
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Electrical Engineering & Computer Science
Faculty Publications

Electrical Engineering & Computer Science
Department

1-2005

Unification of Transactions and Replication in Three-Tier Unification of Transactions and Replication in Three-Tier

Architectures Based on CORBA Architectures Based on CORBA

Wenbing Zhao
Cleveland State University, w.zhao1@csuohio.edu

Louise E. Moser
University of California-Santa Barbara, moser@ece.ucsb.edu

P. Michael Melliar-Smith
University of California - Santa Barbara, pmms@ece.ucsb.edu
Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

 Part of the Computer and Systems Architecture Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Publisher's Statement
© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

Original Citation Original Citation
Wenbing, Z., Moser, L. E., & Melliar-Smith, P. M. (2005). Unification of transactions and replication in three-
tier architectures based on CORBA. IEEE Transactions on Dependable and Secure Computing, 2, 1, 20-33.

Repository Citation
Zhao, Wenbing; Moser, Louise E.; and Melliar-Smith, P. Michael, "Unification of Transactions and Replication in
Three-Tier Architectures Based on CORBA" (2005). Electrical Engineering & Computer Science Faculty Publications.
81.
https://engagedscholarship.csuohio.edu/enece_facpub/81

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science
Department at EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering & Computer
Science Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information,
please contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/81?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Unification of Transactions and Replication in
Three-Tier Architectures Based on CORBA

Wenbing Zhao, Member, IEEE, Louise E. Moser, Member, IEEE, and
P. Michael Melliar-Smith, Member, IEEE

Abstract—In this paper, we describe a software infrastructure that unifies transactions and replication in three-tier architectures and
provides data consistency and high availability for enterprise applications. The infrastructure uses transactions based on the CORBA
Object Transaction Service to protect the application data in databases on stable storage, using a roll-backward recovery strategy, and
replication based on the Fault Tolerant CORBA standard to protect the middle-tier servers, using a roll-forward recovery strategy. The
infrastructure replicates the middle-tier servers to protect the application business logic processing. In addition, it replicates the
transaction coordinator, which renders the two-phase commit protocol nonblocking and, thus, avoids potentially long service
disruptions caused by failure of the coordinator. The infrastructure handles the interactions between the replicated middle-tier servers
and the database servers through replicated gateways that prevent duplicate requests from reaching the database servers. It
implements automatic client-side failover mechanisms, which guarantee that clients know the outcome of the requests that they have
made, and retries aborted transactions automatically on behalf of the clients.

Index Terms—Fault tolerance, transaction processing, replication, CORBA, three-tier architectures.

1 INTRODUCTION

ENTERPRISE applications are typically implemented as high availability by replicating the application objects and,
three-tier architectures that consist of clients in the thus, protects the application objects against faults. If one of

front tier, servers that perform the application business the replicas fails, the surviving replicas continue the
logic processing in the middle tier, and databases that store business logic processing and provide continuous service
the application data in the back-end tier. An example of to the clients.
such an enterprise application is an online banking

1.1 Problems with Existing Three-Tier Architectures application, where a customer accesses his bank accounts
over the Internet through a Web browser, the client. After First, we consider some of the key problems that must be
appropriate authentication, the customer is authorized to solved to provide both data consistency and high avail-
view the balances in his bank accounts and transfers ability for enterprise applications, using the above online
money from one account to another (say, from a checking banking application as an example.
account to a savings account), using the middle-tier Traditional transaction processing based on the two-
servers. The two accounts are managed by two different phase commit (2PC) protocol provides data consistency for
database servers, and the fund transfer is executed as a enterprise applications, but lacks the strong protection
distributed transaction. mechanisms that many current and future distributed

In such architectures, the Common Object Request enterprise applications will require.
Broker Architecture (CORBA) is often used as the middle- If the transaction coordinator becomes faulty and all of
ware bus. Indeed, the Enterprise Java Beans/Java 2 the participants (i.e., the XA resources representing the
Enterprise Edition (EJB/J2EE) standard derives from the different accounts) in a transaction have voted to commit
CORBA standard and mandates the use of CORBA’s but have not received a commit message from the
Internet Inter-ORB Protocol (IIOP). The CORBA Object coordinator, the 2PC protocol requires the participants to
Transaction Service (OTS) [26] provides data consistency wait for the coordinator to recover, which might take quite a
through atomic commitment of distributed transactions long time. By the time the coordinator recovers, the Web

browser might have timed out the server and the customer and, thus, protects the application data against faults. The
would see a “page-not-available” page instead of the Fault Tolerant CORBA (FT CORBA) standard [25] provides
expected “transfer-succeeded” page. The problems created
by failure of the coordinator are three-fold: 1) The customer

. W. Zhao is with the Department of Electrical and Computer Engineering, wastes his time in waiting to see the outcome of the fund
Cleveland State University, Cleveland, OH 44115.

transfer transaction. 2) The customer is not notified of the E-mail: wenbing@ieee.org.
.	 L.E. Moser and P.M. Melliar-Smith are with the Department of Electrical outcome of the transaction. To discover the outcome, he

and Computer Engineering, University of California, Santa Barbara, Santa would have to wait until the server is available, relogin, and
Barbara, CA 93106. E-mail: {moser, pmms}@ece.ucsb.edu. view his account balance to see whether the previous fund

transfer request had been executed successfully. 3) Because
resources are locked by the transaction, other transactions
that need to access those resources would also be delayed.

mailto:pmms}@ece.ucsb.edu
mailto:wenbing@ieee.org

Although practical implementations of the 2PC protocol
allow a participant to make heuristic decisions regarding
the outcome of a transaction, continued processing without
waiting for the coordinator to recover can compromise the
consistency of the data. Even though such inconsistencies
can be addressed by the applications, in principle, the
solutions are usually provided in ad hoc manners and are
expensive to design, implement, and maintain. A three-
phase commit (3PC) protocol [33] can reduce the probability
of a hiatus but with substantial cost in overhead; thus, such
a protocol is seldom used in practical systems. However, if
a small subset of the participants implement the function
ality of a replicated transaction coordinator, the cost of the
traditional 3PC protocol can be reduced [13].

If the middle-tier server that performs the business logic
processing becomes faulty, the transaction in which the
server is involved might have to be aborted. In the online
banking application, the customer would then see a
“transfer-failed” page and he would have to make a new
fund-transfer request. This situation is not as bad as the
previous one, but still is unpleasant for the customer. Such a
fault would result in lost processing for the server and
wasted time for the customer.

1.2	 Benefits of Unifying Transactions and
Replication

By employing both transactions and replication in a three-
tier architecture, it is possible to achieve stronger fault
tolerance for enterprise applications [8], [10], [11], [20], [29],
[36]. In particular, by replicating the transaction coordina
tor, the 2PC protocol can be rendered nonblocking [15] and
exactly once semantics can be provided for the clients’
invocations. Moreover, by replicating the middle-tier
servers and using transparent transaction retry, roll-
forward recovery can be provided. Consequently, a higher
degree of abstraction and transparency can be achieved, so
that the unpleasant scenarios mentioned above can be
avoided, with lower cost and in an application-independent
manner.

Existing commercial transaction processing systems do
not provide replication of the application logic, and existing
replication infrastructures do not support three-tier transac
tion processing. Work has been done on replication of
databases [1], [16], the third tier in three-tier architectures,
but that is not the focus of this paper.

There are several ways to unify transactions and
replication. For example, to provide the exactly once
guarantee, the e-transactions approach [11] introduces a
set of protocols that explicitly combine replication with
distributed transaction commitment and recovery. In
principle, such protocols can be implemented in the
middleware layer and can operate transparently to the
applications. However, replacement of, or extensive
modification to, existing transaction monitoring middle-

ware might be required. We favor a more transparent
approach, so that minimal changes to the application
programs are required and commercial off-the-shelf soft
ware can be used.

The unified infrastructure that we have developed uses
the transaction processing of the CORBA OTS to protect the
application data and the replication and recovery of FT
CORBA to protect the business logic processing. The
infrastructure provides strong replica consistency transpar
ently to the applications and, thus, simplifies the program
ming of the applications. No modifications of the
applications (other than those mandated by the CORBA
OTS and FT CORBA standards) are required. To the best of
our knowledge, our unified infrastructure is the first such
infrastructure to combine the two standards seamlessly
and, thus, render three-tier applications fault tolerant by
providing both data consistency and high availability.

1.3	 Challenges in Unifying Transactions and
Replication

Next we discuss some of the challenges that one must face
in designing and implementing an infrastructure that
provides fault tolerance for enterprise applications by
unifying transactions and replication.

The infrastructure must enable as much application
concurrency as possible. Serializing all incoming requests is
not a practical solution for enterprise applications that
involve multiple clients and multiple connections.

For roll-forward recovery, the infrastructure must know
the relationships between the clients’ invocations for the
purpose of logging and replay. The infrastructure must be
aware of the status of each middle-tier server (including the
transaction coordinator) to take a checkpoint, introduce a
new replica, and restore the replica from the checkpoint. To
retry a failed transaction transparently, the infrastructure
must properly reset the state of each middle-tier server
involved in a transaction to the state it had immediately
before the start of the transaction and it must properly
coordinate the replay of messages.

Even though the state of the CORBA objects in the
middle-tier servers can be obtained through standard
interfaces, there exists a state associated with a process in
other forms that tends to be hidden and overlooked. When
restarting a failed replica or adding a new replica, the state
of the new or restarted replica cannot be fully restored if
only the states of the application objects are checkpointed.
Examples of hidden state include the state of the middle-
ware and the state of the third-party libraries. It is difficult
to identify, capture, and restore such hidden state.

Appropriate inbound and outbound gateway mechan
isms must be designed and implemented, so that the
replicated middle-tier servers can interact with nonrepli
cated clients and database servers. Failure of the gateways
between the middle-tier servers and the database servers
might cause the abort and retry of transactions, both
because the TCP connections are lost and because the
progress of communication with the database is uncertain.

2 BACKGROUND

We provide here a brief synopsis of the CORBA Object
Transaction Service (OTS) [26] and the Fault Tolerant (FT)
CORBA [25] standards on which our fault tolerance
infrastructure is based.

2.1 CORBA OTS
The CORBA OTS provides interfaces and services for atomic
execution of transactions that span one or more objects in a
distributed environment. A distributed transaction consists
of CORBA remote method invocations of middle-tier objects
and communications with database servers. For each
distributed transaction, the OTS generates a unique transac
tion identifier, which we refer to as the XID. The OTS uses
the two-phase commit (2PC) protocol to commit a dis
tributed transaction.

The OTS supports a flexible programming model for
transaction context management and propagation. The
transaction context is managed either directly by manip
ulating the Control object (and the other OTS service
objects associated with the transaction), or indirectly by
using the Current object, provided by the OTS. The
transaction context is associated implicitly with the
request messages sent by the client involved in the
transaction and is propagated in those messages to
remote objects without the client’s intervention. In the
OTS, indirect context management and implicit propaga
tion are referred to as the implicit programming model for
transaction processing.

2.2 FT CORBA
The FT CORBA standard defines interfaces, policies, and
services that provide robust support for applications
requiring high availability and fault tolerance through
object replication. The standard provides fault tolerance
for object, process, and host crash faults, but not Byzantine
or network partitioning faults.

FT CORBA addresses three aspects of fault tolerance:
replication management, fault management, and recovery
management. In FT CORBA, replicated objects are managed
through the object group abstraction. To maintain strong
replica consistency, FT CORBA requires objects that are
replicated to be deterministic, or rendered deterministic by
the fault tolerance infrastructure, i.e., for the same input
(request) all replicas of an object must produce the same
output (reply). FT CORBA introduces the notion of fault
tolerance domain, which consists of multiple hosts, a single
replication manager object group, and many application
object groups.

The FT CORBA standard defines how clients, both
replicated and unreplicated, interact with replicated server
objects, so that a client is not disrupted by failover from
one server replica to another. In particular, each client
request message contains a unique identifier. If a delay or
hiatus occurs, a client can retransmit its request message,
and the server object recognizes the retransmitted message
as a duplicate of a request that it has already processed,
discards it, and retransmits the reply corresponding to the
original request. Similarly, clients recognize and discard
duplicate replies.

The FT CORBA standard allows the applications to
choose either application-controlled or infrastructure-con
trolled consistency and membership styles. If application-
controlled consistency is chosen, the application is respon
sible for checkpointing, logging, activation and recovery,
and for maintaining whatever kind of consistency is

appropriate for the application. If infrastructure-controlled
consistency is used, the fault tolerance infrastructure
provides the aforementioned services and maintains strong
replica consistency. If infrastructure-controlled membership
is used, the infrastructure automatically chooses an appro
priate host to launch a new replica when the number of
replicas falls below the specified minimum number of
replicas and ensures that the new replica is synchronized
with the existing replicas.

The FT CORBA standard provides a state transfer
mechanism and the corresponding interfaces to facilitate
adding a new or recovered replica to a group. To make its
state available for the infrastructure to retrieve and
restore, an object must implement the get_state()
and set_state() methods specified in the FT::Check
pointable interface.

Neither the Fault Tolerant CORBA standard nor the XA
database standard define how replicated middle-tier ser
vers and database servers interact in the presence of
replication and failover.

3 THE MODEL

We now present the model within which our fault tolerance
infrastructure operates, including the distributed system
model, fault model, and programming model. We also
discuss the services provided by the infrastructure.

3.1 Distributed System Model
To circumvent the impossibility results related to reaching
agreement (e.g., group membership, totally ordered multi
cast) in asynchronous distributed systems where processes
may crash, we assume an asynchronous system augmented
with (unreliable) failure detectors [5]. We assume that the
network does not partition.

The distributed system supports three-tier enterprise
applications that comprise clients, middle-tier servers, and
database servers. The front tier acts as an interface for the
clients, the middle-tier servers perform the application
business logic processing, and the database servers manage
data and transactional operations in the back-end tier. A
middle-tier server comprises one or more CORBA objects that
invoke methods of each other, either locally or remotely via
messages sent over a network in typical Remote Procedure
Call (RPC) fashion.

Because of our focus on unifying transactions and
replication, we refer to a CORBA object that is involved in
a transaction as a transactional object. Sometimes it is
necessary to consider processes, rather than objects, and
we refer to a process that is involved in a transaction as a
transactional process.

The multicast group communication system that we
employ operates over a local-area network; however,
nothing else in the architecture or its implementation
requires that the processors are located on the same local-
area network. The multicast group communication system
provides a reliable totally ordered multicast with agreed
and safe delivery [22]. For efficiency reasons, we choose to
use agreed delivery.

3.2 Fault Model
We assume a crash fault model in which objects, processes,
and processors perform correctly prior to becoming faulty
and perform no operations thereafter. We assume that
commission faults and network partitioning faults do not
occur. Faults in distinct processors are assumed to be
independent. A fault can affect one or more objects in a
process or all of the objects hosted by a processor. Multiple
faults can occur, and additional faults can occur during
recovery. Our replication and recovery mechanisms require
that at least one replica in each group is operational, i.e.,
catastrophic faults do not occur. However, if a catastrophic
fault occurs, traditional transactional rollback recovery from
data in stable storage is employed.

3.3 Programming Model
We assume that the middle-tier servers use a distributed
transaction processing programming model. When a mid
dle-tier server receives a client’s request, it initiates one or
more distributed transactions. When it finishes processing
the request, the middle-tier server commits the transaction,
stores the resulting state in the back-end database, and
returns the result to the client. The OTS transaction
coordinators handle all transactions started by the middle-
tier servers; no transaction is started by an external
transaction manager. The middle-tier servers use the
implicit programming model provided by the OTS. They
use flat transactions [12] with only one layer of application
control, rather than multiple nested layers within a
hierarchy. The transactions involve one or more database
servers at the back-end through the XA distributed
transaction processing interface [34].

A pool of threads is dedicated for communication
between a transactional process and a database server.
The threads are created during initialization of the transac
tional process. Each thread manages a single connection to
the database server and is associated with one transaction at
a time. Using the connection, the thread performs a number
of remote procedure calls with the database server, but it
has at most one request outstanding at a time (i.e., it makes
a synchronous request on which it blocks waiting for the
reply from the database server before it makes another
request).

The concurrency control algorithm of the database server
determines the serialization of concurrent requests, and our
fault tolerance infrastructure respects that ordering. If either
the database server or the infrastructure cannot complete a
transaction, whether because of concurrency control or
because of a fault, the transaction is aborted.

3.4 Services Provided
Our fault tolerance infrastructure enables the middle-tier
server applications to provide a highly available service to
the clients, a service that continues without disrupting the
clients, even when a replica of a middle-tier server fails. The
clients can invoke the methods of a middle-tier server
substantially as they would invoke the methods of a
nonfault-tolerant middle-tier server. The clients are una
ware of the three-tier architecture and the database and of
faults in the middle-tier servers and the gateways.

The infrastructure protects the business logic processing
in the middle-tier servers, using the replication and
recovery defined by FT CORBA with the infrastructure-
controlled consistency and membership styles. It supports
the standard distributed transaction processing model used
by the CORBA OTS and protects the application data in
databases on stable storage to guard against catastrophic
faults. In addition, it renders the two-phase commit
protocol nonblocking by replicating the transaction coordi
nator and, thus, avoids potentially long service disruptions
caused by failure of the coordinator.

The infrastructure guarantees that clients know the
outcome of the requests that they have made. It handles
the interactions between the replicated middle-tier servers
and the database servers through replicated gateways that
prevent duplicate requests from reaching the database
system. It automatically retries aborted transactions on
behalf of the clients unless the application itself does so.

The infrastructure uses the standard XA interface and
protocol over TCP/IP connections to invoke the database
system. However, the transactions are more robust because
the transaction coordinator is replicated. No modifications
to the database servers are required. The infrastructure
maintains the transactional recoverability of the middle-tier
servers and their data in the database. In particular, it
ensures that the persistent data created by the replicas of
the transaction coordinator do not overwrite each other,
which is critical for restoring the coordinator to a correct
state after a catastrophic fault.

4 THE FAULT TOLERANCE INFRASTRUCTURE

Our fault tolerance infrastructure, shown in Fig. 1, consists
of the Totem group communication system [22], the
replication, logging and recovery mechanisms, the inbound
and outbound gateways at the boundaries of the fault
tolerance domain, the client-side fault tolerance mechan

isms, and the application-level replication manager and
fault notifier. The external clients and the middle-tier
servers communicate through the inbound gateways, and
the middle-tier servers and the database servers commu

nicate through the outbound gateways. The infrastructure
does not replicate the external clients or the database
servers; however, such replication is not precluded. Some
commercial database systems provide fault protection and
recovery mechanisms internally.

The infrastructure uses a nonintrusive approach to fault
tolerance for CORBA by exploiting the pluggable protocols
framework [18] provided by many CORBA Object Request
Brokers (ORBs) and, thus, differs from the Eternal system
[23], [24], which does not use the pluggable protocols
framework. More importantly, unlike the Eternal system,
the infrastructure unifies transactions and replication and,
thus, provides both data consistency and high availability
for three-tier enterprise applications.

4.1 Replication of Transactional Objects
To replicate transactional objects consistently, the fault
tolerance infrastructure maintains the association of request

Fig. 1. The fault tolerance infrastructure that unifies transactions and replication.

and reply messages with ongoing transactions. Moreover,
the infrastructure copes with the additional complexity
introduced by the transaction processing middleware and
application objects. Examples of such complexity are
multithreading and input (output) from (to) disk.

4.1.1 Association of Messages with Transactions
The fault tolerance infrastructure monitors the status of
each transaction by keeping track of request and reply
messages within the transaction and by parsing all
requests to, and responses from, the transaction coordi
nator. For each distributed transaction, the infrastructure
maintains a transaction identifier (XID). For both the OTS
and the application-controlled management objects, it
maintains a list of object keys together with their object
group identifiers. The infrastructure recognizes invoca
tions that are part of a transaction by comparing the
object key in a request message with the object keys in
the object key list. To indicate the start or end of a
transaction, the infrastructure multicasts control messages
to the transactional objects and updates the transaction
tables accordingly.

4.1.2 Replication of the Transaction Coordinator
The fault tolerance infrastructure replicates the transaction
coordinator of the CORBA OTS. Thus, if one replica of the
coordinator fails, the other replicas continue processing the
transaction without disruption to the clients. Protecting the
transaction coordinator against faults, by replication,
reduces the risk that a transaction becomes blocked if the
coordinator fails. Continued operation of the transaction
coordinator depends on data held locally by the replicas of
the coordinator, rather than on persistent data held in stable
storage. Note that, unlike [13], [33], the replicas of the
transaction coordinator are distinct from the participants in
the transaction.

To ensure that the persistent data are not compromised
by replication of the transaction coordinator, the disk-write
operations carried out by the replicas of the coordinator

must be synchronized. For each transaction, a coordinator
replica writes the persistent data to stable storage only
when it has received acknowledgments from all of the other
coordinator replicas that they have received “yes” votes
from all of the participants and the coordinator replica has
made its decision.

In principle, uniform totally ordered multicast [32], or
equivalently safe delivery in the absence of network
partitioning, should be used for replica synchronization
and recovery when there are visible side-effects of opera
tions resulting from message delivery, such as disk-write
operations. However, safe delivery significantly impacts the
latency of message delivery and, therefore, we do not use it
in our infrastructure. Rather, we implement functionally
similar mechanisms, such as those discussed above for
synchronization of disk-write operations, that delay the
side-effects until all operational replicas reach the same
stage of the computation. A drawback of this approach is
that it is necessary to identify the places where such
synchronization mechanisms are needed and to design and
implement appropriate mechanisms.

4.1.3 Concurrency and Message Scheduling
Transaction processing in the middle tier is unavoidably
multithreaded, which is a source of replica nondetermin
ism. One strategy for sanitizing or masking such nonde
terminism is to employ a message scheduler that forces a
multithreaded application into running under a single
thread of control by serializing all incoming requests at
each replica [24]. A forced logical single thread of control
strategy not only decreases the performance but also can
cause deadlock if two transactional objects send nested
invocations to each other concurrently.

Another message scheduling strategy for transactional
multithreaded applications [14] uses a special-purpose
proprietary threading library, called Transactional Drago
[28], that controls the input message buffers and the
creation, deletion, and scheduling of threads. When all
threads are blocked or there are no running threads, the

scheduler delivers a message to its handler thread. That
strategy has the advantage that actively replicated processes
can perform multithreaded operations without extra in
tragroup communication to coordinate the deterministic
processing of the replicas. However, it does not address or
consider the problem of integrating transactions and
replication in standard middleware or in an industrial
system, as our infrastructure does.

We have devised a deterministic message scheduling
algorithm for multithreaded applications that is similar, in
principle and in the degree of concurrent processing
achieved, to the algorithm in [14]. It is implemented
transparently to both the applications and the middleware
and works with the standard threads library. Due to space
limitations, we provide here only a brief description of the
deterministic scheduling algorithm; more details can be
found in [37].

For our deterministic message scheduling algorithm, we
assume that invocations that belong to the same transaction
are serialized. If all of the threads in a replica are blocked
waiting for new requests, the replica is quiescent. If all of the
threads in a replica are blocked waiting for either requests
or replies, the replica is blocked. A thread can be blocked
because it is waiting for a request or a reply after issuing a
nested request.

Starting from a quiescent state, the delivery of a new
request activates a thread in the replica and the replica
becomes unblocked. When the replica issues a nested
request or a reply to a previous request, the replica
becomes blocked. Because no thread is active, it is safe to
deliver the next request to the replica as soon as the replica
is blocked. The delivery of a new request can unblock
another thread and, therefore, the replica can continue
processing in a new thread while the previous thread is
blocked waiting.

The algorithm is complicated by the fact that a replica
might receive a nontransactional invocation, or some
operation might acquire a lock and not release it until the
nested invocations have finished executing. The algorithm
is conservative and waits to deliver a nontransactional
request message until a quiescent point is reached. More
over, before it delivers the next request, the algorithm waits
until the corresponding reply for a nested invocation, made
within a critical section, is received and delivered. To
increase the degree of concurrency further, the messages
and mutex operations could be scheduled as conflicting
operations using the techniques described in [14].

4.2 Checkpointing and Logging
Checkpointing and logging are needed to recover from a
fault and to bring a new or restarted replica into the system.
A checkpoint is taken by invoking the get_state()
method, defined by the Fault Tolerant CORBA standard, on
one of the operational replicas. The value returned by
get_state() is the checkpoint, which is buffered locally
and transmitted subsequently to the new or restarted
replica. The operational replica cannot service other
requests while it is executing the get_state() method;
however, it can resume processing other requests immedi
ately after execution of the get_state() method.

In an ideal world, where the middleware is stateless,
only the application objects need to be checkpointed.
However, in practice, the middleware, including the fault
tolerance infrastructure, that supports the application
objects constitutes a significant amount of state. To recover
a replica fully, the middleware-related state of the new
replica must be made consistent with that of the existing
replicas.

The state related to the transport layer in the middleware
is fully controlled by the fault tolerance infrastructure due
to our plug-in approach. For other kinds of state that are, in
general, difficult to access, we checkpoint a replica when it
is transactional quiescent and such state is essentially
nonexistent, as described below. There exist other ap
proaches that are transparent to the applications and
middleware, such as the user-level checkpointing library
developed by Dieter and Lumpp [6]. The drawbacks of such
approaches include large checkpoints and strong operating
system dependencies.

4.2.1 Service State
In addition to the application object state, ORB/POA state,
and fault tolerance infrastructure state identified in [24], we
recognize a fourth kind of state, which we call service state.

In CORBA, an application object might be supported not
only by an ORB/POA but also by objects that implement
Common Object Services, such as the OTS. Furthermore, an
application object might depend on third-party libraries,
such as the Oracle client-side library for remote SQL and
XA operations. The service objects and third-party libraries
are not stateless but have service state. In general, most
service state is hidden from, and cannot be directly
manipulated by, a transactional object in the implicit
programming model that we support.

4.2.2 Transactional Quiescence
We take a full checkpoint of a replica when it reaches a
transactional quiescent point (i.e., the replica is not involved
in any processing or ongoing transactions) because then the
ORB/POA state, fault tolerance infrastructure state, and
service state are minimized. Our fault tolerance infrastruc
ture maintains a table of ongoing transactions in which each
replica is currently involved. A replica is transactional
quiescent when that table becomes empty.

Because a replica might continuously receive new
invocations for an extended period of time, sometimes it
is necessary to force transactional quiescence to avoid an
excessively long log and recovery time. To force transac
tional quiescence, our infrastructure queues requests that
start a new transaction or that belong to a transaction
different from the transaction in which the replica is
currently involved. Note that forcing transactional quies
cence reduces system throughput.

4.2.3 Logging Mechanisms
The logging mechanisms of our fault tolerance infrastruc
ture store messages and checkpoints in volatile memory in
the same address space as the replica process. This kind of
logging is not to be confused with the logging that is used in

Fig. 2. Sequence diagram of the recovery of a replica.

enterprise database systems, where logs are stored in stable
storage on disk.

The message log contains one or more checkpoints that
are interleaved with incoming requests and replies. When a
transaction commits, the request and reply messages for
that transaction are retained in the log. When a transaction
aborts, the logged messages for the aborted transaction are
removed from the log.

The fault tolerance infrastructure checkpoints a replica
periodically when the replica is transactional quiescent and
logs subsequent incoming request and reply messages. If
transactional quiescence does not naturally occur frequently
enough, the infrastructure forces transactional quiescence,
as mentioned above.

When the infrastructure takes a new checkpoint, it
garbage collects all previously logged messages and
checkpoints. In addition, it checkpoints each transactional
object on entry to a transaction. Typically, a prior
checkpoint suffices and the infrastructure recovers the state
on entry to the transaction by replaying the request and
reply messages in the log after the checkpoint.

There are other “online recovery” techniques, such as
those described in [17], that allow checkpoints to be taken
while a replica is processing. Such techniques require
knowledge of the application program and strict program
ming models. Although such techniques are feasible for a
database system, they are less appropriate for the applica
tion programmers that write the middle-tier application
business logic.

4.3 Recovery of Transactional Objects
The fault tolerance infrastructure uses the checkpoint of an
existing replica to initialize the state of a new or restarted
replica. It then replays the messages in the message log at
the new or restarted replica. The key steps of the recovery
process are shown in Fig. 2 and are described below.

First, the new or restarted replica is added to the
group membership and the infrastructure at the replica
starts to log messages. Shortly after, but not at the same

point in time, it checkpoints an existing replica and the
multicast group communication system orders the check
point request message within the message sequence and
conveys the state to the new or restarted replica. The
infrastructure initializes the state of the new or restarted
replica and then replays subsequent logged messages to
ensure that the state transfer occurs at the correct point in
the message sequence.

To establish the synchronization point and, thus,
ensure that the state of a new or restarted replica is
consistent with that of the existing replicas, our infra
structure uses a Recovery_Start protocol message. The
Recovery_Start message is multicast and is delivered
reliably, in a total order with respect to other messages,
to all of the replicas in the group.

At an existing replica, the infrastructure transfers the
message log, starting from the most recent checkpoint of the
replica (which was obtained by invoking the get_state()
method), followed by the incoming request and reply
messages for the existing replica, through the message prior
to the Recovery_Start message. Subsequent incoming
messages at the existing replica are logged but are not
transferred.

At a new or restarted replica, the infrastructure buffers
messages following the Recovery_Start message, and
discards messages preceding the Recovery_Start mes
sage. When it receives the log containing the checkpoint,
the infrastructure installs the checkpoint by invoking the
set_state() method. It then replays, to the new or
restarted replica, first the messages that are contained in
the log and then those that it has buffered since the
Recovery_Start message, until the new or restarted
replica catches up with the other replicas.

The time at which the group membership changes and
the time at which the checkpoint is taken are logically
distinct. Consequently, this strategy is not a classical virtual
synchrony strategy, but it does maintain the essential
feature of virtual synchrony that the state transfer is

Fig. 3. Sequence diagram for the recovery of an aborted transaction.

synchronized with the message sequence. By not using
view change state transfer, we prevent the blocking of
processing of multicast messages, while a new or restarted
replica is being added to the group.

4.4 Recovery of Aborted Transactions
A transaction might be aborted for several reasons,
including deadlock prevention, invalid authentication, and
process or communication faults. The fault tolerance
infrastructure and group communication system shield
the application against process, processor, and communica

tion faults and, thus, against the rollback of a transaction.
However, if any replica decides to abort a transaction, the
transaction is aborted.

For flexibility, the fault tolerance infrastructure provides
APIs that allow the application to indicate whether or not
the infrastructure should retry an aborted transaction. The
application can disable the retry of an aborted transaction
if it has code for retrying the aborted transaction. Unless
the application indicates otherwise, the infrastructure
automatically retries and recovers aborted transactions.
The key steps for recovery of an aborted transaction are
shown in Fig. 3.

When the fault tolerance infrastructure becomes aware
that a transaction has been aborted, it sends a notification to
all of the participants in the transaction (including the
initiator). Then, the infrastructure resets the states of the
application objects involved in the aborted transaction by
applying the most recent checkpoints and replaying the
logged request and reply messages up to, but not including,
the message that took the objects into the transaction. It
discards the logged messages within the aborted transac
tion. Finally, the infrastructure replays the message that
initiated the transaction at the initiator.

Resetting the state of an application object is different
from recovering a replica. To reset the state of an
application object, the infrastructure applies, to the object,
the most recent checkpoint of the object in the message log.
It does not reset the middleware or service state. The retried
transaction must be regarded as a new transaction that has a
new transaction identifier; otherwise, the database system

would regard the retried database operations as duplicates,
and the transaction coordinator would abort the retried
transaction because it has the same identifier as the aborted
transaction.

If an application object is the initiator of a transaction
and the transaction is aborted, the infrastructure initi
alizes the object with the most recent checkpoint in the
log and then replays the request and reply messages
since the checkpoint up to, but not including, the message
that initiated the transaction. The infrastructure discards
logged request and reply messages within the aborted
transaction and then restarts the application object, which
reinitiates the transaction.

If an application object is a participant in a transaction,
but is not the initiator, and the transaction is aborted, the
infrastructure initializes the object with the most recent
checkpoint in the log and then replays the request and reply
messages since the checkpoint up to, but not including, the
request message that took the object into the transaction.
The application object waits to receive the request message
as part of the retried transaction. Retrying the transaction
results in regeneration of request and reply messages that
were previously logged within the aborted transaction,
which is why these logged messages must be discarded at
the beginning of the retry process.

4.5 Gateway Replication
Our fault tolerance infrastructure for three-tier applications
employs two kinds of gateways at the boundaries of the
fault tolerance domain, the inbound gateway between the
external clients and the replicated middle-tier servers, and
the outbound gateway between the replicated middle-tier
servers and the database system, as shown in Fig. 1.

Both the inbound and the outbound gateways are
replicated using a hybrid replication scheme that resem
bles semiactive replication [30] with a primary replica and
one or more backup replicas. However, from within the
fault tolerance domain, the inbound and outbound gate
ways appear to be actively replicated. Because the
inbound gateway mechanisms have been specified in

Fig. 4. Sequence diagram for normal operations of an outbound gateway.

the FT CORBA standard [25], we do not discuss them
further in this paper.

Only the primary outbound gateway establishes TCP/IP
connections with the database servers. However, both the
primary and the backup outbound gateways receive
messages generated by the replicated middle-tier servers
and pass the messages from the database servers back to the
replicated middle-tier servers.

The outbound gateway mechanisms reside in the same
address space as the Totem group communication process.
The connections from the application objects to the out
bound gateway mechanisms are implemented using Unix
sockets. Library interpositioning is used to capture the
connection function calls and messages between a transac
tional process and the outbound gateway.

The primary outbound gateway does not write a request
message for the database server to the TCP/IP connection
immediately when it receives the message from the
application. Instead, as shown in Fig. 4, it waits for
acknowledgments of the request message from all of the
backup gateways before sending its request message to the
database server. This avoids the loss of messages if the
primary outbound gateway fails and provides certainty for
database updates equivalent to the certainty provided by
safe delivery, without incurring the overhead of such a
multicast for other messages.

The reply messages, including both GIOP and SQL/XA
reply messages, are multicast to all of the outbound
gateway replicas serving a replica group. The primary
outbound gateway delivers reply messages only when the
multicast group communication protocol has totally or
dered them, as shown in Fig. 4. Because there is at most one
outstanding request per connection, there is no ambiguity
in matching a reply message from the database server with
the corresponding request message. There is no need to
know the wire protocol used by the database vendor.

When a middle-tier server processes multiple transac
tions concurrently, the database servers process multiple
requests in an arbitrary unknown serialization order. This
arbitrary order does not violate the strong replica

consistency guarantees of our fault tolerance infrastruc
ture because each database server appears as a single
entity to our infrastructure and each database request is
submitted once only to the database server and is never
repeated. If the infrastructure retries an aborted transac
tion, e.g., due to failure of the primary gateway, the
retried transaction appears to the database server as a
new transaction with a different XID. If we were to
replicate the database servers, we would also need to be
concerned with consistent ordering of transactions within
the replicas of the database.

4.6 Gateway Recovery
Modern commercial databases, such as Oracle 8i, allow a
client of the database server (in our case, the primary
outbound gateway) to reestablish a connection to the
same or a different database server endpoint and continue
the transaction when a fault occurs in the midst of a
transaction. The database server matches such a reconnec
tion with an ongoing transaction using the XID. It also
uses a timeout mechanism, so that the database server
can abort a transaction unilaterally, if a client fails
(otherwise, the database server might wait forever for
the client to reconnect).

If the database system does not support reconnection,
all ongoing transactions, except for transactions that have
been prepared, must be rolled back. Likewise, if the
primary outbound gateway fails before the transaction
has been prepared and the new primary gateway is not
sure of the status of the transaction, the transaction must
be rolled back. Continuing an ongoing transaction during
the failover of a gateway might result in the database
server’s processing an invocation twice. The automatic
transaction-retry mechanisms of our infrastructure trans
parently retry a rolled-back transaction to achieve roll-
forward recovery.

The group communication system multicasts messages,
including transaction prepare and commit messages, and
delivers them in total order to both the primary and the
backup gateway replicas. Each gateway replica maintains a
table of outstanding request messages. When it receives a

Fig. 5. A three-tier banking application running on top of our fault tolerance infrastructure.

reply corresponding to an outstanding request, it removes
the request from its request table. If the primary gateway
fails, a backup gateway uses its request table to achieve
consistent recovery, as described below.

Note that the request table is necessary regardless of the
type of delivery (agreed or safe) used for request messages
because the reply messages originate at the database servers
and are sent via point-to-point TCP/IP communications. It
is possible that the primary gateway receives a reply
message (and the underlying TCP/IP stack acknowledges
the reception of the message to the node running the
sending database server) and fails before it multicasts the
reply message to all of the gateway replicas. Note also that,
if the database server were capable of multicasting the reply
messages or if the gateway were collocated with the
database server, it could multicast them directly to the
replicated middle-tier servers. Safe delivery could then be
used to eliminate the uncertainty and to render the request
table unnecessary.

On failure of the primary gateway, the group commu
nication system forms a new membership and broadcasts a
membership change message, from which a backup gate
way can determine that the primary gateway failed. The
backup gateway checks whether there are any requests in
its request table. It regards such requests as uncertain
outstanding requests.

For each uncertain outstanding request, the backup
gateway contacts the infrastructure for the status of the
transaction to which the request belongs. In some cases, the
infrastructure might have to query the transaction coordi
nator to determine whether the transaction is in the prepared
state, or to query an XA resource to determine whether the
XA resource has been prepared. If the transaction has not
been prepared and there is an uncertain outstanding
request, the backup gateway notifies the infrastructure to
abort the transaction (we assume that the database server
supports reconnection). In the second phase of the 2PC
protocol, an uncertain outstanding request does not cause
the rollback of the current transaction because the commit
notification to the database server is idempotent [26].

If the database server times out a connection while the
infrastructure is failing over the outbound gateway, the
database server aborts the transaction using the new
connection if the transaction has not been prepared and
propagates the abort decision to the application object in the
middle tier. The infrastructure notices the abort, enables the
automatic retry mechanism, and restarts the transaction. If
the database server times out a connection and makes a
heuristic decision to abort a prepared transaction, it is up to
the application to resolve the conflict.

Note that the abort of an on-going transaction when the
primary gateway fails is due to our assumption that we
have no access to the database tier except for TCP/IP
connections. Otherwise, the risk of loss of transactions due
to failure of the primary gateway could be reduced by
collocating the primary gateway with the database server.

A remaining issue to be resolved is how to avoid critical
runs during recovery. For example, if the transaction
coordinator is recovering very fast in the presence of very
slow participants, the infrastructure might misread messages
and, consequently, the system might not recover properly.

5 IMPLEMENTATION AND PERFORMANCE

We have implemented a prototype of the fault tolerance
infrastructure that unifies transactions and replication for
three-tier enterprise applications. The prototype works with
the ORBacus CORBA ORB and its OTS implementation [27]
from Object Oriented Concepts, Inc. (now Iona). The
Oracle 8i database management system is used as the XA
resource manager. We ran our experiments on six Pentium
III PCs over a 100 Mbit/sec local-area network. Each PC is
equipped with a single 1GHz CPU and 256 MBbytes of
RAM and runs the Mandrake Linux 7.2 operating system.
Although it would be more desirable and realistic to deploy
the clients and database servers on different networks, this
more ideal setup is not yet attainable due to the limitations
of our current testbed.

The three-tier banking application that we used in our
experiments is shown in Fig. 5. A client invokes the

Fig. 6. Performance measurement results as a function of the number of concurrent clients, with and without replication. (a) Throughput of the
middle-tier server. (b) Mean latency for transaction startup and business logic. (c) Mean latency for the two-phase commit protocol.

replicated middle-tier server for a fund transfer operation
between two different accounts that are managed by two
different database servers which update the tables in the
corresponding databases. In the middle tier, there are
four distinct server processes (groups) running: an
account manager, two account servers, and the OTS
server. The account manager accepts remote method
invocations from clients, initiates a distributed transaction
for each fund transfer request, contacts the two account
servers for the fund transfer, and commits the transaction.
Each distributed transaction involves one (read-only)
query and one update between each middle-tier account
server and its associated database server. For each run,
each client initiates a total of 1,000 transactions; each
transfer request follows completion of the prior request
without any delay.

The middle-tier servers, including the OTS server, are
three-way actively replicated on four of the six processors.
Replicas of the same server (including the OTS server) are
deployed on different processors (i.e., no two replicas of
the same server are collocated on the same processor).
Thus, there are three replicas of the different servers on
each processor. Inevitably, some server replicas execute on
the same processor as an OTS server replica. Up to eight
unreplicated clients are evenly distributed (whenever
possible) on the two remaining processors. Two Oracle
database management systems also execute on these two
processors.

For comparison purposes, we measured the performance
when the middle-tier servers are not replicated. In this case,
the account manager server, the two account servers, and
the OTS server each run on a separate processor while the
clients and the Oracle database servers run on the
remaining two processors.

As shown in Fig. 6a, with replication, the overall system
throughput, in transactions per second, is reduced by
10-20 percent over the unreplicated case. This minor
reduction in throughput does not, however, reflect the true
cost of our fault tolerance infrastructure in general. The
overhead of our fault tolerance infrastructure is better

reflected in Fig. 6b, which considers the time for the middle-
tier servers to start a new transaction and to carry out the
fund transfer operation. The latency overhead of the fault
tolerance infrastructure for the application business logic
operations now increases from about 50 percent when the
load is low to more than 100 percent when the load is high.
The low system throughput overhead is due to the
dominant cost of the two-phase commit operations, as can
be seen from Fig. 6c.

To investigate the actual cost, we added a method to
each middle-tier account manager to query (read-only) the
new account balance from the database server and to return
that balance to the account manager. For the sake of
benchmarking, the account manager invokes this method
multiple times on each account manager before committing
a transaction. The results of this experiment are shown in
Fig. 7, where a single client invokes the account manager for
a fund transfer with different numbers of account-balance
read operations inserted by the account manager. As can be
seen in the figure, when the number of such read-only
operations is larger, the relative replication overhead for the
end-to-end latency is correspondingly higher.

In summary, the overhead of the fault tolerance infra
structure is primarily due to: 1) communication cost, where

Fig. 7. Mean end-to-end latency in milliseconds, with and without
replication, as a function of the number of read-only operations of the
middle-tier server.

a message is multicast by the group communication system
and some of the messages are redirected through the
gateways; 2) processing cost, where some of the CPU cycles
are dedicated to token handling in Totem, duplicate
detection and suppression, and message parsing and
patching; and 3) loss of concurrency because of total
ordering of messages and message scheduling to guarantee
strong replica consistency. All three factors result in larger
overheads when the load is higher.

In addition to the fault-free runtime performance, we
measured the fault detection time and recovery time for our
infrastructure. For a process crash fault, a Totem instance
records a start time before it sends a kill signal to the process
and an end time when it receives the notification regarding
the lost socket event. The process crash fault detection time
is the difference between the end time and the start time. On
average, the process crash fault detection time is about 3 ms.
The processor fault detection time depends on the timeout
value used in Totem which, in turn, depends on the
characteristics of the network. In our testbed, a 1 second
timeout suffices and, therefore, the processor fault detection
time is approximately 1 second.

The recovery time for a process replica includes the time
for the replica to join the group membership, the time to
retrieve the state of an existing replica, the state transfer
time, and the time to inject the state into the new or
restarted replica. In the best case, when there is no queueing
involved in retrieving and restoring the application state,
and no other process is competing with the replica for
retrieving and restoring the application state, it takes about
100 ms to recover a replica with a state size of 100 kBytes. If
the communication and/or computation loads are higher,
the recovery time is correspondingly longer. The fault
detection time is also longer under higher load.

6 RELATED WORK

Several researchers [7], [23], [31] have investigated object
replication and fault tolerance for CORBA prior to the
adoption of the Fault Tolerant CORBA standard [25]. Since
then, other researchers [21], [24] have developed partial or
complete implementations of Fault Tolerant CORBA that
middle-tier servers might use. To the best of our knowl
edge, none of those researchers has implemented an
infrastructure that unifies transactions and replication in
three-tier architectures.

Frolund and Guerraoui [9], [10], [11] have pointed out
the deficiencies of both the CORBA OTS and the FT CORBA
standards. They have proposed an exactly once transactions
(e-transactions) specification for three-tier architectures that
integrates transactions and replication. They have also
introduced a set of protocols as an implementation of their
e-transactions specification. The e-transaction approach
aims to combine replication with distributed transaction
commitment and recovery to achieve higher availability
and better performance.

In [8], Felber and Narasimham have presented a
discussion of the issues involved in, and the benefits of,
reconciling transactions and replication for CORBA appli
cations. They have outlined a protocol for use, in transac
tional environments, that provides end-to-end reliability

between the clients and the replicated servers. They have
not provided any implementation details or performance
measurements.

In [19], Little and Shrivastava have proposed a high
availability solution for CORBA applications written in
Java. Their system replicates the application objects to
achieve forward progress and uses transactions to
provide consistency. Their implementation is based on
the CORBA OTS, but not on FT CORBA. In [20], they
have further explored ways in which transactions and
group communication can be used together. They con
clude that process groups can be used with transaction
processing for binding service replication, faster failover,
and active replication.

JBoss is an open-source Java EJB/J2EE application server
that has been extended with the JavaGroups group
communication toolkit to provide session state replication
and failover [2], [4]. JBoss uses an abstraction framework to
isolate communication layers that resembles CORBA’s
pluggable protocols framework. Thus, like our infrastruc
ture, it achieves transparency to the applications and other
middleware. However, JBoss extended with JavaGroups
does not address all of the difficult issues that our
infrastructure addresses in unifying transactions and
replication.

In [29], Patino-Martinez et al. have investigated the
integration of transactions and group communication and
have introduced the group transactions model, where a
transactional server is a group of processes, and clients
interact with the transactional server by multicasting
requests to the group. Jimenez-Peris et al. [15] have
described a nonblocking atomic commitment protocol that
exploits replication to achieve the nonblocking property
and that reduces the latency by employing optimistic
techniques. Unlike our fault tolerance infrastructure, which
can be plugged into the middleware transparently, their
approaches require modification of the applications to use a
particular programming and communication model, or use
proprietary protocols that are difficult to integrate into
existing middleware.

In [14], Jimenez-Peris et al. have investigated determi
nistic scheduling for transactional multithreaded replicas,
using a special-purpose library, called Transactional Drago
[28]. Jimenez-Peris and Patino-Martinez [17] have also
presented techniques for deterministic scheduling and
online recovery for transactional multithreaded replicas.
In [3], Basile et al. have presented a deterministic schedul
ing algorithm for multithreaded replicas; their algorithm is
based on preemption.

7 CONCLUSIONS AND FUTURE WORK

We have described a fault tolerance architecture that unifies
transactions and replication to achieve data consistency and
high availability for enterprise applications. We have
developed mechanisms that solve the transaction outcome
nondeterminism problem, render the two-phase commit
protocol nonblocking, and automatically retry aborted
transactions. We have also developed replication mechan
isms that guarantee strong replica consistency, not only
during fault-free conditions, but also when adding a new or

restarted replica to a group. Based on these mechanisms, we
have implemented a prototype infrastructure that works

[11] S. Frolund and R. Guerraoui, “E-Transactions: End-to-End
Reliability for Three-Tier Architectures,” IEEE Trans. Software
Eng., vol. 28, no. 4, pp. 378-395, Apr. 2002.

with CORBA middle-tier servers and Oracle database [12] J. Gray and A. Reuter, Transaction Processing: Concepts and
servers running over the Linux operating system. Techniques. Morgan Kaufmann, 1993.

To realize the widespread use of transaction processing
and fault tolerance technology to protect not only the data

[13] R. Guerraoui, M. Larrea, and A. Schiper, “Reducing the Cost for
Nonblocking in Atomic Commitment,” Proc. IEEE 16th Int’l Conf.
Distributed Computing Systems, pp. 692-697, May 1996.

but also the transactions and business logic processing, a [14] R. Jimenez-Peris, M. Patino-Martinez, and S. Arevalo, “Determi

number of other issues still remain to be addressed. In nistic Scheduling for Transactional Multithreaded Replicas,” Proc.

particular, it would be desirable to integrate additional [15]
IEEE 19th Symp. Reliable Distributed Systems, pp. 164-173, Oct. 2000.
R. Jimenez-Peris, M. Patino-Martinez, G. Alonso, and S. Arevalo,

capabilities, such as scalability, load balancing, and secur “A Low-Latency Nonblocking Atomic Commit Service,” Proc.
ity, into a three-tier architecture that provides high
availability, data consistency, and fault tolerance. Moreover, [16]

IEEE 15th Int’l Conf. Distributed Computing, Oct. 2001.
R. Jimenez-Peris, M. Patino-Martinez, B. Kemme, and G. Alonso,
“Improving the Scalability of Fault-Tolerant Database Clusters,”

developing an infrastructure that can support other dis- Proc. IEEE 22nd Int’l Conf. Distributed Computing Systems, pp. 477
tributed computing protocols and platforms, such as Web
Services, would be desirable. Many of the techniques that [17]

484, July 2002.
R. Jimenez-Peris and M. Patino-Martinez, “Deterministic Schedul
ing and Online Recovery for Replicated Multithreaded Transac

we have developed in the context of CORBA are general tional Servers,” Proc. Workshop Dependable Middleware-Based
and can be adapted to other protocols and platforms.

[18]
Systems, Int’l Conf. Dependable Systems and Networks, June 2002.
F. Kuhns, C. O’Ryan, D.C. Schmidt, O. Othman, and J. Parsons,
“The Design and Performance of a Pluggable Protocols Frame-

ACKNOWLEDGMENTS work for Object Request Broker Middleware,” Proc. IFIP Sixth Int’l
Workshop Protocols for High-Speed Networks, pp. 81-98, Aug. 1999.

The authors would like to thank the associate editor, [19] M.C. Little and S.K. Shrivastava, “Implementing High Availability

Professor Andre Schiper, and the reviewers for their CORBA Applications with Java,” Proc. IEEE Workshop Internet
Applications, pp. 112-119, July 1999.

valuable comments, which have greatly improved this [20] M.C. Little and S.K. Shrivastava, “Integrating Group Commu
paper. This paper expands on material that was pre nication with Transactions for Implementing Persistent Replicated

viously published in the Proceedings of the IEEE 12th
International Symposium on Software Reliability Engi

[21]
Objects,” Advances in Distributed Systems, pp. 238-253, 1999.
C. Marchetti, M. Mecella, A. Virgillito, and R. Baldoni, “An
Interoperable Replication Logic for CORBA Systems,” Proc. Int’l

neering, Hong Kong, China, November 2001 [35] and the Symp. Distributed Objects and Applications, pp. 7-16, Sept. 2000.

Proceedings of the IEEE 23rd International Conference on
Distributed Computing Systems, Vienna, Austria, July

[22] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, R.K. Budhia, and
C.A. Lingley-Papadopoulos, “Totem: A Fault-Tolerant Multicast
Group Communication System,” Comm. ACM, vol. 39, no. 4,

2002 [36]. This research was supported by DARPA/ONR pp. 54-63, Apr. 1996.

Contract N66001-00-1-8931 and MURI/AFOSR Contract
F49620-00-1-0330.

[23] L.E. Moser, P.M. Melliar-Smith, and P. Narasimhan, “Consistent
Object Replication in the Eternal System,” Theory and Practice of
Object Systems, vol. 4, no. 2, pp. 81-92, 1998.

[24] P. Narasimhan, L.E. Moser, and P.M. Melliar-Smith, “Strongly

REFERENCES
Consistent Replication and Recovery of Fault-Tolerant CORBA
Applications,” Computer System Science and Eng. J., vol. 17, no. 2,

[1] Y. Amir and C. Tutu, “From Total Order to Database Replication,” pp. 103-114, Mar. 2002.
Proc. IEEE 22nd Int’l Conf. Distributed Computing Systems, pp. 494 [25] Object Management Group, “Fault Tolerant CORBA (final
503, 2002. adopted specification),” OMG Technical Committee Document

[2] B. Ban, “Design and Implementation of a Reliable Group ptc/2000-04-04, Apr. 2000.
Communication Toolkit for Java,” Sept. 1998, http://www.cs. [26] Object Management Group, “Transaction Service Specification
cornell.edu/home/bba/Coots.ps.gz. v1.2 (final draft),” OMG Technical Committee Document ptc/

[3] C. Basile, K. Whisnant, and R. Iyer, “A Preemptive Determi 2000-11-07, Jan. 2000.
nistic Scheduling Algorithm for Multithreaded Replicas,” Proc. [27] Object Oriented Concepts, “ORBacus OTS,” 1.0 beta second ed.,
IEEE Int’l Conf. Dependable Systems and Networks, pp. 149-158, 2000.
June 2003.

[4] B. Burke and S. Labourey, “Clustering with JBoss 3.0,” July 2002,
[28] M. Patino-Martinez, R. Jimenez-Peris, and S. Arevalo, “Synchro

nizing Group Transactions with Rendezvous in a Distributed Ada
http://www.onjava.com/pub/a/onjava/2002/07/10/jboss.html.

[5] T.D. Chandra and S. Toueg, “Unreliable Failure Detectors for
Environment,” Proc. ACM Symp. Applied Computing, pp. 2-9, Feb.
1998.

Reliable Distributed Systems,” J. ACM, vol. 43, no. 2, pp. 225-267,
1996.

[6] W.R. Dieter and J.E. Lumpp, Jr., “A User-Level Checkpointing
Library for POSIX Threads Programs,” Proc. IEEE 29th Int’l Symp.
Fault-Tolerant Computing Systems, pp. 224-227, June 1999.

[7] P. Felber, R. Guerraoui, and A. Schiper, “The Implementation of a
CORBA Object Group Service,” Theory and Practice of Object
Systems, vol. 4, no. 2, pp. 93-105, 1998.

[8] P. Felber and P. Narasimhan, “Reconciling Replication and
Transactions for the End-to-End Reliability of CORBA Applica
tions,” Proc. Confederated Int’l Conf. CoopIS, DOA, and ODBASE
2002, Jan. 2002.

[29]

[30]

[31]

[32]

M. Patino-Martinez, R. Jimenez-Peris, and S. Arevalo, “Group
Transactions: An Integrated Approach to Transactions and Group
Communication,” Concurrency in Dependable Systems, P. Ezhilchel
van and A. Romanovsky, eds., pp. 1-19, 2002.
D. Powell, Delta-4: A Generic Architecture for Dependable Distributed
Computing. Springer-Verlag, 1991.
Y. Ren, D.E. Bakken, T. Courtney, M. Cukier, D.A. Karr, P. Rubel,
C. Sabnis, W.H. Sanders, R.E. Schantz, and M. Seri, “AQuA: An
Adaptive Architecture that Provides Dependable Distributed
Objects,” IEEE Trans. Computers, vol. 52, no. 1, pp. 31-50, Jan. 2003.
A. Schiper and A. Sandoz, “Uniform Reliable Multicast in a

[9] S. Frolund and R. Guerraoui, “CORBA Fault-Tolerance: Why It
Does Not Add Up,” Proc. IEEE Seventh Workshop Future Trends of

Virtually Synchronous Environment,” Proc. IEEE 13th Int’l Conf.
Distributed Computing Systems, pp. 561-568, May 1993.

Distributed Systems, pp. 229-234, Dec. 1999. [33] D. Skeen, “Nonblocking Commit Protocols,” Proc. ACM SIGMOD
[10] S. Frolund and R. Guerraoui, “Implementing E-Transactions with Int’l Conf. Management of Data, pp. 133-142, Apr.-May 1981.

Asynchronous Replication,” IEEE Trans. Parallel and Distributed [34] X/Open Company Ltd, Distributed Transaction Processing: The XA
Systems, vol. 12, no. 2, pp. 133-146, Feb. 2001. Specification, The Open Group, Feb. 1992.

[35] W. Zhao, L.E. Moser, and P.M. Melliar-Smith, “Increasing the
Reliability of Three-Tier Applications,” Proc. IEEE 12th Int’l Symp.
Software Reliability Eng., pp. 138-147, Nov. 2001.

[36] W. Zhao, L.E. Moser, and P.M. Melliar-Smith, “Unification of
Replication and Transaction Processing in Three-Tier Architec
tures,” Proc. IEEE 23rd Int’l Conf. Distributed Computing Systems,
pp. 290-297, July 2002.

[37] W. Zhao, L.E. Moser, and P.M. Melliar-Smith, “Deterministic
Scheduling for Multithreaded Replicas,” Proc. IEEE Workshop Real-
Time Object-Oriented Dependable Systems, Feb. 2005.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014

	Unification of Transactions and Replication in Three-Tier Architectures Based on CORBA
	Publisher's Statement
	Original Citation
	Repository Citation

	tmp.1441033817.pdf.fFTVy

