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In a dynamically localized subspacetime via the solitonic solution in the higher dimensional

space-time, the gravitational and gauge forces are shown to be unifiedly induced as its intrinsic and
extrinsic curvature effects.

Some dynamical models are known to have solutions localized in the neighbor-
hood of a subspace-time with lower dimensions.” Our (3+1)-space-time itself could
be a dynamically localized one in a higher dimensional spacetime, as is studied by
several authors®™'® In this paper, we show that, in the dynamically localized
subspace-time, the gravitational and the gauge forces are unifiedly induced through its
intrinsic and extrinsic curvature effects. This suggests a new unification scenario
alternative to the ordinary Kaluza-Klein, supergravity or superstring theories.

We denote the action by S=/L(0?, 0 )dX "+ where @9 (i=1, 2, --+) are the
basic fields belonging to some representations of the Lorentz group O(N+M,1). We
assume that the equation of motion 8S/8@“=0 has the solitonic solution

OUX:, XH= 0 (XY, (A=0,1,, M, A=M+1, -, M+N) M

which is independent of X* and localized near the (M +1)-dimensional subspace-time
at X2=0."" The small fluctuation around the solution (1), ¢¥= @ — @y® satisfies
AP 9V=0 where 4%=055/6000P|o-0,. Let M'® be the operator obtained by
restricting 4 in the subspace X*=constant. Then, we expand ¢ in terms of the
eigenfunctions ¢."(n=1, 2, ---) of M?,

PO= S (X)X

where x. should be taken so that @ satisfies the equation of motion.

The eigenfunctions ¢.'”(X?) involve the zero modes associated with the transla-
tion invariance of the action. It means that the ‘soliton’ is displaced from X2=0, and
the subspace-time gets curved. We denote its position by y(z*) with M +1 param-
eters z*, and the orthonormal local Lorentz frame by n:(z*), where n: are tangential
and n; are normal to the subspace-time. These vectors define the vielbein em=n.y..
and the connection I7x=mn;,: of the subspace-time, or equivalently'®

Y= nke"x and ny.= nlrllx . ) ) (2)

We denote the normal components of Iz by Ayu=1Iu and Bu=1Ij. The i, Am
and B are respectively called the affine connection, the normal connection and the
second fundamental quantity.”” Among them, I is written in terms of ex,
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an:%(ek[i,j] efi—eisateiua) . (3)

The A and By have the symmetry properties,

Ain=—As, Buw=DBun. . 4)
Since the whole space-time is flat, the equation of Gauss-Codazzi-Ricci reads'™

I'yten+ Dl =0 | (5)
In terms of the components,

it + Deatel 51+ Bri1uB%:), =0 , (5a)

Bijtupi+ Bartul 1+ Ari1nB2 =0, (5b)

Astun+ AnpALn+ BB =0 . (5¢)

On the contrary, when ex, Ay and By satisfying Eqs. (3)~(5) are given, the system
of the y(z*) and orthonormal n.(z*) satisfying Eq. (2) exists uniquely up to overall
translations. This is because Egs. (3)~(5) prove integrability of Eq. (2). Thus, the
set of variables ewm, A and By with the constraints (3)~(5) can be taken as the
collective modes which specify the subspace-time.?

In order to treat more properly the @? with zero modes excited, we transform the
coordinate X“ to the curvilinear coordinate z*=(z*, 2) by X=y(z")+z*n(z"), and
the local Lorentz frame at z* to n:(z%), independently of z2. The vielbein and the
connection in this system are respectively given by Exa=n«X . and Iy =nmy;.4. The
Exa is written in terms of ew, By, Ain and 22 as

Er Ek& _ ekx—ZiBikx 0
EEA Eﬂ —Z'E.Aix —8ﬁ

I'ia is equal to that of the subspace-time, and I';n=0. The curvilinear coordinate z*
becomes singular at the point where E=det(Ex4)=0, since there adjacent normal
spaces intersect. If it happens within the nonasymptotic region of the ‘soliton’, the
description with z* fails, and the quantities e, Ain and Bin lose their meaning.
However, we are concerned with so low energies or small curvatures that the singular-
ities are in the far asymptotic region.

The field @P(X*) is transformed into @?(z%) with @©= U@ where U is the
representation of the Lorentz transformation to the local Lorentz frame n;. The
derivative is rewritten as 0= UnxD*®'? with the covariant differentiation

DK:EKA(aA —%z'n,ATU) ,
where E*'=n"8z" is the inverse of Exa. Explicitly in terms of e, A, Bin and 22,
Dk=H'=,e“(aA—%mﬂﬁ—%m@( T4 23239 — By Tif) ,

DE=g~
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where H=1+ B+ B*+ B*+--- with B4=2z%B,/.
The action is rewritten as

S=/EL(@“>, DK@(i))dZN+M+1 . (6) »

The equation of motion 8S/6@?=0 has the solitonic solution
D (2, 28 = @y'(z2)

for em=7m, Ain=0, B;z=0. We expand the fluctuation ¢?=@®— @, in terms of
@', the eigenfunctions of M‘?,

7= 72 a2, (7)

where 7. should be chosen so that @ satisfies the equation of motion. In (7) we
exclude the zero modes associated with the translation, by the constraint that z2=0 is
the center of the ‘soliton’. The dynamical freedom is converted into that of e, A
and By Now we substitute the @ back into the action (6). Then, the action is
invariant under the general coordinate transformations (GCT) and the local Lorentz
transformations (LLT) of the (M +1)-subspace-time, since each piece of the argu-
ments of the integrand is invariant or covariant under them. We assume that the
‘soliton’ solution (1) is invariant under the rotations of the normal space around the
center of the ‘soliton’. It is the global O(N) symmetry. Then, the action (6) is
invariant under the local O(N) transformations, where the normal connection A;n
plays the role of the gauge field. Next we integrate the Lagrangian density over z2
to get that in the (M +1)-subspace-time. ‘

eLsub( )Zn(i), Dk)?n(i), €k, Aij/l, Bija):fEL(@(i), Dk@(i))dZN s (8)
where
Dk:H,,le“(ax—%mﬂﬁ—%mw T4~ B Tif) , 9)

and the integration region is a sphere which covers the whole non-asymptotic region.

Now we consider the quantum effects due to the loop diagrams with 7.'”-internal
lines and with e, Au- and Bis-external lines. We argue that they are automatical-
ly convergent, and give rise to the kinetic terms of ex, Aiuz and Bin'®  Suppose that
7»*Y has as high momentum as the inverse size of the ‘soliton’. Then, it would easily
be transferred to ewm, A and Bin, and accordingly the subspace-time would be so
strongly curved that the E=0 singularities might be met within the size of the
‘soliton’. It means that the descriptions in terms of the curvilinear coordinate z* fail,
and the collective modes ew, Ay and By no longer exist. Therefore, the fields e,
A and By decouple from the fields with so high momenta. Thus the loop momenta
are effectively cut off below the inverse size of the ‘soliton’. As far as the fields e,
Ain and Byn exist, the E=0 singularities reside outside the ‘soliton’, and the action (6)
is invariant under the GCT, LLT and local O(N) transformations. Accordingly, the
quantum loop effects should reflect those symmetries. The dimensional analysis
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‘shows that its leading terms are

Lewr=co+ 1R + aF iy FE + bByu B9+ -+ | (10)
where ¢, ¢1, @ and b are constants, and R=e”e” R,

Risw=Ttun+ Deste *01

Fijp=Agu+ ArinAin .

The first term in (10) is the cosmological term, which is large in general. We need to
keep it small by fine tuning of the original parameters.'” At this point, the present
model does not improve the situation of the ordinary quantum gravity theory, but not
worse. The second and-the third terms give the kinetic and self-interaction terms of
em and As;n. They are the Lagrangians of the ordinary gravitational and gauge
theory. The kinetic term of By is among the non-leading terms. The fourth term
is characteristic of such embedded-space-time model, and would modify the ordinary
gravitational theory. We need to extremize the action under the constraint of Eq. (5).

Now we turn to the effective theory at low energies. There the massive mode of
#»’s cannot be excited. The field B, though it is massive, can be active because
of the constraints in Eq. (5). The terms which are linear in 2% in the integrand of
Eq. (8) vanish when integrated over z%. The terms with the more factors of 2% are
suppressed by the more factors of the order of the size in Lesw. Therefore, at low
energies, H=1 in Eq. (9). Furthermore, if ®” is a scalar or a gauge field, 7,®s
decouple from By, and if 7.” is a chiral zero-mode fermion, it decouples from By
Notice that, in many existing models of solitons, these conditions are satisfied, i.e., the
basic fields are scalar, spinor or gauge fields, and the fermion zero modes are chiral.
Then, D in Eq. (9) is reduced to the covariant derivative of the GCT, LLT and the
local O(N) transformations. Thus, the low energy effective theory in the subspace-
time is a unified theory of the gravitation and gauge forces with the constraint (5).
This constraint does not immediately contradict with the observations. For exam-
ple, if N is sufficiently large, we can always arrange the A;; and B so as to reconcile
with the given configurations of the gravitational, electroweak and gluonic field.
The physical implications of the constraint (5) may be an interesting problem to be
investigated in future. In the above the induced gauge group was O(N). However,
it can be subgroup of O(N), if the solution (1) is invariant only under the subgroup
rotations. To complete this scenario, we need in future to search for models which
yield more realistic gauge symmetry such as SU(3)x SU(2)x U(1), SU(5), SO(10),
etc.

The author would like to thank Professor H. Terazawa, Dr. S. Midorikawa, Dr.
K. Sogo, Dr. M. Tomiya, and other members of Theory Group in Instltute for Nuclear
Study, University of Tokyo, for discussion. '
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Our conventions of the suffices are as follows:

(upper-case letter)=0, 1, ---, M + N,

(lower-case letter)=0, 1, ---, M,

(underlined letter)=M+1, -, M+ N,

(Greek letter)={(general coordinate index),

(Latin letter)=(local Lorentz index).

The indices with [ and ] are antisymmetrized. The indices after comma indicate differentiations.
e+ is defined by ex’en=rnu=diag(l, —1, —1, -, —1). gw=ewmeny™ and g™ =eie’7"*". The Greek
(Latin) indices are uppered and lowered by ¢’s (7’s), and mutually converted by e’s. The underlined
Greek and Latin indices are uppered, lowered and mutually converted by #’s.

Importance of these quantities and equations is suggested in Ref. 5).

The idea that the quantum fluctuations of matter give rise to the kinetic terms of composite fields
has a-long history. For example, see Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961), 345;
J. D. Bjorken, Ann. of Phys. 24 (1963), 174; A. D. Sakharov, Doklady Akad. Nauk SSSR 177 (1967),
70; H. Terazawa, Y. Chikashige and K. Akama, Phys. Rev. D15 (1977), 480; K. Akama,
Y. Chikashige T. Matsuki and H. Terazawa, Prog. Theor. Phys. 60 (1978), 868.

See, for example, K. Akama, Phys. Rev. D24 (1981), 3073; Phys. Lett. 140B (1984), 197.
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