedied by adding a Gauss-
Bonnet term to the Lagrangian.

V. CONCLUSIONS

In this paper we quantitatively addressed the late-
time phenomenology of Gauss-Bonnet theories, and we
investigated how a singular primordial bouncing cosmol-
ogy and a viable dark energy era can be realized by Gauss-
Bonnet gravity. We were able to realize this unification
scheme by using a Gauss-Bonnet gravity of the form
Rþ fðGÞ, which is free from primordial superluminal
modes. The type IV singular bounce at early times, realized
by an appropriate Gauss-Bonnet gravity, generates a nearly
scale-invariant power spectrum of the primordial scalar
curvature perturbations. In addition, the late-time driving
part of the Rþ fðGÞ gravity generates a viable dark energy
era, which mimics the ΛCDM model for some statefinder
quantities, and is compatible at present time with the latest
Planck data on cosmological parameters. This specific
model has another appealing attribute: the dark energy
era is free from large-redshift (z ∼ 4) dark energy oscil-
lations, which are known to occur in fðRÞ theories. For
demonstrative purposes, we compared the Rþ fðGÞ model
with the ΛCDM model and an appropriate fðRÞ gravity
model that is known to generate a viable dark energy, and
we provided qualitative evidence for the presence of dark
energy oscillations only in the fðRÞ gravity case. In order to
further analyze the impact of a nontrivial fðRÞ gravity term
in the dark energy oscillations, we also studied the late-time
phenomenology of an fðRÞ þ gðGÞmodel, and showed that
the dark energy oscillations are also present in this case.
Thus, the fðRÞ gravity part of the gravitational action seems
to always lead to dark energy oscillations at large redshifts.

TABLE II. Comparison between the values of the pure fðRÞ
model and the fðRÞ þ gðGÞ case. Even though all of the state-
finders seem to have the same behavior in the redshift interval
z ¼ ½−0.9; 10�, the current values are indeed different, however to
a small extent.

Parameter fðRÞ Value fðRÞ þ gðGÞ Value
q (z ¼ 0) −0.520954 −0.53442
j (z ¼ 0) 1.00319 1.00478
s (z ¼ 0) −0.00104169 −0.00154146
Om (z ¼ 0) 0.319364 0.310387
ΩDEð0Þ 0.683948 0.691643
ωDEð0Þ −0.995205 −0.995673
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