
Figure 6 Near optical image coming out from the Y-branch wave-
guide for 1.55 mm light

TABLE 1 Measurement Results of the Propagation Loss in the
Straight Reversed-Ridge Waveguide for Different Wavelengths

Ž . Ž .Wavelength mm Propagation Loss dBrcm

0.633 17.7
1.30 4.1
1.55 2.7

waveguide propagation loss decreased significantly with an
increase in wavelength from 0.633 to 1.55 mm. This is due
partly to the reduction of Rayleigh scattering efficiency as the
wavelength increases.

IV. SUMMARY

Single-mode and 6 mm = 3 mm cross section of PLZT film
reversed-ridge waveguides were first fabricated using a sol-gel
deposition technique. The sol-gel deposited PLZT was flat
across the upper surface of the waveguide over the channel.
This kind of waveguide can be developed for a larger cross
section single mode of film channel waveguides. Since we
etched the ITO spacer film for the waveguide ridge instead of
the PLZT, the standard deviation on the horizontal surfaces
of the waveguide may be as small as several nanometers by
the ITO film deposition process, which is very important for
reducing the scattering loss, especially at the beam-splitting
step as in a Y-branch structure. Consequently, it is possible to
obtain propagation losses as low as 2.7 dBrcm at 1.55 mm.
The large cross section and ease of fabrication of these
waveguides may make ferroelectric thin-film waveguide de-
vices practical for the first time.
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( )ABSTRACT: The perfectly matched layer PML concept is interpreted
as a change in the metric of space. By using the language of differential
forms applied to the electromagnetic fields and exploring the metric
in¨ariance of Maxwell’s equations, the ¨arious pre¨alent PML formula-

( )tions Maxwellian and non-Maxwellian are unified. The analysis also
re¨eals that other PML formulations are also possible, embodying the
pre¨ious PML formulations as special cases. Q 1999 John Wiley &
Sons, Inc. Microwave Opt Technol Lett 20: 124]126, 1999.
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1. INTRODUCTION

Ž . w xThe perfectly matched layer PML 1 has been proven to be
a highly effective means to truncate the computational do-

Ž .mains in electromagnetic EM simulations based on differ-
w xential equation methods. The PML of 1 was shown to be

equivalent to an analytical continuation on the coordinate
Ž .space of Maxwell’s equations MEs to a complex coordinate

Ž . w xspace complex space 2]5 , by which propagating modes are
continuously mapped to exponentially decaying modes, allow-
ing for the reflectionless absorption of EM waves. The PML
adds degrees of freedom to the MEs in such a way that the
fields inside the PML cannot be associated with any possible

Ž .EM field, resulting in a non-Maxwellian or complex-space
formulation.

w xIn an alternative formulation of the PML 3]6 , however,
the added degrees of freedom are entirely incorporated into
the constitutive parameters, the original form of MEs is
retained, and a Maxwellian PML is obtained. In such a case,
the fields inside the PML can be associated with physical
fields in an artificial medium with properly chosen constitu-
tive parameters.

Although both the Maxwellian and non-Maxwellian PML
Žschemes are equivalent in the sense of being reflectionless in

.the continuum limit for all frequencies and angles of inci-
dence, it is of interest to develop frameworks where both
PML formulations can be unified, and such that further

w xinsight into the PML concept can be obtained 7 .
In this work, we interpret the PML as a change in the

Žmetric of space, use the language of differential forms or
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. w xsimply, forms 8]10 , and explore the metric invariance of
MEs to develop a concise mathematical framework which
properly unifies the non-Maxwellian PML and the Maxwellian
PML formulations. As a byproduct of this analysis, it is also
revealed that many other PML formulations are also possi-
ble, embodying the previous PML formulations as special
cases. The convention eyiv t is used throughout. For brevity,
a basic familiarity with the language of differential forms as

w xapplied to the EM fields 8]10 is assumed.

2. FORMULATION

Inside the PML, the spatial coordinates are mapped to a
w xcomplex domain as 2]5

x
Ž . Ž .x ª x s s x9 dx9 1˜ H x

0

Ž . Ž . Ž .where s x s a x q is x rv is the complex stretchingx x x
variables on x, and similarly for y and z. This can be easily
interpreted as a change in the metric of space. From the

Ž .2Euclidean metric ds s dxdx q dydy q dzdz or

1 0 0
w x w x Ž .g s d s 20 1 0i j i j

0 0 1

w Ž .xwe are led to a modified, complex metric g x, y, z givenĩ j
Ž .2 Ž .2 Ž .2 Ž .2 Ž .2by ds ª ds s s dxdx q s dydy q s dzdz, or˜ x y z

w Ž .x w Ž .x w x w Ž .x Ž .g x , y , z s T x , y , z ? d T x , y , z 3ĩ j i j i j i j

with

s 0 0x

0 s 0w Ž .x Ž .T x , y , z s . 4yi j

0 0 sz

This is a purely geometric interpretation of the PML, mean-
ing that the PML concept does not depend on the particular
form of field equations and is applicable to any linear wave
phenomena. An interesting property of MEs, however, is that
it allows a change in the metric to be entirely translated into
a change in the constitutive parameters. This is revealed by

w xwriting the MEs in the language of differential forms 8]10 :

Ž .dE s iv B 5a
Ž .dH s yiv D 5b
Ž .dD s 0 5c
Ž .dB s 0 5d

where E, H are the electric and magnetic field 1-forms, and
D, B are the electric and magnetic flux 2-forms. The operator
d is the exterior derivative. The MEs as written above are

Žmetric invariant in contrast to the Maxwell equations when
.written in the vector language , and retain the same form in

any coordinate system since d does not depend on a metric
w x7 . In the differential forms language, the constitutive param-
eters of a given medium relate the 1-forms E, H to the
2-forms D, B, and are given in terms of so-called Hodge

w xoperators 8]10 , D s w E and B s w H. These operatorse h
Ž .establish a map isomorphism between the space of 1-forms

as E and H and the space of 2-forms as D and B. The
Hodge operators depend on a metric so that all of the

information about the metric is contained in the constitutive
relations. As a result, a change in the metric properties of
space can be entirely incorporated, in a dual formulation, as
a modification to the constitutive parameters of the MEs.

A duality relation also exists between the forms E, H, D,
and B and the corresponding vector fields E, H, D, and B.
Given a general 1-form V expanded in terms of the basis of
1-forms dx, dy, dz, its dual vector under the isomorphism

w x w xgoverned by a diagonal metric tensor g s g d is giveni j ii i j
by

VV Vyx z Ž .V dx q V dy q V dz ª x q y q z 6x y z g g g' ' '11 22 33

where x, y, z are the unit vectors. Similarly, in the case of a
2-form F expanded in terms of the basis of 2-forms

w xdxdy, dydz, dzdx, the isomorphism under g d isii i j

F dydz q F dzdx q F dxdyx y z

FF Fyx z Ž .ª x q y q z. 7
g g g g g g' ' '22 33 33 11 11 22

If we express the electric field 1-form E as E s E dx qx
E dy q E dz, then the operators w act on E to give they z e
electric flux 2-form D as follows:

g g g g' '22 33 33 11
D s w E s e E dydz q e E dzdxe x yg g' '11 22

g g' 11 22 Ž .q e E dxdy 8zg' 33

and analogously for the magnetic case. Under the change in
w x w xthe metric g ª g inside the PML, the modified MEs˜i j i j

read

˜ ˜ Ž .dE s iv B 9a

˜ ˜ Ž .dH s yiv D 9b

˜ Ž .dD s 0 9c

˜ Ž .dB s 0. 9d

Ž .These metric-free equations are the same as 5 . However,
˜ ˜ ˜ ˜the new forms E, H, D, and B are related through modified

˜ ˜ ˜ ˜Hodge operators D s w E, B s w H defined by the modi-˜ ˜e h
w xfied metric g . This uniquely defines the PML in the dif-ĩ j

ferential forms language. The different PML formulations in
the vector language arise depending on how we map the
forms into corresponding vectors inside the PML, as dis-
cussed next.

2.1. The Maxwellian PML Formulation. In this case, the map
from the 1-forms E and H to the corresponding vectors is

Ž . w x w xgiven by 6 using the Euclidean metric tensors g s di j i j
Ž w x.natural isomorphism under d , i.e.,i j

m Ž .E s E dx q E dy q E dz ª E s E x q E y q E z 10x y z x y z

Ž .and similarly for D and B, but using 7 . The superscript ‘‘m’’
Ž .denotes the Maxwellian fields. Since 9 above preserves the

form of MEs, the resultant system in the vector language also
retains the usual form of MEs on the Euclidean metric, with
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the constitutive relations in the vector language incorporating
all of the effects on the change of the metric of space
w x w x Ž . Ž . Ž .g ª g within the PML. Using 3 , 4 , and 8 , they are˜i j i j
given by

s s s ss sy z x yz x Ž .e s e xx q e yy q e zz 11
s s sx y z

and analogously for m.

( )2.2. The Complex-Space Non-Maxwellian PML Formulation.
In this case, the map from forms to the corresponding dual

Ž .vectors is given by 6 using the modified complex metric
w x Ž w x.tensor g natural isomorphism under g :˜i j i j

EE Eyx zc Ž .E s E dx q E dy q E dz ª E s x q y q z 12x y z s s sx y z

Ž .and analogous relations for the other fields using 7 and
duality. The superscript ‘‘c’’ denotes complex-space fields. In
this case, the resultant system in the vector language does not
retain the form of MEs since the metric factors appearing in

Ž .the vector language equivalent to 9 are not the usual ones
associated with the Euclidean metric, but complex ones asso-

w x w xciated with the complex metric g 2]5 . On the other hand,ĩ j
the constitutive relations, when translated to vector language,
retain the same form as before the change of the metric

c c Ž .D s e E since complex factors in 8 cancel out. We also
Ž . Ž . m csee from 10 and 12 that the E and E are related by

m w x cE s T ? E , and similar expressions exist for the otheri j
fields.

2.3. Other PML Formulations. This analysis reveals that other
choices of metrics are possible to govern the isomorphism
between differential forms and vectors, as long as they re-

w xcover the real metric g in the physical domain and pre-i j
serve the perfect matching conditions. An obvious choice is
w x bg with 0 F b F 1. The particular choice b s 0 recoversĩ j
the Maxwellian PML, and the particular choice b s 1 recov-
ers the complex-space PML.

The resulting vector fields E b are related to the previous
b w x1yb cones through E s T ? E . The constitutive tensors arei j

also modified accordingly.
We note that some of the new PMLs may have attractive

characteristics for computational purposes. For instance, the
w xchoice b s 1r2 was already used 11 to provide a symmetric

modified nabla operator for use in the finite-element method
Ž .FEM . This leads to a symmetric FEM matrix, as opposed to

Ž .the complex-space PML b s 1 . Moreover, numerical exper-
w ximents 11 showed that the condition number from the FEM

matrix in this formulation is better that in the Maxwellian
Ž .PML b s 0 .

3. CONCLUSIONS

The PML is interpreted as a change of the metric of space,
and it is shown that differential forms constitute the appro-
priate language to unify the PML formulations since the
metric invariance of MEs is manifested in such a language.
Different PML formulations in the vector language are de-
rived from different choices of how to map the same form
quantities into corresponding vector quantities. Furthermore,
this analysis also reveals that many other PML formulations
are possible.

The extension of this analysis for other coordinate systems
w x w xPMLs 2]4 and for PMLs in more general media 5 is also

possible, and will be reported elsewhere along with additional
issues.
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Receï ed 24 June 1998

( )ABSTRACT: The design of a low-loss, frequency-selectï e surface FSS
for dual-frequency radioastronomical applications is discussed in
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