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Abstract. We provide a framework for the analysis of a large class of discontinuous methods for
second-order elliptic problems. It allows for the understanding and comparison of most of the dis-
continuous Galerkin methods that have been proposed over the past three decades for the numerical
treatment of elliptic problems.
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1. Introduction. In 1973, Reed and Hill [61] introduced the first discontinuous

Galerkin (DG) method for hyperbolic equations, and since that time there has been
an active development of DG methods for hyperbolic and nearly hyperbolic problems.
Recently, these methods also have been applied to purely elliptic problems; examples
are the original method of Bassi and Rebay [10], the variations studied in [23] and
[22], and a generalization called the local discontinuous Galerkin (LDG) methods
introduced in [41] and further studied in [33], [26], and [36]. Also in the 1970s, Galerkin
methods for elliptic and parabolic equations using discontinuous finite elements were
independently proposed and a number of variants introduced and studied; see, for
example, [50], [8], [70], [3], and [4]. These DG methods were then usually called
interior penalty (IP) methods, and their development remained independent of the
development of the DG methods for hyperbolic equations. In this paper, we present
a detailed study of a class of DG methods for second-order elliptic problems which
includes all the above-mentioned methods.

Next, we introduce the DG methods. For the sake of simplicity and easy presen-
tation of the main ideas, we restrict ourselves to the model problem

−∆u = f in Ω, u = 0 on ∂Ω,(1.1)

where Ω is assumed to be a convex polygonal domain and f a given function in L2(Ω).
To place the DG methods into a common framework, we first rewrite the problem as
a first-order system

σ = ∇u, −∇ · σ = f in Ω, u = 0 on ∂Ω.
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Multiplying the first and second equations by test functions τ and v, respectively, and
integrating formally on a subset K of Ω, we get

∫

K

σ · τ dx = −

∫

K

u∇ · τ dx+

∫

∂K

u nK · τ ds,

∫

K

σ · ∇v dx =

∫

K

f v dx+

∫

∂K

σ · nK v ds,

where nK is the outward normal unit vector to ∂K. This is the weak formulation we
shall use to define the DG methods.

Before doing that, we need to introduce the finite element spaces associated with
the triangulation Th = {K} of the domain Ω; as usual, we assume the triangles K to
be shape-regular. We set

Vh := {v ∈ L2(Ω) : v|K ∈ P (K) ∀K ∈ Th},

Σh := {τ ∈ [L2(Ω)]2 : τ |K ∈ Σ(K) ∀K ∈ Th},

where P (K) = Pp(K) is the space of polynomial functions of degree at most p ≥ 1
on K and Σ(K) = [Pp(K)]2. Now, following Cockburn and Shu [41], we consider the
following general formulation: Find uh ∈ Vh and σh ∈ Σh such that for all K ∈ Th we
have

∫

K

σh · τ dx = −

∫

K

uh∇ · τ dx+

∫

∂K

ûK nK · τ ds ∀τ ∈ Σ(K),(1.2)

∫

K

σh · ∇v dx =

∫

K

f v dx+

∫

∂K

σ̂K · nK v ds ∀v ∈ P (K),(1.3)

where the numerical fluxes σ̂K and ûK are approximations to σ = ∇u and to u,
respectively, on the boundary of K. To complete the specification of a DG method
we must express the numerical fluxes σ̂K and ûK in terms of σh and uh and in terms
of the boundary conditions. This is why the above formulation is called the flux

formulation. As we shall see, the choice of the numerical fluxes is quite delicate, as
it can affect the stability and the accuracy of the method as well as the sparsity and
symmetry of the stiffness matrix; cf. [41], [24], and [2]. In [2], we showed how to
choose these numerical fluxes to recover virtually all the DG methods that have been
proposed so far; see Table 3.1.

In this paper, we continue in several ways the work started in [2]. In order to put
our work into proper perspective and give the reader an idea of the origins of the DG
methods, we begin in section 2 with a brief overview of the historical development
of the DG methods. Then, in section 3, we introduce a suitable functional setting
and show how to go from the flux formulation (1.2)–(1.3) to a typical finite element
formulation, called the primal formulation, which is obtained by eliminating the aux-
iliary variable σh. Here, we relate the properties of consistency and conservativity of
the numerical fluxes and the properties of consistency and adjoint consistency of the
bilinear form of the primal formulation; see section 3.3. We make the discussion more
concrete by looking more carefully at a few typical examples and then tabulate the
flux choices and primal bilinear form for nine different methods which have appeared
in the literature.

Next, we perform a unified error analysis of this model class of DG methods.
In section 4 we first study the classical properties of consistency, boundedness, and
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stability typically used in finite element error analysis. Then, in section 5, we use them
to obtain our error estimates. We begin with the fully stable and consistent methods.
We show optimal error estimates in the energy norm, and we show that for adjoint-
consistent methods an optimal L2-error estimate also can be achieved. Then, we relax
the consistency conditions and show that optimal error estimates still can be obtained
by forcing the penalty weights to be huge. This superpenalty technique, however,
induces a significant increase in the condition number (see Castillo [25]), which could
be a considerable source of difficulties. Finally, we relax the stability condition and
consider two methods that do not have penalty terms and, as a consequence, are only
weakly stable; they are the DG method of Baumann and Oden and the original DG
method of Bassi and Rebay. The analyses of these methods are ad hoc but illustrate
interesting theoretical techniques.

In section 6, we summarize the main features of the various methods (see
Table 6.1), briefly comment on extensions in several possible directions, and conclude
by discussing ongoing work and several open problems.

Notation. For convenience we list some of the most commonly used notation
and the equations which best illustrate their definitions.

Γ, Γ0, T (Γ), [[ · ]], { · }: (3.1) | · |1,h, | · |∗: (4.1) ||| · |||: (4.2)
r, l: (3.8) re: (3.23) le: (4.8) R, Lβ : (4.13)
αj: (3.20) αj: (4.12) αr: (3.24) αr: (4.11)

2. Historical overview. To put our work into proper perspective, we give a
brief account of the development of the DG methods. We begin by considering penalty
methods for elliptic equations.

2.1. Enforcing Dirichlet boundary conditions through penalties. The
use of a penalty formulation for enforcing the Dirichlet boundary condition can be
traced back to the late 1960s. Indeed, in 1968 Lions [56] considered the problem
of solving elliptic problems with very rough Dirichlet boundary data; for example,
−∆w = f in Ω and w = g on ∂Ω, where f is taken in L 2(Ω) and g in H −1/2(∂Ω).
He regularized the above problem by replacing the Dirichlet boundary condition with
the approximate boundary condition u+µ−1∂u/∂n = g, where µ was a large positive
parameter. Lions proved that for each µ > 0, there exists a unique solution u of
the problem, and he proved that as µ goes to infinity, this solution converges to the
solution w of the original problem. The weak form of the regularized problem is to
find u ∈ H1(Ω) such that

∫

Ω

∇u · ∇v dx+

∫

∂Ω

µ(u− g) v ds =

∫

Ω

fv dx ∀v ∈ H1(Ω).

Note that the trial functions v do not satisfy the boundary conditions and that a
penalty term has been added in order to force, in the limit as µ tends to infinity, the
satisfaction of the boundary conditions. In 1970, this approach was used by Aubin
[5] in the framework of finite difference approximations of nonlinear problems. He
proved that convergence to the exact solution can be obtained provided the penalty
parameter µ goes to infinity as the discretization parameter h goes to zero; in the
linear case, convergence is achieved if µ is of the order of h−1+ǫ for arbitrarily small
ǫ > 0. Finally, in 1973, the same approach was used in the finite element context
by Babuška [6] for the case g = 0. For a finite element space using polynomials of
degree p, the best error estimate obtained in [6] gives a rate of convergence of order
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h(2p+1)/3 in the energy norm, provided that the penalty parameter µ is taken to be of
the order of h−(2p+1)/3. The lack of optimality in the order of convergence is a direct
consequence of the lack of consistency of the weak formulation. Indeed, note that the
exact solution w does not satisfy the weak formulation of the regularized problem;
instead, it satisfies

∫

Ω

∇w · ∇v dx−

∫

∂Ω

∂w

∂n
v ds+

∫

∂Ω

µ(w − g) v ds =

∫

Ω

fv dx

for all v ∈ H1(Ω).
A different approach which still includes a penalty term but does not introduce any

consistency error was proposed in 1971 by Nitsche [58]. Nitsche’s method determines
an approximate solution uh in a finite element subspace ofH1(Ω) such that B(uh, v) =∫
fv for all v in the same subspace. The bilinear form B( · , · ) is given by

B(u, v) :=

∫

Ω

∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v ds−

∫

∂Ω

∂v

∂n
u ds+

∫

∂Ω

µuv ds

for any weighting function µ. Note that the second term of the bilinear form B,
which arises naturally from an integration by parts, ensures the consistency of the
method. On the other hand, the third term renders the discrete problem symmetric
and hence ensures the property of adjoint consistency. Finally, the last term penalizes
the departure of the trace of the approximate solution from the Dirichlet data g = 0
and is necessary to guarantee stability. Nitsche proved that if µ is taken as η/h, where
h is the element size and η is a sufficiently large constant, then the discrete solution
converges to the exact solution with optimal order in H1 and L2.

A third approach for weakly imposing the Dirichlet boundary condition is ob-
tained by including all the terms in the bilinear form B( · , · ) but reversing the sign
of the third term. The resulting bilinear form B is no longer symmetric, but it has
a favorable coercivity property, namely, B(u, u) ≥

∫
|∇u|2, no matter how µ ≥ 0 is

chosen. However, as we shall see, this method does not enjoy the adjoint consistency
property mentioned above, a drawback that will adversely affect its L2 convergence
properties.

2.2. The IP methods for elliptic problems. The IP methods arose from
the observation that, just as Dirichlet boundary conditions could be imposed weakly
instead of being built into the finite element space, so interelement continuity could
be attained in a similar fashion. This makes it possible to use spaces of discontinuous
piecewise polynomials for solving second-order problems (which could, for example, fa-
cilitate adaptivity). In 1973, Babuška and Zlámal [7] used interior penalties to weakly
impose C1 continuity for fourth-order problems. Their bilinear form is analogous to
the penalization technique used by Lions [56], Aubin [5], and Babuška [6].

The natural generalization of Nitsche’s method to second-order elliptic problems
is stated in Wheeler’s 1978 paper [70] on IP collocation-finite element methods; its
weak formulation was motivated by the IP methods of Douglas and Dupont [50] and
Baker [8]. That generalization of Nitsche’s method is analyzed in detail for linear and
nonlinear elliptic and parabolic problems in the 1979 thesis of Arnold [3], which is
summarized in [4]. IPs of this sort were also used in 1977 by Baker [8] for imposing
C1 interelement continuity on C0 elements for fourth-order problems. In these, of
course, it is the jump in the normal derivative that is penalized. In 1976, Douglas and
Dupont [50] penalized the jump in the normal derivative of C0 elements for second-
order elliptic and parabolic problems, with the goal of enforcing a degree of continuity
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in some sense intermediate between C0 and C1. This very same technique was then
applied to a nonlinear hyperbolic equation (arising in secondary oil recovery problems)
in 1979 by Douglas et al. [49]. The IP term they introduced was devised to force the
approximate solution to become nearly C1 away from the shock discontinuity without
affecting the already existing artificial diffusion inserted in the method to properly
deal with the shock.

Since the early 1980s, less attention has been paid to IP methods. This might be
due to the fact that they were never proven to be more advantageous or efficient than
classical conforming finite element methods; moreover, the difficulty in finding optimal
values for the penalty parameters and the corresponding efficient solvers may have
also contributed to this situation. Thus, the ease with which the IP methods handle
nonconforming meshes and varying-in-space polynomial degree approximations, which
makes them ideally suited for hp-adaptivity, has never been fully exploited. Instead,
techniques for enforcing continuity of the approximate solution in the framework of
hp-refinement were developed. Also, new methods that weakly enforce continuity
across boundary elements were explored, such as the classical nonconforming and
mixed methods [21], the mortar methods [20], [18], [19], and the cell discretization
methods [52], [69].

In spite of this, IP methods have recently found a few new applications. Thus,
in 1990, Baker, Jureidini, and Karakashian [9] enforced the divergence-free condition
pointwise inside each element for the Stokes system and used IPs to cope with the
resulting lack of continuity in the approximation of the velocity. In the same year,
Rusten, Vassilevski, and Winther [65] used an IP method for second-order elliptic
problems as part of a preconditioner for mixed methods. Finally, Becker and Hansbo
[17] and Dutra do Carmo and Duarte [48] recently used the IP approach as a way of
dealing with nonmatching grids for domain decomposition.

2.3. The DG methods for convection-dominated problems. On the other
hand, DG methods for the numerical treatment of nonlinear hyperbolic systems expe-
rienced a vigorous development during the past 10 years due to a strong interaction
with the ideas of numerical fluxes, approximate Riemann solvers, and slope limiters
as developed for finite difference and finite volume methods for hyperbolic problems.
Due to the nonlinear character of the equations, the DG methods had to be carefully
crafted to achieve stability, high-order accuracy, and convergence to the so-called
entropy solution. This is the case of the Runge–Kutta DG (RKDG) methods de-
veloped by Cockburn and coauthors in [40], [39], [38], [34], and [42]; see also the
introduction to the subject in [31], the short essay about the ideas used to devise
DG methods for nonlinear hyperbolic equations in [32], and the recent review in [43].
Unlike the IP methods for elliptic problems, these DG methods have been proven
to be clearly superior to the already existing finite element methods for hyperbolic
conservation laws. A review of the development of DG methods up to May 1999 can
be found in [37].

But the evolution of the DG methods did not stop there. The necessity of dealing
with problems having a dominant convective part, as well as a nonnegligible diffusive
part, prompted several authors to extend the DG methods to elliptic problems. Thus,
in 1992 Richter [62] proposed a direct extension of the original DG method to linear
convection-diffusion equations and proved that if the convection is dominant, that
is, if the viscosity coefficients are of the order of the mesh size, the optimal order of
convergence is k + 1/2 when polynomials of degree k are used.

For problems in which the diffusion might be dominant at least in some
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regions of the domain, more precise handling of the second-order terms is necessary.
Since mixed methods can handle elliptic operators very well and use a discontinu-
ous approximation for the potential, they can be easily combined with discontinuous
methods for advection. This idea was explored by several authors. In [44], [45], and
[46], Dawson combined the Raviart–Thomas mixed method for second-order operators
with high-order Godunov methods for convection, giving rise to the so-called upwind-
mixed methods (UMM) for advection-diffusion problems. See also [47] (where he and
Aizinger obtained error estimates for arbitrary polynomial degree) and the applica-
tion papers referenced there. In [28] and [29], Chen et al. used similar ideas for the
discretization of the hydrodynamic and quantum hydrodynamic models for semicon-
ductor device simulation. Specifically, they combined the Raviart–Thomas spaces
for handling second-order elliptic operators with the discontinuous approximations
of the RKDG method. See also the review in [35]. Finally, Lomtev, Quillen, and
Karniadakis [57] used the DG-space discretization method to handle the convective
part of the compressible Navier–Stokes equations combined with a mixed method to
approximate the diffusive part of the equations.

All the above methods used discontinuous approximation only for the convec-
tive terms and mixed methods for second-order elliptic operators. This enforced the
continuity of the normal component of the approximation to σ = ∇u across the el-
ements. It was only in 1997 that completely discontinuous approximations for both
u and σ = ∇u were used by Bassi and Rebay [10]. Indeed, these authors used the
discretization ideas of the RKDG methods to introduce a new DG method for the
compressible Navier–Stokes equations. In 1998 Cockburn and Shu [41] introduced
the so-called local discontinuous Galerkin (LDG) methods for transient nonlinear
convection-diffusion problems by generalizing the original DG method of Bassi and
Rebay; see also Cockburn and Dawson [33] for their extension of the LDG methods to
problems with quite general second-order terms; Castillo et al. [27] for their analysis
of the hp version of the LDG method in one space dimension; and Shu [66] for his
review on the different discretizations of second-order terms by means of DG methods.

Around the same time, Baumann and Oden [15], [14] introduced another DG
method for diffusion problems. Their approach is analogous to the third approach
described earlier for weakly enforcing Dirichlet boundary conditions; it results in a
coercive bilinear form even when the penalty parameter vanishes but, on the other
hand, the bilinear form is not symmetric even for symmetric problems, and so the
method is not adjoint consistent.

2.4. A first attempt to unify the DG methods. In recent years, several
authors were struck by the similarities between the recently introduced DG methods
and the IP methods, and began applying to the former the techniques of analysis
developed earlier for the latter. Thus Brezzi et al. [22], [23] studied several variations
of the original method of Bassi and Rebay; Oden, Babuška, and Baumann [59] stud-
ied the DG method of Baumann and Oden; Rivière and Wheeler [63] and Rivière,
Wheeler, and Girault [64] analyzed several variations of the DG method of Baumann
and Oden; Becker and Hansbo [16] proved a posteriori estimates for the IP approach
to convection-diffusion problems; Houston, Schwab, and Süli [68], [67], [54] synthe-
sized the elliptic, parabolic, and hyperbolic theories by extending the analysis of DG
methods to partial differential equations with a nonnegative characteristic form; and,
more recently, Castillo et al. [26] and Cockburn et al. [36] studied the LDG method
as applied to purely elliptic problems in arbitrary and Cartesian meshes, respectively.

The presentation of all these methods, however, followed two main styles.
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Indeed, the methods inspired by the original IP methods were typically presented
in their primal formulation as, for instance, in [15], [14], [59], [68], [67], and [54], while
the methods inspired by the finite volume techniques for hyperbolic problems were
presented in terms of suitably chosen numerical fluxes as, for instance in [10], [41],
[33], even if the analysis was accomplished by shifting to a suitable associated bilinear
form.

In a previous paper [2], we made a first attempt to unify these two families and
succeeded in recasting all of the above-mentioned methods within a single framework
in order to better understand the connections among them. In particular, it was shown
that the methods of the first family, based on the choice of the bilinear form, could be
obtained as special cases of the second family simply by choosing the proper numerical
fluxes; see Table 3.1. Since some of the new DG methods (of the second family)
have inherited the carefully crafted technique of defining numerical fluxes achieved
for nonlinear hyperbolic problems, it is plausible that the resulting DG methods for
elliptic problems could be more efficient than the old ones, possibly after some suitable
refinement.

In this paper, we complete the work started in [2]. To do that, we start by relating
the flux and primal formulations.

3. The flux and primal formulations. In this section, we relate the flux for-
mulation (1.2)–(1.3) of a DG method to its primal formulation (3.10). We show that
consistency and conservation properties of the numerical fluxes are reflected in consis-
tency and adjoint consistency of the primal formulation. We introduce nine examples
of DG methods which have appeared in the literature—some derived originally in a
flux formulation, others in a primal formulation—and present the numerical fluxes
and primal form for all of them.

3.1. Traces and numerical fluxes. We begin by introducing an appropriate
functional setting. We denote by H l(Th) the space of functions on Ω whose restriction
to each element K belongs to the Sobolev space H l(K). Thus, the finite element
spaces Vh and Σh are subsets of H l(Th) and [H l(Th)]

2, respectively, for any l. The
traces of functions in H1(Th) belong to T (Γ) := ΠK∈Th

L2(∂K), where Γ is used to
denote the union of the boundaries of the elements K of Th. Functions in T (Γ) are
thus double-valued on Γ0 := Γ \ ∂Ω and single-valued on ∂Ω. The space L2(Γ) can
then be identified as the subspace of T (Γ) consisting of functions for which the two
values coincide on all internal edges.

We take the scalar numerical flux û = (ûK)K∈Th
and the vector numerical flux

σ̂ = (σ̂K)K∈Th
to be linear functions

û : H1(Th) → T (Γ), σ̂ : H2(Th)× [H1(Th)]
2 → [T (Γ)]2.(3.1)

In fact, only the normal component of σ̂ plays a role in the DG method; see (1.3).
We could, without loss of generality, insist that σ̂ be directed normally on each edge,
but for simplicity we do not.

The properties of consistency and conservativity of the numerical fluxes are im-
portant in the analysis of the DG methods. We say that the numerical fluxes are
consistent if

û(v) = v|Γ, σ̂(v,∇v) = ∇v|Γ,

whenever v is a smooth function satisfying the Dirichlet boundary conditions. We say
that the numerical fluxes û and σ̂ are conservative if û( · ) and σ̂( · , · ), respectively, are



1756 D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI

single-valued on Γ. The term conservative comes from the following useful property,
which holds whenever the vector flux σ̂ is single-valued: If S is the union of any
collection of elements, then, taking v in (1.3) to be identically one in S and adding
over the elements K contained in S, we get

∫

S

f dx+

∫

∂S

σ̂ · nS ds = 0.(3.2)

Next, we introduce some trace operators that will help us to manipulate the
numerical fluxes and obtain the primal formulation. For q ∈ T (Γ), we define the
average {q} and the jump [[ q ]] of q on Γ0 as follows. Let e be an interior edge shared
by elements K1 and K2. Define the unit normal vectors n1 and n2 on e pointing
exterior to K1 and K2, respectively. With qi := q|∂Ki

we set

{q} =
1

2
(q1 + q2), [[ q ]] = q1n1 + q2n2 on e ∈ E◦

h,

where E◦
h is the set of interior edges e. For ϕ ∈ [T (Γ)]2 we define ϕ1 and ϕ2 analogously

and set

{ϕ} =
1

2
(ϕ1 + ϕ2), [[ϕ ]] = ϕ1 · n1 + ϕ2 · n2 on e ∈ E◦

h.

Notice that the jump [[ q ]] of the scalar function q is a vector parallel to the normal,
and the jump [[ϕ ]] of the vector function ϕ is a scalar quantity. The advantage of
these definitions is that they do not depend on assigning an ordering to the elements
Ki. For e ∈ E∂

h , the set of boundary edges, each q ∈ T (Γ) and ϕ ∈ [T (Γ)]2 has a
uniquely defined restriction on e; we set

[[ q ]] = qn, {ϕ} = ϕ on e ∈ E∂
h ,

where n is the outward unit normal. We do not require either of the quantities {q}
or [[ϕ ]] on boundary edges, and we leave them undefined. In short,

{ · } : T (Γ) → L2(Γ0), [[ · ]] : T (Γ) → [L2(Γ)]2,

{ · } : [T (Γ)]2 → [L2(Γ)]2, [[ · ]] : [T (Γ)]2 → L2(Γ0).

3.2. The primal formulation. With the notation introduced above, we are
ready to obtain the primal formulation. If, in (1.2)–(1.3), we add over all the elements,
we obtain

∫

Ω

σh · τ dx = −

∫

Ω

uh∇h · τ dx+
∑

K∈Th

∫

∂K

ûK nK · τ ds ∀τ ∈ Σh,

∫

Ω

σh · ∇hv dx =

∫

Ω

f v dx+
∑

K∈Th

∫

∂K

σ̂K · nK v ds ∀v ∈ Vh,

where ∇hv and ∇h · τ are the functions whose restriction to each element K ∈ Th are
equal to ∇v and ∇ · τ , respectively.

To deal with the sums of the form
∑

K∈Th

∫
∂K

qKϕK · nK ds, we use the average
and jump operators. A straightforward computation shows that for all q ∈ T (Γ) and
for all ϕ ∈ [T (Γ)]2,

∑

K∈Th

∫

∂K

qKϕK · nK ds =

∫

Γ

[[ q ]] · {ϕ} ds+

∫

Γ0

{q}[[ϕ ]] ds.(3.3)
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After a simple application of this identity, we get
∫

Ω

σh · τ dx = −

∫

Ω

uh∇h · τ dx+

∫

Γ

[[ û ]] · {τ} ds+

∫

Γ0

{û}[[ τ ]] ds ∀τ ∈ Σh,(3.4)

∫

Ω

σh · ∇hv dx−

∫

Γ

{σ̂} · [[ v ]] ds−

∫

Γ0

[[ σ̂ ]]{v} =

∫

Ω

fv dx ∀v ∈ Vh.(3.5)

Now, we express σh solely in terms of uh. To do that, we use another identity. If in
(3.3) we take q equal to the trace of v, and ϕ equal to the trace of τ , we obtain, for
all τ ∈ [H1(Th)]

2 and v ∈ H1(Th), the integration by parts formula

−

∫

Ω

∇h · τ v dx =

∫

Ω

τ · ∇hv dx−

∫

Γ

{τ} · [[ v ]] ds−

∫

Γ0

[[ τ ]]{v} ds.(3.6)

Taking v = uh in the above identity and inserting the resulting right-hand side into
(3.4), we get that, for every τ ∈ Σh,

∫

Ω

σh · τ dx =

∫

Ω

∇huh · τ dx+

∫

Γ

[[ û− uh ]] · {τ} ds+

∫

Γ0

{û− uh}[[ τ ]] ds.(3.7)

Recalling that ∇hVh ⊂ Σh and defining lifting operators r : [L2(Γ)]2 → Σh and
l : L2(Γ0) → Σh by

∫

Ω

r(ϕ) · τ dx = −

∫

Γ

ϕ · {τ} ds,

∫

Ω

l(q) · τ dx = −

∫

Γ0

q[[ τ ]] ds ∀τ ∈ Σh,(3.8)

we may rewrite (3.7) as

σh = σh(uh) := ∇huh − r([[ û(uh)− uh ]])− l({û(uh)− uh}).(3.9)

Taking τ = ∇hv in the identity (3.7) we may then rewrite (3.5) as follows:

Bh(uh, v) =

∫

Ω

fv dx ∀v ∈ Vh,(3.10)

where

(3.11) Bh(uh, v) :=

∫

Ω

∇huh · ∇hv dx+

∫

Γ

(
[[ û− uh ]] · {∇hv} − {σ̂} · [[ v ]]

)
ds

+

∫

Γ0

(
{û− uh}[[∇hv ]]− [[ σ̂ ]]{v}

)
ds.

For any functions uh ∈ H2(Th) and v ∈ H2(Th), (3.11) defines Bh(uh, v), with the
understanding that û = û(uh) and σ̂ = σ̂(uh, σh(uh)), where the map uh �→ σh(uh)
is given by (3.9). The form Bh : H2(Th)×H2(Th) → R is bilinear and, if (uh, σh) ∈
Vh × Σh solves (1.2)–(1.3), then uh solves (3.10) and σh is given by (3.9). We call
(3.10) the primal formulation of the method and call the bilinear form Bh( · , · ) the
primal form.

3.3. Consistency and conservation. Let u solve the boundary value problem
(1.1). By the integration by parts formula (3.6), we have for any v ∈ H2(Th) that

∫

Ω

∇hu · ∇hv dx = −

∫

Ω

∆u v dx+

∫

Γ

{∇hu} · [[ v ]] ds+

∫

Γ0

[[∇hu ]] {v} ds,



1758 D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI

and since {u} = u, [[u ]] = 0, {∇hu} = ∇u, [[∇hu ]] = 0, and −∆u = f , we have

(3.12) Bh(u, v) =

∫

Ω

f v dx+

∫

Γ

(
[[ û ]] · {∇hv}+ (∇u− {σ̂}) · [[ v ]]

)
ds

+

∫

Γ0

[({û} − u)[[∇hv ]]− [[ σ̂ ]]{v}] ds,

where û = û(u), σ̂ = σ̂(u, σh(u)). If the numerical flux û is consistent, i.e., û(u) = u|Γ,
then [[ û ]] = 0 and {û} = u on Γ. Then (3.9) implies that σh(u) = ∇u. If the vector
numerical flux σ̂ is also consistent, we then get that [[ σ̂ ]] = 0, {σ̂} = ∇u on Γ.
Inserting these relations in (3.12) we conclude that

Bh(u, v) =

∫

Ω

f v dx.(3.13)

Thus, if the numerical fluxes are consistent, (3.13) holds for all test functions v ∈
H2(Th). This implies that the primal formulation is consistent, which is defined to
mean that (3.13) holds, at least for all v ∈ Vh; equivalently, in view of (3.10) it means
that Galerkin orthogonality holds:

Bh(u− uh, v) = 0 ∀v ∈ Vh.(3.14)

In fact, using the density of the range of the trace operator, it is not difficult to
reverse the above argument and show that if (3.13) holds for all v ∈ H2(Th), then
the numerical fluxes must be consistent. We do not know of any DG methods for
which (3.13) holds for all v ∈ Vh but not for all v ∈ H2(Th). Thus consistency of the
numerical fluxes is practically equivalent to consistency of the primal formulation.

Now let ψ solve

−∆ψ = g in Ω, ψ = 0 on ∂Ω.(3.15)

If

Bh(v, ψ) =

∫

Ω

v g dx(3.16)

for all v ∈ H2(Th), then we say that the primal form is adjoint consistent. (The
boundary value problem (3.15) is the adjoint of the problem we started with, which in
this case is again the Dirichlet problem for the Poisson equation, because that problem
is self-adjoint.) Since ψ ∈ H2(Ω), we obtain {ψ} = ψ, [[ψ ]] = 0, {∇ψ} = ∇ψ, and
[[∇ψ ]] = 0. Therefore

∫

Ω

∇hv · ∇hψ dx =

∫

Ω

v g dx+

∫

Γ

[[ v ]] · ∇ψ ds,

and then with (3.11) we get

Bh(v, ψ) =

∫

Ω

v g dx+

∫

Γ

[[ û(v) ]] · ∇ψ ds−

∫

Γ0

[[ σ̂(v, σh(v)) ]]ψ ds.

Now suppose that the numerical fluxes are conservative. This means that [[ û ]] = 0
and [[ σ̂ ]] = 0. Thus, conservativity of the numerical fluxes implies adjoint consistency.
Conversely, if either [[ û(v) ]] or [[ σ̂(v, σh(v)) ]] does not vanish for some v, then there
is a smooth function ψ for which (3.16) does not hold.
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3.4. Examples of DG methods. A simple and natural choice of numerical
fluxes is

û = {uh} on Γ0, û = 0 on ∂Ω, and σ̂ = {σh} on Γ.

This is the choice proposed by Bassi and Rebay in [10]. With this choice of û, we
have {û− uh} = 0 and [[ û− uh ]] = −[[uh ]], so (3.9) gives

σh = ∇huh + r([[uh ]]).(3.17)

Therefore
∫

Γ

{σ̂} · [[ v ]] ds =

∫

Γ

{∇hu} · [[ v ]] ds−

∫

Ω

r([[uh ]])r([[ v ]]) dx,(3.18)

where we used the fact that r([[uh ]]) ∈ Σh and the definition (3.8) of r in the last
step. Substituting in (3.11) we obtain the following primal form for the method of
Bassi–Rebay [10]:

Bh(uh, v) =

∫

Ω

[∇huh · ∇hv + r([[uh ]])r([[ v ]])] dx

−

∫

Γ

({∇huh} · [[ v ]] + [[uh ]] · {∇hv}) ds.

As a second example, we consider the classic IP method. This was originally
proposed as a primal formulation, with

Bh(uh, v) =

∫

Ω

∇huh · ∇hv dx−

∫

Γ

([[uh ]] · {∇hv}+ {∇huh} · [[ v ]]) ds+ αj(uh, v),

(3.19)

where

αj(uh, v) =

∫

Γ

µ[[uh ]] · [[ v ]] ds(3.20)

is the IP or stabilization term with the penalty weighting function µ : Γ → R given
by ηeh

−1
e on each e ∈ Eh with ηe a positive number. It is easy to see that this method

arises as well from a proper choice of fluxes,

û = {uh} on Γ0, û = 0 on ∂Ω, and σ̂ = {∇huh} − αj([[uh ]]) on Γ,(3.21)

where αj(ϕ) is simply µϕ, i.e., ηeh
−1
e ϕ on e. Again we have σh as in (3.17), while

instead of (3.18) we get
∫

Γ

{σ̂} · [[ v ]] ds =

∫

Γ

{∇huh} · [[ v ]] ds−

∫

Γ

αj([[uh ]]) · [[ v ]] ds,(3.22)

and (3.19) follows by substituting (3.22) in (3.11).
The vector flux for the IP method contains the jump term αj([[uh ]]) which is

equal to ηeh
−1
e [[uh ]] on e. An alternative jump term is obtained using the lift operator

re : [L
1(e)]2 → Σh given by

∫

Ω

re(ϕ) · τ dx = −

∫

e

ϕ · {τ} ds ∀τ ∈ Σh, ϕ ∈ [L1(e)]2.(3.23)
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We then define αr(ϕ) = −ηe{re(ϕ)} on e. Note that re(ϕ) vanishes outside the
union of the one or two triangles containing e and that r(ϕ) =

∑
e∈Eh

re(ϕ) for all

ϕ ∈ [L1(Γ)]2. If we keep the choice of û in (3.21), but change αj to αr in the choice
of σ̂, we obtain a method of Bassi et al. [13]. In this case the primal form is

Bh(uh, v) =

∫

Ω

∇huh · ∇hv dx−

∫

Γ

([[uh ]] · {∇hv}+ {∇huh} · [[ v ]]) ds+ αr(uh, v),

where

αr(uh, v) =

∫

Γ

αr(uh) · [[ v ]] ds =
∑

e∈Eh

∫

Ω

ηe re([[uh ]]) · re([[ v ]]) dx.(3.24)

As a fourth example we consider the LDG method introduced in [41]. The fluxes
are taken as

û = {uh} − β · [[uh ]] on Γ0, û = 0 on ∂Ω,(3.25)

and

σ̂ = {σh}+ β[[σh ]]− αj([[uh ]]) on Γ0, σ̂ = {σh} − αj([[uh ]]) on ∂Ω.(3.26)

Here β ∈ [L2(Γ0)]2 is a vector-valued function which is constant on each edge. From
the scalar flux choice (3.25), we get {û−uh} = −β ·[[uh ]] on Γ0 and [[ û−uh ]] = −[[uh ]]
on Γ so that (3.9) gives

σh = ∇huh + τ,

where

τ = r([[uh ]]) + l(β · [[uh ]]) ∈ Σh.

Then the vector flux choice (3.26) gives

σ̂ = {∇huh}+ {τ}+ β[[∇huh ]] + β[[ τ ]]− αj([[uh ]])

(with the term involving β missing on ∂Ω). Using (3.8) we obtain

∫

Γ

{σ̂} · [[ v ]] ds =

∫

Γ

{∇huh} · [[ v ]] ds+

∫

Γ0

[[∇huh ]]β · [[ v ]] ds

−

∫

Ω

[r([[ v ]]) + (β · [[ v ]])] · τ dx− αj(uh, v).

Substituting in (3.11) and recalling the definition of τ , we obtain the following bilinear
form for the LDG method:

(3.27) Bh(uh, v) =

∫

Ω

∇huh · ∇hv dx−

∫

Γ

([[uh ]] · {∇hv}+ {∇huh} · [[ v ]]) ds

+

∫

Γ0

(β · [[uh ]][[∇hv ]] + [[∇huh ]]β · [[ v ]]) ds

+

∫

Ω

[r([[uh ]]) + l(β · [[uh ]])] · [r([[ v ]]) + l(β · [[ v ]])] dx+ αj(uh, v).
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Table 3.1

Some DG methods and their numerical fluxes.

Method ûK σ̂K

Bassi–Rebay [10] {uh} {σh}

Brezzi et al. [22] {uh} {σh} − αr([[uh ]])

LDG [41] {uh} − β · [[uh ]] {σh}+ β[[σh ]]− αj([[uh ]])

IP [50] {uh} {∇huh} − αj([[uh ]])

Bassi et al. [13] {uh} {∇huh} − αr([[uh ]])

Baumann–Oden [15] {uh}+ nK · [[uh ]] {∇huh}

NIPG [64] {uh}+ nK · [[uh ]] {∇huh} − αj([[uh ]])

Babuška–Zlámal [7] (uh|K)|∂K −αj([[uh ]])

Brezzi et al. [23] (uh|K)|∂K −αr([[uh ]])

Table 3.2

Primal forms for the DG methods in Table 3.1.

Method Bh(w, v)

Bassi–Rebay [10] g − 〈{∇hw}, [[ v ]]〉 − 〈[[w ]], {∇hv}〉+
(
r([[w ]]), r([[ v ]])

)

Brezzi et al. [22] g − 〈{∇hw}, [[ v ]]〉 − 〈[[w ]], {∇hv}〉+
(
r([[w ]]), r([[ v ]])

)
+ αr(w, v)

LDG [41] see (3.27)

IP [50] g − 〈{∇hw}, [[ v ]]〉 − 〈[[w ]], {∇hv}〉+ αj(w, v)

Bassi et al. [13] g − 〈{∇hw}, [[ v ]]〉 − 〈[[w ]], {∇hv}〉+ αr(w, v)

Baumann–Oden [15] g − 〈{∇hw}, [[ v ]]〉+ 〈[[w ]], {∇hv}〉

NIPG [64] g − 〈{∇hw}, [[ v ]]〉+ 〈[[w ]], {∇hv}〉+ αj(w, v)

Babuška–Zlámal [7] g + αj(w, v)

Brezzi et al. [23] g + αr(w, v)

In Table 3.1 we summarize the interior edge flux choices for the four methods just
discussed and a variety of other methods which have appeared previously. In Table 3.2
we show the primal bilinear forms for these same methods. For convenience, in Table
3.2 we write g for the gradient term (∇hw,∇hv) and use the shorter notation (a, b)
and 〈a, b〉 instead of

∫
Ω
ab dx and

∫
Γ
ab ds.

We close this section with some comments on the tabulated methods. First, we
note that the scalar flux û is consistent for all the methods. The vector flux σ̂ is
consistent for the first seven of the nine methods, but not for the last two. This
lack of consistency can be seen from the primal forms as well. If w is a smooth
function which vanishes on ∂Ω, then the first seven primal forms tabulated reduce to
Bh(w, v) = (∇w,∇hv)−〈{∇w}, [[ v ]]〉, which is equal to (−∆w, v) for all v ∈ H1(Th).
For the last two methods, the edge terms are missing, and so the primal form is
inconsistent. The consistent methods are shown in the left oval of the Venn diagram
in Figure 3.1.

Next we note that the vector flux σ̂ is conservative for all the methods, and
thus the conservation property (3.2) is satisfied for all of them. The scalar flux
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IP [50] LDG [41]
Baumann–Oden [15] Babuška–Zlámal [7]

Brezzi et al. [22]
Bassi–Rebay [10] Brezzi et al. [23]

NIPG [64] Bassi et al. [13]

consistent methods (section 3.4) stable methods (section 4.2)

Fig. 3.1. Consistency and stability of some DG methods.

is conservative for the first five methods listed, so they are adjoint consistent, but
not for the last four methods. In fact, for the Baumann–Oden [15] method and its
stabilized version, the nonsymmetric interior penalty Galerkin method (NIPG), the
primal form is not even symmetric. For the methods of Babuška and Zlámal [7] and
Brezzi et al. [23], the primal form is symmetric, but since it is not consistent, it is
also not adjoint consistent.

Finally, we remark on the sparsity of the stiffness matrix arising from the primal
form. Let w, v ∈ Vh with w supported in a single triangle K1 and v supported in
a triangle K2. Clearly, the term (∇hw,∇hv) entering the primal forms will vanish
unless K1 = K2. The terms given by integrals over Γ and (for LDG) over Γ0 will
vanish unless K1 and K2 share an edge, and the same is true of the penalty terms
αj(w, v) and αr(w, v). However, this is not true of the additional domain integral
terms that occur in the first three methods: these terms will, in general, be nonzero if
there is a third triangle K which shares an edge with each of K1 and K2. Thus these
terms have a significant negative impact on the sparsity of the stiffness matrix. In
some cases the problem can be made less severe. For example, for the LDG method, if
we take β = −nK/2 on some edge e of a triangle K, and v is supported in K, then we
can check that r([[ v ]])+ l(β · [[ v ]]) vanishes on the triangle across e from K. Cockburn
and Shu [41] used this technique to reduce the stencil of the LDG equations in the
framework of one-dimensional convection-diffusion problems; see their equation (2.9).
Moreover, some superconvergence results can be proved for the LDG methods with
such a choice of β; see [24], [36].

4. Boundedness, stability, and approximation properties. In this section,
we discuss separately the boundedness and stability of the bilinear form Bh and the
approximation properties of the space Vh with respect to an appropriate norm. We
will then be ready to carry out a unified error analysis.

4.1. Boundedness. To consider the boundedness and stability of the primal
forms Bh, we let V (h) = Vh + H2(Ω) ∩ H1

0 (Ω) ⊂ H2(Th) and define the following
seminorms and norms for v ∈ V (h):

|v|21,h =
∑

K

|v|21,K , |v|2∗ =
∑

e∈Eh

‖re([[ v ]])‖
2
0,Ω,(4.1)

|||v|||2 = |v|21,h +
∑

K∈Th

h2
K |v|22,K + |v|2∗.(4.2)
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The norm (4.2) is the natural one for obtaining boundedness of the bilinear form
Bh. On the other hand, the weaker norm

v �→ (|v|21,h + |v|2∗)
1/2(4.3)

is the natural one for analyzing the stability of many DG methods. Restricted to
v ∈ Vh, these two norms are equivalent, as is evident from a local inverse inequality.
We also remark that both (4.2) and (4.3) define norms, not just seminorms, on V (h).
Indeed, the discrete Poincaré inequality given in [4, Lemma 2.1], together with the
second inequality of (4.5) below, implies the existence of a constant C for which

‖v‖0 ≤ C(|v|21,h + |v|2∗)
1/2 ∀v ∈ V (h).

We now show that for many DG methods, including all those listed in Table 3.2,
the primal bilinear form Bh is bounded with respect to the norm ||| · |||, that is,

Bh(w, v) ≤ Cb|||w||| |||v||| ∀w, v ∈ V (h).(4.4)

We show this by bounding each of the various terms that appear in the table.
Obviously we have (∇hw,∇hv) ≤ C|w|1,h|v|1,h and, from the definition (3.24),

αr(w, v) ≤ (supe ηe)|w|∗|v|∗.
Now, by the definition of re, (3.23), and after using inverse inequalities as in [22],

we get

C1‖re(ϕ)‖
2
0,Ω ≤ h−1

e ‖ϕ‖2
0,e ≤ C2‖re(ϕ)‖

2
0,Ω ∀ϕ ∈ [Pp(e)]

2,

where he denotes the length of the edge e and the constants C1 and C2 depend only
on the minimum angle of the decomposition and the polynomial degree p. Since [[ v ]]
vanishes for v ∈ H2(Ω) ∩H1

0 (Ω), we can apply the above inequalities with ϕ = [[ v ]]
for any v ∈ V (h), and then summation over the edges e then gives

C1|v|
2
∗ ≤

∑

e∈Eh

h−1
e ‖[[ v ]]‖2

0,e ≤ C2|v|
2
∗ ∀v ∈ V (h).(4.5)

It thus follows that αj(w, v) ≤ C2(supe ηe)|w|∗|v|∗ for w, v ∈ V (h) and also that the
term

∫
Γ0
[[w ]]β · [[ v ]] ds, which occurs in the primal form of the LDG method (3.27),

is bounded by C|w|∗|v|∗ with C = supe he‖β‖L∞(e).
Next we recall that for ϕ ∈ [L2(Γ)]2, re(ϕ) vanishes on the interior of any triangle

K unless e is one of the edges of K. Therefore

‖r(ϕ)‖2
0,Ω =

∥∥∥∥∥
∑

e∈Eh

re(ϕ)

∥∥∥∥∥

2

0,Ω

≤ 3
∑

e∈Eh

‖re(ϕ)‖
2
0,Ω,

whence

‖r([[ v ]])‖2
0,Ω ≤ 3|v|2∗ ∀v ∈ V (h),(4.6)

and so
∫
Ω
r([[w ]]) · r([[ v ]]) dx ≤ 3|w|∗|v|∗ for w, v ∈ V (h).

Next we bound the terms
∫
Γ
{∇hw} · [[ v ]] ds and

∫
Γ
[[w ]] · {∇hv} ds which arise for

the first seven of the tabulated methods. We begin by noting that if w ∈ H2(K) and
e is an edge of K, we have [4, eq. (2.5)],

∥∥∥∥
∂w

∂n

∥∥∥∥
2

0,e

≤ C(h−1
e |w|21,K + he|w|

2
2,K),(4.7)
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where C depends only on the minimum angle ofK. It follows that, for every q ∈ L2(e),

∫

e

∣∣∣∣
∂w

∂n
q

∣∣∣∣ ds ≤ C
(
|w|21,K + h2

e|w|
2
2,K

)1/2
h−1/2
e ‖q‖0,e,

and this implies that

∫

Γ

{∇hw} · [[ v ]] ds =
∑

e∈Eh

∫

e

{∇hw} · [[ v ]] ds

≤ C

[
∑

K

(|w|21,K + h2
K |w|22,K)

]1/2 [∑

e∈Eh

h−1
e

∫

e

|[[ v ]]|2 ds

]1/2

≤ C|||w||||v|∗.

Similarly,
∫
Γ
[[w ]] · {∇hv} ds ≤ C|w|∗|||v||| and

∫
Γ0 [[∇hw ]]β · [[ v ]] ds ≤ C|||w|||‖v|∗ for

w, v ∈ V (h) (provided that |β| is bounded on Γ0).
It remains only to bound the second integral over Ω in (3.27). For e ∈ E◦

h, define
le : L

1(e) → Σh by

∫

Ω

le(q) · τ dx = −

∫

e

q[[ τ ]] ds ∀τ ∈ Σh, q ∈ L1(e).(4.8)

Then le(q) vanishes outside the union of the two triangles containing e and l(q) =∑
e∈E◦

h

le(q). Moreover, from the definitions of le, re, and the jump and average

operators, we find that, if e is an edge of the element K,

le(q) = 2 re(q nK) on K.

It follows that

‖l(q)‖2
0,Ω ≤ 3

∑

e∈E◦

h

‖le(q)‖
2
0,Ω ≤ 12

∑

e∈E◦

h

‖re(q ne)‖
2
0,Ω

(where we can choose ne to be either one of the normals to the edge e), and then that

‖l(β · [[ v ]])‖2
0,Ω ≤ 12|β|L∞(Γ0)|v|

2
∗ ∀v ∈ V (h).(4.9)

This enables us to bound the remaining term as follows:

∫

Ω

[r([[w ]]) + l(β · [[w ]])] · [r([[ v ]]) + l(β · [[ v ]])] dx ≤ C|w|∗|v|∗ ∀w, v ∈ V (h).

We have thus established the bound (4.4) for all the methods in Table 3.2 (and
any other methods involving the same sorts of terms). The constant Cb depends only
on the minimum angle of the decomposition Th, the polynomial degree p, an upper
bound on the edge-dependent penalty parameter η for those methods which include
the penalty term αj or αr and, for the LDG method, an upper bound on the function
β which enters into the formulas (3.26), (3.25) for the fluxes.

4.2. Stability. Now we show that many DG methods satisfy the stability
condition

Bh(v, v) ≥ Cs|||v|||
2 ∀v ∈ Vh(4.10)
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with Cs a positive constant.
With reference to Tables 3.2 and 3.1 we may write, for all nine tabulated methods,

Bh(v, v) = ‖∇hv‖
2
0,Ω + α(v, v) + b(v, v),

where α is either αr, αj, or zero depending on whether the flux σ̂K for the method
contains αr, αj, or neither, and b gathers up all the remaining terms of the primal form.
From the bounds we obtained in the last section, we know that |b(v, v)| ≤ C|||v||||v|∗
for some constant C and all v ∈ V (h).

When present, the penalty term αr or αj contributes to the stability of the method.
For αr, we obtain immediately from (3.24) and the definition of | · |∗ in (4.1) that

αr(v, v) ≥ η0|v|
2
∗ ∀v ∈ Vh,(4.11)

where η0 ≡ infe ηe. In view of (4.5) we have for αj that

αj(v, v) ≥ C1η0|v|
2
∗ ∀v ∈ Vh.(4.12)

Thus, for methods involving a penalty term,

Bh(v, v) ≥ |v|21,h + C0η0|v|
2
∗ − C|||v||||v|∗ ∀v ∈ Vh,

where C0 equals 1 or C1, depending on whether the penalty term is αr or αj, and where
C depends on the angle condition, polynomial degree and, in the case of the LDG
method, a bound for the coefficient β. We may then use the arithmetic-geometric
mean inequality (2ab ≤ a2ǫ+ b2/ǫ) on the last term, and then the equivalence of the
norms (4.2) and (4.3), to show that (4.10) holds for large enough η0. Thus all the
methods considered which include a penalty term αr or αj are stable, assuming that
the stabilizing coefficients ηe are chosen sufficiently large. This includes seven of the
nine methods listed in the tables. The remaining two methods, that of Baumann and
Oden [15] and that of Bassi and Rebay [10], are not stable, as will be discussed below.
The stable methods are indicated in the right oval of the Venn diagram in Figure 3.1.

While the argument just presented establishes stability when the ηe are chosen
sufficiently large, it does not make clear just how large they must be taken. For some
methods, a precise sufficient condition can be obtained by a sharper analysis. To this
end we define R(v) = r([[ v ]]) and Lβ(v) = l(β · [[ v ]]), so

∫

Ω

R(v) · τ dx = −

∫

Γ

[[ v ]] · {τ} ds,

∫

Ω

Lβ(v) · τ dx = −

∫

Γ0

β · [[ v ]] [[ τ ]] ds(4.13)

for all τ ∈ Σh. We may use this notation to give simpler expressions of the primal
form when both arguments belong to Vh. See Table 4.1.

From the table we see that five of the methods—all but the unstable methods
Bassi–Rebay [10] and Baumann–Oden [15], the IP method, and the method of Bassi
et al. [13]—satisfy

Bh(v, v) ≥

∫

Ω

|∇hv + S(v)|2 dx+ α(v, v) ∀v ∈ Vh,(4.14)

where S(v) stands for a linear combination of the terms R(v) and Lβ(v) and α is
either αr or αj. From (4.6) and (4.9) we know that

‖S(v)‖0,Ω ≤ C|v|∗.(4.15)
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Table 4.1

Bilinear forms restricted to Vh × Vh for some DG methods.

Method Bh(u, v)

Bassi–Rebay [10] (∇hu+R(u),∇hv +R(v))

Brezzi et al. [22] (∇hu+R(u),∇hv +R(v)) + αr(u, v)

LDG [41] (∇hu+R(u) + Lβ(u),∇hv +R(v) + Lβ(v)) + αj(u, v)

IP [50] (∇hu,∇hv) + (R(u),∇hv) + (∇hu,R(v)) + αj(u, v)

Bassi et al. [13] (∇hu,∇hv) + (R(u),∇hv) + (∇hu,R(v)) + αr(u, v)

Baumann–Oden [15] (∇hu,∇hv)− (R(u),∇hv) + (∇hu,R(v))

NIPG [64] (∇hu,∇hv)− (R(u),∇hv) + (∇hu,R(v)) + αj(u, v)

Babuška–Zlámal [7] (∇hu,∇hv) + αj(u, v)

Brezzi et al. [23] (∇hu,∇hv) + αr(u, v)

If (4.14) holds, then we deduce, using for instance α = αj and hence (4.12), that

Bh(v, v) ≥ |v|21,h + 2

∫

Ω

∇hv · S(v) dx+ ‖S(v)‖2
0 + C1η0|v|

2
∗ ∀v ∈ Vh,

and applying the arithmetic-geometric mean inequality we have for every ε > 0,

Bh(v, v) ≥ |v|21,h(1− ε) + (1− 1/ε)‖S(v)‖2
0 + C1η0|v|

2
∗ ∀v ∈ Vh.(4.16)

Inserting (4.15) into (4.16) we easily get

Bh(v, v) ≥ |v|21,h(1− ε) + (C(1− 1/ε) + C1η0)|v|
2
∗ ∀v ∈ Vh

for any ε < 1. Since we may choose ε as close to 1 as we please, we can demonstrate
stability for any η0 > 0.

For the method of Bassi et al. [13], we have, instead of (4.14),

Bh(v, v) =

∫

Ω

(|∇hv +R(v)|2 − |R(v)|2) dx+ αr(v, v) ∀v ∈ Vh.

Using (4.6), (4.11), and the above argument, we can deduce the result of [23] which
shows that stability holds whenever η0 > 3.

4.3. Approximation. The last ingredient in the error analysis is a bound on
the approximation error |||u−uI |||, where uI ∈ Vh is a suitable interpolant of the exact
solution u. If uI is chosen to be the usual continuous interpolant, then the jumps of
u− uI will be zero at the interelement boundaries so that (4.2) immediately gives

|||u− uI |||
2 = |u− uI |

2
1,h +

∑

K∈Th

h2
K |u− uI |

2
2,K ≤ C2

ah
2p|u|2p+1,Ω.(4.17)

For some purposes, for example, analyzing the method of Baumann and Oden
below or extending the analysis to nonconforming meshes, it is convenient to take an
interpolant uI which is discontinuous across the interelement boundaries. We just
require the local approximation property

|u− uI |s,K ≤ Chp+1−s
K |u|p+1,K ∀K ∈ Th, s = 0, 1, 2,(4.18)
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where C depends only on p and the minimum angle of K. Using a discontinuous uI

forces us to take into account the term |u− uI |
2
∗ in (4.2). For this, we first use (4.5)

to obtain

|||u− uI |||
2 ≤ |u− uI |

2
1,h +

∑

K∈Th

h2
K |u− uI |

2
2,K + C−1

1

∑

e∈Eh

h−1
e ‖[[u− uI ]]‖

2
0,e.(4.19)

Next, we recall that (see, e.g., equation (2.4) of [4])

‖v‖2
0,e ≤ C(h−1

e ‖v‖2
0,K + he|v|

2
1,K) ∀v ∈ H1(K),(4.20)

where K is a generic triangle having e as an edge, and C is a constant depending only
on the minimum angle of K. Finally, using (4.19) and (4.20), we obtain

|||u− uI |||
2 ≤ C

(
|u− uI |

2
1,h +

∑

K∈Th

h2
K |u− uI |

2
2,K +

∑

K∈Th

h−2
K ‖u− uI‖

2
0,K

)
,

(4.21)

and from (4.18) and (4.21) we have again

|||u− uI ||| ≤ Cah
p|u|p+1,Ω.(4.22)

From now on, when speaking about interpolants we shall always assume that they
satisfy (4.18), and hence (4.22).

5. Error estimates. We now prove error estimates for the DG methods by
using the properties of consistency, boundedness, stability, and approximation just
discussed. First, we consider methods that are consistent, adjoint consistent, and
stable; in this case, optimal error estimates follow in the standard way. Then we study
methods that are not consistent and show how to overcome their lack of consistency
(and obtain optimal error estimates) by means of a superpenalty procedure. This
is the case for the two pure penalty methods at the bottom of Table 3.1, as well as
the variant of the NIPG method (consistent but lacking adjoint consistency) which is
considered in [64]. Finally, we consider the two unstable methods, Bassi–Rebay [10]
and Baumann–Oden [15]. These methods do not have a penalty term and their more
subtle convergence behavior requires a finer analysis.

5.1. Stable and completely consistent methods. Methods that are com-
pletely consistent and stable can be shown to converge with optimal order with respect
to the norm ||| · ||| in the standard way. Indeed, let uI be a piecewise Pp interpolant of
u which satisfies (4.18). Then, using stability (4.10), consistency (3.14), boundedness
(4.4), and the approximation property (4.22), we have

Cs|||uI − uh|||
2 ≤Bh(uI − uh, uI − uh) = Bh(uI − u, uI − uh)

≤Cb|||uI − u||| |||uI − uh||| ≤ Chp|u|p+1,Ω|||uI − uh|||.

Hence, the triangle inequality gives the optimal estimate

|||u− uh||| ≤ Chp|u|p+1,Ω.

Next, we show that when the adjoint consistency condition (3.16) holds, we can
obtain optimal order L2-error estimates by using the standard duality argument. As
usual, we define the auxiliary function ψ as the solution of the adjoint problem

−∆ψ = u− uh in Ω, ψ = 0 on ∂Ω(5.1)
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and write, in view of the adjoint consistency condition (3.16),

Bh(v, ψ) = (u− uh, v) ∀v ∈ V (h).(5.2)

We take ψI to be a piecewise linear interpolant of ψ. Then, taking v = u−uh in (5.2)
and using the consistency condition (3.14), we obtain

‖u− uh‖
2
0,Ω = Bh(u− uh, ψ) = Bh(u− uh, ψ − ψI)

≤ Cb|||u− uh||| |||ψ − ψI ||| ≤ Ch|ψ|2,Ω |||u− uh|||.

As Ω is convex, elliptic regularity gives |ψ|2,Ω ≤ Cr‖u − uh‖0,Ω with Cr depending
only on the domain Ω. Hence, we get the optimal estimate

‖u− uh‖0,Ω ≤ Chp+1|u|p+1,Ω.

For the NIPG method, the above argument fails because the method does not
satisfy the adjoint consistency condition (3.16). In fact, this method does not achieve
optimal order convergence in L2. However, as we shall see in a moment, the optimal
rate of convergence in the L2-norm can be recovered if we use a penalty term similar
to the one used for pure penalty methods.

Finally, we remark that the error analysis for stable and consistent methods can be
extended to the case of nonconforming meshes with minor changes. Such an analysis
was already carried out for one such extension to the IP method in [4] and, more
recently, for the LDG method in [26].

5.2. Inconsistent methods and superpenalties. As pointed out before, the
two pure penalty methods shown on the bottom of Table 3.1 are inconsistent. That
is, instead of satisfying the consistency condition (3.13), they satisfy

Bh(u, v) =

∫

Ω

f v dx+

∫

Γ

{∇u} · [[ v ]] ds

whenever u is the exact solution of (1.1) and v ∈ H2(Th). (This follows immedi-
ately from the identity (3.6) with τ = ∇u.) These methods are, of course, adjoint
inconsistent as well: instead of (3.16), they satisfy

Bh(v, ψ) =

∫

Ω

v g dx+

∫

Γ

[[ v ]] · {∇ψ} ds

for ψ the solution to (3.15) and v ∈ H2(Th). The method of Baumann and Oden and
its stabilized version, NIPG, though consistent, are adjoint inconsistent. For them,
we have

Bh(v, ψ) =

∫

Ω

v g dx+ 2

∫

Γ

[[ v ]] · {∇ψ} ds.

In this section we show that for the pure penalty methods and NIPG we can choose
the penalty large enough to reduce the consistency error to the point where it does
not interfere with optimal order convergence. We achieve this by choosing the penalty
parameter ηe proportional to a negative power of he instead of keeping it bounded
as for the consistent methods. However, this superpenalty procedure tends to make
the DG method behave like a standard conforming method and thus significantly
increases the condition number of the stiffness matrix.
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We take the penalty term as

α(u, v) =
∑

e∈Eh

∫

e

ηeh
−2p−1
e [[u ]] · [[ v ]] ds,(5.3)

where the ηe are bounded uniformly above and below by positive constants, and so
the analysis of this section applies to the method of Babuška and Zlámal and to the
NIPG method. Similar choices based on αr give similar results; see the analysis of
the method of Brezzi et al. given in [23], which is essentially the one we display next.

Having increased the penalty term, if we want to maintain boundedness we now
have to take the norm in V (h) as

|||v|||2h = |v|21,h +
∑

K∈Th

h2
K |v|22,K + α(v, v).(5.4)

Note that the last term is now more heavily weighted than in (4.1) and (4.2).
We begin with an estimate that will be useful in what follows. Using the new

definition of the penalty term (5.3) and the definition of the new norm (5.4), we get,
for all u, v ∈ V (h),

(5.5)
∑

e∈Eh

∫

e

{∇u} · [[ v ]] ds =
∑

e∈Eh

∫

e

(
he

2p+1
)1/2

{∇u} · [[ v ]]
(
he

−2p−1
)1/2

ds

≤ C|||v|||h

(
∑

e∈Eh

he
2p+1

∫

e

|{∇u} · ne|
2 ds

)1/2

≤ Chp|||v|||h‖u‖2,h,

where the last inequality follows from the trace inequality (4.7) and, as usual, ‖u‖2
2,h =∑

K ‖u‖2
2,K .

We are now ready to obtain the estimate. As in section 4.2, we have stability in
the norm (5.4), provided that the lower bound for the ηe is sufficiently large. Hence,
in such a case, we can write

Cs|||uI − uh|||
2
h ≤ Bh(uI − u, uI − uh) +Bh(u− uh, uI − uh) =: T1 + T2,(5.6)

where uI is the usual continuous interpolant of u in Vh. Now, using the continuity of
u− uI , the estimate of T1 is the usual one,

T1 ≤ C|||uI − u|||h|||uI − uh|||h ≤ Chp|||uI − uh|||h|u|p+1,Ω.(5.7)

The term T2 arises from the inconsistency of the method, so it vanishes for NIPG,
while for the method of Babuška and Zlámal it can be estimated by using our auxiliary
inequality (5.5) as follows:

T2 =

∫

Γ

{∇u} · [[uI − uh ]] ds ≤ Chp|||uI − uh|||h‖u‖2,Ω.(5.8)

Hence, inserting (5.7) and (5.8) into (5.6), we get

|||uI − uh|||h ≤ Chp‖u‖p+1,Ω,

and the optimal order estimate

|||u− uh|||h ≤ Chp‖u‖p+1,Ω(5.9)
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follows by the triangle inequality.
For the L2-error estimate of either the Babuška–Zlámal method or NIPG, we

proceed in the usual way. If ψ is again the solution of the adjoint problem (5.1), we
have

‖u− uh‖
2
0,Ω = Bh(u− uh, ψ)− c

∫

Γ

{∇ψ} · [[u− uh ]] ds =: T1 + T2,(5.10)

where c is either 1 or 2, depending on the method. The estimate of the term T1 is quite
easy. Indeed, if ψI is the continuous interpolant of ψ in Vh, then Bh(u, ψI) = (f, ψI)
and, therefore,

T1 = Bh(u− uh, ψ) = Bh(u− uh, ψ − ψI)

≤ C|||u− uh|||h|||ψ − ψI |||h ≤ Ch|||u− uh|||h‖u− uh‖0,Ω.
(5.11)

The term T2 arises from the adjoint inconsistency and can be estimated by means of
the auxiliary inequality (5.5) as follows:

T2 = −c

∫

Γ

{∇ψ} · [[u− uh ]] ds ≤ Chp|||u− uh|||h‖ψ‖2,Ω(5.12)

≤ Chp|||u− uh|||h‖u− uh‖0,Ω,

where again we used elliptic regularity. Inserting (5.11) and (5.12) into (5.10), and
using (5.9), we obtain the desired optimal estimate,

‖u− uh‖0,Ω ≤ Chp+1‖u‖p+1,Ω.

Note that being able to use continuous interpolants uI and ψI , with optimal
approximation properties, is a crucial ingredient in the above analysis since (4.21),
and hence (4.22), do not hold for the new norm ||| · |||h. This is clearly due to the
heavier influence of the jump term. For more general decompositions and settings, a
continuous interpolant might not be available, and the penalty term α(u−uI , u−uI)
would have to be estimated. In these more general cases, the analysis would be more
difficult and optimal estimates might be unachievable. See, for instance, the analysis
in [64] for the NIPG with superpenalty.

5.3. Weakly stable methods. We now briefly present an analysis of the con-
vergence properties of the two remaining methods, namely, the method of Baumann
and Oden and the original method of Bassi and Rebay. A common feature of these
unstable but consistent methods is that they do not use penalty terms but enjoy the
following weak stability property:

Bh(v, v) ≥ C|v|2# ∀v ∈ Vh,(5.13)

where | · |# is only a seminorm. In a situation like this, in order to get estimates for
the discrete error uI − uh in the seminorm, it is reasonable to first write, using (5.13)
and consistency,

C|uI − uh|
2
# ≤ Bh(uI − uh, uI − uh) = Bh(uI − u, uI − uh),(5.14)

and then try to obtain the inequality

Bh(uI − u, uI − uh) ≤ Chp|u|p+1,Ω|uI − uh|#,(5.15)
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which would immediately give the estimate

|uI − uh|# ≤ Chp|u|p+1,Ω.(5.16)

Note that an estimate of the type (5.15) is quite delicate to obtain since, in general,
the bilinear form Bh is not bounded with respect to the seminorm | · |#. Once this
has been achieved, a similar approach can be taken to obtain an L2-estimate. In the
analysis of the two aforementioned methods, we shall follow this approach.

5.3.1. The method of Baumann and Oden. Since the bilinear form Bh for
this method is

Bh(w, v) =

∫

Ω

∇hw · ∇hv dx+

∫

Γ

(
[[w ]] · {∇hv} − {∇hw} · [[ v ]]

)
ds,(5.17)

we obtain

Bh(v, v) = |v|21,h ∀v ∈ V (h),

which implies a weak stability property of the form (5.13). Note that the quantity
on the right-hand side of this equation is just a seminorm, since it vanishes for all
piecewise constant functions, and that the bilinear form Bh cannot be bounded in
terms of it. It is therefore not clear how to obtain error estimates for the method by
using the standard analysis; in fact, for linear elements, it appears that the method
is not convergent. However, in [64] Rivière, Wheeler, and Girault showed how to
obtain optimal order error estimates in the H1(Th)-norm under the assumption that
the polynomial degree p ≥ 2.

The key idea in the analysis carried out in [64] is the use of an interpolant uI ∈ Vh

for which the mean value of {∇h(u−uI)} vanishes on each edge. This property, which
is also satisfied by a straightforward modification of the Morley interpolant for p = 2
and by the Fraeijs de Veubeke interpolant for p = 3 (cf. [30, pp. 374–375]), is only
possible for p ≥ 2. In view of (5.17) it implies immediately that

Bh(u− uI , v) = 0 ∀ v piecewise constant with respect to Th,(5.18)

and hence, if P0 is the orthogonal projection of L2(Ω) onto the space of piecewise
constant functions, for v ∈ V (h),

Bh(u− uI , v) ≤ Cb|||u− uI ||| |||v − P0v|||.(5.19)

On the other hand, it is easy to see that |||v − P0v||| ≤ C|v|1,h for v ∈ Vh, so
Bh(u − uI , v) ≤ C|||u − uI ||| |v|1,h for v ∈ Vh, and, finally, using v = uI − uh as
in (5.14)–(5.16) and then (4.22), we have

|u− uh|1,h ≤ Chp|u|p+1,Ω.(5.20)

Notice that, for discontinuous elements, this estimate is rather weak. It is there-
fore important to obtain a bound on the L2-norm of the error as well. Special care has
to be taken because of the lack of adjoint consistency of the method. Again let ψ be
the solution to the problem (5.1), and let ψI be an interpolant satisfying a property
of the type (5.18). As usual, from elliptic regularity we have ‖ψ‖2,Ω ≤ C‖u− uh‖0,Ω,
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and so |||ψ−ψI ||| ≤ Ch‖u−uh‖0,Ω. Now, using (3.13), then (5.17), and finally (3.14),
we have

‖u− uh‖
2
0,Ω = Bh(ψ, u− uh) = Bh(ψ, u− uh) +Bh(u− uh, ψ)−Bh(u− uh, ψ)

= 2

∫

Ω

∇ψ · ∇h(u− uh) dx−Bh(u− uh, ψ − ψI).

A suboptimal estimate for the first term can be easily obtained using (5.20) as follows:

∫

Ω

∇ψ · ∇h(u− uh) dx ≤ |ψ|1,Ω|u− uh|1,h ≤ C‖u− uh‖0,Ωh
p|u|p+1,Ω.

To handle the second term, we first notice that, although Bh is not symmetric, proper-
ties (5.18) and (5.19) do hold for Bt

h(u, v) ≡ Bh(v, u). Using this fact and proceeding
as above, we get

Bh(u− uh, ψ − ψI) ≤ Cb|||(u− uh)− P0(u− uh)||| |||ψ − ψI |||

≤ Chp+1|u|p+1,Ω‖u− uh‖0,Ω.

Combining the last four estimates we obtain a suboptimal estimate in L2 (to be
expected due to the lack of adjoint consistency) but obtain an optimal estimate in
H1(Th) as follows:

‖u− uh‖0,Ω ≤ Chp|u|p+1,Ω, |||u− uh||| ≤ Chp|u|p+1,Ω.

For a more detailed and comprehensive analysis of this method, see [64]. Let us point
out again that the addition of a strong penalty term can compensate for the loss of
optimality in L2; see also [64] for similar results.

5.3.2. The original method of Bassi and Rebay. To conclude our analysis,
we now consider the DG method introduced by Bassi and Rebay in [10]. Like the
method of Baumann and Oden, this method violates the stability condition (4.10)
and is only weakly stable. However, for this method the violation is more delicate
since the set of functions for which the corresponding seminorm is zero has a more
complex structure. Indeed, for w and v in Vh, the bilinear form for this method is

Bh(w, v) =

∫

Ω

(∇hw +R(w)) · (∇hv +R(v)) dx,(5.21)

which implies the weak stability property, as in (5.13),

‖∇hv +R(v)‖2
0 = Bh(v, v) ∀v ∈ Vh.(5.22)

We see that Bh(v, v) vanishes on the set

Z := {v ∈ Vh : ∇hv +R(v) = 0},(5.23)

which, in general, can be nonempty; see, for instance, [22].
In spite of this unfortunate situation, we show that the existence of a solution

to the discrete problem, together with optimal rates of convergence, still can be ob-
tained for suitable functions f . We proceed as follows. First, we find under what
conditions on f an approximate solution uh exists. Integrating by parts and recalling
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the definition R(v), (4.13), and (3.3), we obtain that for every v ∈ Vh, and for every
τ ∈ Σh,

∫

Ω

(∇hv +R(v)) · τ dx = −

∫

Ω

v∇h · τ dx+

∫

Γ0

{v}[[ τ ]] ds.

Suitable choices for τ give that the condition v ∈ Z is then equivalent to having both
∫

K

vq dx = 0 ∀q ∈ Pp−1(K) ∀K and {v}|e = 0 ∀e ∈ E◦
h.

Thus, if f is a piecewise polynomial of degree p − 1, then (f, v) = 0 for all v ∈ Z,
defined in (5.23). Hence, for such f , the solution uh exists and is unique up to an
element of Z.

To get error estimates, we need a special interpolation operator acting on gradi-
ents. We observe that if g is a piecewise polynomial of degree p− 1, and w ∈ H1

0 (Ω)
is the solution of −∆w = g in Ω, then we can find σI = σI(w) in Σh ∩H(div; Ω) such
that

−∇ · σI(w) = g and ‖∇w − σI(w)‖0,Ω ≤ Chk|w|k+1,Ω k ≤ p.(5.24)

Indeed, thanks to the fact that g is locally in Pp−1, such a construction is possible; for
instance, a Brezzi–Douglas–Marini element of degree p or a Raviart–Thomas element
of degree between p− 1 and p could be used; see [21]. Thus, we easily get

∫

Ω

[∇w − σI(w)] · ∇hv dx−

∫

Γ

[∇w − σI(w)][[ v ]] ds = 0 ∀v ∈ Vh,

which, using (5.21) and (4.13), can be rewritten as follows:

Bh(w, v) =

∫

Ω

σI(w) · [∇hv +R(v)] dx ∀v ∈ Vh.(5.25)

We are now ready to obtain our error estimates. Again let uI be the interpolant of
u in Vh∩C0(Ω). We begin by obtaining an estimate of the L2-norm of ∇hχh+R(χh),
where χh := uI − uh. Using (5.22), consistency, (5.25), and (5.24), we obtain

‖∇hχh +R(χh)‖
2
0,h = Bh(χh, χh) = Bh(uI − u, χh)

=

∫

Ω

[∇uI − σI(u)] · [∇hχh +R(χh)] dx ≤ Chp|u|p+1,Ω‖∇hχh +R(χh)‖0,h,

which implies our first estimate,

‖∇hχh +R(χh)‖0,h ≤ Chp|u|p+1,Ω.(5.26)

Since, by (3.9), σh(uh) = ∇huh +R(uh), we have from the above estimate that

‖∇u− σh(uh)‖0,h ≤ ‖∇u−∇uI‖0,h + ‖∇uI − σh(uh)‖0,h

= ‖∇u−∇uI‖0,h + ‖∇hχh +R(χh)‖0,h ≤ Chp|u|p+1,Ω.
(5.27)

Finally, to estimate the approximation to u in the L2-norm, we must filter out the
spurious oscillatory modes in Z that the approximate solution uh might have. This
filtering can be done simply by L2-projecting the error into the space of functions that
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are piecewise polynomials of degree at most p − 1. In other words, if we denote by
Pp−1 such a projection, we simply estimate Pp−1(u− uh) instead of u− uh. We then
take ψ to be the solution of

−∆ψ = Pp−1(u− uh) in Ω, ψ = 0 on ∂Ω,

and ψI its continuous piecewise linear interpolant. Using adjoint consistency, then
(5.25) and (5.21), and finally (5.26) and interpolation estimates, we obtain

‖Pp−1(u− uh)‖
2
0,Ω = (Pp−1(u− uh), u− uh) = Bh(u− uh, ψ)

= Bh(u− uh, ψ − ψI) = Bh(χh, ψ − ψI) +Bh(u− uI , ψ − ψI)

=

∫

Ω

[σI(ψ)−∇ψI ] · [∇hχh +R(χh)] dx+

∫

Ω

∇(u− uI) · ∇(ψ − ψI) dx

≤ Chp+1|u|p+1,Ω|ψ|2,Ω,

and, by elliptic regularity,

‖Pp−1(u− uh)‖0,Ω ≤ Chp+1|u|p+1,Ω.(5.28)

In other words, the L2-projection of the error into the space of piecewise polynomials
of degree p− 1 superconverges.

6. Summary and concluding remarks. In this paper, we propose a general
framework that allows us to obtain a unified analysis of virtually all the methods found
in the literature for dealing with linear elliptic problems by means of DG methods.

We have shown that all these DG methods can be obtained by suitably choos-
ing the numerical fluxes in the flux formulation (1.2)–(1.3). We also made clear
the connection between the flux and primal formulations and between consistency
and conservativity of the numerical fluxes and consistency and adjoint consistency,
respectively, of the primal formulation.

We found that DG methods that are completely consistent and stable achieve
optimal error estimates. Inconsistent DG methods, like the pure penalty methods, still
can achieve optimal error estimates provided they are superpenalized. The same holds
true for methods that lack adjoint consistency, such as the superpenalized version of
the NIPG method.

The method of Baumann and Oden and its stabilized version, NIPG, are both
consistent but, since they use nonconservative numerical fluxes û, they are not adjoint
consistent. The lack of adjoint consistency of these two methods is reflected in a
suboptimal rate of convergence in the L2-norm.

The stabilization of DG methods via the inclusion of a penalty term is crucial:
without it, convergence is degraded or lost. In terms of fluxes, stability is related to
the suitable choice of the stabilizing term α in the vector flux. Fortunately, there are
no apparent drawbacks to the inclusion of such terms. We considered here two forms
of stabilization terms, one arising in the IP methods and the other in the method of
Bassi et al. [13]. These are equivalent within a constant multiple as far as the analysis
is concerned, although in some cases the condition on the coefficient η required for
stability can be made more explicit for the second form. A comparison of the relative
efficacy of the two approaches to stabilization remains to be made.

Two methods without stabilizing terms were considered: the method of Baumann
and Oden and the original method of Bassi and Rebay. The former method is unstable
for p = 1, but recovers what we have called weak stability for p ≥ 2. In this case,
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Table 6.1

Properties of the DG methods.

Method Cons. A.C. Stab. Type Cond. H1 L2

Brezzi et al. [22] � � � αr η0 > 0 hp hp+1

LDG [41] � � � αj η0 > 0 hp hp+1

IP [50] � � � αj η0 > η∗ hp hp+1

Bassi et al. [13] � � � αr η0 > 3 hp hp+1

NIPG [64] � × � αj η0 > 0 hp hp

Babuška–Zlámal [7] × × � αj η0 ≈ h−2p hp hp+1

Brezzi et al. [23] × × � αr η0 ≈ h−2p hp hp+1

Baumann–Oden (p = 1) � × × - - × ×

Baumann–Oden (p ≥ 2) � × × - - hp hp

Bassi–Rebay [10] � � × - - [hp] [hp+1]

optimal error bounds can be proved in the H1-norm. The least stable method seems
to be the first method of Bassi and Rebay, which might have a singular matrix on
certain grids. However, the use of a right-hand side f which is locally a polynomial
of degree p − 1 makes the system compatible, and then stability and optimal error
bounds are achieved in a suitable seminorm (essentially obtained by projecting the
error onto the space of piecewise polynomials of degree p− 1).

These results are summarized in Table 6.1, which reports, for the various meth-
ods, consistency, adjoint consistency, stability, type of stabilization term, theoretical
requirement on η0 = infe ηe for stability, and rates of convergence in H1(Th) and in
L2. In the last row the brackets around the convergence rate are to remind us that
the estimates (5.27) and (5.28) are bounds only on certain seminorms of the error.

Although we have considered only the model problem of the Laplacian with homo-
geneous Dirichlet boundary conditions on a convex polygon, extension of our frame-
work and analysis to more general scalar elliptic operators and more general boundary
conditions can be easily carried out. There can, however, be several variants of this
extension since the definition of the auxiliary variable σh can take several forms; see,
for example, [41] and [33]. Of course, DG methods also can be easily defined for nu-
merically approximating the solutions of more complex problems such as, for example,
the system of linear elasticity, the Stokes system, the Maxwell equations, and plate
problems. Much of the approach proposed in this paper can be carried over to those
situations.

While the framework and analysis we have set out are helpful for comparing
various DG methods and for comparing them with other methods, we certainly do not
claim that they are sufficient for these purposes. We have mentioned in passing some
potential advantages of DG methods, especially their utility in convection-dominated
problems, the possibility of using nonconforming meshes, and perhaps their suitability
for h-, p-, and hp-adaptivity. Moreover, a variety of other motivations for their use
have been put forth by other authors in a variety of situations. Clearly, to ascertain
the extent to which these advantages are realized for a particular DG method and
a particular class of problems will require further work, especially numerical studies.
A significant numerical comparison of DG methods for elliptic problems has been
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recently carried out by Castillo [25]. In addition to questions of accuracy, he studied
the condition number, the sparsity of the stiffness matrices, and the effect of varying
the penalty parameter. In [12], Bassi and Rebay compared a few of the DG methods
discussed here for the compressible Navier–Stokes equations.

There are two other directions for future research. One important issue is the
design of effective solvers for DG methods. Some results in this direction can be
found already in Bassi and Rebay [11], Feng and Karakashian [51], Lasser and Toselli
[55], and Gopalakrishnan and Kanshat [53]. Finally, the coupling of DG methods
with other methods seems attractive in some circumstances. See Alotto et al. [1] and
Perugia and Schötzau [60].

In view of the widespread and increasing interest in discontinuous Galerkin meth-
ods in recent years, we believe that such further studies are very worthwhile and hope
that the framework presented here will prove useful.
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