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Methods for electro- or magnetoencephalography (EEG/MEG) based brain source imaging (BSI)

using sparse Bayesian learning (SBL) have been demonstrated to achieve excellent performance in

situations with low numbers of distinct active sources, such as event-related designs. This paper

extends the theory and practice of SBL in three important ways. First, we reformulate three

existing SBL algorithms under the majorization-minimization (MM) framework. This unification

perspective not only provides a useful theoretical framework for comparing different algorithms in

terms of their convergence behavior, but also provides a principled recipe for constructing novel

algorithms with specific properties by designing appropriate bounds of the Bayesian marginal

likelihood function. Second, building on the MM principle, we propose a novel method called

LowSNR-BSI that achieves favorable source reconstruction performance in low signal-to-noise-

ratio (SNR) settings. Third, precise knowledge of the noise level is a crucial requirement for

accurate source reconstruction. Here we present a novel principled technique to accurately learn

the noise variance from the data either jointly within the source reconstruction procedure or using

one of two proposed cross-validation strategies. Empirically, we could show that the monotonous

convergence behavior predicted from MM theory is confirmed in numerical experiments. Using

simulations, we further demonstrate the advantage of LowSNR-BSI over conventional SBL in

low-SNR regimes, and the advantage of learned noise levels over estimates derived from baseline

data. To demonstrate the usefulness of our novel approach, we show neurophysiologically

plausible source reconstructions on averaged auditory evoked potential data.

Keywords

Electro-/magnetoencephalography; Brain source imaging; Type I/II Bayesian learning; Non-
convex; Majorization-Minimization; Noise learning; Hyperparameter learning

1. Introduction

Electro- and Magnetoencephalography (EEG/MEG) are non-invasive techniques for

measuring brain electrical activity with high temporal resolution. As such, both have become

indispensable tools in basic neuroscience and clinical neurology. The downside of both

techniques, however, is that their sensors are located far away from the neural generators of

the measured brain electrical activity. EEG/MEG measurements are therefore characterized

by low spatial resolution and highly overlapping contributions of multiple brain sources in

each sensor. The mathematical model of the EEG/MEG sensing procedure can be described

by the linear forward model

Y = LX + E, (1)

which maps the electrical activity of the brain sources, X, to the sensor measurements, Y.

The measurement matrix Y ∈ ℝM × T captures the activity of M sensors attached at different

parts of the scalp at T time instants, y(t) ∈ ℝM × 1, t = 1, …, T, while the source matrix,

X ∈ ℝN × T, consists of the unknown activity of N brain sources located in the cortical gray

matter at the same time instants, x(t) ∈ ℝN × 1, t = 1, …, T. The matrix

E = [e(1), …, e(T)] ∈ ℝM × T represents T time instances of independent and identically

distributed (i.i.d.) zero mean white Gaussian noise with variance σ2,
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e(t) ∈ ℝM × 1
� 0, σ

2
I
M

, t = 1, …, T, which is assumed to be independent of the source

activations. The linear forward mapping from X to Y is given by the lead field matrix

L ∈ ℝM × N, which is here assumed to be known. In practice, L can be computed using

discretization methods such as the Finite Element Method (FEM) for a given head geometry

and known electrical conductivities using the quasi-static approximation of Maxwell’s

equations (Baillet et al., 2001; Gramfort, 2009; Hämäläinen et al., 1993; Huang et al., 2016).

The goal of brain source imaging (BSI) is to infer the underlying brain activity X from the

EEG/MEG measurement Y given the lead field matrix L. Unfortunately, this inverse

problem is highly ill-posed as the number of sensors is typically much smaller than the

number of locations of potential brain sources. Thus, a unique solution cannot be found

without introducing further mathematical constraints or penalties, which are often referred to

as regularizers. In addition, the leadfield matrix is typically highly ill-conditioned even for

small numbers of sensors, introducing numerical instabilities in the inverse estimates.

Interestingly, regularization can also be interpreted in a Bayesian framework, where the

regularizer introduces prior knowledge or assumptions about the nature of the true sources

into the estimation (Calvetti and Somersalo, 2018; Stuart, 2010). A common assumption is

that the number of active brain sources during the execution of a specific mental task is

small, i.e., that the spatial distribution of the brain activity is sparse. This assumption can be

encoded in various ways. Classical approaches (Matsuura and Okabe, 1995) employ super-

Gaussian prior distributions to identify solutions in which most of brain regions are inactive.

In these approaches Maximum-a-Posteriori (MAP) estimation, also termed Type-I learning,

is used. Later work (Wipf et al., 2010) has shown that hierarchical Bayesian models achieve

better reconstructions of sparse brain signals by employing a separate Gaussian prior for

each brain location. The variances at each location are treated as unknown (hyper-)

parameters, which are estimated jointly with the source activity. This approach is called

Sparse Bayesian Learning (SBL), Type-II Maximum-Likelihood (Type-II ML) estimation or

simply Type-II learning (Mika et al., 2001; Tipping, 2001; Wipf and Rao, 2004).

Type-II learning generally leads to non-convex objective functions, which are non-trivial to

optimize. A number of iterative algorithms have been proposed (Mika et al., 2001; Tipping,

2001; Wipf and Nagarajan, 2009; 2010; Wipf et al., 2010; 2011), which, due to employing

distinct parameter update rules, differ in their convergence guarantees, rates and overall

computational complexity. Being derived using vastly different mathematical concepts such

as fixed point theory and expectation-maximization (EM), it has, however, so far been

difficult to explain the observed commonalities and differences, advantages and

disadvantages of Type-II methods in absence of a common theoretical framework, even if

the properties of individual algorithms have been extensively studied (Wipf and Nagarajan,

2009).

The primary contribution of this paper is to introduce Majorization-Minimization (MM)

(Hunter and Lange, 2004; Sun et al., 2017, and references therein) as a flexible algorithmic

framework within which different SBL approaches can be theoretically analyzed. Briefly,

MM is a family of iterative algorithms to optimize general non-linear objective functions. In
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a minimization setting, MM replaces the original cost function in each iteration by an upper

bound, or majorization function, whose minimum is usually easy to find. The objective value

at the minimum is then used to construct the bound for the following iteration, and the

procedure is repeated until a local minimum of the objective is reached. Notably, MM

algorithms are popular in many disciplines in which Type-II learning problems arise, such

as, e.g., telecommunications (Haghighatshoar and Caire, 2017; Khalilsarai et al., 2020;

Oguz-Ekim et al., 2011; Prasad et al., 2015; Shen et al., 2019) and finance (Benidis et al.,

2018; Feng et al., 2016). The concept of MM is, however, rarely explicitly referenced in

EEG/MEG brain source imaging, even though it has been used implicitly (Bekhti et al.,

2018; Hashemi and Haufe, 2018). We demonstrate here that three popular SBL variants,

denoted as EM, MacKay, and convex-bounding based SBL, can be cast as majorization-

minimization methods employing different types of upper bounds on the marginal

likelihood. This view as variants of MM helps explain, among other things, the guaranteed

convergence of these algorithms to a local minimum. The characteristics of the chosen

bounds determine the reconstruction performance and convergence rates of the resulting

algorithms. The MM framework additionally offers a principled way of constructing new

SBL algorithms for specific purposes by designing appropriate bounds.

Therefore, a second contribution of this paper is the development of a new SBL algorithm,

called LowSNR-BSI, that is especially suitable for low signal-to-noise ratio (SNR) regimes.

Real-world applications of EEG/MEG brain source imaging are often characterized by low

SNR, where the power of unwanted noise sources can be comparable to the power of the

signal of interest. This holds in particular for the reconstruction of ongoing as well as

induced (non-phase-locked) oscillatory activity, where no averaging can be performed prior

to source reconstruction. Current SBL algorithms may suffer from reduced performance in

such low-SNR regimes (Cai et al., 2021; Khanna and Murthy, 2017a; Owen et al., 2012). To

overcome this limitation, we propose a novel MM algorithm for EEG/MEG source imaging,

which employs a bound on the SBL cost function that is particularly suitable for low-SNR

regimes.

As a third contribution, this paper discusses principled ways to estimate the sensor noise

variance σ2, which is assumed to be known in the first part of the paper. Determining the

goodness-of-fit of the optimal model, the value of this variable exerts a strong impact on the

overall reconstruction (Habermehl et al., 2014). Technically being another model

hyperparameter, the noise variance is, however, rarely estimated as part of the model fitting.

Instead, it is often determined prior to the model fitting from a baseline recording. This

approach can, however, lead to suboptimal results in practice or be even inapplicable, e.g.,

when resting state data are analyzed. Here we present a number of alternatives to estimate

the noise variance in Type-I and Type-II brain source imaging approaches. Building on work

by (Wipf and Rao, 2007), we derive an analytic update rule, which enables the adaptive

estimation of the noise variance within various SBL schemes. Moreover, we propose two

novel cross-validation (CV) schemes from the machine learning field to determine the noise

variance parameter.

We conduct extensive ground-truth simulations in which we compare LowSNR-BSI with

popular source reconstruction schemes including existing SBL variants, and in which we
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systematically study the impact of different strategies to estimate the noise level σ2 from the

data.

The outline of the paper is as follows: In Section 2, a comprehensive review of Type-II BSI

methods is presented. In Section 3, we unify the Type-II methods described in Section 2

within the MM framework, and in Section 4, we derive LowSNR-BSI algorithm within the

same framework. Section 5 introduces numerous principled ways for estimating the sensor

noise variance. Simulation studies, real data analysis, and discussions are presented in

Sections 6, 7, and 8, respectively. Finally, Section 9 concludes the paper.

2. Bayesian learning

The ill-posed nature of the EEG/MEG inverse problem can be overcome by assuming a prior

distribution p(X) for the source activity. The posterior distribution of the sources after

observing the data Y, p(X|Y), is given by Bayes’ rule:

p(X ∣ Y) =
p(Y ∣ X)p(X)

∫ p(Y ∣ X)p(X)dX
, (2)

where the conditional probability p(Y|X) in the numerator denotes the likelihood, while the

term in the denominator, ∫ p(Y ∣ X)p(X)dX = p(Y), is referred to as model evidence or

marginal likelihood. However, note that the posterior is often not analytically tractable, as

evaluating the integral in the model evidence is intractable for many choices of prior

distributions and likelihoods.

Remark 1. Priors fulfill the same practical purpose as regularizers even if they are motivated

from a different perspective, e.g., the Bayesian formalism, in this paper. Besides, we regard

the Bayesian perspective as a helpful technical vehicle to inspire and generate flexible priors

for shaping more plausible solutions.

2.1. Type-I Bayesian learning

As the model evidence in Eq. (2) only acts as a scalar normalization for the posterior, its

evaluation can be avoided if one is only interested in the most probable source configuration

X rather than the full posterior distribution. This point estimate is known as the maximum-a-

posteriori (MAP) estimate:

X
MAP ≔ arg max 

x
p(Y ∣ X)
likelihood 

p(X)
prior 

.
(3)

Assuming i.i.d. Gaussian sensor noise, the likelihood reads:

p(Y ∣ X) = ∏
t = 1

T

p(y(t) ∣ x(t)) = ∏
t = 1

T

� Lx(t), σ
2
I , (4)

and the resulting MAP estimate (3) is given by
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X
MAP ≔ arg max 

X
∏
t = 1

T

exp −
1

2σ
2 y(t) − Lx(t)

2

2
p(X)

= arg min 
X

1
T

∑
t = 1

T

y(t) − Lx(t)
2

2

+ σ
2ℛI(X) = arg min 

X
ℒI(X),

(5)

where ℛI(X) = log(p(X)) and ℒI(X) denotes the Bayesian Type-I learning (MAP) objective

function.

Note that this expression can be interpreted as a trade-off between two optimization goals,

where the first (log-likelihood) term in (5) penalizes model errors using a quadratic loss

function and the second (log-prior) term penalizes deviations of the solution from the

assumed spatial or temporal properties of the brain sources encoded in ℛI(X). The trade-off

between these two optimization goals is defined by the ratio of the noise variance σ2 and the

variance of the prior distribution. As the latter is hardly known in practice, a regularization

parameter λ ∝ σ2 subsuming both variables is introduced, which can be tuned to adjust the

relative importance of both penalties in the optimization.

Several existing algorithms are characterized by different choices of a prior. For instance,

choosing a Gaussian prior distribution leads to the classical minimum-norm estimate

(Hämäläinen and Ilmoniemi, 1994; Pascual-Marqui, 2007; Pascual-Marqui et al., 1994),

which also goes by the names ℓ2
2‐norm (or Tikhonov) regularization and “ridge regression” in

the statistics and machine learning literature. The choice of a Laplace prior leads to the

minimum-current estimate (Matsuura and Okabe, 1995), which is also known as ℓ1-norm

regularization or “LASSO” regression. Besides, hierarchical Bayesian priors with automatic

depth weighting have been used to infer brain activity from EEG/MEG data (Calvetti et al.,

2019). More complex priors have been also used to incorporate anatomical information of

the sources (Dale and Sereno, 1993; Pascual-Marqui et al., 2002; Trujillo-Barreto et al.,

2004) or to encode assumptions on the spatial, temporal and/or spectral structure of the

sources. Respective methods include FOCUSS (Gorodnitsky et al., 1995), S-FLEX (Haufe et

al., 2008; 2011), MxNE (Gramfort et al., 2012), irMxNE (Strohmeier et al., 2016), TF-

MxNE (Gramfort et al., 2013), irTF-MxNE (Strohmeier et al., 2015), and STOUT (Castaño-

Candamil et al., 2015), which all enforce sparsity in different domains such as Gabor frames

or cortical patches through appropriate norm constraints.

2.2. Type-II Bayesian learning

While in the MAP approach the prior distribution is fixed, it is sometimes desirable to

consider entire families of distributions p(X|γ) parameterized by a set of hyper-parameters

γ. These hyper-parameters can be learned from the data along with the model parameters

using a hierarchical empirical Bayesian approach (Mika et al., 2001; Tipping, 2001; Wipf

and Rao, 2004). In this maximum-likelihood Type-II (ML-II, or simply Type-II) approach, γ
is estimated through the maximum-likelihood principle:
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γII ≔ arg max
γ

 p(Y ∣ γ) = arg max
γ

 ∫ p(Y ∣ X, γ)p(X ∣ γ)dX . (6)

Computation of the conditional density p(Y|γ) is formally achieved by integrating over all

possible source distributions X for any given choice of γ. The maximizer of Eq. (6) then

determines a data-driven prior distribution p(X|γII). Plugged into the MAP estimation

framework Eq. (3), this gives rises to the Type-II source estimate XII.

As the conditional density p(Y|γ) for a given γ is identical to the model evidence in Eq. (2),

this approach also goes by the name evidence maximization (Wipf and Rao, 2007; Wipf et

al., 2011). Concrete instantiations of this approach have further been introduced under the

names sparse Bayesian learning (SBL) (Tipping, 2001) or automatic relevance determination

(ARD) (Tipping, 2000), kernel Fisher discriminant (KFD) (Mika et al., 2001), variational

Bayes (VB) (Seeger and Wipf, 2010; Wipf and Nagarajan, 2009) and iteratively-reweighted

MAP estimation (Gorodnitsky et al., 1995; Wipf and Nagarajan, 2010). Interested readers

are referred to (Wu et al., 2016) for a comprehensive survey on Bayesian machine learning

techniques for EEG/MEG signals. To distinguish all these Type-II variants from classical

ML and MAP approaches not involving hyperparameter learning, the latter are also referred

to as Type-I approaches.

Remark 2. The marginal likelihood formulation in Type-II Bayesian learning, Eq. (6),

enables estimation of flexible priors with many parameters from data. This stands in contrast

to the use of classical cross-validation techniques to learn hyperparameters of regularizers,

which works for very few parameters only (in most cases only a single scalar regularization

constant).

2.3. Sparse Bayesian learning and Champagne

A Type-II estimation framework with particular relevance for EEG/MEG source imaging is

SBL. In this framework, the N modeled brain sources are assumed to follow independent

univariate Gaussian distributions with zero mean and distinct unknown variances

γ
n
: x

n
(t) � 0, γ

n
, n = 1, …, N. In the SBL solution, the majority of variances is zero, thus

effectively inducing spatial sparsity of the corresponding source activities. Such sparse

solutions are physiologically plausible in task-based analyses, where only a fraction of the

brain’s macroscopic structures is expected to be consistently engaged. This consideration

has led (Wipf and Rao, 2004) to propose the Champagne algorithm for brain source

imaging, which is rooted in the concept of SBL. Compared to Type-I approaches achieving

sparsity through ℓ1-norm minimization, Champagne has shown significant performance

improvement with respect to EEG/MEG source localization (Owen et al., 2012; Wipf et al.,

2010).

Just as most existing approaches, Champagne makes the simplifying assumption of

statistical independence between time samples. This leads to the following expression for

the distribution of the sources:
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p(X ∣ γ) = ∏
t = 1

T

p(x(t) ∣ γ) = ∏
t = 1

T

�(0, Γ), (7)

where γ = [γ1, …, γN]⊤ and Γ = diag(γ). Note that, in task-based analyses, the noise

variance σ2 can be estimated from a baseline (resting state) recording. In the first part of this

paper, it is, therefore, assumed to be known.

Remark 3. Electrophysiological data are known to possess a complex intrinsic

autocorrelation structure. Here, we consider priors that make the simplifying assumption of

independence between time samples, which is consistent with most existing works in the

field (Gramfort et al., 2012; Hämäläinen and Ilmoniemi, 1994; Haufe et al., 2008; Matsuura

and Okabe, 1995; Pascual-Marqui et al., 1994). Importantly, using such simplifying priors

generally does not prevent the resulting inverse solutions to have time structure.

Nevertheless, priors modeling the known properties of the latent variables more accurately

might lead to better reconstructions especially in low-sample regimes. Preliminary work

shows that priors modeling temporal structure with autoregressive models can indeed

improve the reconstruction of autocorrelated source (Hashemi and Haufe, 2018).

The parameters of the SBL model are the unknown sources as well as their variances. As

computation of the integral in Eq. (6) is infeasible, Champagne considers an approximation,

where the variances γn, n = 1, …, N, are optimized based on the current estimates of the

sources in an alternating iterative process. Given an initial estimate of the variances, the

posterior distribution of the sources is a Gaussian of the form (Wipf et al., 2010), (Sekihara

and Nagarajan, 2015, Chapter 4)

p(X ∣ Y, γ) = ∏
t = 1

T

� x(t), Σx ,  where (8)

x(t) = ΓL
⊤

Σy

−1
y(t) (9)

Σx = Γ − ΓL
⊤

Σy

−1
LΓ (10)

Σy = σ
2
I + LΓL

⊤ . (11)

The estimated posterior parameters x(t) and Σx are then in turn used to update the estimate of

the variances γn, n = 1, …, N as the minimizer of the negative log of the marginal likelihood

p(Y|γ), which is given by Wipf et al. (2010):

ℒII(γ) = − log p(Y ∣ γ) =
1
T

∑
t = 1

T

y(t)⊤
Σy

−1
y(t) + log Σy , (12)
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where |·| denotes the determinant of a matrix. This process is repeated until convergence.

Given the final solution of the hyperparameter γII, the point estimate xII of the source

activity is obtained from the posterior mean of the estimated source distribution: xII(t) = x(t).

Note that given the definition of the empirical sample covariance matrix as

C
y

= 1
T

∑
t = 1
T

y(t)y(t)⊤, the term 
1
T

∑
t = 1
T

y(t)⊤Σ
y
−1

y(t) in Eq. (12) can be rewritten as tr C
y
Σ

y
−1

so that Eq. (12) becomes (Wipf et al., 2010, Section II)

ℒII(γ) = tr CyΣy
−1 + log Σy . (13)

Note that, in this form, the loss function Eq. (13) bears an interesting similarity to the log-

determinant (log-det) Bregman divergence in information geometry (James and Stein, 1992).

This perspective on Type-II loss function enables a common viewpoint for Type-I and Type-

II methods.

By invoking mathematical tools based on Legendre-Fenchel duality theory, the cost function

Eq. (12) can be formulated equivalently as another cost function, ℒII−x(X, γ), whose

optimizers, {γ*, X*}, are derived by performing a joint minimization over X and γ (Wipf et

al., 2011, see also Section II-B), Bauschke and Combettes (2017); Rockafellar (1970):

γ*, X* = arg min
γ ≥ 0, X ≥ 0ℒII−x(X, γ),  where

ℒII−x(X, γ) =
1
T

∑
t = 1

T

y(t) − Lx(t) 2
2 + σ

2ℛII−x(X, γ)

ℛII−x(X, γ) =
1
T

∑
t = 1

T

∑
n = 1

N xn(t)2

γn

+ log Σy , (14)

where ℛII−x(X, γ) denotes a regularizer that depends on the data, x(t), and where xn(t)

denotes the activity of source n at time instant t. Then, as each source xn(t) is also a function

of γn according to Eq. (9), the term 
x
n
(t)2

γ
n

 goes to zero when γn → 0.

Remark 4. In contrast to standard MAP estimation, the effective priors obtained within our

hierarchical Bayesian framework, e.g., ℛII−x(X, γ) in Eq. (14), are not fixed. They depend on

parameters that can be tuned and learned from the data; thus, Type-II priors have the ability

and flexibility to capture the actual properties of the observed real data.

We will use the formulation in Eq. (14) to derive alternative optimization schemes for

Champagne in Sections 2.3.2 and 2.3.3.
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2.3.1. EM Champagne—As the cost function Eq. (12) is non-convex in γ, the quality of

the obtained solution depends substantially on the properties of the employed numerical

optimization algorithm. Crucially, algorithms might not only differ with respect to their

convergence properties but may also lead to different solutions representing distinct local

minima of Eq. (12). The first algorithm for mimimizing Eq. (12) has been introduced by

Wipf and Nagarajan (2009) and is an application of the expectation-maximization (EM)

formalism (Dempster et al., 1977). As can be shown, Eqs. (9)–(11) correspond to the

expectation (E) step of the EM algorithms with respect to the posterior distribution p(X|Y,

γ). The maximization (M) step of the EM formalism with respect to γ then leads to the

update rule

γn
k + 1 ≔ Σx

k

n, n
+

1
T

∑
t = 1

T

xn
k(t)

2
 for n = 1, …, N . (15)

Final estimates of both parameters are obtained by iterating the updates (9)–(11) and (15)

until convergence. The resulting algorithm is known as the EM variant of the Champagne

algorithm (Sekihara and Nagarajan, 2015, Chapter 4) (Wipf and Nagarajan, 2009) in the

field of brain source imaging.

2.3.2. Convex-bounding based Champagne—As the EM algorithm outlined above

has been shown to have slow convergence speed, alternative minimization strategies have

been proposed. Two such variants, a convex-approximation based approach and the so-called

MacKay update, have been proposed in Wipf and Nagarajan (2009) and further practically

investigated in Owen et al. (2012). Considering that the log-determinant in Eq. (14) is

concave, the convex-bounding based variant of Champagne constructs a linear upper bound

based on the concave conjugate of log|σ2I + LΓL⊤|, defined as ω*(z),

log σ
2
I + LΓL

⊤ = log σ
2
I + L diag(γ)L⊤ = min

z > 0
 z⊤γ − w*(z) . (16)

With this upper bound, and for a fixed value of γ, the auxiliary variable z can be derived as

the tangent hyperplane of the log|Σy|:

z = ∇
γ

 log σ
2
I + LΓL

⊤ .

Note that the concave conjugate is obtained as a result of applying Legendre-Fenchel duality

theory (see, e.g., Bauschke and Combettes (2017); Rockafellar (1970)) on the concave

function log|σ2I + LΓL⊤| as follows: w*(z) = inf
γ > 0

γ
⊤

z − w(γ) , where ω(γ) = log|σ2I +

LΓL⊤| denotes our target concave function.

By inserting Eq. (16) instead of log|Σy| into Eq. (14), the non-convex penalty function Eq.

(14) is replaced by the convex function
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ℛconv
II−x(X, γ) = min

γ ≥ 0, z > 0

1
T

∑
i = 1

T

∑
n = 1

N x
n
(t)2

γ
n

+ z
T

γ − w*(z)

in each step of the optimization. The final estimates of X, γ and z are obtained by iterating

between following update rules until convergence:

zn
k = Ln

⊤
Σy

k −1
Ln, n = 1, …, N (17)

x
k(t) = ΓL

⊤
Σy

k −1
y(t) (18)

γn
k + 1 =

1
T

∑t = 1
T

xn
k(t)

2

zn
k

, n = 1, …, N . (19)

Here, Ln in (17) denotes the n-th column of the lead field matrix.

2.3.3. MacKay update for Champagne—The MacKay update proposed in (Wipf and

Nagarajan, 2009, Section III.A-2) can be derived in a similar fashion as the convex-bounding

based update using different auxiliary functions and variables. By defining new variables κn

≔ log(γn) for n = 1, …, N, the non-convex term log|σ2I + Ldiag(γ)L⊤| in Eq. (16) can be

written as:

log σ
2
I + Ldiag(γ)L⊤ = log σ

2
I + ∑

n = 1

N

γ
n
L

n
⊤

L
n

= log σ
2
I + ∑

n = 1

N

exp κ
n

L
n
⊤

L
n

.

Then, one can introduce another surrogate function (Wipf and Nagarajan, 2009, Appendix-

B)

log σ
2
I + ∑

n = 1

N

exp κn Ln
⊤

Ln = max
z > 0

 zT log(γ) − h*(z) (20)

for the log|σ2I + LΓL⊤|, where h*(z) denotes the convex conjugate of

log σ
2
I + ∑

n = 1
N exp κ

n
L

n
⊤

L
n

 in contrast to the concave conjugate counterpart, w*(z) used in

Eq. (16). Substituting (20) into Eq. (14) leads to a so-called min-max optimization program

for optimizing the non-convex penalty function ℛII−x(X), which alternates between

minimizations over γ and maximizations of the bound in (20):
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ℛconv
MacKay(X, γ) = min

γ ≥ 0
 max
z > 0

1
T

∑
t = 1

T

∑
n = 1

N xn(t)2

γn

+ z
Tlog(γ) − h*(z) . (21)

Let γ
n
k denote the value of γn in the k-th iteration. Inserting γk into Eq. (21) and minimizing

with respect to γ
n
k requires that the derivatives

∂

∂γ
n
k

1
T

∑
t = 1

T
x
k(t)⊤x

k(t)

γ
n
k

+ z
Tlog γ

n
k − h*(z) = 0,

for n = 1, …, N, vanish. The resulting function is then maximized with respect to z (Wipf

and Nagarajan, 2009, Appendix-B), which leads to the so-called MacKay update for

optimizing Eq. (14) (Wipf and Nagarajan, 2009, Section A-2):

γn
k + 1 ≔

1
T

∑
t = 1

T

xn
k(t)

2
γn

k
Ln

⊤
Σy

k −1
Ln

−1

=
1
T

∑
t = 1

T

γn
k βn

k(t)
2

γn
k
Ln

⊤
Σy

k −1
Ln

−1

= γn
k 1

T
∑
t = 1

T

βn
k(t)

2
Ln

⊤
Σy

k −1
Ln

−1
,  for n = 1, …, N,

(22)

where β
n
k(t) is defined as follows: β

n
k(t) ≔ L

n
⊤

Σ
y
k −1

y(t) for n = 1, …, N.

3. Unification of sparse Bayesian learning algorithms with the

majorization-minimization (MM) framework

In this section, we first briefly review theoretical concepts behind the MM algorithmic

framework (Hunter and Lange, 2004; Jacobson and Fessler, 2007; Razaviyayn et al., 2013;

Wu et al., 2010). Then, we formally characterize Champagne variants as MM algorithms by

suggesting upper bounds on the cost function Eq. (14) that, when employed within the MM

framework, yield the same update rules as the original algorithms. The first three rows of

Table 1 list the update rules and mathematical formalism used in this section.

3.1. Majorization-Minimization

Majorization-minimization is a promising strategy for solving general non-linear

optimization programs. Compared to other popular optimization paradigms such as (quasi)-

Newton methods, MM algorithms enjoy guaranteed convergence to a stationary point (Sun

et al., 2017). The MM class covers a broad range of common optimization algorithms such

as proximal methods and convex-concave procedures (CCCP) (Sun et al., 2017, Section IV),

Lipp and Boyd (2016); Yuille and Rangarajan (2003). While such algorithms have been

applied in various contexts, such as non-negative matrix factorization (Févotte, 2011) and

massive MIMO systems for wireless communication (Haghighatshoar and Caire, 2017;
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Khalilsarai et al., 2020), their advantages have so far rarely been made explicit in the context

of brain source imaging (Bekhti et al., 2018; Hashemi and Haufe, 2018; Luessi et al., 2013).

We define an original optimization problem with the objective of minimizing a continuous

function f(u) within a closed convex set � ⊂ ℝn:

min
u

  f (u)    subject to u ∈ � . (23)

Then, the idea of MM can be summarized as follows. First, construct a continuous surrogate

function g(u|uk) that upper-bounds, or majorizes, the original function f(u) and coincides

with f(u) at a given point uk:

g u
k ∣ u

k = f u
k     ∀u

k ∈ � [A1]

g u ∣ u
k ≥ f (u)    ∀u, u

k ∈ � . [A2]

Second, starting from an initial value u0, generate a sequence of feasible points u1, u2, …,

uk, uk+1 as solutions of a series of successive simple optimization problems, where

u
k + 1 ≔ arg  min

u ∈ �

 g u ∣ u
k . [A3]

Note that the performance of MM algorithms heavily depends on the choice of a suitable

surrogate function, which should, on one hand, faithfully reflect the behavior of the original

non-convex function Eq. (23) while, on the other hand, be easy to minimize.

Definition 1. Any algorithm fulfilling conditions [A1]–[A3] is called a Majorization

Minimization (MM) algorithm.

Corollary 1. An MM algorithm has a descending trend property, whereby the value of the

cost function f decreases in each iteration: f(uk+1) ≤ f(uk).

Proof. The proof is included in Appendix B. □

While Corollary 1 guarantees a descending trend, convergence requires additional

assumptions on particular properties of f and g (Jacobson and Fessler, 2007; Razaviyayn et

al., 2013). For the smooth functions considered in this paper, we require that the derivatives

of the original and surrogate functions coincide at uk:

∇g u
k ∣ u

k = ∇ f u
k     ∀u

k ∈ � . [A4]

Then, the following, stronger, theorem holds.
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Theorem 1. For an MM algorithm that additionally satisfies [A4], every limit point of the

sequence of minimizers generated through [A3] is a stationary point of the original

optimization problem Eq. (23).

Proof. A detailed proof can be found in (Razaviyayn et al., 2013, Theorem 1). □

Note that since we are working with smooth functions, conditions [A1]–[A4] are sufficient

to prove convergence to a stationary point according to Theorem 1 (see Hunter and Lange

(2004); Razaviyayn et al. (2013); Wu et al. (2010) and Dempster et al. (1977); Wu (1983))

for proofs of the convergence behaviour of other MM algorithms such as expectation

maximization.

Remark 5. Corollary 1 implies that if a surrogate function is constructed to fulfill conditions

[A1] and [A2], and if the next feasible point of the algorithm is always assigned as the

minimizer of the surrogate function based on [A3], the resulting MM algorithm decreases

f(u) in each step. Although a weaker condition than [A3], i.e., g(uk+1|uk) ≤ g(uk|uk), is

sufficient for a descending trend, we only consider MM| algorithms in this paper; thus,

condition [A3] is a crucial requirement. As we have shown in Theorem 1, [A3] is further

required to prove guaranteed convergence of an MM algorithm.

We now show that three algorithms that have been proposed for solving the SBL cost

function Eq. (12) can all be cast as instances of the MM framework invoking different

majorization functions on ℛII−x(X). For the convex-bounding based approach as well as the

algorithm using MacKay updates, the full set of conditions [A1]–[A4] in Theorem 1 are

proven. Due to the considerations made above, we, however, only prove Corollary 1 for the

EM-based Champagne algorithm.

3.1.1. EM update as MM—It is known that the EM algorithm is a special case of MM

framework using Jensen’s inequality to construct the surrogate function (Sun et al., 2017;

Wu et al., 2010). Here, we work out the specific surrogate function for the SBL cost function

Eq. (12) (i.e., the negative log marginal likelihood).

As Wipf and Nagarajan have shown (Wipf and Nagarajan, 2009, Section III.A-1), the EM

algorithm for Type-II problems consists of the following two parts: For the E-step, the

posterior p(X|Y, γk) is obtained given the value of γ at k-th iteration, γk. The M-step then

solves:

γ
k + 1 ≔ arg min

γ
E

p X ∣ Y, γ
k

[ − log p(Y, X ∣ γ)],  where
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−log p(Y, X ∣ γ) =
T

2
log Γ +

1
2 ∑

t = 1

T

x(t)⊤
Γ

−1
x(t)

+
T

2
log σ

2
I + ∑

t = 1

T
1

2σ
2 y(t) − Lx(t)

2

2

,

(24)

which leads to the update rule in Eq. (15).

Proposition 1. The EM based Champagne algorithm is an MM algorithm fulfilling

Corollary 1, where the negative log-likelihood loss, − log p(Y|γ), is majorized by the

following surrogate function

ℒEM
k γ ∣ γk =

T

2
log Γ + E

p X ∣ Y, γ
k

1
2 ∑

t = 1

T

x
k(t)⊤

Γ
−1

x
k(t)

+
T

2
log σ

2
I + E

p X ∣ Y, γ
k ∑

t = 1

T
1

2σ
2 y(t) − Lx

k(t)
2

2

+ E
p X ∣ Y, γ

k p X ∣ Y, γk .

(25)

Proof. A detailed proof can be found in Appendix C. □

Note that the EM algorithm is also equivalent to the restricted maximum likelihood (ReML)

(Friston et al., 2002) and dynamic statistical parametric mapping (dSPM) approaches (Dale

et al., 2000) for solving the sparse EEG/MEG inverse problem, which, thereby, can also be

interpreted as instances of minimization-majorization.

3.1.2. Convex-bounding based approach as MM—We start by recalling the non-

convex penalty ℛII−x(X, γ) as defined in Eq. (14):

ℛII−x(X, γ) =
1
T

∑
t = 1

T

∑
n = 1

N x
n
(t)2

γ
n

+ log Σ
y

.

By setting x = x
k to the value obtained by the convex-bounding based method in the k-th

iteration, the following holds:

Proposition 2. The convex-bounding based Champagne algorithm is an MM algorithm

fulfilling Theorem 1, whereℛII−x(X, γ)is majorized by the following surrogate function:

ℛconv
k γ ∣ γk =

1
T

∑
t = 1

T

∑
n = 1

N xn
k(t)2

γn

+ log Σy
k + tr Σy

k −1
Σy − tr Σy

k −1
Σy

k . (26)

Proof. A detailed proof is provided in Appendix D. □
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3.1.3. MacKay update as MM—Similar to convex-bounding, we can show that the

Mackay updates for Champagne can be viewed as an MM algorithm.

Proposition 3. The Champagne variant employing MacKay updates is an MM algorithm

fulfilling Theorem 1, whereℛII−x(X, γ)is majorized byℛconv
k

γ ∣ γ
k .

Proof. The proof is similar to that of Proposition 2 and provided in Appendix E. □

To summarize this section, we have shown that three popular strategies for solving the SBL

problem in Eq. (12), namely the EM, the MacKay, and the convex bounding based

approaches, can be characterized as MM algorithms. Importantly, this perspective provides a

common framework for comparing different Champagne algorithms. For example, we can

derive and compare certain characteristics of Champagne algorithms directly based on the

properties of the majorization functions they employ. Conversely, it is also possible to design

specific majorization functions that are optimal in a specific sense, leading to new source

reconstruction algorithms.

4. LowSNR-brain source imaging (LowSNR-BSI)

Here, we assume a low-SNR regime, as it is common in BSI applications. SNR is defined in

sensor space as signal power, � Lx(t) 2 , divided by noise power, σ2:SNR =
� Lx(t) 2

σ
2  and

can be expressed in dB scale as SNRdB = 10log10 (SNR). In many practical applications, we

are interested in solving the BSI problem for SNRdB ≤ 0; that is, when the noise power is

comparable to the power of the signal or even larger. Although the algorithms presented in

Sections 3.1.1–3.1.3 achieve satisfactory performance in terms of computational complexity,

their reconstruction performance degrades significantly in low-SNR regimes. This behavior

has been theoretically shown in (Khanna and Murthy, 2017a, Section VI-E) and has also

been confirmed in several simulation studies (Cai et al., 2021; Owen et al., 2012).

In order to improve the performance of SBL in low-SNR settings, we propose a novel MM

algorithm by constructing a surrogate function for Eq. (12) specifically for this setting.

Based on (Haghighatshoar and Caire, 2017), we propose the following convex surrogate

function:

ℒconv
Low‐SNR γ ∣ γk = tr LΓL

⊤ +
1
T

∑
t = 1

T

y(t)⊤
Σy

−1
y(t) . (27)

The following proposition is based on results in (Haghighatshoar and Caire, 2017).

Proposition 4. The surrogate functionEq. (27)majorizes the Type-II loss functionEq.

(12)and results in an MM algorithm that fulfills Theorem 1. For SNR → 0, Eq. (12)

converges to Eq. (27):

ℒII(γ) = ℒconv
Low‐SNR γ ∣ γk + �(SNR) . (28)
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Proof. A detailed proof of this result is presented in Appendix F. The main idea is to first

normalize the sensor and source covariance matrices by σ2 and then consider the eigenvalue

decomposition of tr(LΓL⊤) as LΓL⊤ = UPU⊤ with P = diag(p1, …, pM). These two steps

result in the following equality: log |Σy| = log |I + UPU⊤|. Finally, the proof is completed by

leveraging the concavity of the log(·) function and using a Taylor expansion around the

eigenvalues of LΓL⊤, i.e., pi, for i = 1, …, M. □

Note that, as a result of Proposition 4, the behaviour of the non-convex SBL cost function

Eq. (12) is more and more well approximated in the vicinity of the current estimate by the

proposed surrogate function Eq. (27) as the noise level increases, which sets it apart from

existing surrogate functions. Therefore, the proposed bound is particularly suitable in low-

SNR regimes.

In contrast to the original SBL cost function Eq. (12), the surrogate function Eq. (27) is

convex and has unique minimum that can be found analytically in each iteration of the

optimization. To find the optimal value of γ = [γ1, …, γN]⊤, we first take the derivative of

(27) with respect to each γn for n = 1, …, N, and then set it to zero, which yields the

following closed-form solution for γ = [γ1, …, γN]⊤:

γn
k + 1 ≔

1
T

∑t = 1
T

xn
k(t)2

Ln
⊤

Ln

 for n = 1, …, N . (29)

A detailed derivation of Eq. (29) can be found in Appendix G. We call the algorithm

obtained by iterating between (9)–(11) and (29) LowSNR-Brain Source Imaging (LowSNR-

BSI). In practice, values exactly equal to zero may not be obtained for the γn. Therefore, an

active-set strategy is employed. Given a threshold γthresh, those variances γn for which γn <

γthresh holds are set to zero in each iteration of the algorithm. Algorithm 1 summarizes the

steps of LowSNR-BSI. Table 1 allows for a direct comparison of the LowSNR-BSI update

rule (last column) and the corresponding update rules of other Champagne variants derived

within the MM framework.
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5. Automatic estimation of the noise level

5.1. Adaptive noise learning

It is common practice to estimate the noise variance σ2 from baseline data prior to solving

the EEG/MEG inverse problem (Bijma et al., 2003; Cai et al., 2018; De Munck et al., 2002;

Engemann and Gramfort, 2015; Huizenga et al., 2002; Jun et al., 2006; Plis et al., 2006).

However, a baseline estimate may not always be available or may not be accurate enough,

say, due to inherent non-stationarities in the data/experimental setup. Here, we argue that

estimating the noise parameter from the to-be-reconstructed data can significantly improve

the reconstruction performance even compared to a baseline estimate. To this end, we here

derive data-driven update rules that allow us to tune estimate the noise variance, σ2 within

the source reconstruction procedure using the Champagne and LowSNR-BSI algorithms,

where we build on prior work by Mika et al. (2001); Tipping (2001); Wipf and Rao (2007);

Wu and Wipf (2012); Zhang, Rao, 2011. Practically we introduce the shortcut λ = σ2 to

underscore that λ is a tunable parameter whose estimate can substantially deviate from the

baseline estimate in practice. We then treat λ as another model hyperparameter, similar to

the source variances γn. Thus, in each step of learning cycles of the Champagne and

LowSNR-BSI algorithms, we also minimize the loss function ℒII with respect to λ, where

the remaining parameters Γ and Σx are fixed to the values obtained in the preceding iteration.

This leads to the following theorem:

Theorem 2. The minimization ofℒII(λ)with respect to λ,

λ* ≔ arg min
λ
ℒII(λ) = arg min

λ
1
T

∑
t = 1

T

y(t)⊤Σ
y
−1

y(t) + log Σ
y

,

yields the following update rule for λ at the (k + 1)-th iteration, assuming Γk and Σ
x
k be fixed

values obtained in the (k)-th iteration:

λ
k + 1 ≔

1
T

∑t = 1
T

y(t) − Lx
k(t) 2

2

M − N
k + tr Σx

k
Γ

k −1 , (30)

where Nk denotes the number of non-zero voxels identified at iteration k through an active-

set strategy.

Proof. A detailed proof can be found inAppendix H. □

As shown in Algorithm (1), our implementation uses an active-set strategy that only selects

the non-zero voxels at each iteration based on a threshold. Therefore, at the initial steps of

the algorithm, Nk = N since all source variances are initialized randomly. But, when the

algorithm proceeds, the number of non-zero voxels decreases as a result of our active-set

strategy, which results in smaller values for Nk.
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5.2. Cross-validation strategies

In the previous section, we proposed to estimate the noise variance λ = σ2 in-sample such

that the SBL likelihood according to Eq. (12) was maximized, which led to an analytic

update rule. As, under our assumption of homoscedastic sensor noise, λ is only a single

scalar parameter, it moreover becomes feasible make use of robust model selection

techniques employing the concept of cross-validation (CV), whose aim it is to maximize the

out-of-sample likelihood (Bishop, 2006; Hastie et al., 2009; Shalev-Shwartz and Ben-David,

2014). To this end, the data are split into two parts. On the so-called training set, the model

parameters is fitted for a wide range of possible values of λ, which are fixed within each

individual optimization. The likelihoods of the fitted models are then evaluated on the held-

out data parts, called the test sets. The choice of λ that maximizes the empirical likelihood

on the test data is then used as an unbiased estimate of the noise variance. It is well-known

from the field of machine learning that cross-validation effectively overcomes the problem

of model overfitting in small samples. Here, we introduce two CV strategies employing

different ways of splitting the data.

5.2.1. Temporal cross-validation

In temporal CV, the temporal sequence of the data samples is split into k different

contiguous blocks (folds)(Blankertz et al., 2011; Lemm et al., 2011). Here, we use k = 4.

Three folds form the training set, Ytrain_temp ∈ ℝM × T
train_temp

, on which we fit the

Champagne and LowSNR-BSI models for a range of λs. On the remaining fold,

Y
test_temp ∈ ℝM × T

test_temp
 the Type-II log-likelihood (c.f. Eqs. (12) and (13))

ℒII
Y

train temp, Y
test temp =

1
T

∑
t = 1
T

y
test temp(t)⊤

Σ
y
train temp

−1
y

test temp(t)

+log Σ
y
train temp = tr C

y
test tempΣ

y
train temp

−1

+log Σ
y
train temp

(31)

is then evaluated. Note that in Eq. (31) the model covariance Σ
y
train_temp that has been

determined on the training data Ytrain_temp is combined with the empirical covariance of the

hold-out data Ytest_temp, which were not used during model fitting. Thus, Eq. (31) is the out-

of-sample Type-II log-likelihood. It has been theoretically shown (Friedman et al., 2008;

Khanna and Murthy, 2017a) that the Type-II log-likelihood function is a metric on the

second-order information of the sensors closely related to the log-det Bregman divergence

(discrepancy) between statistical (model) and empirical covariances (Bregman, 1967; James

and Stein, 1992). The choice of λ that minimizes that discrepancy on hold-out data is,

therefore, a sensible estimate for the true noise variance. We provide further details on the

relation between the SBL likelihood and the log-det Bregman divergence in Appendix A.

5.2.2. Spatial cross-validation—In spatial CV, the data are not split into temporal

segments but by dividing the available EEG/MEG sensors into the training and test sets. This

variant has been proposed by Habermehl et al. (2014); Haufe et al. (2011). Here, we again
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use k = 4 folds, where we randomly assign 75% of the sensors to the training set,

Y
train_spat ∈ ℝM

train_spat × T, and the remaining 25% to the test set, Ytest_spat ∈ ℝM
test_spat × T.

On the training sensors, Champagne and LowSNR-BSI are fitted using the corresponding

portion of the leadfield matrix, Ltrain_spat, for the same range of λs as used in temporal CV.

The sources, Xtrain_spat ∈ ℝN × T, estimated from the fitted models are then mapped back to

the sensor space, and the out-of-sample Type-I log-likelihood (c.f. Eq. (5)) is evaluated on

the hold-out (test) sensors:

ℒI
Y

train_spat, Y
test_spat =

1
T

∑
t = 1

T

y
test_spat(t) − L

test_spat
x

train_spat(t) 2
2

≔ Y
test_spat − L

test_spat
X

train_spat
F

2
.

(32)

Note that, while the Type-II log-likelihood has an interpretation as a Bregman divergence

between model and empirical covariance matrices, the Type-I log-likelihood is the Frobenius

norm or mean-squared error (MSE) ⋅

F

2

 of the model residuals, i.e., the average squared

Euclidean distance between empirical and modeled observation vectors. Thus, while the

Type-II likelihood compares model and observations in terms of their second-order statistics,

the Type-I likelihood uses only first-order information. As in temporal CV, the value of λ
that minimizes the MSE on the test sensors is selected as the final noise estimate.

6. Simulations

We conducted an extensive set of simulations, in which we compared the reconstruction

performance of the proposed LowSNR-BSI algorithm to that of Champagne and two

additional widely-used source reconstruction schemes for a range of different SNRs. We also

tested impact of the proposed noise learning schemes (adaptive, temporal CV and spatial

CV) on the source reconstruction performance compared to estimating the noise level from

baseline data.

6.1. Pseudo-EEG signal generation

Forward modeling—Populations of pyramidal neurons in the cortical gray matter are

known to be the main drivers of the EEG signal (Nunez et al., 2006). Here, we use a realistic

volume conductor model of the human head to model the linear relationship between

primary electrical source currents in these populations and the scalp surface potentials

captured by EEG electrodes. The New York Head model (Huang et al., 2016) provides a

segmentation of an average human head into six different tissue types. In this model, 2004

dipolar current sources were placed evenly on the cortical surface and 58 sensors were

placed on the scalp according to the extended 10–20 system (Oostenveld and Praamstra,

2001). In accordance with the predominant orientation of pyramidal neuron assemblies, the
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orientation of all source currents was fixed to be perpendicular to the cortical surface, so that

only scalar source amplitudes needed to be estimated. Finite-element modeling was used to

compute the lead field matrix, L ∈ ℝ58 × 2004, which serves as the forward model in our

simulations.

Source generation—We simulated a sparse set of N0 = 3 active sources, which were

placed at random positions on the cortex. The temporal activity of each source was

generated by a univariate linear autoregressive (AR) process, which models the activity at

time t as a linear combination of the P past values:

x
i
(t) = ∑

p = 1

P

a
i
(p)x

i
(t − p) + ξ

i
(t),  for i = 1, 2, 3.

Here, ai(p) for i = 1, 2, and 3 are linear AR coefficients, and P is the order of the AR model.

The model residuals ξi(·) for i = 1, 2 and 3 are also referred to as the innovation process;

their variance determines the stability of the overall AR process. We here assume

uncorrelated standard normal distributed innovations, which are independent for all sources.

In the following, we use stable AR systems of order P = 5.

Noise model—To simulate the electrical neural activity of the underlying brain sources, T

= 20 data points were sampled from the AR process described above. Corresponding dipolar

current sources were then placed at random locations, yielding sparse source activation

vectors x(t). Source activations X = [x(1), …, x(T)] were mapped to the 58 EEG sensors

through application of the lead field matrix L:

Y
signal = LX (33)

Next, we added Gaussian white noise to the sensor-space signal. To this end, noise was

randomly sampled from a standard normal distribution and normalized with respect to its

Frobenius norm. A weighted sum of signal and noise contributions then yielded the pseudo-

EEG signal

Y = Y
signal + α

Y
noise

Y
noise

F

, (34)

where α determines the signal-to-noise ratio in sensor space. For a given α, the noise

variance is obtained as σ2 = 1/M tr [Σe], for Σ
e

= Cov α
Y

noise 

Y
noise 

F

, and the SNR (in dB) is

calculated as SNR = 20log10 Y
signal 

F
/α . Since our goal is to investigate the effect of noise

variance estimation on the performance of the proposed algorithms, we fixed the noise

variance in each set of simulations so as to obtain distributions of performance metrics for a

number of similar effective SNR values. We conducted four sets of simulations using α =

{2, 1.5, 1, 0.5}, corresponding to average noise variances of σ2 = {37. 4 × 10−3, 21. 0 ×

10−3, 9. 4 × 10−3, 2.3 × 10−3} and average SNRs of SNR = {0.33, 2.17, 4.87, 11.40} (dB).
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Each set of simulations consists of 100 experiments, in which source locations and time

series as well as noise realizations were randomly sampled.

In addition to the pseudo-EEG signal, a pseudo baseline measurement containing only noise

but no signal was generated. The sole purpose of this measurement was to provide an

empirical estimate of the noise variance as a baseline for our joint source reconstruction and

noise estimation approaches, which estimate the same quantity from the summed pseudo-

EEG signal. To ensure sufficiently precise baseline estimation, 300 noise samples were

generated, normalized, and scaled by α as in Eq. (34) for each experiment.

6.2. Source reconstruction

We applied Champagne and LowSNR-BSI to the synthetic datasets described above. The

variances of all voxels were initialized randomly by sampling from a standard normal

distribution. The optimization programs were terminated either after reaching convergence

(defined by a relative change of the Frobenius-norm of the reconstructed sources between

subsequent iterations of less than 10−8), or after reaching a maximum of kmax = 3000

iterations.

In each experiment, we evaluated the algorithms using 40 predefined choices of the noise

variance ranging from λ = 1∕3σ2 to λ = 30σ2. In addition, λ was estimated from data using

the techniques introduced in Section 5. We observed that the variance estimated from

baseline data, σ2 (averaged over all EEG channels) was typically almost identical to the

ground-truth value λ = σ2 used to simulate the data. The reconstruction performance

obtained using this value was therefore included in the comparison as a baseline.

Performance at baseline noise level was compared to the performance obtained using

adaptive learning of the noise using Eq. (30) as well as using spatial or temporal cross-

validation. Note that, for temporal CV, we generated T = 80 samples, so that we obtained 60

samples in each training set and 20 samples in each test fold. Due to the increased number of

training samples, this method, therefore, has an advantage over the remaining ones. For

spatial CV, due to the spatial blur introduced by volume conduction, there is a limit on how

focal the measured sensor-space electrical potentials or magnetic fields can be, and the

signal will usually be distributed over all sensors. Therefore, a setting in which all ‘signal-

carrying’ electrodes will end up either in the training or test set is unlikely to occur in

practice. Using, for example, k = 4 random splits, it is ensured that the training set will

typically capture the signal pattern well. The test set in this approach is only used to evaluate

the out-of-sample likelihood on the remaining sensors, while no model fitting needs to take

place. Therefore, missing certain aspects of the signal pattern in the test set does not pose a

critical problem, especially if multiple splits are conducted.

Remark 6. The fact that real M/EEG data have time structure is acknowledged in our

simulation setting by modeling source time courses as AR processes. The resulting samples

of the training and test sets thereby become dependent. Technically, this violates the i.i.d.

assumption underlying the theory of CV. However, one can argue that training and test sets

are de-facto independent since the leakage from one set to another is small compared to the

length of the data. In the spatial CV approach, in contrast, the sensors of the training and test
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sets are strongly dependent on another, because of the spatial blur introduced by volume

conduction. Nevertheless, as we observe in Sections 6.4 and 7, spatial CV works very well

both in simulations and real data analysis. This observation suggests that the cross-validation

approach can work even if the i.i.d. assumption is violated, in line with previous literature

(Habermehl et al., 2014; Hastie et al., 2009; Haufe et al., 2011; Kohavi et al., 1995).

In addition to Champagne and LowSNR-BSI, two non-SBL source reconstruction schemes

were included for comparison. As an example of a sparse Type-I method based on ℓ1-norm

minimization, S-FLEX (Haufe et al., 2011) was used. As spatial basis functions, unit

impulses were used, so that the resulting estimate was identical to the so-called minimum-

current estimate (Matsuura and Okabe, 1995). In addition, the eLORETA estimate (Pascual-

Marqui, 2007), a smooth inverse solution based on weighted ℓ2
2‐norm minimization was

used. eLORETA was used with 5% regularization, whereas S-FLEX was fitted so that the

residual variance was consistent with the ground-truth noise level. Note that the 5% rule is

chosen as it gives the best performance across a subset of regularization values ranging

between 0.5% to 15%.

6.3. Evaluation metrics

Source reconstruction performance was evaluated according to the following metrics. First,

the earth mover’s distance (EMD, Haufe et al. (2008); Rubner et al. (2000)) was used to

quantify the spatial localization accuracy. The EMD metric measures the cost needed to

transform two probability distributions, defined on the same metric domain, into each other.

It was applied here to the N × 1 amplitude distributions of the true and estimated sources,

which were obtained by taking the voxel-wise ℓ2-norm along the time domain. EMD scores

were normalized to be in [0, 1]. Second, the error in the reconstruction of the source time

courses was measured. To this end, Pearson correlation between all pairs of simulated and

reconstructed (i.e., those with non-zero activations) sources was measured. Each simulated

source was matched to a reconstructed source based on maximum absolute correlation. Time

course reconstruction error was then defined as one minus the average of these absolute

correlations across sources. Finally, the runtime of the algorithms was measured in seconds

(s).

6.4. Results

Fig. 1 shows the EMD (upper row), the time course reconstruction error (middle row) and

the negative log-likelihood loss value (lower low) incurred by Champagne and LowSNR-

BSI for two SNR settings (SNR = 0.33 dB and SNR = 11.40 dB). Four different schemes of

estimating the noise level from data (estimation from baseline data, adaptive learning, spatial

CV, and temporal CV) are compared. Note that we found previously that the ground-truth

noise variance λ = σ2 used in the simulation is generally accurately estimated from baseline

data, which is referred to as ‘baseline’ in the figure, λ = σ
2. Interestingly, however, this

baseline is optimal only for LowSNR-BSI, and only with respect to temporal source

reconstruction. For Champagne, and with respect to the spatial source reconstruction

performance of LowSNR-BSI, the choice of the baseline noise variance turns out to be

suboptimal, as it is outperformed by all three proposed schemes that estimate the noise
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variance from the actual (task) data to be reconstructed (‘Adaptive Learning’, ‘Spatial CV’

and ‘Temporal CV’). Interestingly, noise levels estimated using Spatial CV lead to near-

optimal reconstruction performance in a broad variety of settings, in line with observations

made in Habermehl et al. (2014); Haufe et al. (2011). All proposed noise learning schemes

converge to points in the vicinity of the minimum of the SBL loss function Eq (12).

The EMD in our setting only depends on the spatial distribution of the sources. Therefore,

the EMD is not able to fully capture potential advantages resulting from modeling temporal

characteristics of the correlated EEG/MEG time courses. As a result, it is not highly aligned

with the values of the loss. This explains the observed discrepancies between the loss

function and the EMD values of Champagne and LowSNR-BSI in Fig. 1. To assess the

reconstruction of the temporal characteristics of the brain sources, we also measure the time

course error. All four variants of LowSNR-BSI algorithms not only outperform their

Champagne counterparts but also approach the minimal achievable time course error. High

EMD performance of Champagne with Spatial CV does not lead to high performance in

terms of time course error as well as regarding the negative log-likelihood loss. For all

algorithms, regularization values resulting in a smaller EMD metric can be found. However,

this observation does not imply a practical benefit of any algorithm as the ground-truth is

unknown in real-world situations.

Fig. 2 further compares the source reconstruction performance of the four noise estimation

variants separately for Champagne and LowSNR-BSI for a range of four SNR values. As

already observed in Fig. 1, all three proposed approaches for noise variance estimation

(adaptive learning, spatial CV, and temporal CV) lead to better source reconstruction

performance than the estimation from baseline data. Overall, spatial CV for Champagne and

temporal CV for LowSNR-BSI achieve the best combination of spatial and temporal

reconstruction performance.

The superior performance of CV techniques, however, comes at the expense of higher

computational complexity of the source reconstruction. As Fig. 2 demonstrates, using CV

techniques with the specified numbers of folds increases the runtime of Champagne and

LowSNR-BSI by approximately two orders of magnitude (103 s ~ 104 s) compared to the

runtimes of eLORETA, S-FLEX, and the baseline and adaptive learning variants of

Champagne and LowSNR-BSI (1 s ~ 10 s).

Fig. 3 provides an alternative depiction of the data presented in Fig. 2, which allows for a

more direct comparison of Champagne and LowSNR-BSI. As benchmark algorithms,

eLORETA (Pascual-Marqui, 2007) and S-FLEX (Haufe et al., 2011) are also included in the

comparison. It can be seen that LowSNR-BSI in the baseline mode, using adaptive noise

learning, and using temporal CV consistently outperforms Champagne in terms of spatial

localization accuracy, in particular in low-SNR settings. This behavior indeed confirms the

advantage of the surrogate function, ℒconv
Low‐SNR

γ ∣ γ
k , which is designed to provide a better

approximation of the non-convex SBL cost function in low-SNR regimes, as presented in

Section 4. Consequently, as the SNR decreases, the gap between LowSNR-BSI and

Champagne further increases. In terms of the time course reconstruction error, LowSNR-BSI

shows a similar improvement over Champagne when the SNR is low. However, the
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magnitude of this improvement is not as pronounced as observed for the EMD metric. The

only setting in which Champagne consistently outperforms LowSNR-BSI is when spatial

CV is used to estimate the noise variance, and spatial reconstruction performance is

evaluated.

Note that the LowSNR-BSI surrogate function in the baseline mode can provide a tight

upper-bound for the original non-convex function only when SNR is equal to zero. For non-

zero SNR, the current theory unfortunately does not apply; however, it is clear from our

empirical results that the LowSNR-BSI surrogate function remains advantageous also in

non-zero low-SNR regimes. As Fig. 3 demonstrates, we observe performance improvements

of LowSNR-BSI over Champagne in the baseline mode for SNRs up to around 8 dB. After

this point, the surrogate functions of LowSNR-BSI and Champagne both appear to be able

to approximate the non-convex loss with a similar degree of precision; thus, their

performance with respect to the evaluation metrics overlap as can be seen in the right

column of Fig. 1.

It can further be observed that S-FLEX yields higher spatial localization accuracy (lower

EMD) than eLORETA, while eLORETA yields higher temporal accuracy (lower time course

error) than S-FLEX across all SNR values. With respect to spatial accuracy, both

approaches, however, are consistently outperformed by Champagne and LowSNR-BSI. Note

that the superior spatial reconstruction of sparsity-inducing algorithms (Champagne,

LowSNR-BSI and S-FLEX) compared to eLORETA is expected here, because the simulated

spatial distributions are indeed sparse. The superiority of SBL methods (Champagne,

LowSNR-BSI) over S-FLEX that is observed here confirms observations and theoretical

considerations made in Cai et al. (2021); Owen et al. (2012); Wipf et al. (2010). eLORETA

shows comparable temporal reconstruction performance as LowSNR-BSI and Champagne,

while S-FLEX is outperformed by all other methods.

The convergence behavior of the different SBL variants discussed and introduced in Sections

3–5 is illustrated in Fig. 4. LowSNR-BSI variants have faster convergence rates at the early

stage of the optimization procedure compared to standard Champagne as well as

Champagne with MacKay updates. They, however, reach lower negative log-likelihood

values eventually, which indicates that they find better maxima of the model evidence.

Furthermore, the adaptive-learning variants of Champagne and LowSNR-BSI reach lower

negative log-likelihood values than their counterparts estimating the noise variance from

baseline data, suggesting that learning the noise variance, or in other words overestimating

the noise variance, improves the reconstruction performance through better model evidence

maximization.

Note that the plots in Fig. 4 demonstrate the convergence behaviour of MM algorithms for

only one single experiment. We conducted another experiment (see Appendix I), in which

the simulation was carried out 100 times using different instances of source distributions and

initializations. The final negative log-likelihood loss – attained after convergence – and

runtimes of all methods were calculated. The median and inter-quartile ranges over 100

randomized experiments of these performance metrics are reported in Fig. 8, which confirms

the observations made here.
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7. Analysis of auditory evoked fields (AEF)

The MEG data used here were acquired in the Biomagnetic Imaging Laboratory at the

University of California San Francisco (UCSF) with a CTF Omega 2000 whole-head MEG

system from VSM MedTech (Coquitlam, BC, Canada) with 1200 Hz sampling rate. The

neural responses of one subject to an Auditory Evoked Fields (AEF) stimulus were

localized. The AEF response was elicited with single 600 ms duration tones (1 kHz)

presented binaurally. The data were averaged across 120 trials (after the trials were time-

aligned to the stimulus). The pre-stimulus window was selected to be −100 ms to 5 ms and

the post-stimulus time window was selected to be 5 ms to 250 ms, where 0 ms is the onset of

the tone. Further details on this dataset can be found in Cai et al. (2021); Dalal et al. (2011);

Owen et al. (2012). The lead field for each subject was calculated with NUTMEG (http://

bil.ucsf.edu) using a single-sphere head model (two spherical orientation lead fields) and an

8 mm voxel grid.

The results presented in Section 6 have been obtained for the scalar setting, where the

orientation of the brain sources are assumed to be perpendicular to the surface of cortex and,

hence, only the scalar deflection of each source along the fixed orientation needs to be

estimated. In real data, surface normals are hard to estimate or even undefined in case of

volumetric reconstructions. Consequently, we model each source here as a full 3-

dimensional current vector. This is achieved by introducing three variance parameters for

each source within the source covariance matrix, Γ3D = diag γ
3D = γ1

x, γ1
y, γ1

z , …, γ
N
x , γ

N
y , γ

N
z ⊤

.

As all algorithms considered here model the source covariance matrix Γ to be diagonal, this

extension can be readily implemented. Correspondingly, a full 3D leadfield matrix,

L
3D ∈ ℝM × 3N, is used.

Fig. 5 shows the reconstructed sources of the AEF of one subject using conventional

Champagne with pre-estimated λ = σ
2, adaptive noise learning, and spatial CV. LowSNR-

BSI with pre-estimated λ = σ
2 was also included in the comparison. Shown in the top panel

are the reconstructions at the time of the maximal deflection of the auditory N100

component (shown in bottom panel).

All reconstructions are able to correctly localize bilateral auditory activity to Heschel’s

gyrus, which is the location of the primary auditory cortex. Note that an additional source in

the midbrain, which is indicated by all three Champagne variants, is absent for LowSNR-

BSI.

We tested the reconstruction performance of all methods for random subsets of 10, 20, 40,

60, and 100 trials. As Fig. 6 shows, the proposed noise learning variants of Champagne as

well as LowSNR-BSI can correctly localize bilateral auditory activity to Heschl’s gyrus even

when using as few as 10 trials. Focusing on the low-SNR regime, Fig. 7 shows seven

reconstructions for random selections of 10 trials. LowSNR-BSI as well as all proposed

noise learning variants of Champagne consistently show sources at the expected locations in

the left and auditory cortices, where both cortices are jointly identified in the majority of

experiments.
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8. Discussion

We have provided a unifying theoretical platform for deriving different sparse Bayesian

learning algorithms for electromagnetic brain imaging using the Majorization-Minimization

(MM) framework. First, we demonstrated that the choice of upper bounds of the Type-II

non-convex loss function within the MM framework influences the reconstruction

performance and convergence rates of the resulting algorithms. Second, focusing on

commonly occurring low-SNR settings, we derived a novel Type-II Bayesian algorithm,

LowSNR-BSI, using a novel convex bounding MM function that converges to the original

loss function as the SNR goes to zero. We demonstrated the advantage of LowSNR-BSI over

existing benchmark algorithms including Champagne, eLORETA and S-FLEX. Consistent

with the theoretical considerations, the advantage of LowSNR-BSI over Champagne

decreases with increasing SNR. Third, we have derived an analytic solution that allows us to

estimate the noise variance jointly within the source estimation procedure on the same (task-

related) data that are used for the reconstruction. We have also adopted cross-validation

schemes to empirically estimate the noise variance from hold-out data through a line search.

We have proposed spatial and temporal CV schemes, where either subsets of EEG/MEG

channels or recorded samples are left out of the source reconstruction, and where the noise

variance is selected as the minimizer of a divergence between model and hold-out data. We

also demonstrate that precise knowledge of the noise variance is required in order to

determine the optimal algorithm performance. Finally, according to our empirical results, all

three proposed techniques for estimating the noise variance lead to superior source

reconstruction performance compared to the setting in which the noise variance is estimated

from baseline data.

8.1. Cross-validation vs. adaptive noise learning

Spatial CV for Champagne and Temporal CV for LowSNR-BSI achieved the best

performances and are generally applicable to any distributed inverse solution. Their long

computation time can, however, be challenging as their computational complexity is

drastically higher (around two orders of magnitude) than using baseline data or adaptive

learning schemes. The high complexity of CV techniques is a potential limitation in settings

where the efficiency of the algorithm or immediate access to the outcome is crucial. What is

more, this approach quickly becomes infeasible if more than one parameter needs to be

estimated through a grid search. In contrast, the computational complexity of the proposed

noise level estimation scheme using adaptive learning is of the same order as the complexity

of the baseline approach. Moreover, we have successfully extended this approach to the

estimation of heteroscedastic noise, where a distinct variance is estimated for each M/EEG

sensor (Cai et al., 2021). Hence, the adaptive-learning approach can be seen as an

advancement of the baseline algorithm that combines performance improvement and

computational efficiency. It is also worth noting that the computational complexity of CV

techniques heavily relies on tunable parameters such as the number of folds/splits of the data

and the total number of candidate points in the grid search.
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8.2. Interpretation of Type-I and Type-II loss functions as divergences

We have pointed out (see Section 5.2 and Appendix A) that Type-I and Type-II Bayesian

approaches implicitly use different metrics to compare the empirical sensor-space

observations to the signal proportion explained by the reconstructed brain sources. Type-I

approaches measure first-order differences between modeled and reconstructed time series

using variants of the MSE, while Type-II approaches amount to using the log-det Bregman

divergence to measure differences in the second-order statistics of the empirically observed

and modeled data as summarized in the respective covariance matrices. While the

connection between the Type-II loss function and the log-det Bregman divergence has been

investigated and exploited in numerous forms such as Stein’s loss (James and Stein, 1992) or

the graphical Lasso (Friedman et al., 2008; Mazumder and Hastie, 2012; Ravikumar et al.,

2011), and has found applications in disciplines such as information theory and metric

learning (Davis et al., 2007; Zadeh et al., 2016), wireless communication (Khalilsarai et al.,

2020), and signal processing (Khanna and Murthy, 2017a; 2017b; Wiesel et al., 2015), it has

not received much attention in the BSI literature to the best of authors’ knowledge. Here, we

have used this insight to devise a novel cross-validation scheme, temporal CV, in which

model fit is measured in terms of the log-det Bregman divergence (or, Type-II likelihood) on

held-out samples. In contrast, the previously introduced spatial CV uses the mean-squared

error to measure out-of-sample model fit. Importantly, however, this difference does not

imply that the application of spatial CV is restricted to Type-I approaches or that the use of

temporal CV is restricted to Type-II approaches. Rather, both approaches are universally

applicable. In fact, it is straightforward to evaluate the Type-I likelihood based on the source

times series reconstructed with Type-II methods. Conversely, it is also possible to estimate

the Type-II likelihood for Type-I approaches such as S-FLEX. Here, the model source and

noise covariances are first estimated from the reconstructed sources as Γ = Cov[x(t)] and

σ
2 = 1/M ∑

m
C

y
− LΓL

⊤
[m, m]

, after which Σy can be calculated. The optimal Type-I

regularization parameter is then selected as the minimizer of ℒII
Y

train_temp, Y
test_temp  in

Eq. (31).

8.3. Limitations and future work

One limiting assumption of the current work is that the activity of the sources is modeled to

be independent across voxels, spatial orientations, and time samples. Analogously, the noise

is assumed to be independent across times samples, and homoscedastic (independent with

equal variance across sensors). These assumptions merely act as prior information whose

purpose is to bias the inverse reconstruction towards solutions with lower complexity. Thus,

they do not prevent the reconstruction of brain and noise sources with more complex

structure if the observed data are inconsistent with these priors. On the other hand, modeling

dependency structures that are in fact present in real data has the potential to substantially

improve the source reconstruction. We have recently proposed adaptive noise learning

algorithms that relax the rather unrealistic assumption of homoscedastic noise (Cai et al.,

2021). Going further, it would be possible to also model spatial covariances of the sources

between voxels and/or between source orientation within voxels, which would encode the

realistic assumption that individual brain regions do not work in isolation. Similary, the
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spatial covariance structure of the noise could be modeled in order to accommodate spatially

distributed artifacts due to, for example, heart beat or line noise interference. Finally,

electrophysiological data are known to possess a complex intrinsic autocorrelation structure,

which is not modeled by the majority of existing BSI algorithms. We have recently proposed

ways to also learn temporal correlations within the Type-II framework and have obtained

promising results with respect to time course reconstruction (Hashemi and Haufe, 2018;

Hashemi et al., 2021).

9. Conclusion

We have provided a unifying theoretical platform for deriving different sparse Bayesian

learning algorithms for electromagnetic brain imaging using the Majorization-Minimization

(MM) framework. This unification perspective not only provides a useful theoretical

framework for comparing different algorithms in terms of their convergence behavior, but

also provides a principled recipe for constructing novel algorithms with specific properties

by designing appropriate bounds of the Bayesian marginal likelihood function. Building on

MM principles, we then proposed a novel method called LowSNR-BSI that achieves

favorable source reconstruction performance in low signal-to-noise-ratio settings.

Recognizing the importance of noise estimation for algorithm performance, we present both

analytical and cross-validation approaches for noise estimation. Empirically, we show that

the monotonous convergence behavior predicted from MM theory is confirmed in numerical

experiments. Using simulations, we further demonstrate the advantage of LowSNR-BSI over

conventional Champagne in low-SNR regimes, and the advantage of learned noise levels

over estimates derived from baseline data. To demonstrate the usefulness of our novel

approach, we show neurophysiologically plausible source reconstructions on averaged

auditory evoked potential data.

Our characterization of the Type-II likelihood as a divergence measure provides a novel

perspective on the construction of BSI algorithms and might open new avenues of research

in this field. It is conceivable that alternative divergence metrics can be used for solving the

M/EEG source reconstruction problem in the future by modeling specific

neurophysiologically valid aspects of similarity between data and model output. Promising

metrics in that respect are information divergences such as Kullback-Leibler (KL) (Wei et

al., 2020), Rényi (Khanna and Murthy, 2017b), Itakura-Saito (IS) (Févotte et al., 2009) and β
divergences (Cichocki and Amari, 2010; Eguchi and Kato, 2010; Févotte and Idier, 2011;

Samek et al., 2013) as well as transportation metrics such as the Wasserstein distance

between empirical and statistical covariances (e.g., (Gramfort et al., 2015; Janati et al., 2020;

Peyré et al., 2019; Villani, 2008)).

Although this paper focuses on electromagnetic brain source imaging, Type-II methods have

also been successfully developed in other fields such as direction of arrival (DoA) and

channel estimation in wireless communications (Gerstoft et al., 2016; Haghighatshoar and

Caire, 2017; Khalilsarai et al., 2020; Prasad et al., 2015), Internet of Things (IoT) (Fengler et

al., 2019a; 2019b), robust portfolio optimization in finance (Feng et al., 2016), covariance

matching and estimation (Benfenati et al., 2020; Greenewald and Hero, 2015; Meriaux et al.,

2020; Ollila et al., 2020; Ottersten et al., 1998; Tsiligkaridis et al., 2013; Werner et al., 2008;
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Zoubir et al., 2018), graph learning (Kumar et al., 2020), and brain functional imaging (Wei

et al., 2020). The methods introduced in this work may also prove useful in these domains.
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Appendix A.: Bregman Divergence Formulation of the Type-II Loss

Function

We start by recalling the definition of log-det Bregman matrix divergence - also known as

Stein’s loss (James and Stein, 1992) - between any two M × M positive semidefinite (PSD)

matrices Q and W:

�log‐det(Q, W) = tr QW
−1 − log QW

−1 − M, (35)

where the “log-det” Bregman matrix divergence in (35) is an special case of Bregman matrix

divergence (Bregman, 1967), where − log |·| is selected as a strictly convex function. By

substituting Cy and Σy in (35) instead of Q and W, the log-det Bregman matrix divergence

can be written as follows (Davis et al., 2007; Friedman et al., 2008; Jalali et al., 2017;

Khalilsarai et al., 2020; Khanna and Murthy, 2017a; Mazumder and Hastie, 2012;

Ravikumar et al., 2011; Tsiligkaridis and Hero, 2013; Zadeh et al., 2016):
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�log‐det  Cy, Σy = tr CyΣy
−1 − log CyΣy

−1 − M

= tr CyΣy
−1 + log Σy − log Cy − M

= log Σy + tr CyΣy
−1 + −log Cy − M

const 

,
(36)

where (36) is the same as (13) up to a constant. Note that log|Cy| does not depend on γ and

is, therefore, treated as a constant value here.

Appendix B.: Proof of Corollary 1

Proof. To verify the descending trend in the MM framework, it is sufficient to show that

f(uk +1) ≤ f(uk).To this end, we have f(uk +1) ≤ g(uk +1|uk) from condition [A2]. Condition

[A3] further states that g(uk +1|uk) ≤ g(uk|uk), while g(uk|uk) = f(uk) holds according to

[A1]. Putting everything together, we have:

f u
k + 1 ≤

[A2]
g u

k + 1 ∣ u
k ≤

[A3]
g u

k ∣ u
k =

[A1]
f u

k ,

which concludes the proof. □

Appendix C.: Proof of Proposition 1

Proof. We first show that the objective function of the M-step is derived by upper-bounding

the negative log-likelihood, − log p(Y|γ), using Jensen’s inequality (J):

−log p(Y ∣ γ) = − log Ep(X ∣ γ)p(Y ∣ X, γ) = − log Ep(X ∣ γ)

p X ∣ Y, γk
p(Y ∣ X, γ)

p X ∣ Y, γk

=
(I)

− log E
p X ∣ Y, γ

k

p(Y ∣ X, γ)

p X ∣ Y, γk
p(X ∣ γ)

≤
(J)

− E
p X ∣ Y, γ

k log 
p(Y ∣ X, γ)

p X ∣ Y, γk
p(X ∣ γ)

=
 (II) 

− E
p X ∣ Y, γ

k log p(Y, X ∣ γ) + E
p X ∣ Y, γ

k log p X ∣ Y, γk

const 

≔ ℒEM
k γ ∣ γk .

(37)

The resulting bound is a majorizing function for − log p(Y|γ), so that condition [A2] holds.

Note that the term E
p X ∣ Y, γ

k
p X ∣ Y, γ

k  does not depend on γ and, therefore, does not

influence the optimization. According to the definition of Jensen’s inequality, the equality

constraint – condition [A1] – holds if and only if the argument of the convex function is a

constant. Therefore, to establish the equivalence of both sides of (J) when γ = γk, it is
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sufficient to show that the argument of the log function, 
p(Y ∣ X, γ)

p X ∣ Y, γ
k

p(X ∣ γ), is constant when

γ = γk. This can be verified by invoking Bayes rule:

p Y ∣ X, γ
k

p X ∣ Y, γ
k

p X ∣ γ
k = p Y ∣ γ

k .

Since p(Y|γk) is a constant, equality condition [A1] holds.

After inserting the analytic form of − log p(Y, X|γ) in Eq. (24):

−log p(Y, X ∣ γ) =
T

2
 log Γ +

1
2 ∑

t = 1

T

x(t)⊤Γ
−1

x(t) +
T

2
log 2σ

2
I + ∑

t = 1

T
1

σ
2

y(t) − Lx(t)

2

2

,

we are ready to prove that ℒEM
k

γ ∣ γ
k  fulfills condition [A3]. We have:

ℒEM
k γ ∣ γk ∝ log Γ + E

p X ∣ Y, γ
k

1
T

∑
t = 1

T

x
k(t)⊤

Γ
−1

x
k(t) + const, (38)

where const comprises all terms of Eq. (25) that are not a function of γ. To prove that

ℒEM
k

γ ∣ γ
k  satisfies condition [A3], we need to show that ℒEM

k
γ ∣ γ

k  reaches to its global

minimum in each MM iteration. This can be easily guaranteed if Eq. (38) is convex. While

the second term in (38) is convex, the first term, log |Γ|, is in fact concave, which hampers

conclusions concerning the convexity of their sum. However, we can use the concept of

geodesic convexity or g-convexity from non-Euclidean and geometric optimization, which

enables us to prove that any local minimum of Eq. (38) is actually a global minimum. For

the sake of brevity, we will omit a detailed theoretical introduction of g-convexity, and only

borrow the following required propositions, Propositions 5 and 6, from the literature (an

interested reader can refer to (Wiesel et al., 2015, Chapter 1) for a gentle introduction to this

topic, and to (Papadopoulos, 2005, Chapter 2) (Ben-Tal, 1977; Bonnabel and Sepulchre,

2009; Liberti, 2004; Moakher, 2005; Pallaschke and Rolewicz, 2013; Rapcsak, 1991;

Vishnoi, 2018) for more in-depth technical details). Now, we state the following preliminary

results: □

Proposition 5. The function log |Γ| is g-convex in Γ, where Γ belongs to the manifold of

positive definite (PD) matrices.

Proof. A detailed proof can be found in (Wiesel et al., 2015, Lemma. 1.13). The main idea is

to leverage the geodesic Qq = VDqV⊤, q ∈ [0, 1] between two matrices, Q0 = VV⊤ and Q1

= VDV⊤, in order to transfer the problem into the following form:

f Q
q

= log  VD
q
V

⊤ = 2 log  V +q log  D ,
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where f(Qq) is a linear function and, therefore, convex in q. □

Remark 7. The log-determinant function is concave in classical Euclidean analysis.

However, Proposition 5 demonstrates that it is g-convex with respect to the PD manifold.

Proposition 6. Any local minimum of a g-convex function over a g-convex set is a global

minimum.

Proof. A detailed proof is presented in (Rapcsak, 1991, Theorem 2.1).

Given that g-convexity is an extension of classical convexity to non-Euclidean geometry, it is

straightforward to show that all convex functions are also g-convex, where the geodesics

between pairs of matrices are simply line segments. Therefore, given Proposition 5, we can

conclude that Eq. (38) is g-convex; hence, any local minimum of ℒEM
k

γ ∣ γ
k  is a global

minimum according to Proposition 6. This proves that condition [A3] is fulfilled and

completes the proof of Proposition 1. □

Appendix D.: Proof of Proposition 2

Proof. We start by recalling ℛII−x(X, γ) in Eq. (14):

ℛII−x(X, γ) =
1
T

∑
t = 1

T

∑
n = 1

N x
n
(t)2

γ
n

+ log Σ
y

.

Based on (Sun et al., 2017, Example 2), [A2] can be directly inferred from the concavity of

the log-determinant function and its first-order Taylor expansion around the value from the

previous iteration, Σ
y
k, which leads to the following inequality:

log Σy ≤ log Σy
k + tr Σy

k −1
Σy − Σy

k

= log Σy
k + tr Σy

k −1
Σy − tr Σy

k −1
Σy

k .
(39)

Note that the first and last term in (39) do not depend on γ; hence, they can be ignored in the

optimization procedure. Conditions [A1] and [A4] are automatically satisfied by

construction because the majorizing function is obtained through a Taylor expansion around

Σ
y
k. Concretely, [A1] is satisfied because the equality in Eq. (39) holds for Σ

y
= Σ

y
k.

Similarly, [A4] is satisfied because the gradient of log|Σy| at point Σ
y
k, Σ

y
k −1

, defines the

linear Taylor approximation log Σy
k + tr Σ

y
k −1

Σ
y

− Σ
y
k . Thus, both gradients coincide in Σ

y
k

by construction Now, we show that [A3] can be satisfied easily using standard optimization

algorithms by proving that ℛconv
k

γ ∣ γ
k  is a convex function with respect to γ. To this end,

we rewrite Eq. (26):
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ℛconv
k

γ ∣ γ
k =

1
T

∑
t = 1

T

∑
n = 1

N x
n
k(t)2

γ
n

+ log Σ
y
k + tr Σ

y
k −1

Σ
y

− tr Σ
y
k −1

Σ
y
k ,

as follows:

ℛconv
k γ ∣ γk = diag[U]γ−1 + diag[V]γ + const, (40)

where U ≔ 1
T

∑
t = 1
T

x
k(t)⊤x

k(t)  and V ≔ L
⊤

Σ
y
k −1

L are defined as parameters that do not

depend on γ. The term const also collects constant terms in (39), i.e.

const ≔ log Σ
y
k + σ

2tr Σ
y
k −1

− M. Besides, γ−1 = γ1
−1, …, γ

N
−1 ⊤

 is defined as the element-

wise inversion of γ. The convexity of ℛconv
k

γ ∣ γ
k  can be directly inferred from the

convexity of diag[U]γ−1 and diag[V]γ with respect to γ (Boyd and Vandenberghe, 2004,

Chapter. 3). The convexity of ℛconv
k

γ ∣ γ
k , which ensures that condition [A3] can be

satisfied using standard optimization, along with fulfillment of conditions [A1], [A2] and

[A4], ensure that Theorem 1 holds.

In order to establish the equivalence of the MM algorithm using the majorization function

Eq. (26) and the convex-bounding based Champagne variant presented in Section 2.3.2, we

here decompose Σy into rank-one matrices as introduced in (Sun et al., 2016). The first term

of Eq. (26) can be reformulated as follows:

tr Σy
k −1

Σy = tr Σy
k −1

σ
2
I + LΓL

⊤

= tr Σy
k −1

LΓL
⊤ = diag L

⊤
Σy

k −1
L

⊤
γ,

(41)

where Γ = diag γ1, …, γ
N

, σ
2, …, σ

2 , and L = [L, I]. Since we are optimizing Eq. (26) with

respect to γn, for n = 1, …, N, the elements of Γ and L related to the sensor noise σ2 vanish.

Thus, by inserting Eq. (41) into Eq. (26), taking the derivative with respect to γn, for n = 1,

…, N, and setting it to zero,

∂
∂γ

n

1
T

∑
t = 1

T

x
n
k(t)

2
γ
n
−1 + L

n
⊤

Σ
y
k −1

L
n

γ
n

= −
1

γ
n

2
1
T

∑
t = 1

T

x
n
k(t)

2
+ L

n
⊤

Σ
y
k −1

L
n

= 0    for n = 1, …, N,

where Ln denotes the n-th column of the lead field matrix, we obtain an update rule in terms

of the original variables Γ and L:
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γn
k + 1 ≔

1
T

∑t = 1
T

xn
k(t)

2

Ln
⊤

Σy
k −1

Ln

, (42)

which is identical to the update rule of the convex-bounding based approach discussed in

Section 2.3.2, Eqs. (17)–(19). □

Appendix E.: Proof of Proposition 3

Proof. The proof that conditions [A1]–[A4] are satisfied is directly analogous to that of

Proposition 2; therefore, it is omitted here. The equivalence of the Champagne variant based

on MacKay updates (Wipf and Nagarajan, 2009, Section III.A-2) presented in Section 2.3.3

and the solution derived within the MM framework can be derived by transforming the

update rule Eq. (42) into a fixed-point iteration of the form γk+1 = f(γk), which is an

alternative way of minimizing the same surrogate function (Eq. (26)). By squaring the left

and right hand sides of Eq. (42) , one can divide both sides by γ
n
k + 1 and re-interpret the term

on the right hand side as the estimate from the previous (k-th) iteration:

γn
k + 1 ≔

1
T

∑
t = 1

T

xn
k(t)

2
γn

k
Ln

⊤
Σy

k −1
Ln

−1
(43)

for n = 1, …, N. This is indeed identical to the MacKay update in Eq. (22), which concludes

the proof. □

Appendix F.: Proof of Proposition 4

Proof. (following (Haghighatshoar and Caire, 2017, Appendix C–A)) Without loss of

generality, we here consider the case σ2 = 1, which can be obtained by normalizing the

sensor and source covariance matrices by σ2: Γ ← Γ∕σ2, Σy ← Σy/σ2 = I + LΓL⊤. Also,

due to the concavity of the log(·) function and by using a Taylor expansion around point a,

we have:

log(x) = log a +
x

a
− 1 + �(x),  ∀a > 0. (44)

Assuming that LΓL⊤ has an eigenvalue decomposition LΓL⊤ = UPU⊤ with P = diag(p1,

…, pM), the majorizing function ℒconv
Low‐SNR

γ ∣ γ
k  as well as Eq. (28) are derived as follows:

log Σy = log I + UPU
⊤ =

 (I)  ∑
i = 1

M

log 1 + pi =
 (II)  ∑

i = 1

M

pi + � pi

= tr LΓL
⊤ + �(SNR),

(45)

where the pi, for i = 1, …, M denote the diagonal elements of P, which are equivalent to the

eigenvalues of LΓL⊤. The term � p
i

 represents the second and higher-order residuals of the
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Taylor expansion. Note that (45)-(I) is obtained by expanding P over its diagonal elements,

while (45)-(II) is derived by exploiting the concavity of the log(.) function and its first-order

Taylor expansion around a = 1 based on Eq. (44). Given the eigenvalue decomposition of

LΓL⊤ = UPU⊤ and the normalization with respect to the noise variance, the sum over all

eigenvalues of LΓL⊤, i.e., ∑
i = 1
M

p
i
, represents the ratio between the power of the signal and

the power of the noise; hence, one can replace ∑
i = 1
M

� p
i

 in Eq. (45) with �(SNR). To

elaborate this more, note that given σ2 = 1, we have SNR ∝ � Lx(t) 2 = tr LΓL
⊤ , where

� x(t)x(t)⊤ = Γ = diag γ1, …, γ
N

⊤  due to the independence between voxels. Therefore,

SNR ∝ tr LΓL
⊤ = ∑

i = 1
M

p
i
, as the sum of the eigenvalues of a matrix is equal to its trace.

As we have shown that log Σ
y

= tr LΓL
⊤ + �(SNR), condition [A2] holds and ℒII(γ)

converges to ℒconv
Low‐SNR

γ ∣ γ
k  when SNR → 0.

Moreover, as Eq. (28) is constructed using a linear Taylor approximation, [A1] and [A4]

hold due to the same arguments made in the proof of Proposition 2. It remains to be shown

that condition [A3] can be easily fulfilled due to the convexity of ℒconv
Low‐SNR

γ ∣ γ
k . To this

end, we exploit the following key relationship between the sensor and source space

covariances:

1
T

∑
t = 1

T

y(t)⊤
Σy

−1
y(t) =

1
T

∑
t = 1

T
1
λ

y(t) − Lx
k(t)

2

2
+ x

k(t)⊤
Γ

−1
x

k(t) . (46)

By replacing 
1
T

∑
t = 1
T

y(t)⊤Σ
y
−1

y(t) in Eq. (27) with its source space equivalence in (46), we

have:

ℒconv
Low‐SNR γ ∣ γk = tr LΓL

⊤ +
1
T

∑
t = 1

T

x
k(t)⊤

Γ
−1

x
k(t) + const, (47)

where const denotes the terms that do not depend on γ. Reformulating (47) as

ℒconv
Low‐SNR

γ ∣ γ
k = diag[W]γ + diag[Q]γ−1 + const,

with W ≔ L⊤L, Q ≔ 1
T

∑
t = 1
T

x
k(t)⊤x

k(t)  and γ−1 = γ1
−1, …, γ

N
−1 ⊤

 proves the convexity of

ℒconv
Low‐SNR

γ ∣ γ
k  using the same arguments made for proving convexity in Proposition 2.

Thus, we have shown that conditions [A1]–[A4] hold, which concludes the proof. □

Appendix G.: Detailed Derivation of the LowSNR-BSI Algorithm

To find the optimal value of γ = [γ1, …, γN]⊤, we take the derivative of ℒconv
Low‐SNR

γ ∣ γ
k  in

(27) with respect to each γn for n = 1, …, N:
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∂
∂γn

ℒconv
Low‐SNR γ ∣ γk =

∂
∂γn

tr LΓL
⊤ +

1
T

∑
t = 1
T

y(t)⊤
Σy

−1
y(t)

=
 (I)  ∂

∂γn
∑

n = 1
N

γnLn
⊤

Ln +
∂

∂γn

1
T

∑
t = 1
T

y(t)⊤
Σy

−1
y(t)

=
(II)

Ln
⊤

Ln +
∂

∂γn
∑

t = 1
T 1

T

1

σ
2 y(t) − Lx

k(t) 2
2

+ x
k(t)⊤

Γ
−1

x
k(t)

=
(III)

Ln
⊤

Ln +
1
T

∑
t = 1
T

x
k(t)⊤ ∂

∂γn

Γ
−1

x
k(t)

= Ln
⊤

Ln + −
1

γn
2

1
T

∑
t = 1
T

xn
k(t)

2
,

(48)

where Eq. (48)-I is derived based on a sum-of-rank-one matrices reformulation of the term

tr(LΓL⊤) by exploiting the diagonal structure of Γ. Equality (48)-II is the direct implication

of the duality between γ-space and X-space that has been pointed out in (14). Finally,

1

σ
2 y(t) − Lx

k(t) 2
2
 does not appear in (48)-III and is ignored since it does not depend on γ.

Setting the derivative in Eq. (48) to zero yields the following closed-form update for γ =

[γ1, …, γN]⊤:

γ
n
k + 1 ≔

1
T

∑
t = 1
T

x
n
k(t)

2

L
n
⊤

L
n

 for n = 1, ⋯, N,

which is identical to the update rule in Eq. (29). This completes the derivation of the

LowSNR-BSI algorithm.

Appendix H.: Proof of Theorem 2

Proof. We start by taking the derivative of ℒII(λ) with respect to λ:

∂
∂λ

ℒII(λ) =
∂

∂λ
log Σy +

∂
∂λ

1
T

∑
t = 1

T

y(t)⊤
Σy

−1
y(t) . (49)

We first calculate the first term, 
∂

∂λ
log Σ

y
. Using the matrix inversion equality

log Σ
y

= log λI + LΓL
⊤ = log

1
λ

L
⊤

L + Γ
−1 + log Γ +log λI ,

we have

∂
∂λ

log Σ
y

=
∂

∂λ
M log λ + log

1
λ

L
⊤

L + Γ
−1 =

∂
∂λ

M log λ + log Σ
x
−1 ,

where the term log|Γ| is omitted since it is does not depend on λ. Then, the derivative of log|

Σy| with respect to λ can be obtained as follows:
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∂
∂λ

log Σy =
M

λ
−

1

λ
2 tr ΣxL

⊤
L , (50)

where the second term in (50) is derived according to the equality Σ
x
−1 = Γ

−1 + 1
λ

L
⊤

L ,

which holds for the inverse of the posterior covariance in Eq. (10) (Sekihara and Nagarajan,

2015, Chapter 4):

∂
∂λ

log Σ
x
−1 = tr Σ

x
∂

∂λ
Σ

x
−1 = tr Σ

x
∂

∂λ
Γ

−1 +
1
λ

L
⊤

L

= tr Σ
x

∂
∂λ

1
λ

L
⊤

L = −
1

λ
2

tr Σ
x
L

⊤
L .

In the next step, we calculate the derivative of the second term in Eq. (49) using the

following key relation between the sensor and source space covariances presented in

Appendix F. Given (46), we have

∂
∂λ

1
T

∑
i = 1

T

y(t)⊤
Σy

−1
y(t) = −

1

λ
2

1
T

∑
i = 1

T

y(t) − Lx
k(t) 2

2
, (51)

where the term xk(t)⊤Γ
−1

x
k(t) is neglected since it does not depend on λ. Let Γk and Σ

x
k be

fixed values obtained in the (k)-th iteration. Then, by substituting Eqs. (50) and (51) into Eq.

(49), we have:

∂
∂λ

ℒII(λ) =
∂

∂λ
log Σy +

∂
∂λ

1
T

∑
t = 1

T

y(t)⊤
Σy

−1
y(t)

=
M

λ
−

1

λ
2 tr Σx

k
L

⊤
L + −

1

λ
2

1
T

∑
t = 1

T

y(t) − Lx
k(t) 2

2
.

(52)

By expressing tr Σ
x
k
L

⊤
L  in terms of the values at the (k)-th iteration according to the

following matrix equality (Zhang, Rao, 2011):

tr Σ
x
k
L

⊤
L = tr Σ

x
k

λ
k

Σ
x
k −1

− Γ
k −1

= tr λ
k
I
N

k
− tr λ

k
Σ

x
k

Γ
k −1

,

Eq. (52) can be reformulated as follows:

∂

∂λ
k

ℒII
λ
k =

M

λ
k

−
1

λ
k 2

tr λ
k
I
N

k
+

1

λ
k 2

tr λ
k

Σ
x
k

Γ
k −1

−
1

λ
k 2

1
T

∑
t = 1

T

y(t) − Lx
k(t) 2

2
.

Note that Nk denotes the number of non-zero voxels at the (k)-th iteration. Now by setting

the derivative to zero, the update rule for λ at the (k + 1)-th iteration is obtained as
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λ
k + 1 ≔

1
T

∑
t = 1
T

y(t) − Lx
k(t)2

2

M − N
k + tr Σ

x
k

Γ
k −1

.

This completes the proof. □

Appendix I.: A Statistical Analysis of Computational Complexity and

Convergence Behaviour of MM Methods

Here, we conducted an experiment, in which the simulation presented in Fig. 4 was carried

out 100 times using different instances of source distributions and initializations. The final

negative log-likelihood loss – attained after convergence – and runtimes of all methods were

calculated. The median and inter-quartile ranges over 100 randomized experiments of these

performance metrics are reported in Fig. 8.

As demonstrated in Fig. 4, the EM algorithm indeed needs a larger number of iterations for

convergence than its peer MM variants, which eventually results in longer runtimes and

higher computational complexity if we measure runtime in units of seconds, demonstrated in

Fig. 8-(A). The overall computation complexity in each iteration of the EM, however, is

comparable to the other MM variants. Even though an additional operation for calculating

the posterior matrix of the sources, ΣX, is involved in each iteration of the EM algorithm –

which operates in the high-dimensional source space, efficient implementation techniques

can drastically reduce the computational complexity of this operation, e.g., from � N
2  to

�(N), since only the main diagonal elements of ΣX are required in the update rule, i.e.,

Σ
x
k

n, n
.Therefore, the overall computational complexity of the EM algorithm at each

iteration is dominated by 
1
T

∑
t = 1
T

x
n
k(t)

2
, which is a common term in all other MM-based

approaches, e.g., convex bounding, MacKay, and LowSNR-BSI. Interested readers can refer

to (Zumer, Attias, Sekihara, Nagarajan, 2007) for a computational analysis of EM and other

Type-II methods. Fig. 8-(B) also depicts the median and inter-quartile ranges of the final

negative log-likelihood loss – attained after convergence – of different variants of LowSNR-

BSI and Champagne as well as Champagne using EM and MacKay updates.

References

Baillet S, Mosher JC, Leahy RM, 2001. Electromagnetic brain mapping. IEEE Signal Process Mag18
(6), 14–30.

Bauschke HH, Combettes PL, 2017. Fenchel–Rockafellar Duality. In: Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. Springer, pp. 247–262.

Bekhti Y, Lucka F, Salmon J, Gramfort A, 2018. A hierarchical bayesian perspective on majorization-
minimization for non-convex sparse regression: application to m/EEG source imaging. Inverse
Probl34 (8), 085010.

Ben-Tal A, 1977. On generalized means and generalized convex functions. J Optim Theory Appl21
(1), 1–13.

Benfenati A, Chouzenoux E, Pesquet J-C, 2020. Proximal approaches for matrix optimization
problems: application to robust precision matrix estimation. Signal Processing169, 107417.

Hashemi et al. Page 39

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Benidis K, Feng Y, Palomar DP, et al., 2018. Optimization methods for financial index tracking: from
theory to practice. Foundations and Trends® in Optimization3 (3), 171–279.

Bijma F, De Munck JC, Huizenga HM, Heethaar RM, 2003. A mathematical approach to the temporal
stationarity of background noise in MEG/EEG measurements. Neuroimage20 (1), 233–243.
[PubMed: 14527584]

Bishop CM, 2006. Pattern recognition and machine learning. Springer.

Blankertz B, Lemm S, Treder M, Haufe S, Müller K-R, 2011. Single-trial analysis and classification of
ERP components – a tutorial. Neuroimage56 (2), 814–825. [PubMed: 20600976]

Bonnabel S, Sepulchre R, 2009. Riemannian metric and geometric mean for positive semidefinite
matrices of fixed rank. SIAM J. Matrix Anal. Appl31 (3), 1055–1070.

Boyd SP, Vandenberghe L, 2004. Convex optimization. Cambridge university press.

Bregman LM, 1967. The relaxation method of finding the common point of convex sets and its
application to the solution of problems in convex programming. USSR Computational
Mathematics and Mathematical Physics7 (3), 200–217.

Cai C, Hashemi A, Diwakar M, Haufe S, Sekihara K, Nagarajan SS, 2021. Robust estimation of noise
for electromagnetic brain imaging with the champagne algorithm. Neuroimage225, 117411.
[PubMed: 33039615]

Cai C, Sekihara K, Nagarajan SS, 2018. Hierarchical multiscale bayesian algorithm for robust
MEG/EEG source reconstruction. Neuroimage183, 698–715. [PubMed: 30059734]

Calvetti D, Pascarella A, Pitolli F, Somersalo E, Vantaggi B, 2019. Brain activity mapping from MEG
data via a hierarchical bayesian algorithm with automatic depth weighting. Brain Topogr32 (3),
363–393. [PubMed: 30121834]

Calvetti D, Somersalo E, 2018. Inverse problems: from regularization to bayesian inference. Wiley
Interdiscip. Rev. Comput. Stat10 (3), e1427.

Castaño-Candamil S, Höhne J, Martínez-Vargas J-D, An X-W, Castellanos–Domínguez G, Haufe S,
2015. Solving the EEG inverse problem based on space—time–frequency structured sparsity
constraints. Neuroimage118, 598–612. [PubMed: 26048621]

Cichocki A, Amari S. i., 2010. Families of alpha-beta-and gamma-divergences: flexible and robust
measures of similarities. Entropy12 (6), 1532–1568.

Dalal SS, Zumer JM, Guggisberg AG, Trumpis M, Wong DD, Sekihara K, Nagarajan SS, 2011.
MEG/EEG Source reconstruction, statistical evaluation, and visualization with NUTMEG.
Comput Intell Neurosci2011.

Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E, 2000. Dynamic
statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical
activity. Neuron26 (1), 55–67. [PubMed: 10798392]

Dale AM, Sereno MI, 1993. Improved localizadon of cortical activity by combining EEG and MEG
with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci5 (2), 162–176.
[PubMed: 23972151]

Davis JV, Kulis B, Jain P, Sra S, Dhillon IS, 2007. Information-theoretic metric learning. In:
Proceedings of the24th International Conference on Machine Learning, pp. 209–216.

De Munck JC, Huizenga HM, Waldorp LJ, Heethaar R, 2002. Estimating stationary dipoles from
MEG/EEG data contaminated with spatially and temporally correlated background noise. IEEE
Trans. Signal Process50 (7), 1565–1572.

Dempster AP, Laird NM, Rubin DB, 1977. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society: Series B (Methodological)39 (1), 1–22.

Eguchi S, Kato S, 2010. Entropy and divergence associated with power function and the statistical
application. Entropy12 (2), 262–274.

Engemann DA, Gramfort A, 2015. Automated model selection in covariance estimation and spatial
whitening of MEG and EEG signals. Neuroimage108, 328–342. [PubMed: 25541187]

Feng Y, Palomar DP, et al., 2016. A signal processing perspective on financial engineering.
Foundations and Trends® in Signal Processing9 (1–2), 1–231.

Fengler A, Caire G, Jung P, Haghighatshoar S, 2019. Massive MIMO unsourced random access. arXiv
preprint arXiv:1901.00828

Hashemi et al. Page 40

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Fengler A, Haghighatshoar S, Jung P, Caire G, 2019. Non-Bayesian activity detection, large-scale
fading coefficient estimation, and unsourced random access with a massive MIMO receiver. arXiv
preprint arXiv:1910.11266

Févotte C, 2011. Majorization-minimization algorithm for smooth Itakura-Saito nonnegative matrix
factorization. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, pp. 1980–1983.

Févotte C, Bertin N, Durrieu J-L, 2009. Nonnegative matrix factorization with the itakura-saito
divergence: with application to music analysis. Neural Comput21 (3), 793–830. [PubMed:
18785855]

Févotte C, Idier J, 2011. Algorithms for nonnegative matrix factorization with the β-divergence. Neural
Comput23 (9), 2421–2456.

Friedman J, Hastie T, Tibshirani R, 2008. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics9 (3), 432–441. [PubMed: 18079126]

Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J, 2002. Classical and bayesian
inference in neuroimaging: theory. Neuroimage16 (2), 465–483. [PubMed: 12030832]

Gerstoft P, Mecklenbräuker CF, Xenaki A, Nannuru S, 2016. Multisnapshot sparse bayesian learning
for DOA. IEEE Signal Process Lett23 (10), 1469–1473.

Gorodnitsky IF, George JS, Rao BD, 1995. Neuromagnetic source imaging with FOCUSS: a recursive
weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol95 (4), 231–251.
[PubMed: 8529554]

Gramfort A, 2009. Mapping, timing and tracking cortical activations with MEG and EEG: Methods
and application to human vision. Ecole nationale supérieure des telecommunications-ENST.

Gramfort A, Kowalski M, Hämäläinen M, 2012. Mixed-norm estimates for the m/EEG inverse
problem using accelerated gradient methods. Phys Med Biol57 (7), 1937. [PubMed: 22421459]

Gramfort A, Peyré G, Cuturi M, 2015. Fast optimal transport averaging of neuroimaging data. In:
International Conference on Information Processing in Medical Imaging. Springer, pp. 261–272.

Gramfort A, Strohmeier D, Haueisen J, Hämäläinen MS, Kowalski M, 2013. Time-frequency mixed-
norm estimates: sparse m/EEG imaging with non-stationary source activations. Neuroimage70,
410–422. [PubMed: 23291276]

Greenewald K, Hero AO, 2015. Robust kronecker product PCA for spatio-temporal covariance
estimation. IEEE Trans. Signal Process63 (23), 6368–6378.

Habermehl C, Steinbrink JM, Müller K-R, Haufe S, 2014. Optimizing the regularization for image
reconstruction of cerebral diffuse optical tomography. J Biomed Opt19 (9), 096006.

Haghighatshoar S, Caire G, 2017. Massive MIMO channel subspace estimation from low-dimensional
projections. IEEE Trans. Signal Process65 (2), 303–318.

Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV, 1993. Magnetoencephalography
theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev
Mod Phys65 (2), 413.

Hämäläinen MS, Ilmoniemi RJ, 1994. Interpreting magnetic fields of the brain: minimum norm
estimates. Medical & Biological Engineering & Computing32 (1), 35–42. [PubMed: 8182960]

Hashemi A, Haufe S, 2018. Improving EEG source localization through spatio-temporal sparse
Bayesian learning. In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, pp.
1935–1939.

Hashemi A, Nagarajan SS, Müller K-R, Haufe S, 2021. Spatio-temporal brain source imaging using
sparse bayesian learning: mathematical guarantees and trade-off. Preprint.

Hastie T, Tibshirani R, Friedman J, 2009. The elements of statistical learning: Data mining, inference,
and prediction. Springer Science & Business Media.

Haufe S, Nikulin VV, Ziehe A, Müller K-R, Nolte G, 2008. Combining sparsity and rotational
invariance in EEG/MEG source reconstruction. Neuroimage42 (2), 726–738. [PubMed: 18583157]

Haufe S, Tomioka R, Dickhaus T, Sannelli C, Blankertz B, Nolte G, Müller K-R, 2011. Large-scale
EEG/MEG source localization with spatial flexibility. Neuroimage54 (2), 851–859. [PubMed:
20832477]

Hashemi et al. Page 41

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Huang Y, Parra LC, Haufe S, 2016. The new york head – a precise standardized volume conductor
model for EEG source localization and tES targeting. Neuroimage140, 150–162. [PubMed:
26706450]

Huizenga HM, De Munck JC, Waldorp LJ, Grasman RP, 2002. Spatiotemporal EEG/MEG source
analysis based on a parametric noise covariance model. IEEE Trans. Biomed. Eng49 (6), 533–539.
[PubMed: 12046698]

Hunter DR, Lange K, 2004. A tutorial on MM algorithms. Am Stat58 (1), 30–37.

Jacobson MW, Fessler JA, 2007. An expanded theoretical treatment of iteration-dependent majorize-
minimize algorithms. IEEE Trans. Image Process16 (10), 2411–2422. [PubMed: 17926925]

Jalali A, Saunderson J, Fazel M, Hassibi B, 2017. Error bounds for Bregman denoising and structured
natural parameter estimation. In: 2017 IEEE International Symposium on Information Theory
(ISIT). IEEE, pp. 2273–2277.

James W, Stein C, 1992. Estimation with Quadratic Loss. In: Breakthroughs in Statistics. Springer, pp.
443–460.

Janati H, Bazeille T, Thirion B, Cuturi M, Gramfort A, 2020. Multi-subject MEG/EEG source imaging
with sparse multi-task regression. Neuroimage220, 116847. [PubMed: 32438046]

Jun SC, Plis SM, Ranken DM, Schmidt DM, 2006. Spatiotemporal noise covariance estimation from
limited empirical magnetoencephalographic data. Physics in Medicine & Biology51 (21), 5549.
[PubMed: 17047269]

Khalilsarai MB, Yang T, Haghighatshoar S, Caire G, 2020. Structured channel covariance estimation
from limited samples in Massive MIMO. In: ICC 2020–2020 IEEE International Conference on
Communications (ICC). IEEE, pp. 1–7.

Khanna S, Murthy CR, 2017. On the support recovery of jointly sparse gaussian sources using sparse
bayesian learning. arXiv preprint arXiv:1703.04930

Khanna S, Murthy CR, 2017. Rényi divergence based covariance matching pursuit of joint sparse
support. In: 18th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC). IEEE, pp. 1–5.

Kohavi R, et al., 1995. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: Ijcai, 14. Montreal, Canada, pp. 1137–1145.

Kumar S, Ying J, de Miranda Cardoso JV, Palomar DP, 2020. A unified framework for structured
graph learning via spectral constraints. Journal of Machine Learning Research21 (22), 1–60.
[PubMed: 34305477]

Lemm S, Blankertz B, Dickhaus T, Müller K-R, 2011. Introduction to machine learning for brain
imaging. Neuroimage56 (2), 387–399. [PubMed: 21172442]

Liberti L, 2004. On a class of nonconvex problems where all local minima are global. Publications de
lInstitut Mathémathique76 (90), 101–109.

Lipp T, Boyd S, 2016. Variations and extension of the convex–concave procedure. Optimization and
Engineering17 (2), 263–287.

Luessi M, Hämäläinen MS, Solo V, 2013. Sparse component selection with application to MEG source
localization. In: 2013 IEEE 10th International Symposium on Biomedical Imaging. IEEE, pp.
556–559.

Matsuura K, Okabe Y, 1995. Selective minimum-norm solution of the biomagnetic inverse problem.
IEEE Trans. Biomed. Eng42 (6), 608–615. [PubMed: 7790017]

Mazumder R, Hastie T, 2012. The graphical lasso: new insights and alternatives. Electron J Stat6,
2125. [PubMed: 25558297]

Meriaux B, Ren C, Breloy A, El Korso MN, Forster P, 2020. Matched and mismatched estimation of
kronecker product of linearly structured scatter matrices under elliptical distributions. IEEE Trans.
Signal Process.

Mika S, Rätsch G, Müller K-R, 2001. A mathematical programming approach to the kernel fisher
algorithm. Adv Neural Inf Process Syst591–597.

Moakher M, 2005. A differential geometric approach to the geometric mean of symmetric positive-
definite matrices. SIAM J. Matrix Anal. Appl26 (3), 735–747.

Hashemi et al. Page 42

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Nunez PL, Srinivasan R, et al., 2006. Electric fields of the brain: The neurophysics of EEG. Oxford
University Press, USA.

Oguz-Ekim P, Gomes JP, Xavier J, Oliveira P, 2011. Robust localization of nodes and time-recursive
tracking in sensor networks using noisy range measurements. IEEE Trans. Signal Process59 (8),
3930–3942.

Ollila E, Palomar DP, Pascal F, 2020. Shrinking the eigenvalues of m-estimators of covariance matrix.
IEEE Trans. Signal Process.

Oostenveld R, Praamstra P, 2001. The five percent electrode system for high-resolution EEG and ERP
measurements. Clinical Neurophysiology: Official Journal of the International Federation of
Clinical Neurophysiology112 (4), 713–719. doi: 10.1016/s1388-2457(00)00527-7. [PubMed:
11275545]

Ottersten B, Stoica P, Roy R, 1998. Covariance matching estimation techniques for array signal
processing applications. Digit Signal Process8 (3), 185–210.

Owen JP, Wipf DP, Attias HT, Sekihara K, Nagarajan SS, 2012. Performance evaluation of the
champagne source reconstruction algorithm on simulated and real m/EEG data. Neuroimage60 (1),
305–323. [PubMed: 22209808]

Pallaschke DE, Rolewicz S, 2013. Foundations of mathematical optimization: Convex analysis without
linearity, 388. Springer Science & Business Media.

Papadopoulos A, 2005. Metric spaces, convexity and nonpositive curvature, 6. European Mathematical
Society.

Pascual-Marqui RD, 2007. Discrete, 3D distributed, linear imaging methods of electric neuronal
activity. part 1: exact, zero error localization. arXiv preprint arXiv:0710.3341

Pascual-Marqui RD, Michel CM, Lehmann D, 1994. Low resolution electromagnetic tomography: a
new method for localizing electrical activity in the brain. International Journal of
psychophysiology18 (1), 49–65. [PubMed: 7876038]

Pascual-Marqui RD, et al., 2002. Standardized low-resolution brain electromagnetic tomography
(sloreta): technical details. Methods Find Exp Clin Pharmacol24 (Suppl D), 5–12. [PubMed:
12575463]

Peyré G, Cuturi M, et al., 2019. Computational optimal transport: with applications to data science.
Foundations and Trends® in Machine Learning11 (5–6), 355–607.

Plis SM, Schmidt DM, Jun SC, Ranken DM, 2006. A generalized spatiotemporal covariance model for
stationary background in analysis of MEG data. In: 2006 International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE, pp. 3680–3683.

Prasad R, Murthy CR, Rao BD, 2015. Joint channel estimation and data detection in MIMO-OFDM
systems: a sparse bayesian learning approach. IEEE Trans. Signal Process63 (20), 5369–5382.

Rapcsak T, 1991. Geodesic convexity in nonlinear optimization. J Optim Theory Appl69 (1), 169–183.

Ravikumar P, Wainwright MJ, Raskutti G, Yu B, et al., 2011. High-dimensional covariance estimation
by minimizing ℓ1-penalized log-determinant divergence. Electron J Stat5, 935–980.

Razaviyayn M, Hong M, Luo Z-Q, 2013. A unified convergence analysis of block successive
minimization methods for nonsmooth optimization. SIAM J. Optim23 (2), 1126–1153.

Rockafellar RT, 1970. Convex analysis. Princeton University Press.

Rubner Y, Tomasi C, Guibas LJ, 2000. The earth mover’s distance as a metric for image retrieval. Int J
Comput Vis40 (2), 99–121.

Samek W, Kawanabe M, Müller K-R, 2013. Divergence-based framework for common spatial patterns
algorithms. IEEE Rev Biomed Eng7, 50–72. [PubMed: 24240027]

Seeger MW, Wipf DP, 2010. Variational bayesian inference techniques. IEEE Signal Process Mag27
(6), 81–91. [PubMed: 21135916]

Sekihara K, Nagarajan SS, 2015. Electromagnetic brain imaging: A bayesian perspective. Springer.

Shalev-Shwartz S, Ben-David S, 2014. Understanding machine learning: From theory to algorithms.
Cambridge University Press.

Shen K, Yu W, Zhao L, Palomar DP, 2019. Optimization of MIMO device-to-Device networks via
matrix fractional programming: A Minorization–Maximization approach. IEEE/ACM Trans.
Networking27 (5), 2164–2177.

Hashemi et al. Page 43

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Strohmeier D, Bekhti Y, Haueisen J, Gramfort A, 2016. The iterative reweighted mixed-norm estimate
for spatio-temporal MEG/EEG source reconstruction. IEEE Trans Med Imaging35 (10), 2218–
2228. [PubMed: 27093548]

Strohmeier D, Gramfort A, Haueisen J, 2015. MEG/EEG source imaging with a non–convex penalty in
the time-frequency domain. In: Pattern Recognition in NeuroImaging (PRNI), 2015 International
Workshop on. IEEE, pp. 21–24.

Stuart AM, 2010. Inverse problems: a bayesian perspective. Acta Numerica19, 451–559.

Sun Y, Babu P, Palomar DP, 2016. Robust estimation of structured covariance matrix for heavy-tailed
elliptical distributions. IEEE Trans. Signal Process64 (14), 3576–3590.

Sun Y, Babu P, Palomar DP, 2017. Majorization-minimization algorithms in signal processing,
communications, and machine learning. IEEE Trans. Signal Process65 (3), 794–816.

Tipping ME, 2000. The relevance vector machine. In: Advances in Neural Information Processing
Systems, pp. 652–658.

Tipping ME, 2001. Sparse bayesian learning and the relevance vector machine. Journal of Machine
Learning Research1 (Jun), 211–244.

Trujillo-Barreto NJ, Aubert-Vázquez E, Valdés-Sosa PA, 2004. Bayesian model averaging in
EEG/MEG imaging. Neuroimage21 (4), 1300–1319. [PubMed: 15050557]

Tsiligkaridis T, Hero AO, 2013. Covariance estimation in high dimensions via kronecker product
expansions. IEEE Trans. Signal Process61 (21), 5347–5360.

Tsiligkaridis T, Hero III AO, Zhou S, 2013. On convergence of kronecker graphical lasso algorithms.
IEEE Trans. Signal Process61 (7), 1743–1755.

Villani C, 2008. Optimal transport: Old and new, 338. Springer Science & Business Media.

Vishnoi NK, 2018. Geodesic convex optimization: differentiation on manifolds, geodesics, and
convexity. arXiv preprint arXiv:1806.06373

Wei H, Jafarian A, Zeidman P, Litvak V, Razi A, Hu D, Friston KJ, 2020. Bayesian fusion and
multimodal DCM for EEG and fMRI. Neuroimage211, 116595. [PubMed: 32027965]

Werner K, Jansson M, Stoica P, 2008. On estimation of covariance matrices with kronecker product
structure. IEEE Trans. Signal Process56 (2), 478–491.

Wiesel A, Zhang T, et al., 2015. Structured robust covariance estimation. Foundations and Trends® in
Signal Processing8 (3), 127–216.

Wipf D, Nagarajan S, 2009. A unified bayesian framework for MEG/EEG source imaging.
Neuroimage44 (3), 947–966. [PubMed: 18602278]

Wipf D, Nagarajan S, 2010. Iterative reweighted ℓ1 and ℓ2 methods for finding sparse solutions. IEEE J
Sel Top Signal Process4 (2), 317–329.

Wipf DP, Owen JP, Attias HT, Sekihara K, Nagarajan SS, 2010. Robust bayesian estimation of the
location, orientation, and time course of multiple correlated neural sources using MEG.
Neuroimage49 (1), 641–655. [PubMed: 19596072]

Wipf DP, Rao BD, 2004. Sparse bayesian learning for basis selection. IEEE Trans. Signal Process52
(8), 2153–2164.

Wipf DP, Rao BD, 2007. An empirical bayesian strategy for solving the simultaneous sparse
approximation problem. IEEE Trans. Signal Process55 (7), 3704–3716.

Wipf DP, Rao BD, Nagarajan S, 2011. Latent variable bayesian models for promoting sparsity. IEEE
Trans. Inf. Theory57 (9), 6236–6255.

Wu CJ, 1983. On the convergence properties of the EM algorithm. The Annals of Statistics95–103.

Wu TT, Lange K, et al., 2010. The MM alternative to EM. Statistical Science25 (4), 492–505.

Wu W, Nagarajan S, Chen Z, 2016. Bayesian machine learning: EEG\MEG signal processing
measurements. IEEE Signal Process Mag33 (1), 14–36.

Wu Y, Wipf DP, 2012. Dual-space analysis of the sparse linear model. In: Advances in Neural
Information Processing Systems, pp. 1745–1753.

Yuille AL, Rangarajan A, 2003. The concave-convex procedure. Neural Comput15 (4), 915–936.
[PubMed: 12689392]

Zadeh P, Hosseini R, Sra S, 2016. Geometric mean metric learning. In: International Conference on
Machine Learning, pp. 2464–2471.

Hashemi et al. Page 44

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Zhang Z, Rao BD, 2011. Sparse signal recovery with temporally correlated source vectors using sparse
bayesian learning. IEEE J Sel Top Signal Process5 (5), 912–926.

Zoubir AM, Koivunen V, Ollila E, Muma M, 2018. Robust statistics for signal processing. Cambridge
University Press.

Zumer JM, Attias HT, Sekihara K, Nagarajan SS, 2007. A probabilistic algorithm integrating source
localization and noise suppression for MEG and EEG data. Neuroimage37 (1), 102–115.
[PubMed: 17574444]

Hashemi et al. Page 45

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 1.

Source reconstruction performance of Champagne and LowSNR-BSI in two different SNR

regimes (low SNR: 0.33 dB, left column; high SNR: 11.4 dB, right column). Spatial

reconstruction error is measured in terms of the earth-mover’s distance, and is shown in the

upper row, while time course reconstruction error is shown in the middle row. The lower row

demonstrates the negative log-likelihood loss, SBL loss function Eq. (12), incurred by

Champagne and LowSNR-BSI algorithms.
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Fig. 2.

Source reconstruction performance of four different variants of LowSNR-BSI (upper row)

and Champagne (lower row). The noise variance was estimated from baseline data (ground

truth), using adaptive learning, or using spatial or temporal cross-validation. Performance

was evaluated for four SNRs (SNR = {0.33, 2.17, 4.87, 11.40} dB) and with respect to three

different metrics (spatial reconstruction according to the earth-mover’s distance – left

column, time course reconstruction error – middle column, and computational complexity

according to the runtime (in seconds) – right column).
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Fig. 3.

Source reconstruction performance of Champagne (dashed line) and LowSNR-BSI (solid

line) for four SNR values (SNR = {0.33, 2.17, 4.87, 11.40} dB). The noise variance was

estimated from baseline data as well as using adaptive learning, spatial and temporal CV.

Spatial reconstruction error was measured in terms of the earth-mover’s distance and is

shown in the upper row, while time course reconstruction error is shown in the lower row.
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Fig. 4.

Convergence behavior of LowSNR-BSI as well as Champagne using the standard (convex-

bounding based) updates (Champagne) as well as EM and MacKay updates. For standard

Champagne and LowSNR-BSI, the use of a fixed noise variance estimated from baseline

data is compared with adaptive noise learning. LowSNR-BSI variants have faster

convergence rate at early stages of the optimization procedure, but later converge to less

optimal log-likelihood values. Adaptive learning variants of Champagne and LowSNR-BSI

reach better log-likelihood values than their counterparts using a fixed noise variance

estimated from baseline data.
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Fig. 5.

Analysis of auditory evoked fields (AEF) of one subject using conventional Champagne with

pre-estimated λ = σ
2, adaptive noise learning, and spatial CV as well as LowSNR-BSI.

Shown in the top panel are the reconstructions at the time of the maximal deflection of the

auditory N100 component (shown in bottom panel). All reconstructions show sources at the

expected locations in the left and right auditory cortex.
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Fig. 6.

Analysis of auditory evoked fields (AEF) of one subject using conventional Champagne with

pre-estimated λ = σ
2, adaptive noise learning, and spatial CV as well as LowSNR-BSI, tested

with the number of trials limited to 10, 20, 40, 60, and 100. All proposed noise learning

reconstructions show sources at the expected locations in the left and right auditory cortices.
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Fig. 7.

Analysis of auditory evoked fields (AEF) of one subject using conventional Champagne with

pre-estimated λ = σ
2, adaptive noise learning, and spatial CV as well as LowSNR-BSI, tested

with the number of trials limited to 10. Each column shows an experiment with a random

selection of 10 trials. LowSNR-BSI as well as all proposed noise learning variants of

Champagne always show sources at the expected locations in the left or right auditory

cortex. In the majority of experiments, both cortices are jointly identified.
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Fig. 8.

(A) Runtime and (B) Type-II negative log marginal likelihood loss attained after

convergence of different variants of LowSNR-BSI and Champagne, as well as using EM and

MacKay updates. Shown are the median and inter-quartile ranges over 100 randomized

experiments.
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