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1 Introduction

The Galileons represent a theory of real scalar field φ with derivative interactions having

number of interesting properties. It emerges in its simplest form as an effective theory of the

Dvali-Gabadadze-Porrati model [1, 2] as well as of the de Rham-Gabadadze-Tolley massive

gravity theory [3] in the decoupling limit. Generalization of the Galileon Lagrangian was

proposed by Nicolis, Rattazzi and Trincherini [4] as the long distance modifications of

General relativity. In the seminal paper [4] also the complete classification of possible terms

of the Galileon Lagrangian has been made and some of the physical consequences have been

studied in detail, i.a. it was demonstrated that such theories exhibit the so-called Vainshtein

mechanism [5]. In fact the general structures appearing in the Galileon Lagrangian have

been already discovered in the 70’ as a building blocks of the Horndeski Lagrangian [6],

which is the most general Lagrangian built from no more than the second order derivatives

of the scalar field and leading to the second-order Euler-Lagrange equations. Generalization

of such Lagrangians to curved backgrounds and arbitrary p-form fields has been studied

in [7, 8]. From another point of view the Galileon Lagrangian can be obtained as a special

non-relativistic limit of the Dirac-Born-Infeld Lagrangian describing the fluctuations of the

d-dimensional brane in the d+1 dimensional space-time [9]. For a pedagogical introduction

into the Galileon physics as well as for the complete list of literature see e.g. [10].

Putting aside very important cosmological aspects, the Galileon theory itself has an

amazing structure which has been studied intensively in the literature (for pedagogical

introductions into the technical aspects see e.g. [11, 12]). For instance on the quantum

level it exhibits the so-called non-renormalization theorem which prevents the tree-level

Galileon couplings from obtaining the quantum corrections stemming from loops [13–16].

Another interesting feature is the existence of dualities, i.e. such transformations of fields

and coordinates which preserve the form of the Galileon Lagrangian, though it changes

its couplings. The duality transformations therefore interrelate different Galileon theories

on the contrary to the symmetry transformations which leave the action invariant. The

first such a duality has been recognized already in the paper [4] where it was shown that

the transformation φ → φ + 1
4H

2x2 converts one form of the Lagrangian into another

one. The latter then describes the fluctuations of the Galileon field about the de Sitter

background solution. Another example of duality was mentioned and studied in [11] and

it corresponds to the dual Legendre transform of the field. The most interesting duality
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has been discovered in [17] in the context of massive gravity and bigravity and has been

further studied in [18].

In this paper we study these dualities from the unified point of view. We make use of the

fact that the general Galileon theory can be understood as a low-energy effective theory

describing the Goldstone bosons corresponding to the spontaneously broken symmetry

according to the pattern GAL(d, 1) → ISO(d − 1, 1) where GAL(d, 1) is the so-called

Galileon group and its Lagrangian can be identified with generalized Wess-Zumino-Witten

terms [19]. This allows us to classify the most general duality transformation and identify

it as a non-linear coordinate transformations on the coset space GAL(d, 1)/SO(d − 1, 1).

As we will show such duality transformations form a four-parametric group which can be

identified with GL(2,R) and which contains all the above mentioned dualities as special

cases. We will also study the representation of this duality group on the Galileon theory

space and give examples of physical applications of the duality. Namely we discuss the

duality of classical covariant phase spaces and corresponding observables, the duality of

fluctuations on the the classical background, the dual realization of the symmetries, the

duality of the S matrix and its applications on the tree and one-loop level. We also

classify the Galileon theories with respect to the duality generated with specific subgroup

of GL(2,R) which leaves the S matrix invariant or under which the tree-level amplitudes

trivially scale. We illustrate most of the above topics by means of explicit examples.

This paper is organized as follows. First, in section 2 we introduce the Galileon sym-

metry and Lagrangian, discuss the Feynman rules and as an illustration we calculate the

tree-level amplitudes up to the five-point one. In section 3 we review the coset construc-

tion of the Galileon Lagrangian. Section 4 and 5 contain the main results of this work. In

section 4 we construct the most general duality transformations and in section 5 we discuss

their group structure. Several applications then follow in section 6. Some technical details

and alternative approaches are postponed in appendices.

2 Introductory remarks on Galileon in flat space

In this section we fix our notation and introduce the classical Galileon Lagrangian. Also

some formulae which will be useful in the next sections are presented. We also explicitly

evaluate the Feynman rules and as a motivation we calculate the tree-level scattering

amplitudes up to five particles in the in and out states.

2.1 The Galileon Lagrangian

The Galileon represents the most general theory of a real scalar field φ in flat d− di-

mensional space-time the action S[φ] of which is invariant with respect to the Galilean

symmetry

δa,bφ = a+ b · x, (2.1)

where a and bµ are real parameters. Therefore the Galileon Lagrangian LG changes under

this symmetry at most by a total derivative

δa,bLG = ∂ · Va,b. (2.2)

– 2 –
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At the quantum level the Lagrangian can be written in the general form

LG = L+ LCT (2.3)

where L is the leading (classical) part and LCT corresponds to the higher order countert-

erms needed for a consistent perturbative calculation of the quantum corrections. The

latter part of the Lagrangian will be discussed in more details in section 6.8, here we con-

centrate on the leading part L. This can be determined uniquely (up to d + 1 arbitrary

coupling constants) by a second requirement demanding that the classical equations of

motion corresponding to L contain at most second order derivatives of the field. As it

has been proven in the seminal paper [4], (see also [11] and [12] for detailed pedagogical

introduction and many useful formulae), these conditions allow just d + 1 possible terms

in the Lagrangian

L =

d+1∑

n=1

dnLn =

d+1∑

n=1

dnφLdern−1 (2.4)

where dn are real coupling constants and Ldern can be constructed from d−dimensional

Levi-Civita tensor εµ1...µd , the flat-space metric tensor ηµν and the matrix of the second

derivatives of the field ∂∂φ as follows1

Ldern = εµ1...µdεν1...νd
n∏

i=1

∂µi∂νiφ
d∏

j=n+1

ηµjνj = (−1)d−1(d− n)! det
{
∂νi∂νjφ

}n
i,j=1

. (2.5)

In four dimensions we have explicitly2

Lder0 = −4!
Lder1 = −6�φ
Lder2 = −2

[
(�φ)2 − ∂∂φ : ∂∂φ

]

Lder3 = −
[
(�φ)3 + 2∂∂φ · ∂∂φ : ∂∂φ− 3�φ∂∂φ · ∂∂φ

]

Lder4 = −
[
(�φ)4 − 6 (�φ)2 ∂∂φ : ∂∂φ+ 8�φ∂∂φ · ∂∂φ : ∂∂φ

−6∂∂φ · ∂∂φ · ∂∂φ : ∂∂φ+ 3 (∂∂φ : ∂∂φ)2
]
. (2.6)

The equation of motion is then

δS[φ]

δφ
=

d+1∑

n=1

ndnLdern−1 = 0 (2.7)

and involves just the second derivatives of the Galileon field.

1We use the convention ηµν = diag(1,−1, . . . ,−1), ε0,1,...,d−1 = 1.
2Here (and in what follows) we use condensed notation where the dot means contraction of the adjacent

Lorentz indices, e.g.

∂∂φ · ∂∂φ : ∂∂φ = ∂µ∂σφ · ∂σ∂νφ : ∂µ∂νφ
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Let us note that the operator basis Ln is not unique, we can choose also another set

which differs from (2.5) by a total derivative and possible re-scaling. One of the many

equivalent forms of the Lagrangian which can be obtained from (2.5) by means of the

integration by parts and simple algebra is

L̃ =

d+1∑

n=1

cnL̃n =

d+1∑

n=1

cn (∂φ · ∂φ)Ldern−2 (2.8)

Let us mention useful formulae (for derivation see e.g. [12])

(∂φ · ∂φ)Ldern−1 = −
2(d− n+ 1)

n+ 1

[
φLdern − ∂µ

(
Hµ

n +
n− 1

d− n+ 1
Gµ

n

)]
(2.9)

where

Hµ
n = φ∂ν1φε

µµ2...µdεν1...νd
n∏

i=2

∂µi∂νiφ

d∏

j=n+1

ηµjνj (2.10)

Gµ
n =

1

2
(∂φ · ∂φ) ∂µφεµ2...µnα1...αd−n+1εν2...νnβ1...βd−n+1

d−n+1∏

j=1

ηαjβj

n∏

k=2,k 6=i

∂µk
∂νkφ. (2.11)

and thus after integration and omitting the surface terms we get

∫
ddx (∂φ · ∂φ)Ldern−1 = −

∫
ddx

2(d− n+ 1)

n+ 1
φLdern . (2.12)

2.2 The Feynman rules and tree-level amplitudes

For further convenience let us also write down explicitly the Feynman rule for n−point
vertex

Vn(1, 2, . . . , n) = (−1)ndn(d− n+ 1)!(n− 1)!
∑

σ∈Zn

G(pσ(1), pσ(2), . . . , pσ(n−1)) , (2.13)

where we have introduced the Gram determinant G(p1, . . . , pn−1)

G(p1, . . . , pn−1) = −
1

(d− n+ 1)!
εp1...pn−1µn...µdεp1,...,pn−1νn...νd

d∏

j=n

ηµjνj (2.14)

and where the sum is over the cyclic permutations only.3

Using this Feynman rules, one can in principle calculate any tree-level n−point am-

plitude in the pure Galileon theory. What it means for n = 3, 4, 5 in the language of

Feynman diagrams is depicted in figure 1. Note that crossing is tacitly assumed for these

graphs which finally leads to four diagrams for 4-pt scattering and 26 for 5-pt scattering.

However, due to the complicated structure of the vertices the evaluation of the individual

contributions of the Feynman graphs is not an easy task. The most economic way how to

3Note that, the Gram determinant is independent on the ordering of the vector arguments.

– 4 –



J
H
E
P
1
0
(
2
0
1
4
)
0
0
6

Figure 1. The topologies of Feynman diagrams at the tree-level for the three-point, four-point

(first line) and five-point (second line) Galileon scattering amplitudes.

organize the rather lengthy and untransparent calculation is the machinery of the Berends-

Giele like recursion relations4 [21] which allows for an efficient computer algoritmization of

the problem. In four dimension (in the theory without tadpole and with canonical kinetic

term, i.e. with d1 = 0 and d2 = 1/12) we get to the following results

M(1, 2, 3) = 6d3G(1, 2) =
3

2
d3p

4
3 = 0 (2.15)

M(1, 2, 3, 4) = 12(2d4 − 9d23)G(1, 2, 3) (2.16)

M(1, 2, 3, 4, 5) = −24
(
72d33 − 24d3d4 + 5d5

)
G(1, 2, 3, 4) (2.17)

(we were also capable to calculate the 6-pt diagrams which involves 235 Feynman diagrams).

Without the deeper understanding of the structure of the Galileon theory these results look

suspiciously simple;5 in fact it was our main motivation for starting to study this model

more systematically. In what follows we shall i.a. show how to understand these results

and how they can be obtained almost without calculation on a single sheet of paper.

3 Coset construction of the Galileon action

The Galileon field can be also interpreted as a Goldstone boson corresponding to the spon-

taneously broken Galileon symmetry [19]. Therefore, to obtain the most general Lagrangian

for the Galileon, the general theory of nonlinear realization [22–25] should be used. Because

the localized Galilean symmetries are non independent, the number of Goldstone bosons is

not equal to the number of the broken generators and an additional constraint known as the

inverse Higgs constraint [26] has to be introduced. However, as discussed in [19], only the

counterterm part LCT can be obtained in this way. The classical Galileon Lagrangian L is

in fact invariant only up to the total derivative and the corresponding action represents an

analogue of the Wess-Zumino-Witten term [27–30] originally known from the effective low

4For an application to a similar problem see e.g. [20].
5Note that, while the four- and five-point amplitudes are sums of Feynman graphs including those with

one and two propagators naively generating pole terms (see figure 1), the resulting amplitude is represented

by a purely contact term.
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energy theory of QCD. Such a term of the action can be reconstructed from its variation

and is thus expressed as d + 1 dimensional integral. In this section we give a brief review

of the coset construction based on the nonlinearly realized Galileon symmetry and of the

interpretation of the classical galileon Lagrangian as the generalized Wess-Zumino-Witten

term. Further details and generalizations can be found in the original paper [19].

3.1 Nonlinear realization of the Galilean symmetry

The Galilean symmetry is a prominent example of the so called non-uniform symmetry,

i.e. a symmetry which does not commute with the space-time translations [31, 32]. Indeed,

denoting the infinitesimal translations and Galilean transformations of the Galileon field

δcφ and δa,bφ respectively,

δcφ = c · ∂φ (3.1)

δa,bφ = a+ b · x, (3.2)

we get

[δc, δa,b]φ = c · b = δc·b,0φ (3.3)

Let us add to this transformations also the Lorentz rotations and boosts δω

δωφ =
1

2
ωµν(xµ∂ν − xν∂µ)φ (3.4)

we get then

[δω, δa,b]φ = −b · ω · x = δ0,−b·ωφ = δ0,ω·bφ (3.5)

Therefore the infinitesimal transformations δc, δω, δa,b form a closed algebra with genera-

tors Pa, Jab = −Jba, A and Ba respectively. In terms of these generators

δc = −icaPa (3.6)

δω = − i

2
ωabJab (3.7)

δa,b = −iaA− ibaBa (3.8)

and the commutator algebra can be rewritten in the form of the Galileon algebra gal(d, 1)

[Pa, Pb] = [Pa, A] = [Ba, A] = [Jab, A] = 0

[Pa, Bb] = iηabA

[Jab, Pc] = i (ηbcPa − ηacPb)

[Jab, Bc] = i (ηbcBa − ηacBb)

[Jab, Jcd] = i (ηbcJad + ηadJbc − ηacJbd − ηbdJac) (3.9)

which corresponds to the Galileon group GAL(d, 1) (see [19]).

Within the Galileon theory this group is realized non-linearly on the fields φ and

space-time coordinates xµ. Indeed, for the generators Pa, A a Ba we have

−iPax
µ = δµa

−iAφ = 1

−iBaφ = xa. (3.10)

– 6 –
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The generators A a Ba are spontaneously broken, the order parameter can be identified with

〈0|δa,bφ|0〉 = a+ b · x.

This corresponds to the symmetry breaking pattern GAL(d, 1) → ISO(d − 1, 1). Let

us note that the above transformations are not completely independent in the sense of

refs. [33, 32]. Indeed, their localized forms with space-time dependent parameters a(x) and

bµ(x) yield the same local transformation

δa(x),b(x)φ = a(x) + b(x) · x (3.11)

which corresponds to the local shift of the Galileon field φ. More precisely, writing ab(x) =

x · b(x), we can identify

δab(x),0 = δ0,b(x). (3.12)

Physically this means that the local fluctuations of the order parameter which correspond

to the Goldstone modes are not independent. As a result the particle spectrum does not

contain the same number of Goldstone bosons as is the number of the broken generators

(i.e. d+ 1) but just one zero mass mode which can be identified with the Galileon field φ.

(see [32, 34] for recent discussion of this issue).

Construction of the low energy effective Lagrangian describing the dynamics of the

Goldstone bosons corresponding to the spontaneous breakdown of the non-uniform sym-

metries is a generalization of the coset construction of Callan, Coleman, Wess and Zu-

mino [22, 23] and has been formulated by Volkov [24] and Ogievetsky [25]. Applied to the

Galileon case, where the only linearly realized generators of the Galileon group are the

Lorentz rotations and boosts Jab, the coset space is GAL(d, 1)/SO(d− 1, 1) the elements

of which are the left cosets {gSO(d− 1, 1)} where g ∈ GAL(d, 1). The coordinates on this

coset space can be chosen in a standard way by means of a unique choice of the representant

U of each left coset. Such a representant can be written in terms of the coset coordinates

xa, φ and La as

U ≡ U(x, φ, L) = exp(ixaPa) exp (iφA+ iLaBa) (3.13)

The general element of the galileon group g ∈ GAL(d, 1)

g = exp

(
i

2
ωabJab

)
exp (icaPa) exp (iaA+ ibaBa) (3.14)

acts on the cosets by means of the left multiplication and consequently the coset coordinates

transform according to

U ′ ≡ U(x′, φ′, L′) = gUh−1 (3.15)

where h ≡ h(g, x, φ, L) ∈ SO(d − 1, 1) is the compensator arranging U ′ to be of the

form (3.13). As usual, the stability group, which is the Lorentz group SO(d − 1, 1) here,

is realized linearly (φ transformed as a scalar and x and L are vectors), and the general

element (3.14) of the Galileon group g ∈ GAL(d, 1) acts on U as follows

gU(x, φ, L) = exp(ixa′Pa) exp
(
iφ′A+ iLa′Ba

)
exp

(
i

2
ωabJab

)
(3.16)

– 7 –
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where

xa′ = Λ(ω)ab (x
b + cb), φ′ = φ+ a+ b · x, La′ = Λ(ω)ab

(
Lb + bb

)

and where

Λ(ω) = exp

(
1

2
ωabMab

)
, (Mab)

c
d = δcaηbd − δcbηad.

As a result, for the general element of the Galileon group g ∈ GAL(d, 1) we have the

following compensator

h(g, x, φ, L) = exp

(
i

2
ωabJab

)
. (3.17)

Note that, the compensator does not depend on the coset coordinates (x, φ, L) and there-

fore treating φ and La as space-time dependent fields, the compensator has no explicit or

implicit x dependence. This simplifies the application of the general recipe [24, 25] signifi-

cantly, because the requirement of the invariance with respect to the local stability group

can be replaced by much simpler requirement of global invariance.

3.2 Construction of the invariant Lagrangian

The basic object for the construction of the effective Lagrangian is the Maurer-Cartan

form, which can be expressed in the coordinates xa, φ and La as

1

i
U−1dU = exp

(
−iφA− iLbBb

)
exp(−ixdPd)d (exp(ix

cPc) exp (iφA+ iLaBa))

= exp
(
−iLbBb

)(
dxcPc + dφA+ dLdBd

)
exp (iLaBa) (3.18)

where in the second line we have used the fact that A commutes with all the other gener-

ators. Using further

exp
(
−iLbBb

)
Pc exp (iL

aBa) = Pc − LbηbcA (3.19)

we get finally

1

i
U−1dU = dxcPc + (dφ− Laηbcdx

c)A+ dLdBd

≡ ωc
PPc + ωAA+ ωd

BBd (3.20)

The form ωc
P is particularly simple. In the general case we get ωa

P = eaµ(x)dx
µ and eaµ plays

a role of d−bein, intertwining the abstract group indices a, . . . with space-time indices µ, . . .

and the flat metric ηab with the effective space-time metric gµν according to

gµν = ηabe
a
µe

b
ν (3.21)

In our case eaµ = δaµ , the space-time metric is therefore flat

gµν = ηµν (3.22)

and the abstract group indices are identical with the space-time ones. This also ensures

that the volume element ddx is invariant with respect to the non-linearly realized Galileon

– 8 –
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group. Note also that there is no term of the form ωab
J Jab on the right hand side of (3.20).

This implies that the usual group covariant derivative is in our case identical with ordinary

partial derivatives ∂α. The forms ωc
P , ωA and ωd

B transform under a general element of the

Galileon (3.14) group g ∈ GAL(d, 1) (cf. (3.17)) according to

ω′a
P = Λ(ω)abω

b
P

ω′a
B = Λ(ω)abω

b
B

ω′
A = ωA. (3.23)

These forms span three irreducible representations of the stability group SO(d − 1, 1)

(namely two vectors and one scalar) and can be therefore used separately as the basic

building blocks for the construction of the effective Lagrangian. The general recipe requires

to use this building block and their (covariant) derivatives to construct all the possible terms

which are invariant with respect to local stability group. As we have mentioned above, in

our case we make do with ordinary partial derivatives and the last requirement can be

rephrased as the global SO(d − 1, 1) invariance when we identify the abstract group and

space-time indices with help of the trivial d-bein δaµ. Therefore, writing

dφ(x) = ∂µφ(x)dx
µ, dLν(x) = ∂µL

ν(x)dxµ,

the most general invariant term of the Lagrangian is the Lorentz invariant combinations

of the fields ∂µL
ν and Dµφ, where

Dµφ ≡ ∂µφ− Lµ (3.24)

and their derivatives.

Apparently we have ended up with d+1 Goldstone fields φ and Lµ however this is not

the final answer. In fact these fields are not independent. The standard possibility how to

eliminate the unwanted degrees of freedom is to require an additional constraint [19, 32]

ωA = 0⇐⇒ Lµ = ∂µφ, (3.25)

which is invariant with respect to the group GAL(d, 1) and which is known as the inverse

Higgs constraint (IHC) [26]. Then the only remaining nontrivial building blocks are ∂µ∂νφ

and its derivatives6 and the general Lagrangian is

Linv = Linv(∂µ∂νφ, ∂λ∂µ∂νφ, . . .). (3.26)

6Another possibility how to treat the problem of additional degrees of freedom is based on the field

redefinition

Lµ = ψµ + ∂µφ

where ψµ are new fields. Then

L(∂µL
ν , Dµφ) = L(∂µL

ν , ∂µφ− Lµ) = L(∂µψ
ν + ∂µ∂

νφ, ψµ)

The invariant term M2DµφD
µφ, which was responsible for the kinetic term of the field φ in the original

Lagrangian goes within the new parametrization in terms of φ and ψµ into the mass term of the field

ψµ. This field then does not correspond more to the Goldstone boson and can be integrated out from

the effective Lagrangian, provided we are interested in the dynamics of the field φ only. We end up again

with the just one nontrivial building block ∂µ∂νφ. See [32] for detailed discussion of this aspect of the

spontaneously broken non-uniform symmetries.
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3.3 Generalized Wess-Zumino-Witten terms

The Galileon Lagrangian represents a different type of possible terms contributing to the

invariant action, namely those which are not strictly invariant on the Lagrangian level, but

are invariant only up to a total derivative. Such terms can be identified as the generalized

Wess-Zumino-Witten (WZW) terms [27, 28], as was proved and discussed in detail in [29,

30]. From the point of view of the coset construction, the WZW terms originate in the

integrals of the closed invariant (d+ 1)-forms7 ωd+1 on GAL(d, 1)/SO(d − 1, 1) (these

correspond to the variation of the action) over the d+1 dimensional ball Bd+1 the boundary

of which is the compactified space-time Sd = ∂Bd+1

SWZW =

∫

Bd+1

ωd+1 (3.27)

In order to prevent these contributions to the action to degenerate into the strictly invariant

Lagrangian terms discussed above it is necessary that the form ωd+1 is not an exterior

derivative of the invariant d-form on GAL(d, 1)/SO(d − 1, 1). This means that ωd+1 has

to be a nontrivial element of the cohomology Hd+1 (GAL(d, 1)/SO(d− 1, 1),R) (see [35]

and also [36] for a recent review on this topic). In the case of Galileon such forms can be

constructed out of the covariant 1-forms ωµ
P , ωA a ωµ

B with indices contracted appropriately

to get Lorentz invariant combinations. As was shown in [19], there are d + 1 such ωd+1,

namely

ω
(n)
d+1 = εµ1...µd

ωA ∧ ωµ1

B ∧ . . . ∧ ω
µn−1

B ∧ ωµn

P ∧ . . . ∧ ω
µd
P

= εµ1...µd
(dφ− Lµdx

µ) ∧ dLµ1 ∧ . . . ∧ dLµn−1 ∧ dxµn ∧ . . . ∧ dxµd , (3.28)

where n = 1, 2, . . . , d+ 1. These forms are closed

ω
(n)
d+1 = dβ

(n)
d (3.29)

where8 [19]

β
(n)
d = εµ1...µd

φ dLµ1 ∧ . . . ∧ dLµn−1 ∧ dxµn ∧ . . . ∧ dxµd

+
n− 1

2(d− n+ 2)!
εµ1...µd

L2dLµ1 ∧ . . . ∧ dLµn−2 ∧ dxµn−1 ∧ . . . ∧ dxµd (3.30)

and therefore ∫

Bd+1

ω
(n)
d+1 =

∫

∂Bd+1

β
(n)
d =

∫

Sd

β
(n)
d (3.31)

Note that the d-forms β
(n)
d are not invariant, and therefore ω

(n)
d+1 are nontrivial elements of

Hd+1 (GAL(d, 1)/SO(d− 1, 1),R). Imposing now the IHC constraint (3.25), we can finally

identify ∫

Sd

β
(n)
d =

1

n

∫

Sd

ddxLn (3.32)

7More precisely we integrate the pull-back of the form ωd+1 with respect to the map Bd+1 →

GAL(d, 1)/SO(d− 1, 1) which maps (xµ, xd) → (δaµx
µ, φ(xµ, xd), Lµ(xµ, xd)).

8The opposite sign of the second term in comparison with [19] stems from different convention for the

metric tensor ηµν .
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The classical Galileon action is therefore a linear combination of the generalized Wess-

Zumino-Witten terms corresponding to the d+1 elements ω
(n)
d+1 = dβ

(n)
d of the cohomology

Hd+1 (GAL(d, 1)/SO(d− 1, 1),R) built with help of the forms ωµ
P , ωA a ωµ

B.

4 Galileon duality as a coset coordinate transformation

The canonical coordinates (x, φ, L) on the coset space GAL(d, 1)/SO(d − 1, 1) which we

have defined according to (3.13) are not the only possible ones. We can freely use any other

set of coordinates connected with them by a general coordinate transformation of the form

xµ = ξµ(x′, L′, φ′)

Lµ = Λµ(x′, L′, φ′)

φ = f(x′, L′, φ′). (4.1)

Not all such new coordinates are of any use, e.g. those transformations (4.1) which are

not covariant with respect to the SO(d − 1, 1) symmetry will hide this symmetry in the

effective Lagrangian. Even if the covariance is respected, in the general case the resulting

Lagrangian might be difficult to recognize as a Galileon theory. In this section we shall make

a classification of those coordinate changes which preserve the general form of the Galileon

action as a linear combination of the d+1 terms discussed in the previous sections (though

we allow for change of the couplings). Such a transformation of the coset coordinates can

be then interpreted as a Galileon duality.

It is obvious from (3.27) and (3.28) that, provided the forms ωµ
P , ωA a ωµ

B can be

expressed in the primed coordinates as a (covariant) linear combination (with constant

coefficients) of the primed forms ω′µ
P , ω′

A and ω′µ
B where

ω′µ
P = dx′µ

ω′
A = dφ′ − L′

µdx
′µ

ω′µ
B = dL′µ, (4.2)

the coordinate transformation corresponds to a duality transformation of the Galileon

action. Indeed, provided9

ωµ
B = αBBω

′µ
B + αBPω

′µ
P

ωµ
P = αPBω

′µ
B + αPPω

′µ
P

ωA = αAAω
′
A (4.3)

we have

ω
(n)
d+1 = εµ1...µd

ωA ∧ ωµ1

B ∧ . . . ∧ ω
µn−1

B ∧ ωµn

P ∧ . . . ∧ ω
µd
P

= αAA

d−n+1∑

k=0

n−1∑

l=0

(
d− n+ 1

k

)(
n− 1

l

)
αk
PBα

l
BBα

d−n+1−k
PP αn−1−l

BP ω
′(l+k+1)
d+1

(4.4)

9Note that, the constants αIJ cannot be decorated with any Lorentz index because the only invariant

tensors at our disposal are ηµν and εµ1...µd
.
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and, after imposing the IHC constraint10 (3.25), the corresponding term in the action

satisfies

∫

Sd

β
(n)
d = αAA

d−n+1∑

k=0

n−1∑

l=0

(
d− n+ 1

k

)(
n− 1

l

)
αk
PBα

l
BBα

d−n+1−k
PP αn−1−l

BP

∫

S′
d

β
′(l+k+1)
d+1 .

(4.5)

This means that the coordinate transformation maps linear combination of the d+1 basic

building block of the Galileon action onto different linear combination of the same building

blocks and the two apparently different Galileon theories are in fact dual to each other.

The conditions (4.3) constraint the form of the duality transformation (4.1) strongly.

We have in the primed coordinates (here and in what follows the superscript at the symbol

of partial derivative indicates the corresponding primed variable, e.g. ∂(φ) ≡ ∂/∂φ′)

ωµ
P = ∂(L)ν ξµω′ν

B +
(
∂(x)ν ξµ + L′

ν∂
(φ)ξµ

)
ω′ν
P + ∂(φ)ξµω′

A

ωµ
B = ∂(L)ν Λµω′ν

B +
(
∂(x)ν Λµ + L′

ν∂
(φ)Λµ

)
ω′ν
P + ∂(φ)Λµω′

A

ωA =
(
∂φf − Λµ∂

(φ)ξµ
)
ω′
A +

(
∂(L)µ f − Λν∂

(L)
µ ξν

)
ω′µ
B

+
[
∂(x)ν f + L′

ν∂
(φ)f − Λµ

(
∂(x)ν ξµ + L′

ν∂
(φ)ξµ

)]
ω′ν
P (4.6)

and comparing the coefficients at ω′ν
P , ω′

A and ω′ν
B in the expressions for ωµ

P and ωµ
B with

the corresponding right hand sides of (4.3) we get the following set of differential equations

for ξµ and Λµ

∂(φ)ξµ = 0, ∂(L)ν ξµ = δµναPB, ∂(x)ν ξµ + L′
ν∂

(φ)ξµ = δµναPP ,

∂(φ)Λµ = 0, ∂(L)ν Λµ = δµναBB, ∂(x)ν Λµ + L′
ν∂

(φ)Λµ = δµναBP . (4.7)

Integration of these equations is trivial, we get (up to the additive constants11)

ξµ = αPBL
′µ + αPPx

′µ

Λµ = αBBL
′µ + αBPx

′µ. (4.8)

Comparison of coefficients in both expressions for ωA gives, after using the explicit form (4.8)

of ξµ and Λµ, the following differential equations for f

∂(φ)f=αAA, ∂(L)µ f=αPB

(
αBBL

′
µ+αBPx

′
µ

)
, ∂(x)ν f +L′

ν∂
(φ)f=αPP

(
αBBL

′
ν+αBPx

′
ν

)

From the first equation it follows

f = αAAφ
′ + F (x′, L′) (4.9)

10Note that, the formula ωA = αAAω
′
A ensures a compatibility of the IHC constraint with the coordinate

transformation.
11We have set these additive constants equal to zero. The reason is that, if nonzero, they corresponds to

the additional combination of the space-time translation and Galileon transformation. Both these additional

contributions are exact symmetries of the Galileon theory and does not bring about anything new.
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where the function F of two variables satisfies

∂(L)µ F = αPB

(
αBBL

′
µ + αBPx

′
µ

)

∂(x)ν F = αPP

(
αBBL

′
ν + αBPx

′
ν

)
− αAAL

′
ν . (4.10)

Integration of these equations is possible only if the integrability conditions are satisfied

∂(x)ν ∂(L)µ F = ∂(L)µ ∂(x)ν F (4.11)

This constraints the possible values of the constants αIJ

αPBαBP = αPPαBB − αAA (4.12)

which means

αAA = det (α) ≡ det

(
αPP αPB

αBP αBB

)
. (4.13)

Imposing this constraint, the equations (4.10) transforms into the form

∂(L)µ F = αPBαBBL
′
µ + αPBαBPx

′
µ

∂(x)ν F = αBPαPBL
′
ν + αPPαBPx

′
ν . (4.14)

which can be easily integrated (again up to the additive constant corresponding to trivial

shift of φ)

F =

∫ (x′,L′)

0

(
dx′ · ∂(x)F + dL′ · ∂(L)F

)

=
1

2

(
αPBαBBL

′2 + 2αPBαBPx
′ · L′ + αPPαBPx

′2
)

(4.15)

As a result we get the most general formulae12 for the duality transformation of the coset

coordinates in the form

xµ = αPPx
′µ + αPBL

′µ, Lµ = αBBL
′µ + αBPx

′µ

φ = det (α)φ′ +
1

2

(
αPBαBBL

′2 + 2αPBαBPx
′ · L′ + αPPαBPx

′2
)
. (4.16)

Under this transformation the basic building blocs of the Galileon Lagrangian transform as

ωµ
B = αBBω

′µ
B + αBPω

′µ
P

ωµ
P = αPBω

′µ
B + αPPω

′µ
P

ωA = det (α)ω′
A. (4.17)

These transformations are parametrized by four constants arranged in the real 2×2 matrix

α =

(
αPP αPB

αBP αBB

)
. (4.18)

12Up to the remnants of the omitted additive constants, as discussed above.
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Imposing the IHC constraint (3.25) we get finally

x = αPPx
′ + αPB∂

′φ′

φ = det (α)φ′ +
1

2

(
αPBαBB∂

′φ′ · ∂′φ′ + 2αPBαBPx
′ · ∂′φ′ + αPPαBPx

′2
)

∂φ = αBB∂
′φ′ + αBPx

′. (4.19)

Let us note that the last formula of (4.19) (the transformation of ∂φ) is compatible with

the first two as a result of the compatibility of the IHC constraint with the coordinate

transformation mentioned above. We can also prove this easily by explicit calculation (see

appendix B).

Let us finally write down the explicit formula for the duality in terms of the Galileon

action. It is expressed by the identity

S[φ] = Sα[φ
′] (4.20)

where

S[φ] =

∫
ddx

d+1∑

n=1

dnLn (4.21)

Sα[φ] =

∫
ddx

d+1∑

n=1

dn(α)Ln (4.22)

and the couplings of the two dual action are interrelated as

dn(α) =

d+1∑

m=1

Anm(α)dm (4.23)

where the matrix Anm(α) has the following form

Anm(α) = det (α)
m

n

d−m+1∑

k=0

m−1∑

l=0

(
d−m+ 1

k

)(
m− 1

l

)
αk
PBα

l
BBα

d−m+1−k
PP αm−1−l

BP δn,l+k+1.

(4.24)

5 GL(2,R) group of the Galileon dualities

The duality transformations introduced in the previous section has natural GL(2,R) group

structure under compositions. This is immediately seen from their action on the 1-forms ωA,

ωµ
P and ωµ

B (cf. (4.17)) and on the coset coordinates xµ and Lµ. The duality transformation

is in one-to-one correspondence with the matrix

α =

(
αPP αPB

αBP αBB

)
(5.1)

and composition of two duality transformations corresponding to the matrices α and β is

again a duality transformation described by matrix α · β. The condition detα 6= 0 ensures

regularity13 of the transformation of the coordinates on the coset space (4.16).

13The Jacobian of the transformation (4.16) is (det(α))2
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A little bit less obvious is the group property for the duality transformation of φ. To

demonstrate it let us rewrite (4.16) in the form

X = α ·X ′ (5.2)

φ = detα φ′ +
1

2
X ′T · α̂ · α ·X ′ (5.3)

where

X =

(
x

L

)
, α̂ =

(
αBP 0

0 αPB

)
(5.4)

Then a composition of two dualities means

X = α ·X ′ = α ·
(
β ·X ′′

)
= (α · β) ·X ′′

φ = detα φ′ +
1

2
X ′T · α̂ · α ·X ′

= det (α · β)φ′′ + 1

2
X ′′T ·

((
β̂ · β

)
detα+ βT · α̂ · α · β

)
·X ′′ (5.5)

However, as can be proved by direct calculation,
(
β̂ · β

)
detα+ βT · α̂ · α · β =

(
α̂ · β

)
· (α · β) (5.6)

and therefore

φ = det (α · β)φ′′ + 1

2
X ′′T ·

(
α̂ · β

)
· (α · β) ·X ′′ (5.7)

as expected.

On the space Dd+1 of the Galileon theories, which can be treated as a d+1 dimensional

real space with elements

d =




d1
d2
...

dd+1



, (5.8)

corresponding to d + 1-tuples of the couplings dn , we have a linear representation of the

duality group GL(2,R) by the matrices Anm(α) explicitly given by (4.24).

5.1 Special cases

Let us now discuss some important special cases. The duality transformations correspond-

ing to the one-parameter subgroup of matrices

αdS(ζ) =

(
1 0

2ζ 1

)
(5.9)

which satisfy

αdS(ζ) · αdS(ζ
′) = αdS(ζ

′) · αdS(ζ) = αdS(ζ + ζ ′), (5.10)

result in the following explicit transformation

x = x′, φ = φ′ + ζx′2, ∂φ = ∂′φ′ + 2ζx′. (5.11)
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Fixing the parameter ζ = H2/4 the dual theory can be interpreted as an expansion of the

original Galileon field about the de Sitter solution

φdS =
1

4
H2x2 (5.12)

The fact, that the fluctuations φ′ about such a background are described by a dual Galileon

Lagrangian has been established already in the seminal paper [4]. For the transformation

of the couplings we get explicitly

dn(αdS(ζ)) =

d+1∑

m=n

(
m

n

)
(2ζ)m−n dm (5.13)

Another example concerns the following matrix

αL =

(
0 1

1 0

)
(5.14)

It results in the duality transformation

x = ∂′φ′, φ = −φ′ + x′ · ∂′φ′, ∂φ = x′

which can be rewritten in the more symmetric form as

x · x′ = φ(x) + φ′(x′) (5.15)

and which corresponds to the Legendre transformation. Duality properties of the Galileon

theory with respect to this transformation has been discussed in detail in [11]. Explicit

form for the dual couplings reads

dn(αL) = −
d− n+ 2

n
dd−n+2. (5.16)

Let us now assume the diagonal matrix

αS(λ) =

(
λ 0

0 λ−∆−1

)
(5.17)

corresponding to the scaling transformation (∆ is the Galileon scaling dimension)

x = λx′, φ = λ−∆φ′, ∂φ = λ−∆−1∂′φ′ (5.18)

for which the dual couplings simply scale according their dimension as

dn(αS(λ)) = λd+2−n(∆+2)dn. (5.19)

More general scaling is also possible, namely

αS(λ, κ) =

(
λ 0

0 κ

)
(5.20)
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for which

x = λx′, φ = λκφ′, ∂φ = κ∂′φ′ (5.21)

and in the dual theory

dn(αS(λ, κ)) = κnλd−n+2dn. (5.22)

Let us assume now duality transformations induced by the matrices of the form14

αD(θ) =

(
1 −2θ
0 1

)
(5.23)

which represents a one-parameter subgroup

αD(θ) · αD(θ
′) = αD(θ

′) · αD(θ) = αD(θ + θ′). (5.24)

The corresponding coordinate and field transformation reads

x = x′ − 2θ∂′φ′, φ = φ′ − θ∂′φ′ · ∂′φ′, ∂φ = ∂′φ′. (5.25)

Such a type of duality (with special value of the parameter θ) has been discussed in the

papers [17, 18, 37] and its one-parametric group structure has been recognized in a very

recent paper [38]. The couplings transform according to

dn(αD(θ)) =
1

n

n∑

m=1

m

(
d−m+ 1

n−m

)
(−2θ)n−m dm. (5.26)

It is obvious, that any duality transformation can be obtained as a combination of the

above elementary types of transformations. Indeed, for general matrix α we can write the

following decomposition
(
αPP αPB

αBP αBB

)
=

(
αPP 0

0 α−1
PP det (α)

)(
1 0

αPPαBP det−1 (α) 1

)(
1 α−1

PPαPB

0 1

)
. (5.27)

Let us give another simple example of such a type of decomposition. For instance, we have

αD(θ) =
[
αS(1, (2θ)

−1) · αdS(−2−1)
]
· αL ·

[
αdS(2

−1) · αS(1,−2θ)
]
, (5.28)

and therefore we can understand the one-parametric duality (5.25) as a Legendre transfor-

mation of the function ψ′(x′) into ψ(x) where15

ψ′(x′) =
1

2
x′2 − 2θφ′(x′), ψ(x) =

1

2
x2 + 2θφ(x) (5.29)

which can be written in the symmetric form (cf. (5.15)) as

x · x′ = ψ(x) + ψ′(x′). (5.30)

14The rationale for the minus sign of the element αPB is that with this choice the infinitesimal form of

this duality transformation is

φ(x) = φ′(x) + θ∂φ′(x) · ∂φ′(x).

See appendix A for bottom up construction of the finite duality transformation from the infinitesimal one.
15The function ψ′(x′) can be obtained by means of application of the dual transformation corresponding

to the product of matrices in the second square brackets in (5.28), similarly for ψ(x).
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5.2 Duality invariants

As we will see in the following sections, the one parameter subgroup of duality trans-

formations (5.25) is the most interesting one relevant from the point of view of physi-

cal applications. Let us briefly comment on some properties of its representation on the

Galileon theory space Dd+1(see (5.8)). Any classical Galileon Lagrangian L =
∑d+1

n=1 dnLn
corresponds to the d+ 1-tuple d of the couplings dn

d =




d1
d2
...

dd+1



∈ Dd+1 (5.31)

and the one parametric subgroup (5.25) of duality transformation αD(θ) acts on this tuple

linearly via the matrix A(θ) ≡ Anm(αD(θ)) (see (5.26))

A(θ)nm =
1

n

n∑

m=1

m

(
d−m+ 1

n−m

)
(−2θ)n−m . (5.32)

As we will see in the next sections, some of the relevant physical quantities (e.g. the S

matrix) are invariant with respect to the duality transformations αD(θ). Such quantities

are therefore functions of the invariant combinations of the couplings dn. Here we will give

a classification of such invariants built from dn. The main idea behind this classification

is to identify these invariants with conserved integrals of motion of a system of first order

differential equations for d(θ) = A(θ) · d with θ taken as the evolution parameter.

First, because the matrices A(θ) are lower triangular matrices, any subspace D
(k)
d+1 ⊂

Dd+1spanned by the d+1-tuples with first k couplings equal to zero (i.e. D
(k)
d+1 = {d|dn = 0

for n ≤ k}) is left invariant by A(θ). We can therefore restrict ourselves to some fixed

D
(k)
d+1 in what follows.16

Note also that αD(θ) is a one-parametric subgroup and thus the matrices A(θ) satisfy

a differential equation
d

dθ
A(θ) = T ·A(θ) (5.33)

where

Tmn =
d

dθ
Anm(αD(θ))|θ=0 = −2

n− 1

n
(d− n+ 2)δn,m+1. (5.34)

Consequently we get for d+ 1− k-tuple d(θ) ≡ dn(αD(θ)) ∈ D(k)
d+1

d

dθ
d(θ) = T · d(θ). (5.35)

This is a system of d − k nontrivial ordinary differential equations (note that the first of

the equations (5.35) is trivial
d

dθ
dk+1(θ) = 0,

16For the physical applications it is natural to set d1 = 0 in order to avoid tadpoles and assume therefore

the subspace D
(1)
d+1.
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i.e. dk+1 can be taken as fixed17 once for ever) describing the “running” of the couplings with

the change of the duality parameter θ. Of course, the solutions are just dn(αD(θ)) given

by (5.26) with dn, n > k as the initial conditions at θ = 0. Such a system have in general

d−k−1 functionally independent integrals of motion (we denote them Ik+3, Ik+4, . . . , Id+1

for reason which will be clear from the construction) which do not depend explicitly on θ.

Once these are known, any other such an integral of motion can be then expressed as

I = f(Ik+3, Ik+4, . . . , Id+1), (5.36)

where f is some function. The set Ik+3, Ik+4, . . . , Id+1 represents therefore a basis of the

αD(θ) duality invariants on the subspace D
(k)
d+1 of the Galileon theory space.

The set of independent invariants Ik+3, Ik+4, . . . , Id+1 can be constructed by means of

elimination of the initial conditions and θ the from the solution (5.26). This can be done

as follows. Note that (5.26) for n = k + 2 and dn = 0 for n ≤ k reads

dk+2(θ) = dk+2 − 2θ
(k + 1)(d− k)

k + 2
dk+1, (5.37)

and thus we have unique solution θ∗ for θ such that dk+2(θ
∗) = 0. According to the group

property we can rewrite the solution of (5.35) in the form

d(θ) = A(θ − θ∗) · d(θ∗) (5.38)

with new initial conditions d(θ∗). Inverting (5.38) we get

d(θ∗) = A(θ∗ − θ) · d(θ) (5.39)

the right hand side of which is θ independent. For dk+2 the equation (5.38) reads

dk+2(θ) = −2(θ − θ∗)
(k + 1)(d− k)

k + 2
dk+1 (5.40)

and thus we can easily eliminate θ − θ∗ solely in terms of dk+2(θ). Inserting now this

for the explicit θ − θ∗ dependence into (5.39) for n = k + 3, . . . , d + 1 we get the desired

integrals of motion Il(dk+2(θ), . . . , dd+1(θ)). Their interpretation is clear, according to our

construction Il represents a value of couplings dl in the theory dual with the original one

such that in the dual theory the coupling dk+2 is zero. These integrals form the basis of

the αD(θ) duality subgroup invariants on the Galileon theory subspace D
(k)
d+1 we started

with.

Let us illustrate this general construction of αD(θ) duality invariants in the case

of three and four dimensional Galileon theory. We will restrict ourselves to the theory

subspaces D
(1)
4 and D

(1)
5 , i.e. we set in both cases d1 = 0, and we further fix d2 for d = 3, 4

as 1/4 and 1/12 respectively. For d = 3 we get from (5.26)

d3(θ) = d3 −
2

3
θ

d4(θ) = d4 −
3

2
d3θ +

1

2
θ2 (5.41)

17For instance, for k = 1 it is natural to set d2 = 1/12 in order to normalize the kinetic term of the

Galileon as usual.
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and according the general recipe, the only αD(θ) duality invariant is I4 = d4(θ
∗) with

θ∗ = 3d3/2, explicitly

I4 = d4 −
9

8
d23. (5.42)

For d = 4 the αD(θ) duality transformation reads

d3(θ) = d3 −
1

3
θ

d4(θ) = d4 − 3θd3 +
1

2
θ2

d5(θ) = d5 −
8

5
θd4 +

12

5
θ2d3 −

4

15
θ3, (5.43)

and we have two independent duality invariants I4,5 = d4,5(θ
∗) where θ∗ = 3d3, explicitly

I4 = d4 −
9

2
d23

I5 = d5 −
24

5
d3d4 +

72

5
d33. (5.44)

6 Applications

Two Galileon theories connected by duality are different theories. Therefore all the proper-

ties of such theories cannot be the same. However, it does not mean that the dual theories

cannot be used to describe the same physical reality. We have only to identify carefully

those physical observables that are dual to each other in both theories. Omitting this

aspect of the duality might lead to apparent paradoxes. A closely related aspect of the

duality is “calculational“. Because the duality relates different Galileon theories, its main

benefit is based on the possibility to solve a given problem in the simplest exemplar of

the set of theories connected by duality. Then the result can be translated back to the

apparently more complex original theory for which the problem has been formulated. In

order to realize this approach effectively it is necessary to establish the correct interrela-

tion of the observables in both theories. In subsections 6.1, 6.2 and 6.3 we will discuss this

issue in more detail. We will show that the classical covariant phase spaces of two theories

connected by duality are (at least formally) in one-to-one correspondence. The same is

also true for classical observables for which the duality transformation can be established.

Also the (off-shell) symmetries of the Galileon theories are realized differently within

the dual theories. Some of them are not directly visible from the form of the classical

dual Lagrangian, in this sense they are hidden but still present in the dual theory. In

subsection 6.4 we give some elementary examples of such hidden symmetries.

An exceptional role play those physical observables that are invariants of the duality.

Only such observables are independent on the choice of the representative in the class of

theories connected by duality. As we have mentioned in the previous section, the most

useful duality is the one-parametric subgroup αD(θ), which is (together with αL) the only

one for which the field and coordinate transformation is nontrivial. Therefore the class of

observables invariant with respect to this subgroup are the most important ones. These
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observables give the same result on the whole class of Galileon theories connected by

αD(θ) duality. In subsection 6.5 we will show that the tree level S matrix belongs to the

class of αD(θ) invariant quantities. This will enable us to understand the structure of the

results (2.15), (2.16) and (2.17) for the lowest scattering amplitudes (see subsection 6.6).

We will also give a simple alternative derivation of these results using their properties

under duality. As a next step we will discuss the loop corrections in the Galileon theory in

the framework of perturbative low energy effective expansion and the properties of these

corrections under duality (see subsections 6.8 and 6.9).

Because the tree level S matrix is invariant of the duality subgroup αD(θ), it is useful

to classify the Galileon theories with respect to this subgroup, i.e. to find all nontrivial

classes of the Galileon theories modulo αD(θ). At the same time we get also classification

of all the nontrivial S matrices. In subsection 6.7 we provide such a classification using

the duality invariants Ik+2, . . . , Id+1 introduced in the previous section in three and four

dimensions.

All the above aspects of the duality will be illustrated using several explicit examples

both on classical and quantum levels.

In what follows we almost exclusively work in four dimensions with Minkowski metric

and in the Galileon Lagrangian we set d1 = 0 to avoid the tadpole and d2 = 1/12 to get a

canonical normalization of the kinetic term.

6.1 Classical solutions

As the calculational aspect of the duality is concerned, in some cases the duality can help

us to find solutions of the classical equation of motion very efficiently. Let φα(x) be the

dual transformation of the field configuration φ(x) under the α ∈ GL(2,R) (cf. (4.19)).

The definition of the corresponding dual action Sα (cf. (4.20))

Sα[φ] = S[φα] (6.1)

then guarantees that, provided φ∗(x) is a minimum (or stationary point) of the dual ac-

tion Sα, the dual configuration (φ∗)α (x) realizes a minimum (or stationary point) of the

original action S. In many cases we can choose the matrix α in such a way that we can

solve easily the equation of motion for the action Sα and find explicitly the dual of this

solution simultaneously. This gives us immediately the solution of the apparently much

more complicated equation of motion for the original action S. Such a method for finding

solutions of Galileon equation of motion is usually efficient when we seek after a solution

with additional symmetry which effectively reduces the dimensionality of the space-time.

It is known that in such a case only limited subset of couplings dn enter the equation

of motion [39] and the duality transformation with properly chosen matrix α can further

reduce this subset. In the ideal case the dual equation of motion becomes that of the free

theory but also in other cases such an approach might be useful.

More formally and in more detail, the functional derivative of (6.1) with respect to

φ(x) gives
δSα[φ]

δφ(x)
=

∫
ddz

δS[φα]

δφα(z)

δφα(z)

δφ(x)
. (6.2)
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Therefore we get the following relation between the stationary points of both actions

δS[φα]

δφα(z)
|(φ∗)α

= 0 =⇒ δSα[φ]

δφ(x)
|φ∗

= 0 (6.3)

and provided the duality transformation induced by the configuration φ∗ is invertible, also

the reversed implication holds.

The invertibility of the duality transformation is related to the operator δφα(z)/δφ(x).

For further convenience, let us calculate δφα(z)/δφ(x) explicitly for the case of the subgroup

αD(θ) given by (5.23) and (5.25). Note that the duality transformation under the one

parametric subgroup αD (θ) (here we denote φαD(θ) simply as φθ and analogously for xθ)

xθ = x− 2θ∂φ(x)

φθ(xθ) = φ(x)− θ∂φ(x) · ∂φ(x) (6.4)

can be rewritten in the inverted form

y = X[φ](y)− 2θ∂φ(X[φ](y))

φθ(y) = φ(X[φ](y))− θ∂φ(X[φ](y)) · ∂φ(X[φ](y)). (6.5)

Here X[φ](y) is the inversion of the coordinate transformation defined as

x = X[φ](xθ), (6.6)

and we have explicitly shown the functional dependence of this inversion on φ. Then taking

this implicit dependence into account we get

δφθ(z)

δφ(x)
= δ(d)(X[φ](z)− x) + (∂φ) (X[φ](z)) · δX[φ](z)

δφ(x)

−2θ∂φ(X[φ](z)) · ∂δ(d)(X[φ](z)− x)

−2θ∂φ(X[φ](z)) · ∂∂φ(X[φ](z)) · δX[φ](z)

δφ(x)
. (6.7)

But taking a functional derivative of the first equation of (6.5) respect to φ(x) we get

0 =
δX[φ](y)

δφ(x)
− 2θ∂δ(d)(X[φ](y)− x)− 2θ∂∂φ(X[φ](y)) · δX[φ](y)

δφ(x)
(6.8)

and inserting this to (6.7) we get finally18

δφθ(z)

δφ(x)
= δ(d)(X[φ](z)− x). (6.9)

18Note, that the substitution z → zθ and the functional derivative with respect to φ(x) do not commute.

Provided we make this replacement in (6.7) after the functional derivative is taken, we get
(
δφθ(z)

δφ(x)

)
|z→zθ = δ(d)(X[φ](zθ)− x) = δ(d)(z − x).

On the other hand, making this inserting before the functional differentiation, we change the functional

dependence of the differentiated functional and the result is different, namely

δ

δφ(x)
(φθ(z)|z→zθ ) =

δ

δφ(x)
(φ(z)− θ∂φ(z) · ∂φ(z)) = δ(d)(z − x)− 2θ∂φ(z) · ∂δ(d)(z − x).
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This result can be used to find a direct relation between equations of motions in both

theories. We have (denoting SαD(θ) ≡ Sθ for simplicity)

δSθ[φ]

δφ(x)
=

∫
ddz

δS[φθ]

δφθ(z)
δ(d)(X[φ](z)− x)

=

∫
ddz det

(
∂zθ
∂z

)
δS[φθ]

δφθ(zθ)
δ(d)(z − x) (6.10)

where we have substituted z → zθ = z−2θ∂φ(z) and used (6.6) when passing to the second

line. Therefore
δSθ[φ]

δφ(x)
= det

(
∂xθ
∂x

)
δS[φθ]

δφθ(xθ)
(6.11)

and explicitly (cf. (2.7))

d+1∑

n=1

ndn(θ)Ldern−1(∂∂φ(x)) = det

(
∂xθ
∂x

) d+1∑

n=1

ndnLdern−1(∂θ∂θφθ(xθ)). (6.12)

Let us note, that the above discussion are in fact not restricted to the one para-

metric subgroup αD (θ) but holds also for general duality transformation with general

α ∈ GL(2,R) with the obvious replacement Sθ → Sα, φθ → φα, xθ → xα (cf. the general

formulae (4.19) and (4.21)). The derivation of the functional derivative δφα(x)/δφ(y) fol-

lows the same logic as for δφθ(x)/δφ(y) with minor changes caused by the more complicated

formulae for xα and φα. The result is

δφα(z)

δφ(x)
= detα δ(d)(X[φ](z)− x), (6.13)

where nowX[φ](z) is the inversion of the coordinate transformation xα = αPPx+αPB∂φ(x).

In the general case the formula (6.11) reads

δSα[φ]

δφ(x)
= detα det

(
∂xα
∂x

)
δS[φα]

δφα(xα)
. (6.14)

In what follows we give two explicit examples of the applicability of the duality with

respect to the subgroup αD (θ) for finding the solutions of the classical equation of motion,

namely the static cylindrically symmetric solution and a point-like source.

6.1.1 Cylindrically symmetric static solution

As a first example of the calculational efficiency of duality, we will illustrate its application

on a simple and analytically solvable case. We will consider a static axial-symmetric

solution of Galilean equations with an external source coupled to the Galileon field as

Sint =

∫
d4xφ(x)T (x). (6.15)

The source T will be represented by an infinite “cosmic string” along the x1-axis with

linear density σ > 0

T (x) = −σδ(x2)δ(x3). (6.16)
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Due to the symmetry, the problem is effectively two-dimensional and therefore the quartic

and quintic Galileon couplings are irrelevant (their contributions to the classical equation of

motion vanish). Exactly this feature is the key ingredient which makes the duality efficient

in this case. By appropriate choice of the dual theory we can effectively eliminate also the

cubic coupling and solve the dual problem in the framework of free theory.

Note however, that for general external source, the part Sint of the complete action

violates duality. Therefore we cannot in general case simply argue that the duality trans-

formation of the classical solution in the original theory is also a solution of the dual theory

with the same external source. However, our source term is very special being local and

therefore it modifies the equations of motion only on the set of points of zero measure.

As we shall explicitly see, for such a source19 the duality works, which illustrates the

conclusions made in the very recent papers20 [38, 40].

Let us first consider the general Galileon theory with all the couplings present. Our

axial-symmetric ansatz is

φ(x) ≡ φ(zz) , (6.17)

where we have introduced the complex coordinates z and z:

z = x2 + ix3 , z = x2 − ix3 (6.18)

i.e.

∂2 = ∂ + ∂ , ∂3 = i∂ − i∂ , d2z ≡ −i dzdz = 2dx2dx3 (6.19)

In order to obtain the explicit form for the classical equations of motion we will start with

the following useful formula [11]

Lder4 [η + w∂∂φ] = 4! det[η + w∂∂φ] =
4∑

k=0

wk

(
4

k

)
Lderk [∂∂φ] , (6.20)

where we can easily work out the left hand side because the matrix η + w∂∂φ is block-

diagonal,

det[η + w∂∂φ] = −1 + 4w∂∂φ+ 4w2
[
∂2φ∂

2
φ−

(
∂∂φ

)2]
. (6.21)

Comparing this with the right hand side of (6.20) we get

Lder1 [∂∂φ] = 24∂∂φ

Lder2 [∂∂φ] = 16
[
∂2φ∂

2
φ−

(
∂∂φ

)2]

Lder3 [∂∂φ] = Lder4 [∂∂φ] = 0 (6.22)

and therefore the equation of motion with an external source T is

δS

δφ
=
∑

n

ndnLdern−1 + T = 2d2Lder1 [∂∂φ] + 3d3Lder2 [∂∂φ] + T = 0 , (6.23)

19This remains true also for the point-like source studied in the next subsection.
20See also [18] for discussions of point-like sources.
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where we will set d2 = 1/12 in the following. In our case T = −2σδ(2)(z, z) so the equation

of motion becomes

4∂∂φ+ 48d3

[
∂2φ∂

2
φ−

(
∂∂φ

)2]
= 2σδ(2)(z, z) (6.24)

First we can easily solve the theory for d3 = 0. The axial symmetric solution is (up to a

constant term)

φ(zz) =
σ

4π
ln zz. (6.25)

In the case when d3 6= 0 we can first rewrite the equation of motion to

1

z
∂
[
zzφ′(zz)− 12d3zzφ

′(zz)2
]
=
σ

2
σδ(2)(z, z) , (6.26)

where the prime means a derivative with respect to zz. By further integration over the

disc with zz ≤ R2 and using the Gauss theorem in two dimension we will arrive to21

φ′(R2)− 12d3φ
′(R2)2 =

σ

4πR2
, (6.27)

which can be algebraically solved to

φ′±(R
2) =

1±
√

1− 12 d3σ
πR2

24d3
. (6.28)

The final result can be obtained by elementary integration. We have two solutions, which is

for d3 > 0 defined only for R2 > 12d3σ/π (for R2 < 12d3σ/π this solution has an imaginary

part).22 We will show in the following how this can be obtained using duality in a much

simpler and pure algebraical way.

The transformation of duality under the subgroup αD(θ) can be expressed in our

coordinates as

zθ = z + 4θ∂φ(z, z)

zθ = z + 4θ∂φ(z, z)

φθ(zθ, zθ) = φ(z, z) + 4θ∂φ(z, z)∂φ(z, z) (6.29)

while the remaining coordinates x0 and x1are left unchanged (cf. (5.25)). Let us assume

that φ(z, z) is the solution of the theory (6.25) with d3 = 0. The duality transformation of

21This is in fact an expected result. As we have mentioned above, the problem is effectively two-

dimensional and therefore posses two-dimensional spherical symmetry. In any dimension the spherically

symmetric Galileon equation reduces to algebraic equation for the first derivative of the field.
22For d3 < 0 the solution φ− exhibits the Vainshtein mechanism [5] with Vainshtein radius R2

V =

−12d3σ/π. Indeed, outside and inside the Vainshtein radius we have

d

dR
φ− =





σ
2πR

+O(R−3), for R > RV ,

−
(
− σ

12d3π

)1/2

+O(R), for R < RV .

– 25 –



J
H
E
P
1
0
(
2
0
1
4
)
0
0
6

φ(z, z) is then given implicitly as

zθ = z +
σθ

πz

zθ = z +
σθ

πz

φθ(zθ, zθ) =
σ

4π

(
ln zz +

σθ

πzz

)
. (6.30)

We have therefore

zθzθ = zz +

(
σθ

π

)2 1

zz
+ 2

σθ

π
. (6.31)

Let us note that for θ > 0 the transformation z → zθ double covers the complement of

a circle zθzθ < 4σθ
π ; inside of this circle φθ is not defined. For θ < 0 this transformation

double covers the whole complex plane, the circle zz = −σθ
π is mapped to the point zθ = 0.

The inversion of (6.31) which shall be inserted to the right hand side of φθ(zθ, zθ) is then

zz =
1

2

(
zθzθ − 2

σθ

π
±
√
zθzθ

(
zθzθ − 4

σθ

π

))
(6.32)

Now the duality means that

S[φθ] = Sθ[φ] (6.33)

where S and Sθ are the actions (without the external source term Sint) of the general

Galileon theory and its αD(θ) dual respectively. In our case we take the former to be the

general interacting theory (with d3 6= 0) and the latter we identify with its dual chosen in

such a way that d3 (θ) = 0. As we know from (5.43) such a theory can be obtained from the

general one by duality transformation with θ = 3d3 and thus for this value the eq. (6.30)

is expected to represent the wanted solution of (6.24), (6.27). Let us now verify that it is

indeed the case.

Using the duality transformation of the derivatives (cf. the last equation of (5.25))

∂φ(zz) = zφ′(zz) = ∂θφθ(zθzθ) = zθφ
′
θ(zθzθ) (6.34)

we obtain

φ′θ(zθzθ) =
z

zθ
φ′(zz) =

z

zθ
φ′(zz) =

(
1 +

σθ

πzz

)−1

φ′(zz). (6.35)

Inserting this in the left hand side of (6.27) we get

φ′θ(zθzθ)− 12d3φ
′
θ(zθzθ)

2 =

(
1 +

σθ

πzz

)−1

φ′(zz)− 12d3

[(
1 +

σθ

πzz

)−1

φ′(zz)

]2

=
σ

4πzz

(
1 +

σθ

πzz

)−2 [
1 +

σ(θ − 3d3)

πzz

]
(6.36)

where in the last line we used the explicit form of φ(zz). Therefore for θ = 3d3 and

expressing back zz in terms of zθzθ we get

φ′θ(zθzθ)− 4θφ′θ(zθzθ)
2 =

σ

4πzz

(
1 +

σθ

πzz

)−2

=
σ

4πzθzθ
(6.37)

which means that φ3d3 is a solution of the equation (6.27).
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6.1.2 Point-like source

As a next example, let us repeat the above strategy for the spherically symmetric solution

of the galileon equation of motion with point-like source T (x) = −4πMδ(3)(x). Though

the duality does not help us much in solving the most general equation of motion, as we

will see, it might be useful in some special cases.

Due to the spherical symmetry the situation is similar to the previous subsection. The

problem is effectively three-dimensional and the quintic Galileon coupling thus disappear

from the problem. The ansatz for the solution is

φ(x) ≡ φ(r) (6.38)

where r = |x| =
√
xixi. After some algebra we end up with the equation of motion in the

form (cf. [4] for more details)

12d2
r2

(
r2φ′(r)

)′ − 12d3
r2

(
rφ′(r)2

)′
+

8d4
r2
(
φ′(r)3

)′ − 4πMδ(3)(x) = 0. (6.39)

Integrating over d3x = 4πr2dr and assuming canonically normalized kinetic term (d2 =

1/12) we get

r2φ′(r)− 12d3rφ
′(r)2 + 8d4φ

′(r)3 =M (6.40)

which is an algebraic equation for φ′(r)/r. The duality transformation of the spherically

symmetric static solution φ(r) reads

x0θ = x0, xiθ =

(
1 + 2θ

φ′(r)

r

)
xi (6.41)

φθ(xθ) = φ(r) + θφ′(r)2 (6.42)

Therefore, provided 1 + 2θφ′(r)/r > 0

rθ =

(
1 + 2θ

φ′(r)

r

)
r, (6.43)

and thus φθ(xθ) is function of rθ only. From the general formula (∂φ)θ (xθ) = ∂φ(x) we

get further

φ′θ(rθ) = φ′(r). (6.44)

Now let φ be a solution of (6.40) with di → di(θ), i.e. let

r2φ′(r)− 12d3(θ)rφ
′(r)2 + 8d4(θ)φ

′(r)3 =M (6.45)

It is then easy to show, that φθ(rθ) is a solution of (6.40). Indeed

r2θφ
′
θ(rθ)− 12d3rθφ

′
θ(rθ) + 8d34φ

′
θ(rθ)

= r2
(
1 + 2θ

φ′(r)

r

)2

φ′(r)− 12d3r

(
1 + 2θ

φ′(r)

r

)
φ′(r)2 + 8d4φ

′(r)3

= r2φ′(r)− 12

(
d3 −

1

3
θ

)
rφ′(r)2 + 8

(
d4 − 3d3θ +

1

2
θ2
)
φ′(r)3

= r2φ′(r)− 12d3(θ)rφ
′(r)2 + 8d4(θ)φ

′(r)3 =M.
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For θ = 3d3 we can eliminate the cubic Galileon coupling and the equation (6.45) becomes

r2φ′(r) + 8I4φ
′(r)3 =M, (6.46)

where I4 is the invariant (5.44)

I4 =

(
d4 −

9

2
d23

)
. (6.47)

Moreover, for special case I4 = 0 we can find the solution of (6.46) simply (up to an additive

constant) as

φ(r) = −M
r
. (6.48)

Its dual given by

rθ = r

(
1 + 2θ

M

r3

)
(6.49)

φθ(rθ) = −M
r

+ θ
M2

r4
= −M

r

(
1− θM

r3

)
, (6.50)

is for θ = 3d3 a solution of equation

r2φ′(r)− 12d3rφ
′(r)2 + 36d23φ

′(r)3 =M, (6.51)

which corresponds to two-parametric set of Galileon theories with parameters d3, d5 with

special quartic coupling d4 = 9d23/2.

Let us assume now a complementary application of duality. For I4 < 0 we can choose

θ± = 3d3 ±
√
−2I4, (6.52)

and eliminate the quartic couplings in the dual action Sθ± [φ]. The dual equation is then

r2φ′(r)− 12d3(θ±)rφ
′(r)2 =M (6.53)

where

d3(θ±) = ∓
1

3

√
−2I4. (6.54)

For further convenience let us choose θ+ to ensure d3(θ+) < 0. The solution for the

derivative is then simply

φ′±(r) = r
1±

√
1− 48d3(θ+)

M
r3

24d3(θ+)
(6.55)

and integration gives (cf. also [11])

φ±(r) = φ±(0) +
r2

48d3(θ+)
±
(
− Mr

3d3(θ+)

)1/2

2F1

(
−1

2
,
1

6
,
7

6
;

r3

48d3(θ+)M

)
(6.56)

According to (6.43), (6.44) we get for the dual transformation of this solution

rθ+ = r


1 + θ+

1±
√
1− 48d3(θ+)

M
r3

12d3(θ+)


 (6.57)
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φ∗ ∈ Σα φα[φ∗] ∈ Σ

Oα[φ∗] = O[φα[φ∗]]

α

Oα O

Figure 2. Graphical description of the definition of dual observable. To get the value of the

observable O we can either use the phase space Σ of the original theory or the dual phase space Σα

and dual observable Oα.

φθ+(rθ+)± = φ±(0) +
r2

48d3(θ+)
±
(
− Mr

3d3(θ+)

)1/2

2F1

(
−1

2
,
1

6
,
7

6
;

r3

48d3(θ+)M

)

+θ+r
2



1±

√
1− 48d3(θ+)

M
r3

24d3(θ+)




2

(6.58)

which solves (6.40).

6.2 Duality of classical observables

As we have seen in the previous subsection, the most general duality transformation which

corresponds to the matrix α ∈ GL(2,R) assigns to each field configuration φ(x) its dual

configuration φα[φ](x), which is given by the implicit formulae (4.19). With help of this

transformation we can define a dual action Sα[φ] to the original action S[φ] according to

the prescription

Sα[φ] = S[φα[φ]]. (6.59)

We have shown that provided φ∗ is solution of the equation of motion corresponding to

the dual action Sα[φ] the dual configuration φα[φ∗] is a solution of the equation of motion

for the original action S[φ]. This can be interpreted that there is (at least formally) a

correspondence between the (classical) covariant phase spaces Σ and Σα of both theories,

which is mediated by duality. By covariant phase space we mean the space of all solution

of the classical equation of motion i.e. without any constraints on the initial or final data

(see [41] for more details), that means the following sets23

Σ =

{
φ∗(x)|

δS[φ∗]

δφ(x)
= 0

}
, Σα =

{
φ∗(x)|

δSα[φ∗]

δφ(x)
= 0

}
. (6.60)

The correspondence of the covariant phase spaces is then a mapping Σα → Σ according to

the prescription φ∗ ∈ Σα → φα[φ∗] ∈ Σ.

The physical observables are then real functionals on the covariant phase space, i.e.

the mappings Σ→ R (or Σα → R). They can be understood as a restriction of the general

functionals O[φ], defined on all admissible field configurations φ, to the space Σ or Σα.

23The covariant phase space can be equipped by symplectic structure e.g. by Peierls brackets.
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Two such general functionals O and O′ define then the same observable on the space Σ

provided their difference vanishes on Σ, i.e.

O[φ∗]−O′[φ∗] = 0 for φ∗ ∈ Σ. (6.61)

We can enlarge the duality transformation φ → φα[φ] to observables according to the

prescription

Oα[φ] = O[φα[φ]] (6.62)

(see figure 2) where the functional O[φ] defines observable on Σ and Oα[φ] defines
24 the

corresponding dual observable on Σα. We can therefore freely calculate the value of given

”abstract” observable either within the dual theory using the point φ∗ ∈ Σα or within the

original theory using the dual point φα[φ∗] ∈ Σ . However, we have to take care to use

corresponding observables Oα or O within the dual and original theories respectively.

The above identification of the phase spaces and the corresponding algebras of observ-

ables can be used in practical calculations. Note however, that in some cases, a conservation

of complexity might take place. Sometimes we end up with dual theory the action Sα of

which is much simpler than the original one. However, to get a concrete value of some

simple observable O on Σ in terms of the simpler dual theory, we have to use much more

complicated observable Oα on Σα.

6.3 Fluctuations of classical solutions

The duality can also be helpful when the small perturbations χ(x) of solution φ∗(x) of

the classical equation of motion are investigated, i.e. when we set φ = φ∗ + χ in the

Galileon action. In this section we will discuss how the duality transformation acts on

the field χ(x) in the linearized theory of fluctuations. We will show that the solution of

the linearized fluctuation equation of motion in the dual theory is related by appropriate

duality transformation to the corresponding solution within the original theory. This means

that the covariant phase spaces and observables in these theories are related by duality. We

will also discuss the possible superluminal propagation of the fluctuations in the theories

connected by duality and argue that apparent paradoxes (i.e. when healthy theory with

(sub)luminal propagation of the fluctuation is dual to superluminally propagating one)

stem from the inadequate identification of the dual observables. We will illustrate this

issue on explicitly solvable examples.

To start with, let us insert φ = φ∗ + χ into the Galileon action

S[φ∗ + χ] = S[φ∗] +
1

2

∫
ddxddyχ(x)

δ2S[φ]

δφ(x)δφ(y)
|φ∗
χ(y) +O

(
χ3
)
. (6.64)

Here we used the equation of motion for φ∗ to eliminate the term linear in χ. The sec-

ond variation of the Galileon action (i.e. the fluctuation operator) is a local second order

24Note that this definition is consistent. Indeed, provided the functional G[φ] defines the same observable

as F [φ] (i.e. (6.61) is satisfied) then for φ∗ ∈ Σα and φα[φ∗] = (φ∗)α ∈ Σ (cf. (6.3)). Therefore

Fα[φ∗]− Gα[φ∗] = F [φα[φ∗]]− G[φα[φ∗]] = 0. (6.63)

As a result, the functionals Fα[φ] and Gα[φ] define the same observable on Σα.
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differential operator of the form

δ2S[φ]

δφ(x)δφ(y)
|φ∗

= −g[φ∗]µν∂µ∂νδ(d)(x− y) (6.65)

where (cf. (2.7))

g[φ∗]
µν = −

d+1∑

n=2

n(n− 1)dnε
µµ2...µdενν2...νd

n−1∏

i=2

∂µi∂νiφ∗(x)
d∏

j=n

ηµjνj . (6.66)

Note that the Minkowski tensor g[φ∗]
µν obeys the following relation

∂µg[φ∗]
µν = ∂νg[φ∗]

µν = 0. (6.67)

This enables us to rewrite the quadratic part of the action (6.64) equations of motion for

d > 2 in a form

S[φ∗ + χ] = S[φ∗] +
1

2

∫
ddx
√
|G[φ∗]|Gµν [φ∗]∂µχ∂νχ+O

(
χ3
)

(6.68)

where the effective metric Gµν [φ∗] is given in terms of g[φ∗]
µν as

Gµν [φ∗] = |det (g[φ∗]··)|
1

2−d gµν [φ∗] (6.69)

and G[φ∗] = det
(
G−1

µν [φ∗]
)
with G−1

µσ [φ∗]G
σν [φ∗] = δνµ. The second term on the right hand

side of (6.68) is manifestly invariant with respect to general coordinate transformations

x→ x′ under which

χ′(x′) = χ(x), Gµν [φ∗]
′(x′) = ∂ρx

′µ∂σx
′νGρσ[φ∗](x) (6.70)

(i.e. we assume χ(x) to be a scalar with respect to the diffeomorphisms). The linearized

equation of motion for χ(x) then reads

∫
ddy

δ2S[φ]

δφ(x)δφ(y)
|φ∗
χ(y) = −g[φ∗]µν(x)∂µ∂νχ(x) = 0. (6.71)

or in manifestly invariant form25

χ;µ
;µ =

1√
|G[φ∗]|

∂µ

(√
|G[φ∗]|Gµν [φ∗]∂νχ

)
= 0 (6.72)

The fluctuations of the classical background φ∗ propagate therefore according to the mass-

less Klein-Gordon equation in an effective spacetime with a metric

ds2 = G−1
µν [φ∗]dx

µdxν . (6.73)

The situation is completely analogous to the case of the small perturbation of the k-essence

in a given classical background which has been discussed in detail in [42]. As explained

25Here “;” means the covariant derivative with respect to the effective metric G−1
µν [φ∗].
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there, the effective metric G−1
µν [φ∗] defines the cone of influence of the fluctuations χ(x) by

the equation26

G−1
µν [φ∗]N

µNν = 0. (6.74)

Provided this influence cone is larger than the Minkowski one, i.e. when N2 < 0, the small

fluctuations can propagate superluminally.

As we will show in what follows, we can relate the perturbation in original and dual

theory through simple duality transformation induced by the background solution φ∗(x).

This will enable us to translate the solutions for the linearized equations of motion for

perturbations from original to dual theory and vice versa, and to study the effects of

the propagation of the perturbations in both theories. For simplicity we will restrict our

discussion to the one parameter subgroup αD(θ), however, it can be easily modified for the

general case.

The transformation formula can be formally obtained as follows. Taking the second

functional derivative of (6.1) we get

δ2Sθ[φ]

δφ(x)δφ(y)
=

∫
ddzddw

δ2S[φθ]

δφθ(z)δφθ(w)

δφθ(z)

δφ(x)

δφθ(w)

δφ(y)

+

∫
ddz

δS[φθ]

δφθ(z)

δ2φθ(z)

δφ(x)δφ(y)
(6.75)

Inserting now φ→ φ∗ the solution of the equation of motion for the action Sθ, the second

term on the right hand side drops out27 (cf. (6.11)) and we have

δ2Sθ[φ]

δφ(x)δφ(y)
|φ∗

=

∫
ddzddw

δφθ(z)

δφ(x)

δ2S[φθ]

δφθ(z)δφθ(w)

δφθ(w)

δφ(y)
|φ∗
. (6.76)

As a consequence, provided the duality transformation induced by the background φ∗ is

invertible, the linearized equation of motion (6.71) for the perturbation χ(x) around the

background of φ∗ in the dual theory with action Sθ is equivalent to

∫
ddy

δ2S[φθ]

δφθ(x)δφθ(y)
|(φ∗)θ

χθ(y) = 0. (6.77)

Here we have defined (cf. (6.9) )

χθ(x) =

∫
ddz

δφθ(x)

δφ(z)
|φ∗
χ(z) =

∫
ddzδ(d)(X[φ∗](x)− z)χ(z) = χ (X[φ∗](x)) . (6.78)

χθ(x) is therefore a solution of the linearized fluctuation equation in the original theory

around the classical configuration (φ∗)θ (x). Formula (6.78) is thus the desired duality

transformation for the perturbations χ(x).

Up to now we have interpreted all the duality transformations actively, i.e. we as-

sumed that both the original and dual theories live on the same Minkowski spacetime and

26Strictly speaking, the influence cone is given by the equation g−1
µν [φ∗]N

µNν = 0 where g−1
µν [φ∗] is inverse

to gµν [φ∗]. However according to (6.69) the metric G−1
µν [φ∗] is conformally equivalent to g−1

µν [φ∗].
27Here we tacitly assume the invertibility of the dual transformation.
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the fields φ∗(x), χ(x) and (φ∗)θ (x), χθ(x) represent different field configurations within

two different theories expressed in terms of the same Minkowski coordinates x. However,

due to the geometrical nature of the fluctuation action and the corresponding equation of

motion (6.68), (6.72) we can also change the point of view and interpret the duality trans-

formation of χ(x) passively. Note, that we can rewrite it equivalently as a transformation

of both field and coordinates

xθ = x− 2θ∂φ∗(x), χθ(xθ) = χ(x). (6.79)

Unlike the original duality (6.4), the coordinate transformation here does not depend on

the transformed function χ(x) and is fixed by the classical solution φ∗(x). Therefore, in the

the linearized theory of perturbation the duality can be interpreted as a special coordinate

transformation (6.70) under which the effective (inverse) metric Gµν
θ [φ∗] corresponding to

the dual action28 Sθ transforms according to

Gµν
θ [φ∗]

′(xθ) = Gρσ
θ [φ∗](x)∂ρx

µ
θ∂σx

ν
θ = Gρσ[(φ∗)θ](xθ) (6.80)

where Gρσ[(φ∗)θ] refers to the original action S. Under this interpretation, the fields

χ(x) and χθ(xθ) represent the same physical (geometrical) object within the same theory

expressed in terms of two different systems of coordinates on a (generally curved) effective

spacetime with the (inverse) metric Gµν
θ [φ∗]. Especially, the influence cone (6.74) does not

change within the passive interpretation.

On the other hand, within the active interpretation, when both x and xθ are Minkowski

coordinates and the original and dual theories are taken to be different, we can relate the

influence cones in both theories. According to (6.80) we get

G−1
µν [φ∗]θ(x)N

µNν = G−1
ρσ [(φ∗)θ](xθ)∂µx

ρ
θ∂νx

σ
θN

µNν . (6.81)

Therefore, provided N is a propagation vector forming the influence cone at point x in the

dual theory, we get propagation vector Nθ at point xθ in the original one as

Nµ
θ = Nσ∂σx

µ
θ (x) = Nσ − 2θNσ∂σ∂

µφ∗(x). (6.82)

The actively interpreted duality transformation can thus deform the influence cone and

e.g. connect healthy (sub)luminally propagating theory with pathological superluminally

propagating one.

This might seem to be a paradox, however, in fact there is nothing unnatural in it.

Let us remind the discussion of the duality of observables in the subsection 6.2. Provided

we would like to describe the small fluctuations in the original theory in terms of the

dual theory, we have to use the corresponding dual observable to the fluctuation operator

δ2S[φ]/δφδφ in the sense of the definition (6.62). The point is that, while the actions S[φ]

and Sθ[φ] are dual observables in the sense of (6.62), the corresponding fluctuation operators

δ2S[φ]/δφδφ and δ2Sθ[φ]/δφδφ are not. Note that the dual observable
(
δ2S[φ]/δφδφ

)
θ
to

δ2S[φ]/δφδφ is according to (6.62)
(

δ2S

δφ(x)δφ(y)

)

θ

[φ] =

(
δ2S

δφ(x)δφ(y)

)
[φθ[φ]] = −g[φθ[φ]]µν(x)∂µ∂νδ(d)(x− y) (6.83)

28I.e. it is given by (6.69) and (6.66) with the substitution dn → dn(θ).
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and for the background φ∗ ∈ Σθ within the dual theory generates the same effective metric

G−1
ρσ [(φ∗)θ](x) as (φ∗)θ ∈ Σ in the original theory. On the other hand the fluctuation

operator in the dual theory has the form

δ2Sθ[φ]

δφ(x)δφ(y)
≡ −gαβθ [φ](x)∂µ∂νδ

(d)(x− y) (6.84)

where gαβθ [φ] is given by formula (6.66) with dn → dn(θ). The corresponding effective

metric is (cf. (6.80))29

G−1
µν [φ∗]θ(x) = G−1

ρσ [(φ∗)θ](xθ(x))∂µx
ρ
θ(x)∂νx

σ
θ (x)

=
(
ηρµ − 2θ∂µ∂

ρφ∗(x)
)
(ησν − 2θ∂ν∂

σφ∗(x))

×
∞∑

n=0

(−2θ)n
n!

∂µ1φ∗(x) . . . ∂
µnφ∗(x)∂µ1 . . . ∂µnG

−1
ρσ [(φ∗)θ](x), (6.86)

which differs from G−1
ρσ [(φ∗)θ](x) at the same point. As a result, the right dual observ-

able to δ2S[φ]/δφδφ differs form δ2Sθ[φ]/δφδφ. The fluctuation operators δ2S[φ]/δφδφ and

δ2Sθ[φ]/δφδφ represent therefore two different observables in two different theories. Be-

cause in the linearized case the small fluctuations correspond to the zero modes of these

fluctuation operators, we cannot in general expect that they must necessarily propagate

with the same (front, group) velocity.

On the other hand, we can construct a solution of the linearized fluctuation equation in

the theory with action S[φ] around the classical solution (φ∗)θ from the corresponding solu-

tion of the dual theory with action Sθ[φ] by means of duality transformation (6.78), (6.79).

This means, that the covariant phase spaces of both linearized theories of fluctuations are

dual to each other, and using the dual observables Oθ[χ] = O[χθ[χ]] in the framework of

the dual theory enables us to get results for the observables O[χ] in the original theory.

See also appendix C for further details.

In the following subsections we show two examples of the duality transformation of

the perturbation of the classical solutions. We will demonstrate explicitly the usefulness

of the formula (6.78) for solving the linearized fluctuation equation of motion.

6.3.1 Fluctuations of the plane wave background

The first example is the fluctuation of the plane wave background (see e.g. [43, 9]). In this

case the background φ∗ has the form

φ∗(x) = F (n · x) (6.87)

29Using the inversion of the formula (6.76) (cf. also (6.9) and definition of X[φ](x)) we can also relate

directly the fluctuation operators for φ∗ ∈ Σθ

(
δ2S

δφ(x)δφ(y)

)

θ

[φ∗] = −det−1

(
∂xθ
∂x

)
∂αx

µ
θ∂βx

ν
θg

αβ
θ [φ∗](X[φ∗](x))∂µ∂νδ

(d)(x− y). (6.85)

Note that, while δ2Sθ[φ]/δφδφ is a local functional of φ∗ depending only on the second derivatives of φ∗

at point x, the dual
(
δ2S[φ]/δφδφ

)
θ
is nonlocal and can be formally expanded into an infinite series which

includes all the derivatives of φ∗ at x. It is however a local functional of φθ[φ∗].
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where F (·) is some twice differentiable function. For light-like n = (1,n) with n2 = 1, such

φ∗(x) is a classical solution of the general Galileon equation of motion30 (2.7). The reason

is that, for the ansatz (6.87), the problem is effectively one-dimensional and therefore the

interaction terms in the equation of motion vanish automatically.31

The linearized equation of motion for the fluctuation of this background has the

form (6.71), explicitly [
d2�− d3F ′′(n · x) (n · ∂)2

]
χ(x) = 0 (6.88)

and only the cubic coupling matters. The effective metric is in this case

G−1
µν [φ∗] =

1

d2

(
ηµν +

d3
d2
F ′′(n · x)nµnν

)
, G[φ∗] = −

1

d42
(6.89)

The linearized theory of fluctuations on the plane wave background is known to be a

prominent example of a possible classical superluminal propagation, which is sometimes

interpreted as a pathology of the Galileon theory. In the short wave-length (eikonal)

approximation χ = A exp(iS) (where S is assumed to be large) we get

d2∂S · ∂S − d3F ′′(n · x) (n · ∂S)2 = 0. (6.90)

Denoting ∂S = (ω(k),k) we get for the wave front velocity

v2front =
ω(k)2

k2
= 1 +

d3
d2
F ′′(n · x) (n · ∂S)2 , (6.91)

and thus the equation (6.88) leads locally to superluminal propagation of the fluctuations

provided (see also [9] for more details)

d3
d2
F ′′(n · x) > 0. (6.92)

In this case the lightcone corresponding to the effective metric (6.89) is wider then the

Minkowski one.

Here we will show that duality can help us to find easily the explicit solution of (6.88).

The duality transformation induced by φ∗(x) = F (n · x) reads

xθ = x− 2θnF ′(n · x) (6.93)

(φ∗)θ (xθ) = F (n · x). (6.94)

30Here we take d1 = 0 but the other di we assume to be arbitrary.
31Let us remind that the equation of motion reads

d+1∑

n=1

ndnL
der
n−1(∂∂φ∗) = 0.

We have for n > 2

Lder
n−1(∂∂φ∗) = Lder

n−1(nnF
′′(n · x)) = 0.

For n = 2

Lder
1 (nnF ′′(n · x)) = (−1)d−1(d− 1)! (n · n)F ′′(n · x)

which requires n to be light-like n2 = 0.
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Therefore

n · x = n · xθ (6.95)

and (φ∗)θ (x) = F (n · x), while the fluctuations χ(x) in the dual theory are governed by

the equation (6.88) with the exchange d2,3 → d2,3(θ). With the choice

θ∗ =
d3
4d2

(6.96)

for the duality transformation (5.25) we get d3(θ∗) = 0 and the fluctuation equation is

simply �χ(x) = 0 with general solution

χ(x) =

∫
d3k

(2π)32|k| [a(k) exp(−ik · x) + h.c] (6.97)

where k = (|k|,k). The dual χθ∗(x) to χ(x) given by (6.78) yields then the solution of the

general fluctuation equation (6.88). With help of (6.95) we can easily find the inversion

X[φ∗](x) of (6.93), namely

X[φ∗](x) = x+ 2θnF ′(n · x), (6.98)

and using the general prescription (6.78) we get finally the general solution of (6.88) in

the form

χθ∗(x) =

∫
d3k

(2π)32|k| {a(k)χk(x) + h.c.} , (6.99)

where the basis of the solutions is

χk(x) = exp [−ik ·X[φ∗](x)] = exp
[
−ik · x− 2iθ∗ (n · k)F ′(n · x)

]
. (6.100)

Let us now discuss the physical properties of this solution, namely the conditions under

which we get superluminal propagation. Assume that the coefficient function a(k) has a

sharp peak at k = k and is nonzero only in as small vicinity of this point. Then we can

write approximately

χθ∗(x) ≈ e−ik·X[φ∗]A
(
X[φ∗]− k̂X0[φ∗]

)
+ h.c. (6.101)

where k = (|k|,k), k̂ = k/|k| and the shape of the wave packet is given by

A (y) =

∫
d3k

(2π)32|k|a(k+k)eik·y. (6.102)

The group velocity can be now obtained in a standard way by differentiating the equation

X[φ∗]− k̂X0[φ∗] = const. (6.103)

with respect to t ≡ x0. After some algebra (see appendix D) we find

vgroup(x) =
k̂− 2θ∗(1− n · k̂)F ′′(n · x)n
1− 2θ∗F ′′(n · x)(1− n · k̂)

(6.104)
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and thus

vgroup(x) =


1 +

4θ∗F
′′(n · x)(1− n · k̂)2

[
1− 2θ∗F ′′(n · x)(1− n · k̂)

]2




1/2

. (6.105)

Therefore the superluminal propagation is possible in the space-time regions with θ∗F
′′(n ·

x) = 3d3F
′′(n · x) > 0. The phase velocity is given by

vphase(x) =
d
dtk ·X[φ∗]

|∇k ·X[φ∗]|
=


1− 4θ∗F

′′(n · x)(1− n · k̂)2
[
1 + 2θ∗F ′′(n · x)(1− n · k̂)

]2




−1/2

(6.106)

and is superluminal under the same condition as vgroup.

The explicit knowledge of the basis χk(x) allows us to discuss also the quantum aspects

of the fluctuations on the operator level. Because of a special role of the variable n · x,
which naturally plays a role of the evolution parameter in the problem, the most convenient

prescription for the quantization of the field χ is the Dirac front-form one. Let us introduce

the light cone coordinates as

x+ = n · x, x− = ñ · x, x⊥ = x− n (n · x) (6.107)

where ñ = (1,−n) and analogously for any other vector. Then e.g. the solutions χk(x) can

be rewritten in the form

χk(x) = exp

[
− i

2
k−x+ − i

2
k+x− + ik

⊥
· x⊥ − 2iθ∗k

+F ′(x+)

]

and the condition on the vector k to be on-shell and positive-energy is then expressed as

k− =
k2
⊥

k+
, k+ ≥ 0. (6.108)

It is easy to prove that the elements of the basis χk(x) are orthogonal with respect to the

indefinite scalar product defined on the solution of (6.88) as32

〈χ1, χ2〉 = i

∫

x+=const.
dx−d2x⊥χ

∗
1

←→
∂−χ2, (6.109)

namely

〈χk, χq〉 = −〈χ∗
k, χ

∗
q〉 = (2π)3 2k+δ

(
k+ − q+

)
δ(2)(k⊥ − q⊥)

〈χ∗
k, χq〉 = 〈χk, χ

∗
q〉 = 0. (6.110)

Let us write the operator solution χ̂(x) of the equation (6.88) in the form (see (6.99)

and (6.100))

χ̂(x) =

∫

k+>0

dk+d2k⊥

(2π)3 2k+

(
a(k+,k⊥)χk(x) + a+(k+,k⊥)χ

∗
k(x)

)
. (6.111)

32For the solutions χ1,2 of the fluctuation equation of motion the scalar product is independent on the

choice of x+.
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According to the general quantization prescription, the operators χ̂(x) and their canonically

conjugated momenta in the front-form formalism

π̂(x) = 2∂−χ̂(x) (6.112)

have to satisfy the canonical commutation relations

[χ̂(x), χ̂(y)]x+=y+ = − i

4
ε
(
x− − y−

)
δ(2)(x⊥ − y⊥)

[χ̂(x), π̂(y)]x+=y+ = iδ
(
x− − y−

)
δ(2)(x⊥ − y⊥). (6.113)

This implies with help of (6.110) the canonical commutation relations

[
a(k+,k⊥), a

+(q+,q⊥)
]
= (2π)3 2k+δ

(
k+ − q+

)
δ(2)(k⊥ − q⊥)[

a(k+,k⊥), a(q
+,q⊥)

]
=
[
a+(k+,k⊥), a

+(q+,q⊥)
]
= 0. (6.114)

Now it is easy to calculate the commutator of the fields with the result

[χ̂(x), χ̂(y)] = − i

(2π)
ε(x+ − y+)δ (λ) (6.115)

where ε(z) = θ(z)− θ(−z) is the sign function and

λ = (x− y)2 + 4θ∗(x
+ − y+)

(
F ′(x+)− F ′(y+)

)
.

The commutator is nonzero only for

(x− y)2 = −4θ∗(x+ − y+)2
F ′(x+)− F ′(y+)

x+ − y+ = −4θ∗(x+ − y+)2F ′′(ξ+) (6.116)

where ξ+ is located between x+ and y+. Provided θ∗F
′′(ξ+) > 0, the commutator is

nonzero also outside the light cone and causality is violated.

The commutation relations (6.114) can be represented on the Fock space built on the

vacuum state |0〉 which is annihilated by the operators a(k+,k⊥). Let us suppose that

there exist finite limits

lim
x+→±∞

F ′(x+) ≡ ψ±. (6.117)

Then in the limit t→ ±∞, (x fixed) we get

χ̂(x)→ χ̂out,in(x) =

∫

k+>0

dk+d2k⊥

(2π)3 2k+

(
aout,in(k

+,k⊥)e
−ik·x + a+out,in(k

+,k⊥)e
ik·x
)
.

(6.118)

Here we have identified the out and in creation and annihilation operators

aout,in(k
+,k⊥) = a(k+,k⊥) exp

[
−2iθ∗k+ψ±

]

a+out,in(k
+,k⊥) = a+(k+,k⊥) exp

[
2iθ∗k

+ψ±

]
. (6.119)

Note that these operators satisfy again the commutation relations (6.114). The fields

χ̂out,in(x) are therefore free fields which create asymptotic in and out states from the Fock

vacuum

|k(1), . . . ,k(m); out, in〉 = a+out,in(k
+
(1),k(1)⊥) . . . a

+
out,in(k

+
(m),k(m)⊥)|0〉 (6.120)
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These are eigenstates of the momentum operators

P+ =

∫

k+>0

dk+d2k⊥

(2π)3 2k+
k+a+(k+,k⊥)a(k

+,k⊥)

P− =

∫

k+>0

dk+d2k⊥

(2π)3 2k+
k2
⊥

k+
a+(k+,k⊥)a(k

+,k⊥)

P⊥ =

∫

k+>0

dk+d2k⊥

(2π)3 2k+
k⊥a

+(k+,k⊥)a(k
+,k⊥) (6.121)

with eigenvalues
∑m

i=1 k(i) where k(i) =
(
k+(i), k

−
(i),k(i)⊥

)
satisfying k2(i) = 0 and correspond

therefore to the m non-interacting massless excitations. The S-matrix defined as

aout(k
+,k⊥) = ain(k

+,k⊥) exp
[
2iθ∗k

+ (ψ− − ψ+)
]
≡ S+ain(k

+,k⊥)S (6.122)

is then expressed simply as a translation in the x− direction

S = exp
[
2iθ∗P

+ (ψ− − ψ+)
]
. (6.123)

The only nontrivial connected scattering amplitude is the two-point one33

M(k,k′) = (4π)2
e2iδk − 1

2i|k| δ(2)(k̂− k̂′) (6.124)

which describes scattering of the individual excitations on the background resulting in a

phase shift δk=θ∗k
+ (ψ− − ψ+). This amplitude can be also obtained by means of sum-

mation of the perturbative series generated by the Feynman rules depicted in figure 3 (see

appendix E).

Note that the S matrix is trivial for (ψ− − ψ+) = 0, i.e. especially when F (x+) has

compact support. This is in accord with the discussion in [40], where it has been demon-

strated that for localized classical background the displacement of the null geodetics with

respect to the effective metric vanish asymptotically.

To conclude, we have shown that within the original theory with d3 6= 0 the fluctuations

in general interact with the plane wave background and might be scattered by it provided

its profile F (x+) does not fall rapidly enough for x+ → ∞. Also the commutator of

the operators χ̂(x) might locally violate causality when θ∗F
′′(x+) > 0 in some region.

This might be felt as a paradox since for the dual theory for which d3 = 0 the linearized

fluctuation theory is free, causal, and its S matrix is trivial. However, we are comparing

here two different theories the relation of which must be taken with care. As we have

argued, only comparison of dual observables makes sense. E.g. provided we would like to

describe the correlators of the fluctuations of the original theory using the dual (free) one,

we have not to use the free operators

χ̂0(x) =

∫

k+>0

dk+d2k⊥

(2π)3 2k+

(
a(k+,k⊥)e

−ik·x + a+(k+,k⊥)e
ik·x
)
, (6.125)

33Here we use the normalization

Sfi = 〈k′|k〉+ 2πiδ(E′ − E)M(k′,k)
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M(k,k
′

) = + + . . .

p q

p

=

=

4iθp+q+ (2π)3 δ(p+ + q+)δ(2)(p⊥ − q⊥)
∫
dx+e−

i

2
(p−+q

−)x+

F ′′(x+)

i
p2+i0

k k
′

k k
′

Figure 3. The Feynman rules for the perturbative calculation of the one-particle amplitude

M(k,k
′

) are given in the first two rows of this figure. This amplitude is given by the sum of

Feynman graphs depicted in the last row.

but their duals χ̂(x) given by (6.111), see also appendix C. These, though live on the same

Hilbert space, are not unitarily equivalent34 to χ̂0(x). Instead we have

χ̂(x) = exp
[
−2iθ∗P+F ′(x+)

]
χ̂0(x) exp

[
2iθ∗P

+F ′(x+)
]

and thus the dual asymptotic in and out states defined by the dual operators χ̂(x) differ

from that defined by χ̂0(x) when (ψ− − ψ+) 6= 0.

6.3.2 Fluctuations of the cylindrically symmetric solution

As the second example let us consider briefly the fluctuations of the cylindrically symmetric

static solution φ(z, z) discussed in the previous subsection. The matrix g[φ]µν is in this

case given in the form (see appendix F for details)

g[φ] = 12d2(θ)η

−12d3(θ)




4∂∂φ 0 0 0

0 −4∂∂φ 0 0

0 0
(
∂ − ∂

)2
φ i

(
∂2 − ∂2

)
φ

0 0 i
(
∂2 − ∂2

)
φ −

(
∂ + ∂

)2
φ




−24d4(θ)




4
[
∂2φ∂

2
φ−

(
∂∂φ

)2]
0 0 0

0 −4
[
∂2φ∂

2
φ−

(
∂∂φ

)2]
0 0

0 0 0 0

0 0 0 0



. (6.126)

Due to the cylindrical symmetry g[φ] does not depend on the quintic coupling d5. Let

us now show the application of the duality to solving the general equation (6.71). As in

the above examples, within the dual theory this equation simplifies. Setting d2 = 1/12 as

34I.e. there does not exist any unitary operator U on the Fock space such that χ̂(x) = Uχ̂0(x)U
+.
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usual and passing to the dual theory with d3(θ) = 0 we get in terms of the invariant I4
(cf. (5.44))

gθ[φ] =

({
1− 96I4

[
∂2φ∂

2
φ−

(
∂∂φ

)2]}
σ3 0

0 −1

)
(6.127)

where σ3 = diag (1,−1) is the third Pauli matrix. Thus the equation (6.71) becomes

{
1− 96I4

[
∂2φ∂

2
φ−

(
∂∂φ

)2]} ( ..
χ− χ′′

)
− 4∂∂χ = 0 (6.128)

where χ ≡ χ(t, x, z, z), dots and dashes means derivative with respect to t and x1 respec-

tively. In the dual theory the static solution φ∗ is given by (6.25) and for z 6= 0 we get

explicitly the following dual fluctuation equation

[
1− 6I4

(σ
π

)2 1

(zz)2

] ( ..
χ− χ′′

)
− 4∂∂χ = 0. (6.129)

For

1− 6I4

(σ
π

)2 1

(zz)2
> 0

we can rewrite it equivalently as

χ;µ
;µ = 0 (6.130)

where χ;µ
;µ is the Laplace-Beltrami operator acting on χ and corresponding to the effective

metric metric G−1
µν [φ∗]θ given explicitly as

ds2 = (dt2 − dx2)−
[
1− 6I4

(σ
π

)2 1

(zz)2

]
dzdz. (6.131)

Similarly to the case of the point-like source, the duality arguments help us to easily solve

the equation (6.71) for the class of theories for which I4 = 0. In such a case we have to

solve a free equation �χ = 0 with general solution (with luminal propagation)

χ(t, x, z, z) =

∫
d3k

(2π)32|k|
{
a(k) exp

[
−i
(
|k|t− k1x− zw − zw

)]
+ h.c

}
(6.132)

with k = (|k|,k) and

w =
1

2
(k2 + ik3)

w =
1

2
(k2 − ik3). (6.133)

Its dual χθ given by (6.78) is then

χθ(t, x
1, z, z) =

∫
d3k

(2π)32|k|
{
a(k) exp

[
−i
(
|k|t− k1x− ζ(z, z)w − ζ(z, z)w

)]
+ h.c

}

(6.134)
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where (see (6.30) and (6.32) )

ζ(z, z) = z

(
1 +

σθ

πρ(z, z)

)−1

ρ(z, z) =
1

2

(
zz − 2

σθ

π
±
√
zz

(
zz − 4

σθ

π

))
. (6.135)

According to the discussion in the introduction to this subsection, χθ(t, x, z, z) is for θ = 3d3
the solution of the general fluctuation equation (6.71) with g[φ] given by (6.126) where

d4 = 9d23/2.

6.4 Hidden symmetries

The Galileon duality often interrelates apparently very different theories. For instance,

let us assume a Galileon theory with additional Z2 symmetry which corresponds to the

intrinsic parity, namely

φ→ φP = −φ. (6.136)

On the Lagrangian level this symmetry requires dn = 0 for all n odd. Under the general

duality transformation such a Z2 invariant theory might be mapped onto a dual with some

d2k−1 6= 0 and therefore the Z2 symmetry ceases to be manifest in the dual theory. In this

section we will study the way how the symmetries of the original Lagrangian are realized

on the dual one.

Let us remind the definition of the dual action corresponding to the matrix α

Sα[φ] = S[φα] (6.137)

where φα is the duality transformation of the field φ given by (cf. (4.19))

xα = αPPx+ αPB∂φ(x)

φα(xα) = det (α)φ(x)

+
1

2

(
αPBαBB∂φ(x) · ∂φ(x) + 2αPBαBPx · ∂φ(x) + αPPαBPx

2
)

(∂φ)α (xα) = αBB∂φ(x) + αBPx. (6.138)

Here we have denoted35 (∂φ)α ≡ ∂φα/∂xα. Within this notation the group property of the

duality transformations can be formally expressed as

(Yα)β = Yβ·α, Y = (x, φ, ∂φ) . (6.139)

The inverse of the transformation (6.138) has the same form with the exchange

α→ α−1 = det (α)−1

(
αBB −αPB

−αBP αPP

)

35In the previous formulae and in what follows we suppress the Lorentz indices, the index α in xα refers

to the matrix α.
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and can be written symbolically as

Y = (Yα)α−1 Y = (x, φ, ∂φ) . (6.140)

Using this notation the formula (6.137) can be rewritten in the form

S[φ] = Sα[φα−1 ] (6.141)

Now any transformation of the general form

Yα → (Yα)
′ =

(
Fx(Yα),Fφ(Yα),F∂φ(Yα)

)
, Yα = (xα, φα, (∂φ)α) , (6.142)

where FY , (Y = x, φ, ∂φ), are local functions36 of Yα, is realized in terms of the variables

Y as

Y → Y ′ =
(
(Yα)

′)
α−1 =

(
Fx(Yα),Fφ(Yα),F∂φ(Yα)

)
α−1

. (6.143)

Provided the original action is symmetric with respect to the transformation (6.142) we

have using (6.141)

Sα[φ
′] = Sα[

(
(φα)

′)
α−1 ] = S[(φα)

′] = S[φα] = Sα[φ] (6.144)

and the dual action is invariant with respect to (6.143).

Let us now give some explicit examples of these general formulae. The first example

is the intrinsic parity transformation mentioned in the introduction to this section. In

this case, the formula (6.143) simplifies considerably. Let us note that the intrinsic parity

transformation (6.136) can be treated as a special case of the duality transformations (5.21)

with a matrix

αP ≡ αS(1,−1) =
(
1 0

0 −1

)
. (6.145)

Therefore φP = φαP and (6.143) has the form

Y P =
(
(Yα)

P
)
α−1

= (YαP ·α)α−1 = Yα−1·αP ·α (6.146)

and the Z2 symmetry is realized in the dual theory with action Sα[φ] as a duality trans-

formation associated with the matrix

βP (α) = α−1 ·αP ·α = det (α)−1

(
αPPαBB + αPBαBP 2αPBαBB

−2αBPαPP −αPPαBB − αPBαBP

)
, (6.147)

or explicitly

xP = det (α)−1 [(αPPαBB + αPBαBP )x+ 2αPBαBB∂φ(x)] (6.148)

φP (xP ) = −φ(x)− det (α)−2 [αPBαBB (αPPαBB + αPBαBP ) ∂φ(x) · ∂φ(x)
+4αPBαBPαPPαBBx · ∂φ(x) + αPPαBP (αPPαBB + αPBαBP )x

2
]

(∂φ)P (xP ) = − det (α)−1 [2αBPαPPx+ (αPPαBB + αPBαBP ) ∂φ(x)] . (6.149)

36Here F∂φ is in fact not independent because it has to be compatible with the remaining two functions

in such a way that F∂φ(Y ) = ∂′φ′.
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The transformation corresponding to the intrinsic parity is therefore realized in the dual

theory non-linearly and non-locally as a simultaneous transformation of both space-time

coordinates and fields.

In the same way we can find the dual realization of the Galileon symmetry (2.1). The

general formula (6.143) reads in this case

(x, φ, ∂φ)′ = (xα, φα + a+ b · xα, (∂φ)α + b)α−1 , (6.150)

or explicitly

x′ = x− det (α)−1 αPBb

φ′ = φ+ a det (α)−1 − 1

2
det (α)−2 αPBαPP b

2 + det (α)−1 αPP b · x

(∂φ)′ = ∂φ+ det (α)−1 αPP b. (6.151)

A dual Galileon transformation is therefore superposition of space-time translation and

Galileon transformation with special values of parameters, as was recognized for the duality

of the type (5.25) in [18].

Let us now discuss the space-time symmetries. The duality transformation respects

the Lorentz symmetry, therefore its realization in the dual theory is the same as in the

original one. Indeed, restoring the Lorentz structure in the matrix notation (5.1), (5.2)

and (5.4) we can write

α =

(
αPP αPB

αBP αBB

)
⊗ 1, α̂ =

(
αBP 0

0 αPB

)
⊗ 1 (6.152)

where the second factor 1 ≡ δµν in the tensor product acts to the vector indices of X.

Using the same notation, the Lorentz transformation Λ ≡ Λµ
νcan be described by the

formula (5.1) with the matrix37

αL = 1⊗ Λ (6.153)

which commutes with (6.152) and, according to the general prescription (6.143), the dual

realization corresponds to the matrix (cf. also (6.147))

βL = α−1 · αL · α = αL.

The last example is the space-time shift

x → x+ b

φ(x) → φ(x− b), (6.154)

for which, according to (6.143), we get

(x′, φ′(x′), ∂′φ′(x′)) = (xα + b, φα(xα), (∂φ)α (xα))α−1 (6.155)

37Strictly speaking for scalar φ this is true only for proper Lorentz transformation with detΛ = 1. Other

alternatives (pseudoscalar φ or improper Lorentz transformation) can be discussed analogously with minor

changes.
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or explicitly

x′ = x+ αBB det(α)−1b

φ′ = φ− 1

2
αBBαBP det(α)−2b2 + αBP det(α)−1b · x

(∂φ)′ = ∂φ+ αBP det(α)−1b. (6.156)

The dual realization of the space-time shift is therefore a composition of shift and general

Galileon transformation with α and b−dependent parameters.

6.5 Duality of the S matrix

On the quantum level the most important object is the S matrix. In this section we will

discuss its properties with respect to the Galileon duality and show that it is invariant with

respect to the subgroups of duality transformations αD (θ) and αS (1, κ).

Let us first briefly remind the well known equivalence theorem which makes a statement

about the invariance of the S matrix with respect to the field redefinitions (see e.g. [22]).

The S matrix can be obtained by means of LSZ formulae from the generating functional

Z[J ] of the Green functions which can be expressed in terms of the functional integral.

Z[J ] =

∫
Dφ exp

(
i

~
S[φ] +

i

~
〈Jφ〉

)
. (6.157)

In this formula we tacitly assume appropriate regularization which preserves the properties

of the action with respect to the Galileon symmetry and duality transformations. The

action can be expanded in powers of ~

S[φ] =
∞∑

n=0

~
nSn[φ] ≡ S0[φ] + SCT [φ], (6.158)

where S0[φ] is the Galileon Lagrangian (2.4). The higher order terms Sn[φ] in the expan-

sion (6.158) summed up in SCT [φ] represent the counterterms which are necessary in order

to renormalize the UV divergences stemming form the n-loop graphs. The discussion of

these counterterms we postpone to the section 6.8, here we only stress that, because of the

derivative structure of the Galileon interaction vertices, the counterterms Sn[φ] have more

derivatives per field than the basic action S0[φ], and that under our assumptions on the

regularization the counterterms should respect the Galileon symmetry.

In the functional integral the field φ is a dummy variable and can be freely changed

by means of the field redefinition φ→ F [φ] according to

Z[J ] =

∫
Dφ det

(
δF [φ]
δφ

)
exp

(
i

~
S[F [φ]] + i

~
〈JF [φ]〉

)
, (6.159)

where we have abbreviated38 〈·〉 ≡
∫
ddx (·). This should be compared with the generating

functional ZF [J ] in the theory with the action SF [φ] ≡ S[F [φ]]

ZF [J ] =

∫
Dφ exp

(
i

~
SF [φ] +

i

~
〈Jφ〉

)
(6.160)

38In what follows we will often use this notation without further comments unless it shall lead to misin-

terpretation.
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Ignoring the Jacobian on the right hand side of (6.159) for a moment, the sufficient con-

dition for the perturbative equivalence of the S matrices in the theories with actions S[φ]

and SF [φ] is that the Fourier transforms of the Green functions of the operators φ(x)

and F [φ](x) have the same one-particle poles at p2i = 0 up to a simple re-scaling of the

residues.39 This is achieved provided F [0] = 0 and

〈0|F [φ](0)|p〉 = ZF 〈0|φ(0)|p〉 (6.161)

with ZF 6= 0. This requirement is respected by the Galileon duality transformation which

are represented by the upper triangular matrices with αPP = 1. To prove this, it is sufficient

to investigate the dualities corresponding to αD (θ) and αS (1, κ) separately because of the

decomposition (5.27). In the former case we have

F [φ](x) ≡ φθ(x) = φ(x) + θ∂φ(x) · ∂φ(x) +O(θ2, φ4) (6.162)

and therefore40

ZF = 1 +O(~) (6.163)

while in the latter case we trivially41 get ZF = κ. Thus the only obstruction which prevents

us to make a statement on the equivalence of the on-shell S matrices in both theories also

at the loop level is the possible nontrivial functional determinant on the right hand side

of (6.159). Its actual value depends on the regularization. In what follows we will show that

using dimensional regularization the functional determinant equals to one for the duality

transformations αD (θ) (the case αS (1, κ) is of course trivial).

For the infinitesimal θ we can expand the functional determinant according to (6.162) as

det

(
δφθ(x)

δφ(y)

)
= 1 + 2θTr (∂φ(x)∂) . (6.165)

The trace can be further expressed in a standard way (introducing the operators X̂ ≡ x,

K̂ ≡ −i∂ and their eigenvectors |x) and |k) respectively) as

Tr (∂φ(x)∂) = i

∫
dd−2εx(x|∂φ(X̂) · K̂|x) = i

∫
dd−2εxdd−2εk(x|∂φ(X̂) · K̂|k)(k|x)

= i

∫
dd−2εx∂φ(x) ·

∫
dd−2εk

(2π)d−2ε k (6.166)

39Implicitly this means that the operator F [φ](x) is translation invariant, i.e. F [φ](x) =

e−iP ·xF [φ](0)eiP ·x. Violation of this condition might prevent the applicability of the LSZ reduction formu-

lae when passing from correlators to S matrix elements.
40The O(~) part stems from the contributions of the terms bilinear and higher in the derivatives of the

field φ on the right hand side of (6.162). These terms start to contribute to ZF only at the loop level.
41The case of αS (λ, κ) is more complicated, because

F [φ](x) = λκφ(λ−1x),

∫
ddxeip·xλκφ(λ−1x) = λd+1κ

∫
ddxeiλp·xφ(x) (6.164)

and the behaviour of the Green functions under the re-scaling of the momenta is governed by the renormal-

ization group. This is the rationale for the constraint αPP = 1. However, at the tree level this simplifies to

scaling respecting the canonical dimensions.
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The first factor equals to zero for well behaved φ while the second one vanishes within the

the dimensional regularization. We have thus

det

(
δφθ(x)

δφ(y)

)
= 1 +O(θ2) (6.167)

For the finite transformation we can use the fact that the transformation forms a one-

parametric group and thus

φθ+ξ[φ] = φθ[φξ] = φξ[φθ] , (6.168)

which implies

det

(
δφθ+∆θ

δφθ

)
= 1 +O((∆θ)2) . (6.169)

Using the formula
δφθ+∆θ(x)

δφ(y)
=

∫
ddz

δφθ+∆θ(x)

δφθ(z)

δφθ(z)

δφ(y)
(6.170)

we get formally

det

(
δφθ+∆θ

δφ

)
= det

(
δφθ+∆θ

δφθ

)
det

(
δφθ
δφ

)
(6.171)

and therefore
∂

∂θ
ln det

(
δφθ
δφ

)
= 0 , (6.172)

By means of integration from 0 to θ this leads to the desired statement42

det

(
δφθ
δφ

)
= 1 . (6.173)

The on-shell S matrices in theories with actions SF [φ] and S[φ] are therefore formally

equivalent for the above duality transformations. This statement, however, must be taken

with care. The first reason is that the counterterm part SCT [φ] of the action has not the

form of the Galileon Lagrangian and transforms therefore highly nontrivially with respect

to the duality (note that the duality transformation is in general non-local and involves

infinite number of terms, cf. appendix A). The second reason is that though we have

formally established equivalence of the on-shell S matrices, the off-shell Green functions

stay to be different in both theories. Indeed, we have in fact only proved that Green

functions of operators φ(x) in original theory and those of operators F [φ](x) in the dual

theory coincide.43 Therefore, the recursive construction of the counterterms in the dual

42Let us note that without the knowledge that the Jacobian of this transformation is equal one, in a

standard way, we can introduced the ghost fields which would reproduce the studied determinant. At

the end, however, one would find that propagators of such ghosts are proportional to 1, and thus every

integration over ghost loop with momentum l is of the type:
∫

dd−2εl × Polynomial(l) = 0

which is true for the dimensional regularization.
43Analogous statement can be made also for any other (composite) operator O[φ]. The correlators of a

string of such operators within the original theory coincide with correlators of corresponding dual operators

O[F [φ]] calculated within the dual theory. This is in accord with our discussion of the dual observables on

the classical level.
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theory starting with the dual basic action S0[F [φ]] will lead to counterterm action SF
CT [φ]

different from SCT [F [φ]]. On the other hand, the counterterms from SCT [F [φ]] will be
sufficient to cancel the divergences of the on-shell amplitudes in the dual theory. Before

we proceed to the more detailed discussion of quantum correction and counterterms (we

postpone it to the sections 6.8 and 6.9) we will illustrate the consequences of duality in the

case of tree level scattering amplitudes.

6.6 Tree level amplitudes

As we have mentioned in section 2, the tree level amplitudes up to the 5pt one have

surprisingly simple structure though they are sums of a large number of nontrivial con-

tributions stemming from individual Feynman graphs with different topologies. Therefore

large cancellations between different contribution have to occur the reason of which is not

transparent on the Lagrangian level. In this subsection we will show on an elementary level

how these results can be understood better with the help of the duality.

As we will demonstrate, the mechanism of the above mentioned cancellation is a con-

sequence of the invariance of the S matrix with respect to the duality subgroup αD (θ).

The key observation is that the tree amplitudes in the dual theory are polynomials in the

parameter θ, however, due to the invariance, they are in fact θ independent. Therefore the

coefficients of the above mentioned polynomial at the positive powers of θ have to vanish

which gives nontrivial relations between different contributions to the amplitude.

We will also show that though the S matrix is not invariant under the duality subgroup

αS(λ), the tree level amplitudes have simple transformation properties which can be used

to relate also the S matrices in theories dual with respect to αS(λ).

Let us first remind some of the general properties of the tree level amplitudes. For

general tree amplitudes we have

I = V − 1 ,
∑

n

nαn = 2I + E , (6.174)

where I and E represents number of internal and external lines respectively, V is number

of vertices and αn is number of vertices with n legs; putting this together we get

∑

n

(nαn − 2) = E − 2 . (6.175)

It is clear that any amplitude must be represented by a linear combination of the monomials∏
n d

αn
n with dn- independent kinematical coefficients, which carry the information on the

momentum dependence of the amplitudes, explicitly44

M(1, . . . , E; dn) =
∑

{αn}

M{αn}(1, . . . , E)
∏

n

dαn
n . (6.176)

Here the sum is over the sequences {αn}d+1
n=3 which satisfy the condition (6.175) and the

coefficients M{αn}(1, . . . , E) represent the sum of Feynman diagrams with αn vertices with

44Her we abbreviate M(p1, p2, . . . , pE ; dn) by M(1, . . . , E; dn) and similarly for the dn independent kine-

matical coefficients.
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n legs. In what follows we restrict ourselves to case d = 4, i.e. the sum in (6.176) is over

the ordered triplets {α3, α4, α5}.
As we have seen in subsection 6.5, the tree-level S matrix is invariant with respect to

the duality αD(θ), therefore the amplitudes have to satisfy the following condition

∂

∂θ
M(1, . . . , E; dn(θ)) = 0, (6.177)

where dn(θ) are given by (5.43). This gives us non-trivial constraints on the form of

the coefficients M{α3,α4,α5}(1, . . . , E). Let us now study the impact of these constraint

on individual amplitudes. For E = 3 the only allowed sequence in (6.176) is {1, 0, 0}.
Inserting (5.43) into (6.176) we get

M(1, 2, 3; dn(θ)) =

(
d3 −

1

3
θ

)
M{1,0,0}(1, 2, 3), (6.178)

and thus from (6.177) we get without any calculation (cf. (2.15))

M{1,0,0}(1, 2, 3) = 0. (6.179)

For E = 4 we have in the same way

M(1, 2, 3, 4; dn(θ)) =

(
d3 −

1

3
θ

)2

M{2,0,0}(1, 2, 3, 4)+

(
d4 − 3θd3 +

1

2
θ2
)
M{0,1,0}(1, 2, 3, 4)

(6.180)

and nullifying the coefficient at different powers of θ we get the constraint

M{2,0,0}(1, 2, 3, 4) = −
9

2
M{0,1,0}(1, 2, 3, 4) (6.181)

and thus

M(1, 2, 3, 4; dn) =

(
d4 −

9

2
d23

)
M{0,1,0}(1, 2, 3, 4) . (6.182)

As M{0,1,0}(1, 2, 3, 4) is just the Feynman rule for the four-point vertex (cf. (2.13)) we may

immediately write

M{0,1,0}(1, 2, 3, 4) = 4!G(1, 2, 3). (6.183)

Together this yields

M(1, 2, 3, 4; dn) = 12
(
2d4 − 9d23

)
G(1, 2, 3),

in agreement with (2.16). We can continue with further amplitudes and find out that the

duality simplifies significantly the calculation. For instance for E = 5

M(1, 2, 3, 4, 5; dn(θ)) = d33M{3,0,0}(1, 2, 3, 4, 5) + d3d4M{1,1,0}(1, 2, 3, 4, 5)

+d5M{0,0,1}(1, 2, 3, 4, 5) (6.184)

and the duality constraints are now

M{1,1,0}(1, 2, 3, 4, 5) = −24

5
M{0,0,1}(1, 2, 3, 4, 5)

M{3,0,0}(1, 2, 3, 4, 5) =
72

5
M{0,0,1}(1, 2, 3, 4, 5). (6.185)
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As a consequence

M(1, 2, 3, 4, 5; dn) =

(
72

5
d33 −

24

5
d3d4 + d5

)
M{0,0,1}(1, 2, 3, 4, 5). (6.186)

Again M{0,0,1}(1, 2, 3, 4, 5) is just the Feynman rule

M{0,0,1}(1, 2, 3, 4, 5) = −5!G(1, 2, 3, 4) (6.187)

and we conclude without calculations (cf. (2.17))

M(1, 2, 3, 4, 5; dn) = −24
(
72d33 − 24d3d4 + 5d5

)
G(1, 2, 3, 4). (6.188)

As a last example we take E = 6, the computer calculation of which though possible

gives rather lengthy and untransparent final output so it is difficult to reveal any regular

structure hidden in it. As we will see also here the duality helps considerably.

There are four kinematical factors in this case corresponding to the sequences {4, 0, 0},
{0, 2, 0}, {2, 1, 0} and {1, 0, 1}. The duality constraints are

M{4,0,0}(1, . . . , 6) =
81

4
M{0,2,0}(1, . . . , 6)

M{2,1,0}(1, . . . , 6) = −9M{0,2,0}(1, . . . , 6)

M{1,0,1}(1, . . . , 6) = 0, (6.189)

and thus when inserted to the formula (6.176) we get finally

M(1, . . . , 6; dn) =

(
81

4
d43 + d24 − 9d23d4

)
M{0,2,0}(1, . . . , 6)

=

(
d4 −

9

2
d23

)2

M{0,2,0}(1, . . . , 6). (6.190)

HereM{0,2,0} is the sum of graphs with two four-point vertices connected by one propagator

and can be therefore written in the form

M{0,2,0}(1, . . . , 6) = −16
∑

σ∈S6

G(σ(1), σ(2), σ(3))G(σ(4), σ(5), σ(6))

(pσ(1) + pσ(2) + pσ(3))2
, (6.191)

where we sum over the permutations of the external momenta.

Of course these results are not surprising. The tree-level S matrix being an invariant

of the duality subgroup αD(θ) can depend on dn only as a function of the the basic αD(θ)

duality invariants I4, I5 given by (5.44). Because these invariants can be interpreted as d4
and d5 in a dual theory with d3 = 0, the tree-level amplitudes must have the form

M(1, . . . , E; dk) =
∑

{m,n}≥0

M{0,m,n}(1, . . . , E)Im4 I
n
5 (6.192)

where the summation over m and n must fulfil (6.175), i.e.

2m+ 3n = E − 2. (6.193)
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This general structure can be easily recognized in all the above examples. Let us note that

in general case

Im4 I
n
5 =

∑

{αk}

cmn
{αk}

∏

k

dαk
k (6.194)

where cmn
{αk}

are rational numbers. Then comparing the coefficients (6.176) and (6.192) we

get the above discussed constraints on the individual contributions to the amplitude in a

general form

M{αk}(1, . . . , E) =
∑

m,n

cmn
{αk}

M{0,m,n}(1, . . . , E). (6.195)

As we have illustrated above, the tree-level amplitudes are invariants of the subgroup

αD(θ) but also their transformation properties with respect to the scalings αS(λ) and more

generally αS(λ, κ) are transparent. Let us remind that, under the αS(λ) the couplings

dn scale according its dimension (cf. (5.19) with ∆ = (d − 2)/2, which is the canonical

dimension of the field φ)

dn(αS(λ)) ≡ dn(λ) = λ−
1
2
(d+2)(n−2)dn, (6.196)

which just corresponds to the re-scaling of the units. Note that, for d even we can generalize

the above scaling also to λ < 0. From the homogeneity of the tree45 amplitudes

M(λp1, . . . , λpn;λ
dim dkdk) = λdimM(p1,...,pn;dk)M(p1, . . . , pn; dk)

= λd−n d−2
2 M(p1, . . . , pn; dk), (6.197)

it follows that two amplitudes with dn and dn(λ) are connected by

M(p1, . . . , pn; dk(λ)) = λd−n d−2
2 M(λ−1p1, . . . , λ

−1pn; dk). (6.198)

At tree46 level on the other hand

M(λ−1p1, . . . , λ
−1pn; dk) = λ−2(n−1)M(p1, . . . , pn; dk), (6.199)

as we will show in the section 6.8 and therefore we get finally

M(p1, . . . , pn; dk(λ)) = λ
1
2
(d+2)(2−n)M(p1, . . . , pn; dk) . (6.200)

Therefore not only that it is sufficient to know the amplitudes for some representant of the

group orbit of αD(θ) in the theory subspace D
(1)
d+1but we can also travel between different

(but qualitatively similar) orbits using the formula (6.200).

45Note that, at the loop level, we have additional dependence of the amplitudes on additional dimensionfull

parameters, namely on the counterterm couplings as well as on the renormalization scale.
46As we will see in the subsequent sections, the loop amplitudes have higher degree of homogeneity with

respect to re-scaling the momenta.
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6.7 Classification of the Galileon theories

As we have shown, some physical consequences of the Galileon theories are not directly

visible from the Galileon Lagrangian. This concerns e.g. the cancellations of the various

contributions to the tree-level amplitudes as well as the hidden Z2 symmetry of the Galileon

action discussed in the previous sections. However, as was seen in the latter case, such

properties are usually shared by the theories which are connected by the group of duality

transformations (or by some of its subgroup). It is therefore important to describe the

equivalence classes of the Galileon theories with respect to the duality.

In what follows we will classify in this sense the Galileon theories in d = 3 and 4. We

will restrict ourselves to the theory subspace D
(1)
d+1 with d2 = 1/4 and 1/12 respectively and

we will consider only the dualities corresponding the upper triangular matrices α which

make sense also in the quantum case. According to the results of the previous sections,

such a classification is at the same time also a classification of the nontrivial tree level S

matrices because these are either invariants of the duality with respect to the subgroup

αD (θ) or trivially scale with respect to αS(λ).

6.7.1 Galileons in d = 4

The properties of the theory which belongs to the theory subspace D
(1)
5 with constants d3,

d4 and d5 are governed by the invariants of the duality transformation I4 and I5 given

by (5.44). Let us remind that In represents the value of the constant dn in the theory

which is dual to the original one but satisfies the condition d3 = 0. We have the following

cases (see figure 4):

• I4 = I5 = 0, in this case the theory is dual to free theory

• I5 = 0, in this case the theory is Z2 invariant (it is dual to the theory with d3 = d5 =

0). The Z2 invariance is realized by (6.148) with α = αD (−3d3). The only non-zero

amplitudes are those with even number of legs

• I4 = 0, the theory is a dual to quintic Galileon (where d3 = d4 = 0)

• both I4, I5 6= 0, the theory is dual to d3 = 0, d4,5 6= 0

Let us now summarize the cases for which a concrete coupling dn can be removed by

duality transformation. The following conditions are easily derived as the conditions for

the existence of the solutions of the equations dn(θ) = 0 with respect to θ (cf. (5.43))

• Every theory is dual to theory with d3 = 0

• I4 < 0, then theory is dual to just two theories with odd interactions where d4 = 0

(this can be achieved by duality transformation corresponding to αD (θ±) for θ± =

3d3 ±
√
−2I4)

• I4 > 0, then there is no dual with d4 = 0

• For (8I4)
3 + (15I5)

2 > 0 theory is dual to exactly one theory with d5 = 0
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Figure 4. The surfaces I4 = 0 (cylindrical one corresponding to duals of the quintic Galileon) and

I5 = 0 (Z2 symmetric Galileons) in the theory space D
(1)
5 with d2 = 1/12 fixed. The intersection

of these surfaces corresponds to the duals of a free theory. Both surfaces are invariant with respect

to the scaling.

• For (8I4)
3 + (15I5)

2 < 0 theory is dual to exactly three theories with d5 = 0

The invariants I4 and I5 scale as d4 and d5, namely

I4(λ) = λ−6I4, I5(λ) = λ−9 I5. (6.201)

Therefore by means of the scaling αS(λ) we can always arrange either I4 = ±1 or I5 = 1

(with λ < 0 when necessary). To summarize, non-trivial theories (i.e. those which are not

connected by dualities αD (θ) or αS(λ)) are

• I4 = I5 = 0 — free theory

• I4 = ±1, I5 = 0 — Z2 invariant theory (only even amplitudes are non-zero)

• I5 = 1, I4 = 0 — quintic Galileon

• I5 = 1, I4 6= 0 — general case
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6.7.2 Galileons in d = 3

The situation in three dimension is even simpler. There is only one invariant of the αD (θ)

duality

I4 = d4 −
9

8
d23 (6.202)

From the previous it follows readily

d3(λ) = λ−
5
2d3, d4(λ) = λ−5d4, I4(λ) = λ−5I4 (6.203)

For I4 < 0 we can remove d4 by a duality αD (θ±) with

θ± =
3

4
d3 ±

1

2

√
−2I4 (6.204)

Provided I4 > 0 there is no αD (θ) dual with d4(θ) = 0 and naively there is no possibility

to change the sign of I4 by simple scaling because λ < 0 is not allowed in odd dimension

for theory with d2k−1 6= 0. However, we can first remove d3 by α (3d3/2) and only then

scale with λ < 0 to arrange I4 = 1, because there is no odd vertex in the dual theory. This

leads to the following classification

• I4 = 0 — free theory

• I4 = 1 — Z2 invariant theory

To summarize, up to the above described αD (θ) and αS(λ) dualities there is only one

non-trivial Galileon theory in three dimension the only nonzero amplitudes of which are

the even ones.

6.8 Counterterms

From the results of the previous sections it seems possible to use the duality relations

also at the quantum level. However, this is true only provided the quantum level makes

sense. Starting with the basic (i.e. the tree-level) Galileon Lagrangian and choosing an

appropriate regularization prescription which preserves the Galileon symmetry (in what

follows we use exclusively dimensional regularization), we can construct one-loop diagrams.

Such diagrams will be divergent and will thus need to be renormalized by the counterterms.

From a simple dimensional consideration it is clear (and it will be explicitly shown below)

that it is not possible to create such counterterms using the basic tree-level Lagrangian.

We will thus have to add qualitatively new terms in the action constrained in their form

only by the Galileon symmetry. In fact at any order of the loop expansion an infinite

tower of new counterterms is necessary. This is of course nothing new, such a mechanism

is well studied in many different effective theories e.g. in the Chiral perturbation theory

(ChPT) [44, 45]. The problem of construction of higher order Lagrangians (e.g. next-to-

leading-order and next-to-next-to-leading order as is the nowadays status in ChPT) is the

problem by itself. Here we will merely classify the order (i.e. the degree of homogeneity in

the external momenta or the number of derivatives) of the graphs and the corresponding

counterterms at the given loop level.
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Let us start with the Weinberg formula [46] in d-dimension for the number of derivatives

in the counterterm for a given graph with L loops and vertices V with dV derivatives47

D = 2 + (d− 2)L+
∑

V

(dV − 2) . (6.205)

The number of external legs E and internal lines I is connected via

∑

V

nV = 2I + E , (6.206)

where nV is the number of legs for the given vertex V . We can also simply extract number

of loops

L = I − V + 1 . (6.207)

Together with the previous relation this leads to

E = 2 +
∑

V

(nV − 2)− 2L, (6.208)

and thus

D − 2 (E − 1) = (d+ 2)L+
∑

V

(dV − 2 (nV − 1)) . (6.209)

Let us now define an index of general vertex δV as a surplus of the derivatives for the

general vertex in comparison with the basic Lagrangian, namely

δV = dV − 2 (nV − 1) (6.210)

(i.e. for all the vertices of the basic Lagrangian δV = 0). In terms of such a defined index

we can rewrite the formula (6.209) in the form

δCT = (d+ 2)L+
∑

V

δV ≡ δΓ (6.211)

the right hand side of which defines the index δΓ of a L-loop graph Γ built from the vertices

with indices δV . This formula is in fact an Galileon analogue of the Weinberg formula for

ChPT and represents thus the connection between the loop expansion and expansion in

the diagram index δΓ, which is the order of the diagram homogeneity in momenta (modulo

logs) relative to tree-level diagrams constructed from the basic Lagrangian.

Note that according to the formula (6.211) each loop contributes with an additional

d + 2 term in the counterterm index δCT . This means that the counterterms induced by

the loops have δCT > 0 and therefore (because for the vertices of the basic Lagrangian

δV = 0) they must be different form the terms of the basic Lagrangian. In other words the

basic Galileon Lagrangian is not renormalized by loops. This proves what is often meant

in the literature as the non-renormalization theorem [13–15].

47This formula holds provided the dimensional regularization or any other regularization without dimen-

sionfull cutoff parameter is used to regulate the UV divergences. Note also that in our case of massless

theory D is also the superficial degree of divergence of the given graph.

– 55 –



J
H
E
P
1
0
(
2
0
1
4
)
0
0
6

Let us note that similarly to the Weinberg formula for the ChPT, the formula (6.211)

itself cannot be used for the proof of the generalized renormalizability. Note that the

restriction δCT = N = const. constrains only the number of derivatives d according to

d = 2 (n− 1) +N, (6.212)

but it does not constrain the number n of fields. In the case of ChPT the additional principle

is a chiral symmetry which ensures that the infinite number of counterterms differing by the

number of fields at each order combine into a finite number of chiral invariant operators.

In our case we have only the Galileon symmetry at our disposal. As we have discussed

above, it tells us only that the most general Galileon invariant Lagrangian is built from

the building blocks ∂µ1∂µ2 . . . ∂µk
φ where k ≥ 2, therefore the general counterterm with n

legs satisfying (6.212) has the general form

L(n)CT =
∑

l, ki≥2,
∑

i ki=2(n−1)+N

c
(l)
k1k2...kn

T
µ1
1µ

1
2...µ

1
k1

...µn
1 ...µ

n
kn

(l)

n∏

j=1

∂
µj
1
∂
µj
2
. . . ∂

µj
kj

φ. (6.213)

with couplings c
(l)
k1k2...kn

and Lorentz invariant tensors T
µ1
1µ

1
2...µ

1
k1

...µn
1 ...µ

n
kn

(l) . Though for n

fixed we have finite number of terms, the number n increases to infinity and already at

the one loop level (where N = d+ 2) we get infinite number of independent terms.

Let us note that quantum Galileon is in principal a two scale theory. At the classical

level there is a scale (let us denote it F ), which is responsible for the hierarchy of the

nonlinearities in the basic classical Lagrangian (2.4) [4]. Restoring the correct dimensions

of the tree-level Galileon couplings we can write for the general term of the basic Lagrangian

schematically (up to O(1) dimensionless constant, cf. (2.8))

L(n)b ∼ (∂φ)2
(
∂∂φ

F dφ+2

)n−2

∼ F−
(d+2)(n−2)

2 (6.214)

where dφ = (d− 2)/2 is the canonical dimension of the Galileon field. On the other hand,

according to the formula (6.211), the quantum corrections can be organized as a expansion

in powers of the characteristic quantum scale, let us denote it Λ. Each counterterm with

index δCT is suppressed by a power Λ−δCT . Schematically (up to O(1) dimensionless

coupling constant, cf. (6.213))

L(n,δCT )
CT ∼ F d

(
F

Λ

)2 n∏

j=1

(
∂

Λ

)ki ( ∂∂φ

F dφ+2

)
∼ F−

(d+2)(n−2)
2 Λ−δCT , (6.215)

where we have assumed the constraint
∑

i (ki + 2) = 2 (n− 1) + δCT . Note that we have

to restore the correct dimension of L(n,δCT )
CT using the scale F in order not to disturb the

hierarchy of the counterterms.

The requirement of consistency of the Galileon as an effective theory at the quantum

level puts however constraint on the above two scales. The point is that the renormalized

loop graphs and the corresponding counterterms contributions have to be numerically of

the same order. To get this constraint let us assume a general graph Γ with L loops, E
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external legs and V vertices (each vertex has index δV and nV legs). Its contribution is

schematically48

Γ ∼
(

1

4π

)2L 1

Λ∆Λ
Γ

1

F∆F
Γ

(6.216)

where

∆Λ
Γ =

∑

V

δV , ∆F
Γ =

∑

V

(d+ 2)

2
(nV − 2) =

(d+ 2)

2
(2L+ E − 2) (6.217)

and we have used (6.208). For the counterterm contribution we get

CT ∼ 1

ΛδCT

1

F
(d+2)(E−2)

2

, (6.218)

where δCT is given by (6.211). Requiring Γ ∼ CT gives then the desired relation between

the classical and quantum scales

Λ ∼ (4π)
2

d+2 F, (6.219)

or Λ ∼ 2.3F for d = 4; both scales are therefore forced to be roughly of the same order of

magnitude in this case. This is analogue of the formula known in ChPT which relates the

pion decay constant with the scale of the chiral symmetry breaking

ΛχPT ∼ (4π)
2

d−2 Fπ

which however for d = 4 requires ΛχPT to be one order of magnitude larger than Fπ.

6.9 Examples of one-loop order duality

In the previous sections we have explicitly calculated the tree-level scattering amplitudes

of the Galileon fields up to six particles. The non-trivial results start with the four-point

scattering. In this section we will focus on this process and will study it at one-loop order.

Of course, as mentioned above, such a full calculation would necessary need inclusion of

so-far undefined Lagrangian L(4)CT , which would play a role of counterterms in this process.

However, our main motivation is to explicitly show that the duality is not spoiled at the

quantum level (i.e. by loop contributions) at least for the graphs with the vertices from the

basic Galileon Lagrangian. We will thus first calculate dimensionally regularized individual

contributions to 4-pt scattering at one-loop order in one Galileon theory and show that the

final result is related to other Galileon theory connected by duality.

In the table 1 we summarize the one-loop diagrams to be calculated and their corre-

sponding divergent parts in d = 4 dimension (the full results in d dimension for A1−6 are

summarized in appendix G). Here we have used the standard Mandelstam variables for

four-point scattering:

s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p1 + p4)
2 (6.220)

48Here the factor (4π)−2 is generic for each loop momentum integration.
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iA1 ≡ = −243i
40 d

4
3Λ(s

2 + t2 + u2)3

iA2 ≡ = 81id43Λ(s
6 + t6 + u6)

iA3 ≡ = −81id43Λ(s6 + t6 + u6)

iA4 ≡ = − 3i
10d

2
4Λ(s

2 + t2 + u2)3

iA5 ≡ = −9id4d23
10 Λ[20(s6 + t6 + u6)− 3(s2 + t2 + u2)3]

iA6 ≡ = 18id4d
2
3Λ(s

6 + t6 + u6)

iA7 ≡ = 0

iA8 ≡ = 0

Table 1. One loop graphs contributing to the 4pt amplitude and their divergent parts.

where all momenta are ingoing and on-shell so that s+ t+ u = 0. The singularity in d = 4

dimension is given by

Λ =
1

(4π)2
1

d− 4
. (6.221)

Due to specific form of the of 3-pt vertex in the Galileon theory which can be rewritten

in the form

V3(q1, q2, q3) = 6d3
[
(q1 · q2)q23 + (q1 · q3)p22 + (q2 · q3)p21

]
(6.222)

the contributions A7 and A8 (corresponding to graphs for which V3 is one of the two vertices
of a bubble) are zero also for general d. Indeed, with external momenta on shell, the only

term of (6.222) which could contribute is schematically (pext · l)(pext − l)2 where pext is

one of the external momenta and l is the loop momentum. Therefore the (pext − l)2 factor

cancels one of the bubble propagators which thus degenerate in a massless tadpole and the

latter is zero in dimensional regularization.

– 58 –



J
H
E
P
1
0
(
2
0
1
4
)
0
0
6

Figure 5. The Feynman graph for the Galileon self-energy and its counterterm.

Summing the diagrams together, we get that the divergent part of the amplitude for

the 4-pt galileon-scattering at the one-loop order is

Adiv =
∑

i

Adiv
i = − 3

40
Λ(9d23 − 2d4)

2(s2 + t2 + u2)3 = − 3

10
ΛI24 (s

2 + t2 + u2)3. (6.223)

Note that the degree of homogeneity in external momenta is in accord with the for-

mula (6.211). As we have expected, the singular part (and in fact also the complete

result (G.8), cf. appendix G) depend on the αD (θ) duality invariant I4 which illustrates

the conclusions of section 6.5 that αD (θ) dual theories produce the same S-matrices. This

offers also another possibility how to use the duality relations similar to that we have dis-

cussed for the tree amplitudes in section 6.6. Because I4 is the coupling d4 in the dual

Galileon theory with new constants di(θ
∗) such as d3(θ

∗) = 0 we can effectively eliminate

3pt vertices by passing to this dual theory. The only diagram which is left to calculate in

such a dual theory is A4 which simplifies the calculations considerably.

Let us present another simple example of the one-loop calculation concerning the self-

energy correction for the Galileon field. The relevant graph is depicted in figure 5 and the

explicit result for the divergent part reads (see appendix G for the complete result)

Σdiv(p) = 9Λd43
(
p2
)4
, (6.224)

cf. also [47]. Therefore, on one hand, in Galileon theories with d3 6= 0 we need a coun-

terterm L(2)CT of the general form (6.213) to renormalize this divergence. The corresponding

Feynman rule reads

V2(p1) = µd−4
(
−9Λd43 + Cr(µ)

) (
p2
)4
, (6.225)

where µ is the dimensional regularization scale which is necessary to restore the canonical

dimension of the loop integration and where Cr(µ) is a linear combination of the finite

parts of the counterterm couplings c
(l)
k1k2

in (6.213) renormalized at scale µ. On the other

hand, in the above mentioned dual theory with d3(θ
∗) = 0 such a divergence does not

occur. This is consequence of the fact that off-shell Green functions are not invariants with

respect to the duality as discussed in section 6.5.

Extreme example of such non-invariance of the counterterms is the case of the free

theory and some of its αD (θ) duals. While the free theory does not need any counterterm

of the above type, its dual always49 does. However, as far as the S matrix is concerned, no

counterterms are needed for the graphs with the vertices from the basic dual Lagrangian

because these graphs have to combine into the trivial S matrix of the original free the-

ory which is trivially divergence-free. Therefore, the contribution of the divergent part

49Note that any such dual has d3 = −θ/3 6= 0.
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of (6.225) and analogical counterterms (which are needed to renormalize the divergent

subgraphs in the table 1) has to cancel in the final result. This is, however, not true for the

finite part of the counterterms the couplings of which are in principle independent. E.g.

the renormalization of the bubble subgraph in the graphs A3 in table 1 brings about the

contribution (for d→ 4)

ACT
3 = −9iCr(µ)

(
s6 + t6 + u6

)
. (6.226)

Therefore, the only possibility how to recover the free theory S matrix also in the dual

theory with counterterms is to set at some scale all the renormalized counterterm coupling

constants equal to zero. Because the couplings run with the renormalization scale, this

might seem to be insufficient, because at another scale the finite parts of the counterterms

are in general nonzero. However, because in the amplitude all the contributions of the

divergent parts of the counterterms cancel, in the same way are also cancelled all the

contributions stemming from the changes of the counterterms couplings with change of the

renormalization scale.50

7 Summary

In this paper we have studied the duality transformations of the general Galileon theories

in d dimensions. First we have reviewed the interpretation of the Galileon as a Goldstone

boson of the spontaneous symmetry breakdown according to the pattern GAL(d, 1) →
ISO(d − 1, 1) and the identification of its action as the generalized WZW term. Then

we have studied the most general coordinate transformations on the corresponding coset

space GAL(d, 1)/SO(d − 1, 1). The requirement that such a general transformation acts

linearly on the basic building blocks of the Galileon Lagrangian (and therefore it represents

a duality transformation) constraints the form of the transformation uniquely up to four

free parameters. Under composition these duality transformations form a group which can

be identified with GL(2,R). The explicit form of the duality transformation for general

α ≡ {αij}2i,j=1 ∈ GL(2,R) reads

xα = α11x+ α12∂φ(x)

φα(xα) = det (α)φ(x)

+
1

2

(
α12α22∂φ(x) · ∂φ(x) + 2α12α21x · ∂φ(x) + α11α21x

2
)
.

All the up to now known Galileon dualities can be identified as special elements (or one-

parametric subgroups) of this duality group. We have also studied its action on the space

of the Galileon theories and found a basis of the independent invariants of one of its most

interesting one-parametric subgroups

αD(θ) =

(
1 −2θ
0 1

)

50Note that within dimensional regularization, the coefficient at the ln (µ/µ′) term in the formula for the

running of the renormalized one-loop coupling coincide with the coefficient at the Λ in formula for the bare

coupling.

– 60 –



J
H
E
P
1
0
(
2
0
1
4
)
0
0
6

This subgroup is represented in the space of fields as a field redefinition which can be

understood both as a simultaneous space-time coordinates and field transformation or as a

non-local change of the fields which includes infinite number of derivative dependent terms.

We have then studied the applications of the duality group. We have shown that we

can relate the classical covariant phase spaces of dual theories and enlarge the duality

transformation to the classical observables. In order to avoid apparent paradoxes, correct

dual observables within the dual theory have to be used when we want to get the results

of the original theory.

The duality of phase spaces can be used to generate classical solution of the interacting

Galileon theory from the solution of the more simple one even when the Galileon is coupled

to the local external source. We have studied two such sources, namely the point-like and

string-like ones. Here the duality appears to be an efficient tool because of the symmetries

which effectively reduce the dimensionality of the problems.

We have also discussed the fluctuations of the classical solutions in the linearized ap-

proximation. We have found duality transformation of the corresponding classical covariant

phase spaces and corresponding observables and discussed the geometrical aspects of the

problem with superluminal propagation of fluctuations. The general consideration has

been illustrated by two explicit examples, namely the fluctuations of the plane wave and

cylindrically symmetric classical solutions.

We have also established the dual formulation of the additional symmetries of the

Lagrangian. We have shown that these symmetries might be hidden within the dual theory

and found e.g. that the Z2 symmetry and space time translations are realized non-linearly

and non-locally.

Then we have discussed the transformation properties of the S matrix and established

its formal invariance within the dimensional regularization, though only the tree-level (clas-

sical) part of the complete action transforms nicely under the duality field redefinition. As

a next issue we have demonstrated the usefulness of the S matrix duality for calcula-

tions of the tree on-shell scattering amplitudes and for finding the relations between the

contributions of the apparently very different Feynman graphs with completely different

topologies.

As another example we have classified the equivalence classes (with respect to the

duality subgroup αD(θ) combined with scaling) of the Galileon theories (and at the same

time of the tree-level S matrices) in three and four dimensions. We found e.g. that there

is up to the above dualities only one nontrivial interacting theory in three dimensions

which exhibits the Z2 symmetry. Then we have discussed the transformation properties of

the S matrix on the loop level. As we have discussed on a concrete example of the one-

loop four-point on-shell amplitude, due to the counterterms the duality is not completely

straightforward. It rather holds on the regularized level for the loop graphs with vertices

from the basic tree-level Lagrangian. We have also touched the problem of the counterterms

classification based on a generalization of the Weinberg formula and with help of the latter

we discussed the non-renormalization theorem.
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Note added. After this work was completed two works [40, 38] closely connected with

the topic studied in this paper appeared. Both these papers concern the properties of the

one-parametric duality subgroup denoted as αD(θ) in our notation and partially overlap

with our results.
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A Bottom up construction of the duality subgroup αD (θ)

In this appendix we get more elementary treatment of the Galileon duality corresponding

to the subgroup αD (θ). In fact this was the way we had started to think about the Galileon

duality.

Let us assume an infinitesimal field transformation

φ→ φ+ θ∂φ · ∂φ, (A.1)

where θ infinitesimal parameter. The infinitesimal change of φ can be also understood as

an action of the following operator (which is defined on the space of the functionals F [φ]

of the field φ)

δθ ≡ θ
〈
δφ

δ

δφ

〉
= θ

〈
∂φ · ∂φ δ

δφ

〉
(A.2)

on a special functional F [φ](x) = φ(x). Here and in what follows we again abbreviate

〈·〉 ≡
∫
ddx (·).

Acting by the operator δθ on the Galileon action (cf. (2.4))

S[φ] =
d+1∑

n=1

dn

〈
φLdern−1

〉
(A.3)

we get

δθS[φ] = θ

〈
∂φ · ∂φδS[φ]

δφ

〉
=

d+1∑

n=2

θndn

〈
∂φ · ∂φLdern−1

〉

which can be rewritten with help of the formula (2.12) to the form

δθS[φ] = −2
d+1∑

n=3

θ
n− 1

n
(d− n+ 2)dn−1

〈
φLdern−1

〉
=

d+1∑

n=3

θδdn

〈
φLdern−1

〉
(A.4)

with

δdn = −2n− 1

n
(d− n+ 2)dn−1 (A.5)
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Therefore to the first order in θ the transformation (A.1) conserves the Galileon structure

of the Lagrangian and merely shifts the coupling constants dn by δdn. Note that the trans-

formation (A.1) with finite θ can be used to eliminate the cubic term from the interaction

Lagrangian, however, the Galileon structure of the Lagrangian is spoiled with additional

interaction terms which are generated by the transformation. The way how to eliminate

the cubic term consistently without leaving the space of the Galileon theories is now clear.

It suffices to construct the finite transformation by means of iteration of the infinitesimal

one, i.e. to exponentialize it according to

φθ = exp (δθ)φ = exp

〈
θ∂φ · ∂φ δ

δφ

〉
φ = φ+ θ∂φ · ∂φ+ 2θ2∂φ · ∂∂φ · ∂φ+ . . . (A.6)

Applying this finite transformation to the Galileon action results in a dual action Sθ[φ]

defined as

Sθ[φ] ≡ S[φθ] = exp δθS[φ] =
d+1∑

n=2

dn(θ)
〈
φLdern−1

〉
. (A.7)

It is not difficult to show that dn(θ) = dn (αD (θ)) where the right hand side is given

by (5.26). From this construction it is clear that the transformations φθ form a one para-

metric group.

In what follows we will give an alternative elementary derivation of the explicit form

of φθ. Let us denote

φ(θ, x) = exp

〈
θ∂φ · ∂φ δ

δφ

〉
φ(x), (A.8)

then we get by derivative with respect to θ

∂φ(θ, x)

∂θ
= exp

〈
θ∂φ · ∂φ δ

δφ

〉〈
∂φ · ∂φ δ

δφ

〉
φ(x)

= exp

〈
θ∂φ · ∂φ δ

δφ

〉
∂µφ(θ, x)∂

µφ(θ, x) = ∂µφ(θ, x)∂
µφ(θ, x). (A.9)

Therefore the function φ(θ, x) is a solution of the following Cauchy problem for the partial

differential equation of the first order

∂φ(θ, x)

∂θ
= ∂µφ(θ, x)∂

µφ(θ, x), φ(0, x) = φ(x). (A.10)

This problem can be solved by standard method of characteristics which are the solutions

of a set of ordinary differential equations

dθ

dt
= 1,

dP

dt
= 0 ,

dx

dt
= −2p, dp

dt
= 0,

dφ

dt
= −2p · p+ P 2. (A.11)

The solution of these equation is

θ = θ0 + t, P = P0, p = p0, x = x0 − 2tp0, φ = φ0 + t
(
P 2
0 − 2p0 · p0

)
. (A.12)

The general recipe how to get the d+ 1-dimensional integral surface corresponding to the

equation (A.10) consist of two steps. First we replace the integrations constants θ0, . . . , φ0
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with functions of d parameters ai, i = 1, . . . , d in such a way that the following conditions

are satisfied

P0(ai)− p0(ai) · p0(ai) = 0, dφ0(ai) = p0(ai) · dx0(ai) + P0(ai)dθ0(ai)

and subsequently we eliminate the parameters ai and t from the equations

θ = θ0(ai) + t, x = x0(ai)− 2tp0(ai)

φ = φ0(ai) + t
(
P 2
0 (ai)− 2p0(ai) · p0(ai)

)
. (A.13)

Let us choose the parameters ai to be just x0, we get then

t = θ − θ0(x0), P0(x0) = p0(x0) · p0(x0), p0(x0) = ∂φ0(x0)− P0(x0)∂θ0(x0),

and

x = x0 − 2tp0(x0)

= x0 − 2 (θ − θ0(x0)) (∂φ0(x0)− p0(x0) · p0(x0)∂θ0(x0))
φ = φ0(x0) + t

(
P 2
0 (x0)− 2p0(x0) · p0(x0)

)

= φ0(x0)− (θ − θ0(x0)) p0(x0) · p0(x0). (A.14)

A special choice θ0(x0) = 0 gives

x = x0 − 2θ∂φ0(x0), φ(θ, x) = φ0(x0)− θ∂φ0(x0) · ∂φ0(x0). (A.15)

The initial condition of the Cauchy problem is φ(0, x) = φ(x) and therefore φ0(x0) = φ(x0).

Thus the final solution of the Cauchy problem is

x = x0 − 2θ∂φ(x0), φ(θ, x) = φ(x0)− θ∂φ(x0) · ∂φ(x0) (A.16)

which is nothing else but the duality transformation (5.25).

B Compatibility of duality and IHC constraint

In this appendix we demonstrate by explicit calculation the consistency of the duality

transformation with the IHC constraint. For the derivative of the field φ with respect to

the unprimed coordinates we get with help of the second row of (4.19)

∂φ = ∂x′ · ∂′φ

= ∂x′ ·
[
det (αIJ) ∂

′φ′

+
1

2

(
2αPBαBB∂

′∂′φ′ · ∂′φ′ + 2αPBαBP∂
′φ′ + 2αPBαBPx

′ · ∂′∂′φ′ + 2αPPαBPx
′
)]
.

(B.1)

Differentiation of the first row of (4.19) we get

η = ∂x′ ·
(
αPP η + αPB∂

′∂′φ′
)

(B.2)
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thus

∂φ = det (αIJ) ∂x
′ · ∂′φ′ + αBBαPB∂x

′ · ∂′∂′φ′ · ∂′φ′

+αPBαBP∂x
′ · ∂′φ′ + αPBαBP∂x

′ · ∂′∂′φ′ · x′ + αPPαBP∂x
′ · x′

= det (αIJ) ∂x
′ · ∂′φ′ + αBB

(
η − αPP∂x

′
)
· ∂′φ′ + αPBαBP∂x

′ · ∂′φ′

+αBP

(
η − αPP∂x

′
)
· x′ + αPPαBP∂x

′ · x′

= det (αIJ) ∂x
′ · ∂′φ′ + αBB∂

′φ′ − (αBBαPP − αPBαBP ) ∂x
′ · ∂′φ′ + αBPx

′

= αBB∂
′φ′ + αBPx

′ (B.3)

where we have used the integrability constraint (4.13) in the last line.

C Remark on dual observables in the linearized fluctuation theories

In section 6.3 we have shown that linearized actions for fluctuations satisfy

Sθ[φ∗, χ] = S[(φ∗)θ , χθ] (C.1)

where

Sθ[φ∗, χ] =
1

2

∫
ddxddyχ(x)

δ2Sθ[φ]

δφ(x)δφ(y)
|φ∗
χ(y)

S[(φ∗)θ , χ] =
1

2

∫
ddxddyχ(x)

δ2S[φ]

δφ(x)δφ(y)
|(φ∗)θ

χ(y) (C.2)

This relation enabled us to relate the solutions for the fluctuations in both theories and e.g.

to prove, that the general theory might show superluminal propagation of the fluctuations

even though it corresponds to a dual theory which is healthy. Here we will show opposite,

i.e. that apparently healthy theory might show superluminal propagation of the fluctuations

of some properly chosen operators. Let us add to S[(φ∗)θ , χθ] a source term

SJ [χθ] =

∫
ddxJ(x)χθ(x). (C.3)

After some manipulations we get

SJ [χθ] =

∫
ddxJ(x)χ(X[φ∗](x)) (C.4)

Therefore we have

Sθ[φ∗, χ] +

∫
ddxJ(x)χ(X[φ∗](x)) = S[(φ∗)θ , χθ] +

∫
ddxJ(x)χθ(x). (C.5)

Suppose, that we have chosen θ in such a way that the Sθ[φ∗, χ] is healthy (e.g. d3(θ) = 0

and the background is a plane wave). Therefore, in the framework of such a healthy

theory the nonlocal operator χ(X[φ∗](x)) has the same superluminal propagation as the

perturbations χ(x) in the theory with action S[(φ∗)θ , χ]. Indeed, the generating functional

of the correlators of the operators χ(X[φ∗](x)) in the healthy theory

Zθ[J, φ∗] =

∫
Dχ exp

(
i

~
Sθ[φ∗, χ] +

i

~

∫
ddxJ(x)χ(X[φ∗](x))

)
(C.6)
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can be obtained form the generating functional for the perturbations χ in the pathological

theory by means of change of variables,

Z[J, (φ∗)θ] =

∫
Dχ exp

(
i

~
S[(φ∗)θ , χ] +

i

~

∫
ddxJ(x)χ(x)

)

=

∫
Dχ det

(
δχθ

δχ

)
exp

(
i

~
Sθ[φ∗, χ] +

i

~

∫
ddxJ(x)χ(X[φ∗](x))

)

= Zθ[J, φ∗]. (C.7)

Here we have used

δχθ(x)

δχ(y)
=
δχ(X[φ∗](x))

δχ(y)
= δ(d) (X[φ∗](x)− y) (C.8)

and thus det (δχθ/δχ) = 1 within dimensional regularization as we have shown in sec-

tion 6.5.

Note however, that the operator χ(X[φ∗](x)) is φ∗ dependent and nonlocal, namely,

because

X[φ∗](x) = x+ 2θ (∂φ∗)θ (x) (C.9)

and thus

χ(X[φ∗](x)) =
∞∑

n=0

(2θ)n

n!
(∂µ1φ∗)θ (x) . . . (∂

µnφ∗)θ (x) (∂µ1 . . . ∂µnχ) (x) (C.10)

Therefore χ(X[φ∗](x)) is an infinite linear combinations of local operators (∂µ1 . . . ∂µnχ) (x)

with x−dependent coefficients i.e. it is not translation invariant. The latter fact is the

reason why we cannot use (C.7) to argue that also S matrices for fluctuations are the same

in both theories (cf. section 6.5).

D The group velocity of the plane wave perturbation

The group velocity can be obtained by means of differentiation of condition (6.103) for the

center of the wave packet (here k̂ = k/|k|)

X[φ∗]− k̂X0[φ∗] = const. (D.1)

with respect to t, the group velocity is then vgroup(x) = dx/dt. Explicitly we get

X[φ∗](x) = x+ 2θnF ′(n · x), (D.2)

and thus writing n = (1,n)

vgroup + 2θnF ′′(n · x) (1− n · vgroup)− k̂
[
1 + 2θF ′′(n · x) (1− n · vgroup)

]
= 0 (D.3)

and therefore denoting v‖ ≡ (n · vgroup) the component of vgroup parallel to n

v‖ + 2θF ′′(n · x)
(
1− v‖

)
− n · k̂

[
1 + 2θF ′′(n · x)

(
1− v‖

)]
= 0. (D.4)
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As a result

v‖ =
n · k̂−2θF ′′(n · x)

(
1− n · k̂

)

1− 2θF ′′(n · x)
(
1− n · k̂

) (D.5)

Inserting this to (D.3) we get finally

vgroup = k̂
[
1 + 2θF ′′(n · x)

(
1− v‖

)]
− 2θnF ′′(n · x)

(
1− v‖

)

=
k̂− 2θnF ′′(n · x)

(
1− n · k̂

)

1− 2θF ′′(n · x)
(
1− n · k̂

) . (D.6)

E Perturbative calculation of the two-point amplitude

Here we explicitly calculate the first two perturbative contributions to the amplitude

M(k,k′). The first order contribution corresponds to the first graph on the right hand

side of the graphical equation in the last row of the figure 3 and we get it simply by setting

p → k, q → −k′ in the Feynman rule for interaction vertex and putting the external lines

on shell. That means, we get for the first order contribution to the S matrix

S
(1)
fi (k,k

′) = −4iθ∗
(
k+
)2

(2π)3 δ(k+ − k+′)δ(2)(k⊥ − k′
⊥)

∫
dx+e−

i
2
(k−−k−′)x+

F ′′(x+).

(E.1)

Provided k and k′ are on shell, i.e. k− = k2
⊥/k

+ and similarly for k′, the exponential factor

in the integrand is just one and we get (let us remind ψ± = limx+→±∞ F ′(x+))

S
(1)
fi (k,k

′) =
[
2iθ∗k

+
(
ψ− − ψ+

)]
2k+ (2π)3 δ(k+ − k+′)δ(2)(k⊥ − k′

⊥)
(
ψ− − ψ+

)
. (E.2)

Using the identity valid for on-shell k

δ(k+ − k+′)δ(2)(k⊥ − k′
⊥) =

|k|
k+

δ(3)(k− k′) =
1

k+|k|δ(|k| − |k
′|)δ(2)(k̂− k̂′) (E.3)

we get finally

M(1)(k,k′) = (4π)2
2iθ∗k

+ (ψ− − ψ+)

2i|k| δ(2)(k̂− k̂′). (E.4)

The next term corresponding to the graph with two vertices and one propagator (see the

second graph on the right hand side in the last row of figure 3) gives according the standard

Feynman rules

S
(2)
fi (k,k

′) =

=

∫
d4p

(2π)4
i

p+p− − p2
⊥ + i0

×
[
−4iθ∗

(
k+p+

)
(2π)3 δ(k+ − p+)δ(2)(k⊥ − p⊥)

∫
dx+e−

i
2
(p−−k−)x+

F ′′(x+)

]

×
[
−4iθ∗

(
k+′p+

)
(2π)3 δ(k+′ − p+)δ(2)(k′

⊥ − p⊥)

∫
dy+e+

i
2
(p−−k−′)x+

F ′′(y+)

]
.

(E.5)
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Writing d4p = (1/2) dp−dp+d2p⊥ and integrating out the delta functions we get

S
(2)
fi (k,k

′) = 8 (iθ∗)
2 (k+

)4
(2π)3 δ(k+ − k+′)δ(2)(k⊥ − k′

⊥)

×
∫

dx+dy+F ′′(x+)F ′′(y+)

×
∫

dp−

2π
e−

i
2
(p−−k−)(x+−y+) i

k+p− − k2
⊥ + i0

. (E.6)

Using the on-shell condition k2
⊥ = k−k+ and shifting the integration variable p− → p−+k−

we can rewrite this as (note that k+ > 0)

S
(2)
fi (k,k

′) = 8 (iθ∗)
2 (k+

)3
(2π)3 δ(k+ − k+′)δ(2)(k⊥ − k′

⊥)

×
∫

dx+dy+F ′′(x+)F ′′(y+)

∫
dp−

2π
e−

i
2
p−(x+−y+) i

p− + i0
(E.7)

We can recognize the integral representation of the Heaviside theta function in the last

line, i.e.

S
(2)
fi (k,k

′) =
(
2iθ∗k

+
)2

2k+ (2π)3 δ(k+ − k+′)δ(2)(k⊥ − k′
⊥)

×
∫

dx+dy+F ′′(x+)F ′′(y+)θ(x+ − y+). (E.8)

The remaining integral is elementary and we get finally

S
(2)
fi (k,k

′) =
1

2!

[
2iθ∗k

+
(
ψ− − ψ+

)]2
2k+ (2π)3 δ(k+ − k+′)δ(2)(k⊥ − k′

⊥) (E.9)

and

M(2)(k,k′) = (4π)2
(2iθ∗k

+ (ψ− − ψ+))
2
/2!

2i|k| δ(2)(k̂− k̂′).

The sumM(1)+M(2) thus reproduces the first two terms of the expansion of the complete

amplitude (6.124) in powers of the phase shift.

F The fluctuation operator of the static cylindrically symmetric solution

The fluctuation operator is

δ2Sθ[φ]

δφ(x)δφ(y)
=

d∑

n=2

ndn(θ)
∂Ldern−1(∂∂φ(x))

∂ (∂µ∂νφ(x))
∂µ∂νδ

(d)(x− y) (F.1)

From the generating function of Lderk (∂∂φ(x))

4! det (η + w∂∂φ) =

d∑

n=0

wk

(
4

k

)
Lderk (∂∂φ) (F.2)

we get

∂

∂ (∂µ∂νφ)
det (η + w∂∂φ) =

1

4!

d∑

n=0

wk

(
4

k

)
∂Lderk (∂∂φ)

∂ (∂µ∂νφ)
(F.3)

– 68 –



J
H
E
P
1
0
(
2
0
1
4
)
0
0
6

Left hand side gives

∂

∂ (∂µ∂νφ)
det (η + w∂∂φ) = − ∂

∂ (∂µ∂νφ)
det (δ + wη · ∂∂φ)

= − ∂

∂ (∂µ∂νφ)
expTr ln (δ + wη · ∂∂φ)

= det (η + w∂∂φ)
∂

∂ (∂µ∂νφ)
Tr ln (δ + wη · ∂∂φ)

= w det (η + w∂∂φ)
[
(δ + wη · ∂∂φ)−1

]µ
β
ηνβ

= w det (η + w∂∂φ)
[
(η + w∂∂φ)−1

]µν
(F.4)

For cylindrically symmetric static solution φ ≡ φ(zz) we get

η + w∂∂φ =




1 0 0 0

0 −1 0 0

0 0 −1 + w
(
∂ + ∂

)2
φ wi

(
∂2 − ∂2

)
φ

0 0 wi
(
∂2 − ∂2

)
φ −1− w

(
∂ − ∂

)2
φ




(F.5)

and thus

det (η + w∂∂φ) = −1 + 4w∂∂φ+ 4w2
[
∂2φ∂

2
φ−

(
∂∂φ

)2]
(F.6)

and

det (η + w∂∂φ) (η + w∂∂φ)−1

=




det (η + w∂∂φ) 0 0 0

0 − det (η + w∂∂φ) 0 0

0 0 1 + w
(
∂ − ∂

)2
φ wi

(
∂2 − ∂2

)
φ

0 0 wi
(
∂2 − ∂2

)
φ 1− w

(
∂ + ∂

)2
φ




(F.7)

As a result

1

4!

d∑

n=1

wk

(
4

k

)
∂Lderk (∂∂φ)

∂ (∂∂φ)

= w




det (η + w∂∂φ) 0 0 0

0 − det (η + w∂∂φ) 0 0

0 0 1 + w
(
∂ − ∂

)2
φ wi

(
∂2 − ∂2

)
φ

0 0 wi
(
∂2 − ∂2

)
φ 1− w

(
∂ + ∂

)2
φ




(F.8)
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and thus

∂Lder1 (∂∂φ)

∂ (∂µ∂νφ)
= −6η

∂Lder2 (∂∂φ)

∂ (∂µ∂νφ)
= 4




4∂∂φ 0 0 0

0 −4∂∂φ 0 0

0 0
(
∂ − ∂

)2
φ i

(
∂2 − ∂2

)
φ

0 0 i
(
∂2 − ∂2

)
φ −

(
∂ + ∂

)2
φ




∂Lder3 (∂∂φ)

∂ (∂µ∂νφ)
= 6




4
[
∂2φ∂

2
φ−

(
∂∂φ

)2]
0 0 0

0 −4
[
∂2φ∂

2
φ−

(
∂∂φ

)2]
0 0

0 0 0 0

0 0 0 0




(F.9)

Inserting this to the formula

g[φ]µν =
d∑

n=2

ndn(θ)
∂Ldern−1(∂∂φ(x))

∂ (∂µ∂νφ(x))
(F.10)

gives (6.126).

G Full form of 4-pt scattering amplitude and self-energy

The corresponding contributions are

A1 = d43
B(s)

(4π)2
81s4[(d2 + 6d+ 32)s2 − 72tu]

32(d2 − 1)
+ cycl (G.1)

A2 = −d43
B(s)

(4π)2
81(d+ 2)s6

4(d− 1)
+ cycl (G.2)

A3 = d43
B(s)

(4π)2
81s6

2
+ cycl (G.3)

A4 = d24
B(s)

(4π)2
9s4[(d2 − 2d)s2 − 8tu]

8(d2 − 1)
+ cycl (G.4)

A5 = d23d4
B(s)

(4π)2
27s4[(d+ 4)(d− 2)s2 + 24tu]

8(d2 − 1)
+ cycl (G.5)

A6 = −d23d4
B(s)

(4π)2
27s6(d− 2)

2(d− 1)
+ cycl (G.6)

We have used the cyclic summation over all Mandelstam variables (e.g. (s2 + cycl) =

s2 + t2 + u2). The loop function is given by

B(s) =
1

(4π)d/2−2

1

d− 3
Γ(2− d/2)sd/2−2 (G.7)

Summing up all diagrams leads to

A =

(
d4 −

9

2
d23

)2 B(s)

(4π)2
9s4[d(d− 2)s2 − 8tu]

8(d2 − 1)
+ cycl. (G.8)
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The full result for the one-loop self-energy reads

Σ(p) = − 1

(4π)d/2
9

2
d23
(
p2
)4
B
(
p2
)
. (G.9)
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