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ABSTRACT

News clustering, categorization and analysis are key compo-
nents of any news portal. They require algorithms capable of
dealing with dynamic data to cluster, interpret and to tem-
porally aggregate news articles. These three tasks are often
solved separately. In this paper we present a unified frame-
work to group incoming news articles into temporary but
tightly-focused storylines, to identify prevalent topics and
key entities within these stories, and to reveal the temporal
structure of stories as they evolve. We achieve this by build-
ing a hybrid clustering and topic model. To deal with the
available wealth of data we build an efficient parallel infer-
ence algorithm by sequential Monte Carlo estimation. Time
and memory costs are nearly constant in the length of the
history, and the approach scales to hundreds of thousands
of documents. We demonstrate the efficiency and accuracy
on the publicly available TDT dataset and data of a major
internet news site.
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1. INTRODUCTION
Internet news portals provide an increasingly important
service for information dissemination.To ensure good per-
formance they need to provide a number of essential capa-
bilities to the reader:

Clustering: Given the high frequency of news articles — in
considerable excess of one article per second even for
quality English news sites — it is vital to group simi-
lar articles together such that readers can sift through
relevant information quickly.

Timelines: Aggregation of articles should not only occur in
terms of current articles but it should also take previ-
ous news into account. This is particularly important
for stories that are just about to drop off the radar —
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a single article on the Haiti earthquake a year after the
event may not carry much statistical weight, yet when
combined with past information it may be categorized
efficiently into the bigger context of related news.

Mindshare: When viewing events it is useful to gauge their
importance in terms of whether the story is currently
“trendy”, and to assess how popular it has been in the
past. Services such as Google Trends or Yahoo! Buzz
provide similar functionality.

Content analysis: We would like to group content at three
levels of organization: high-level topics, individual sto-
ries, and entities. For any given story, we would like to
be able to identify the most relevant topics, and also
the individual entities that distinguish this event from
others which are in the same overall topic. For exam-
ple, while the topic of the story might be the death
of a rock star, the identity Michael Jackson will help
distinguish this story from similar stories.

Online processing: As we continually receive news doc-
uments, our understanding of the topics occurring in
the event stream should improve. This is not necessar-
ily the case for simple clustering models — increasing
the amount of data will simply increase the number of
clusters, without necessarily improving their quality
— but it holds for topic models. Yet topic models are
unsuitable for direct analysis since they do not reason
well at the level of individual events.

The above desiderata are often served by separate algorithms
which cluster, annotate, and classify news. Such an endeav-
our can be costly in terms of required editorial data and
engineering support. Instead, we propose a unified statisti-
cal model to satisfy all demands simultaneously.
Our approach relies on a hybrid between clustering algo-
rithms and topic models. We use clustering to address the
issue of aggregating related news into the same story, focus-
ing on the “who,”“when,” and “where” of the story. At the
same time, topic models allow us to identify the “what” and
“how,” tying new stories to related events from the past.
While topic models and clustering are usually represented
as opposing approaches in the literature, we show here that
they can be combined into a powerful hierarchical frame-
work.
Furthermore, we use time-dependent dynamic cluster as-
sumptions to make our model adaptive to the ever changing
nature of the news stream. At its heart is a nonparametric
Bayesian approach called the Recurrent Chinese Restaurant
Process [3]. As a side benefit our model yields temporal in-
tensity tracking, i.e. it addresses the issue of constructing

WWW 2011 – Session: Spatio-Temporal Analysis March 28–April 1, 2011, Hyderabad, India

267



Figure 1: Left: Recurrent Chinese Restaurant Pro-
cess for clustering; Middle: Latent Dirichlet Alloca-
tion; Right: Storylines.
timelines of news.
A key departure from prior work is our emphasis on com-
putationally scalable inference. Our ultimate goal is an on-
line system that can run continuously, with time and mem-
ory costs that are constant in the length of the history. To
this end, we develop a stochastic Monte Carlo inference pro-
cedure that collapses out many of the model’s latent vari-
ables, yet remains trivially parallelizable.
Our experiments demonstrate both the scalability and ac-
curacy of our approach. In particular, we compare against
the manual annotations from the Topic Detection and Track-
ing shared task [5], obtaining state of the art results (with-
out using any of the hand annotations typically employed
for parameter tuning on this task) that validate the design
choices embodied by our model. To demonstrate scalability,
we apply our approach to the commercial news stream of a
large internet news site.
Our experiments demonstrate both the scalability and ac-
curacy of our approach. In particular, we compare against
the manual annotations from the Topic Detection and Track-
ing shared task [5], and editorially-labeled clusters from com-
mercial news stream of a large internet news site.

Outline: We begin with a high-level overview of the prob-
lem of news clustering and analysis. This is followed by
detailed yet relatively equation free description of the sta-
tistical approach we take. This section is sufficient to gain
the intuition needed for understanding the inner workings
of the model. Subsequently, we provide a more thorough
mathematical presentation of the steps required in obtain-
ing such an estimate. A discussion of the data types re-
quired for inference and implementation details follows. We
conclude with our experimental results and a discussion of
future work. For an in-depth analysis of the inference pro-
cedure, more detailed statistical and technical implications,
we refer the reader to [1, 2].

2. CONCEPTS
Generative statistical models enable rich inference over an
intuitively appealing probabilistic representation for docu-
ments and text. But just as human readers are overwhelmed
by the number of potentially relevant documents, existing
generative models can be deployed only on narrowly-selected
collections. Standard Bayesian inference does not scale eas-
ily to web-size data [31, 12]; however, we believe that the
scalability of topic models such as Latent Dirichlet Alloca-
tion is also limited on a more fundamental level by the un-

derlying representation. We address both issues: we develop
a novel multiresolution model that represents streaming text
and we show how inference can be made efficient.
The standard topic model representation is flat, applying
a single set of topics across all documents. But in blogs and
news articles, there are at least two relevant dimensions,
which topic models conflate. High-level topics – such as
“basketball” or “financial crises” – each pertain to many dis-
tinct storylines, such as the bankruptcy of Lehman Brothers
in 2008. The distinction between topics and storylines is not
simply a question of granularity: topics feature a loose and
shifting cast of characters over a long timescale, while sto-
rylines tend to occur over a compact timespan and focus on
a few key actors and events. Within a given storyline, an
author may choose to emphasize a small subset of all poten-
tially relevant topics; for example, an article describing the
Lehman Brothers collapse might focus on either the political
or the economic aspects of the story.
We present a model capable of reasoning about an un-
bounded number of storylines, in relation to higher-level
topics, named entities (e.g. people and locations), and time.
The strength of each individual storyline rises and falls in
a non-parametric model based on the Recurrent Chinese
Restaurant Process [3]. The model distinguishes between
storylines and high-level topics in several other respects.
First, while storylines and topics both generate the words
in an article, only storylines are imbued with a distribution
over named entities. Second, documents are modeled as an
admixture of topics, but we permit only a single latent story-
line indicator which defines a prior on the topic proportions.
We assume that we have access to a continuous stream
of news articles which needs to be processed instantly, and
which is too large to afford periodic analysis of the entire

collection of news articles. We assume, in particular, that
we have an incoming stream of news in excess of one new
article per second, and that we would like to build a system
capable of processing this amount of data.
To streamline the presentation for the purpose of this pa-
per, we ignore issues such as the identity of a news source,
possible attached categorical metadata, or links present within
the individual news articles. While these issues are all crit-
ical for practical deployment, they would detract from the
key algorithm presented in this paper and are hence omit-
ted. Nevertheless, it is easy to add such metadata to our
model by ’upstream conditioning’ [22], i.e. by using side in-
formation such as links, newspapers, authors, or categories
to improve topic and cluster estimates. Similarly, co-clicks,
popularity of articles, etc. can provide highly valuable infor-
mation regarding the coherence of stories.

2.1 Recurrent Chinese Restaurant Process
We begin by introducing our model’s time-dependent clus-
tering component, based on the Recurrent Chinese Restau-
rant Process (RCRP) [3]. This is depicted in Figure 1 on
the left, for which some terminology is in order: shaded
variables are observed data, blank ones are latent (not ob-
served). Arrows encode dependence, i.e. the distribution of
children depends on their parents. The graphs themselves
are acyclic. Plates are the statistical equivalent of a for

loop. They refer to instantiations of the contained random
variable for all values of the associated index.
The basic idea is that stories (i.e. clusters) are composed of
articles and that the popularity of stories varies over time.
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We assume that past story popularity is a good prior as-
sumption for today’s popularity — consequently, if we do
not see articles related to a given story for a while, our prior
assumption to see any further articles decreases. The RCRP
not only models these assumptions, but also has the advan-
tage of not assuming a fixed number of stories. Instead, it
allows for a certain probability of seeing a new cluster at any
given time.
Figure 1 provides a graphical depiction of this dependence.
The observed words arise from a multinomial distribution,
i.e. a bag of words model that is associated with the story
at hand. Over time, the prevalence of stories changes, and
the present article is drawn from this changing story distri-
bution. As a result, we obtain both an estimator over the
story distributions and a model of the stories.
However, simply clustering articles based on this model
will not work: as we obtain increasingly large amounts of
data by recording articles over time, our algorithm will not
learn anything new from the composition of articles related
to a story. In other words, if we had two years of data rather
than one to build our model, we would simply obtain twice
as many clusters (assuming that the average arrival rate of
new stories is constant) but no further information regarding
the language model underlying this process.

2.2 Topics
In order to address the clustering issue, we shall integrate
our RCRP story model with the strengths of the Latent
Dirichlet Allocation model [11]. The LDA exploits long-
range relations between words by assuming that documents
are composed of topics. Under LDA, to model the content
of a document it suffices to estimate the topics that occur
in it. A graphical description of LDA is given in the middle
diagram of Figure 1.
The generative process first draws a topic mixture over
topics for a given document. This topic mixture corresponds
to a mixture of multinomial word distributions, from which
words are subsequently drawn. This means that, rather than
assigning a single multinomial distribution to each cluster,
we now have a mixture of multinomials for each document.
This approach has been shown to yield content models that
correlate well with human judgments [13].
Unfortunately, when applying LDA to news articles we
face a problem: LDA offers us little guidance in terms of
how to aggregate articles into stories. That is, while LDA is
very useful in identifying the content of an article such as ’fi-
nance’, ’basketball’, ’middle east’, etc., it fails to distinguish
between, say, two different athletes committing adultery,
since both are likely concerned with the same set of top-
ics. Unlike clustering however, LDA can incorporate more
data without dramatically increasing the size of the latent
space. Moreover there are effective models for dealing with
topic drift over time [10]. In other words, LDA excels in
almost all aspects where clustering fails, and vice versa.

2.3 Storylines and Topics
We now describe how we integrate the strengths of story
clustering and LDA topic modeling. As a new story devel-
ops, we draw from a mix of topics to describe its content,
in the same fashion as LDA. However, we do not identify a
story with a single article. Instead, we assume that articles
are written based on the story. That is, we treat each story
as a cluster from which individual articles are drawn.

Such an approach combines the strengths of clustering
and topic models. We use topics to describe the content of
each cluster, and then we draw articles from the associated
story. This is a more natural fit for the actual process of how
news is created: after an event occurs (the story), several
journalists write articles addressing various aspects of the
story. While their vocabulary and their view of the story
may differ, they will by necessity agree on the key issues
related to a story (at least in terms of their vocabulary).
Hence, to analyze a stream of incoming news we need to
infer a) which (possibly new) cluster could have generated
the article and b) which topic mix describes the cluster best.
To make the described approach work requires some mod-
ifications. First, story prevalence has to be dynamic, chang-
ing with time — this can be addressed by the storylines
model of [3]. Second, we need the clusters to gain a more de-
tailed description as we observe more data. This is achieved
by allowing for cluster-specific corrections to the topic mix-
ture.

2.4 Named Entities
While words may be drawn from distributions correspond-
ing to either the storyline or a high-level topic, all entities
are drawn from a distribution corresponding to the story-
line. While entities are obviously strongly correlated with
topics, their choice is somewhat orthogonal to the story it-
self (e.g. the name of the dying rockstar or the name of the
philandering athlete). The rationale is that high-level topics
are more general than any individual entity, while storylines
are characterized most distinctively by the people, places,
and organizations they describe. This assumption may oc-
casionally be violated for extremely influential entities who
are ubiquitous within a high-level topic, but it provides a
crucial anchor that helps us to differentiate storylines from
topics, while sidestepping some of the problems encountered
by similar generative models over terms and entities [24]. As
an added benefit, a separate model for entities provides us
with useful data for annotating clusters by capturing the
dramatis personae.

3. STATISTICAL MODEL
3.1 Recurrent Chinese Restaurant Process
A critical feature for disambiguating storylines is time.
Storylines comes and go, and it makes little sense to try
to associate a document with storyline that has not been
seen over a long period of time. One approach to modeling
time would be parametric: we could associate a probability
distribution with the timestamps of documents in any given
storyline [30]. However, different stories often have radically
different temporal characteristics, and multimodality is not
uncommon, as we observe e.g. in Figure 4.
We turn to the Recurrent Chinese Restaurant Process [3],
which generalizes the well-known Chinese Restaurant Pro-
cess (CRP) [27] to model partially exchangeable data like
document streams. The RCRP provides a nonparametric
model over storyline strength, and permits sampling-based
inference over a potentially unbounded number of stories.
Documents are assumed to be divided into epochs (e.g.,
one hour or one day); we assume exchangeability only within
each epoch. For a new document at epoch t, a probability
mass proportional to γ is reserved for generating a new sto-
ryline. Each existing storyline may be selected with proba-
bility proportional to the sum mst +m�

st, where mst is the
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number of documents at epoch t that belong to storyline s,
and m�

st is the prior weight for storyline s at time t.
More formally, denote by std the story index associated
with document d at epoch t. We can compactly write

std|s1:t−1, st,1:d−1 ∼ RCRP(γ, λ,∆) (1)

to indicate the following distribution:

P (std|s1:t−1, st,1:d−1) ∝

�

m�

ts +m−td
ts existing story

γ new story
(2)

As in the original CRP, the count m−td
ts is the number of

documents in storyline s at epoch t, not including d. The

temporal aspect of the model is introduced via the priorm
�

st,
which is defined as

m
�

st =
∆�

δ=1

e
−

δ
λms,t−δ. (3)

This prior defines a time-decaying kernel, parametrized by ∆
(width) and λ (decay factor). When ∆=0 the RCRP degen-
erates to a set of independent Chinese Restaurant Processes
at each epoch; when ∆ = T and λ = ∞ we obtain a global
CRP that ignores time. In between, the values of these two
parameters affect the expected life span of a given compo-
nent, such that the lifespan of each storyline follows a power
law distribution [3]. The associated graphical model is given
on the left in Figure 1. The variables are as follows:

t time
d document
(d, i) position i in document d
sd story associated with document d
wdi word i in document d
βs word distribution for story s
β0 prior for word distributions

For each time period t ∈ {1, . . . , T} do

For each document d in time period t do

i. Draw the storyline indicator: std via
std|s1:t−1, st,1:d−1

ii. If std is a new storyline draw a distribution
over words βs|β0

iii. For each i in document draw wdi ∼ βstd

This time-dependent clustering process constitutes the first
component of the storylines model. The second component
is given by a topic model.

3.2 Topic Models
The Latent Dirichlet Allocation model [11] is described in
the middle of Figure 1. We have the following variables and
associated generative process:

α Dirichlet prior over topic distributions
d document
θd topic distribution for document d
(d, i) position i in document d
zdi topic associated with word at (d, i)
wdi word at (d, i)
φ0 Dirichlet prior over word distributions for topics
φk word distribution for topic k

1. For all topics k do

(a) Draw word distribution φk from word prior φ0

2. For each document d do

(a) Draw topic distribution θd from Dirichlet prior α
(b) For each position (d, i) in d do

i. Draw topic zdi for position (d, i) from topic
distribution θd

ii. Draw word wdi for position (d, i) from word
distribution φzdi

The key difference to the basic clustering model is that we
continue improving our estimate of the stories as we receive
more data.

3.3 Storylines for News
We now combine clustering and topic models into our pro-
posed storylines model by imbuing each storyline with a
Dirichlet distribution over topic strength vectors with pa-
rameters α (they encode mean and precision). For each ar-
ticle in a given storyline, the topic proportions θd are drawn
from this Dirichlet distribution.
Words are drawn either from the storyline or one of the
topics. This can be modeled by adding an element K +1 to
the topic proportions θd. If the latent topic indicator zn ≤
K, then the word is drawn from the topic βzn ; otherwise it
is drawn from a distribution linked to the storyline φs.
Topic models usually focus on individual words, but news
stories often center around specific people and locations [21].
For this reason, we extract named entities from text in a pre-
processing step, and model their generation directly. Note
that we make no effort to resolve names “Barack Obama”
and “President Obama” to a single underlying semantic en-
tity, but we do treat these expressions as single tokens in a
vocabulary over names. The variables are as follows:

t time
d document
(t, d) document d in epoch t

(d, i) position i in document d (word or entity)
std story associated with document d
st aggregate cluster variables at time t
edi entity at position i in document d
zdi topic at position i in document d
wdi word at position i in document d
Ωs Entity distribution for story s
Ω0 prior for entity distributions
θs topic distribution for story s
θtd topic distribution for document d at time t
α Dirichlet prior over topic distributions
βs word distribution for story specific “topic” for story s
β0 prior for story-specific word distributions
φk word distributions for topics k
φ0 Dirichlet prior over word distributions for topics

The full generative process is stated below. The key modi-
fications are that we need to interleave the RCRP with LDA.

For each time period t from 1 to T do (forward in time)

1. For each document d ∈ {1, · · · , Dt} in epoch t do

(a) Draw the storyline indicator:
std|s1:t−1, st,1:d−1 ∼ RCRP (γ, λ,∆)

(b) If std is a new storyline,

i. Draw a distribution over words
βsnew |G0 ∼ Dir(β0)

ii. Draw a distribution over named entities
Ωsnew |G0 ∼ Dir(Ω0)
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iii. Draw a Distribution over topic proportions
θsnew ∼ Dir(α)

(c) Draw the topic proportions: θtd|std ∼ Dir(θstd)
(d) Draw the words

wtd|std ∼ LDA
�
θstd

, {φ1, · · · , φK , βstd
}
�

(e) Draw the named entities
etd|std ∼ Mult(Ωstd

)

Here LDA
�
θstd

, {φ1, · · · , φK , βstd
}
�
indicates a probability

distribution over word vectors in the form of a Latent Dirich-
let Allocation model [11] with topic proportions θtd and top-
ics {φ1, · · · , φK , βstd

}. The hyperparameters β0,Ω0, φ0 are
all symmetric Dirichlet.

4. INFERENCE
Our goal is to compute online the posterior distribution

P (z1:T , s1:T |x1:T ), where xt, zt, st are shorthands for all of
the documents at epoch t ( xtd = �wtd, etd�), the topic in-
dicators at epoch t and story indicators at epoch t. Markov
Chain Monte Carlo (MCMC) methods which are widely used
to compute this posterior are inherently batch methods and
do not scale well to the amount of data we consider. Further-
more they are unsuitable for streaming data applications.

4.1 Sequential Monte Carlo
Instead, we apply a sequential Monte Carlo (SMC) method
known as particle filters [15]. Particle filters approximate
the posterior distribution over the latent variables up until
document td. When document td arrives, the posterior is
updated and the posterior approximation is maintained as a
set of weighted particles each represent a hypothesis about
the hidden variables; the weight of each particle represents
how well the hypothesis maintained by the particle explains
the data.
The structure of the algorithm is described in Figure 2.
The algorithm processes one document at a time in the or-
der of arrival. This should not be confused with the time
stamp of the document. For example, we can chose the
epoch length to be a full day but still process documents in-
side the same day as they arrive (although they all have the
same timestamp). The main ingredient for designing a par-
ticle filter is the proposal distribution Q(ztd, std|xtd, past).
Usually this proposal is taken to be the prior distribution
P (zt, st|past) since computing the posterior is hard. We
take Q to be the posterior which minimizes the variance of
the resulting particle weights [15]. Unfortunately computing
this posterior is intractable, thus we use MCMC and run a
Markov chain over (ztd, std) whose equilibrium distribution
is the sought-after posterior. The derivation for the sam-
pling equations of ztd, std is given in [1, 2].

Sampling topic indicators: For the topic of word i in
document d and epoch t, we sample from:

P (ztdi = k|wtdi = w, std = s, rest) (4)

=
C−i

tdk +
C

−i
sk

+α

C
−i
s. +α(K+1)

C−i
td. + 1

C−i
kw + φ0

C−i
k. + φ0W

where rest denotes all other hidden variables,C−i
tdk refers to

the count of topic k and document d in epoch t, not including
the currently sampled index i; C−i

sk is the count of topic k
with story s, C−i

kw is the count of word w with topic k (which
indexes the story if k = K + 1; traditional dot notation is

used to indicate sums over indices (e.g. C−i
td. =

�

k
C−i

tdk).
Note that this is just the standard sampling equation for
LDA except that the prior over the document’s topic vector
θ is replaced by it’s story mean topic vector.

Sampling story indicators: The sampling equation for
the storyline std on a high level decomposes as follows:

P (std|s
−td
t−∆:t, ztd, etd,w

K+1
td , rest) = (5)

P (std|s
−td
t−∆:t)

� �� �

Prior

P (ztd|std, rest)P (etd|std, rest)P (w
K+1
td |std, rest)

� �� �

Emission

where the prior follows from the RCRP (2), wK+1
td are the

set of words in document d sampled from the story specific
language model φstd , and the emission terms for wK+1

td , etd
are simple ratios of partition functions. Since we integrated
out θ, the emission term over ztd does not have a closed form
solution and is computed using the chain rule as follows:

P (ztd|std = s, rest) =

ntd�

i=1

P (ztdi|std = s, z−td,(n≥i)
td , rest) (6)

where the superscript −td, (n ≥ i) means that we exclude
all words in document td that came after position i. The
terms in the product can be computed using (4).
We alternate between sampling (4) and (5) for 15 itera-
tions (as we showed in [1, 2], increasing the number of itera-
tions beyond 15 does not help). Unfortunately, even then the
chain is too slow for online inference, because of (6) which
scales linearly with the number of words in the document.
In addition we need to compute this term for every active
story. To solve this we use a proposal distribution

q(s) = P (std|s
−td
t−∆:t)P (etd|std, rest)

whose computation scales linearly with the number of enti-
ties in the document. We then sample s∗ from this proposal
and compute the acceptance ratio r which is simply

r =
P (ztd|s∗, rest)P (w

K+1
td |s∗, rest)

P (ztd|std, rest)P (w
K+1
td |std, rest)

.

Thus we need only to compute (6) twice per MCMC iter-
ation. Another attractive property is that the proposal is
constant and does not depend on ztd, thus, we precompute
it once for the entire MCMC sweep. Finally, the unnormal-
ized importance weight for particle f , ωf after td is updated
as[1, 2]:

ω
f ← ω

f
P (xtd|z

f
td, s

f
td,x1:t−1), (7)

which has the intuitive explanation that the weight for par-
ticle f is updated by multiplying in the marginal probability
of the new observation xtd, which we compute from the last
10 samples of the MCMC sweep over a given document. Fi-
nally, if the effective number of particles �ωt�

−2
2 falls below

a threshold we stochastically replicate each particle based
on its normalized weight. To encourage diversity in those
replicated particles, we select a small number of documents
(10 in our implementation) from the recent 1000 documents,
and do a single MCMC sweep over them, and then finally
reset the weight of each particle to uniform.

Hyperparameters: The hyperparameters of the model are
α, β0, φ0, and Ω0. For our experiments we set β0 = .1,
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Doc.
td

State

State

Sample
std

Sample
ztd

Sample
std

Sample
ztd

Filter 1

Filter  F

Update
filter weight

Update
filter weight

Normalize
weights

Posterior

Resample Filters
if necessary

Figure 2: Illustration of the particle filtering algorithm. The state of each filter represents the hypothesis
maintained by each particle before processing document td. The state is shown as a 3-layer hierarchy: top
layer is the topics, then the stories and finally the documents. Each story maintains a distribution over
topics, and each document is associated with a single story. Each filter runs an MCMC algorithm over each
document in parallel and then update the filter weight. The filters’ weights are then normalized to arrive at
the posterior distribution shown to the right of the figure.

φ0 = 0.01, and Ω0 = .001. The Dirichlet prior α is uni-
form over topics but with a different value for the storyline
topic. That is, we choose 0.1

K+1
for the high-level topics and

0.5
K+1

for the storyline specific term. For the RCRP, we allow
the new-storyline hyperparameter γt to be epoch-specific, we
apply a Gamma(5,10) prior and sample after every batch of
20 documents. See [17] for details. As for the kernel param-
eters, we set ∆ = 3 and λ = 0.5 — results were robust across
a range of settings. For all experiments, we use 8-particles
running on an 8-core machine.

4.2 Implementation and Storage
Implementing our SMC algorithm for large datasets poses
runtime and memory challenges. To address these, we must
first understand the algorithm’s requirements. Operations in
our algorithm can be divided into two categories: in the first
category, we have particle filtering operations that work on
single particles; these operations constitute the bulk of our
algorithm. Because these particles can be worked on indi-
vidually, we spawn one worker thread per particle to achieve
fast parallel inference. The second category contains just the
particle resampling operation. This operation is fundamen-
tally different from the others, as it involves copying entire
particles rather than simple updates to individual particles.
We handle particle resampling using a master thread, during
which all other threads sleep.
Given these needs, our algorithm requires a data structure
that supports fast updates of individual particles’ data, as
well as fast copying of particles. In particular, the latter en-
sures that the time spent in the master thread is negligible
compared to the worker threads, giving our implementation
high parallel efficiency. It should be obvious that the naive
implementation, where each particle has its own set of ar-
rays for storage, is wholly unsuited for the latter operation

— our runtime would be crippled by incessant memory copy-
ing. Worse, memory requirements would grow linearly in the
number of particles, making large data streams impractical
even for modest numbers of particles.

Inheritance trees: We overcome these problems with an
idea from Canini et al. [12], in which particles maintain a
memory-efficient representation called an “inheritance tree”.
In this representation, each particle is associated with a tree
vertex, which stores the actual data. The key idea is that
child vertices inherit their ancestors’ data, so they need only
store changes relative to their ancestors, in the form of a dic-
tionary or hash map. To save memory, data elements with
value 0 are not explictly represented unless necessary (e.g.
when a parent has nonzero value). New vertices are created
only when writing data, and only under two circumstances:
first, when the particle to be changed shares a vertex with
other particles, and second, when the particle to be changed
is associated with an interior vertex. In both cases, a new
leaf vertex is created for the particle in question.
This representation dramatically reduces memory usage
for large numbers of particles, and also makes particle repli-
cation a constant runtime operation. The tradeoff however,
is that data retrieval becomes linear time in the depth of
the tree, although writing data remains (amortized) con-
stant time. This disadvantage can be mitigated via tree
maintenance operations, in which we prune branches with-
out particles and then collapse unnecessary long branches
— refer to Figure 3 for an example. With tree maintenance,
data retrieval becomes a practically constant time operation.

Thread safety: Thus far, we have only described Canini et
al.’s version of the inheritance tree [12], which is not thread-
safe. To see why, consider what happens when particle 1 is
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Figure 3: Inheritance tree operations in the context of our SMC algorithm. Numbers within a vertex
represent associated particles. Each vertex’s hash map is represented by a table, connected by a dotted line.

associated with the parent vertex of particle 2. If a thread
writes to particle 1 while another is reading from particle 2,
it may happen that the second thread needs to read from
the parent vertex. This creates a race condition, which is
unacceptable because our algorithm is multi-threaded.
To ensure thread safety, we augment the inheritance tree
by requiring every particle to have its own leaf in the tree.
This makes particle writes thread-safe, because no parti-
cle’s vertex is an ancestor of any other particle’s vertex,
and writes only go to the assigned vertex, never to ances-
tors. Furthermore, every particle is associated with only one
worker thread, so there will never be simultaneous writes to
the same particle. On the other hand, data reads, even
to ancestors, are inherently thread-safe and present no is-
sue. To maintain this requirement, observe that particle-
vertex associations can only change during particle resam-
pling, which we handle with a master thread (all other threads
become inactive). So immediately after resampling, we branch

off a new leaf for every particle at an interior node. Once
this is done, the individual filter threads may be run safely
in parallel.
In summary, the inheritance tree has four operations:

1. A branch(f) operation that creates a new leaf for a
given particle f .

2. Update operations get(f,i) and set(f,i,value) that
retrieve or write to data elements i for particle f .

3. A copy(f,g) operation that copies particle f to g.
4. A maintain() operation that prunes particle-less branches
and then collapses unnecessary long branches.

These operations are demonstrated in Figure 3. The worker
threads only use update operations, while master thread re-
sampling uses the copy operation. After resampling but be-
fore restarting the worker threads, the master thread invokes
the maintain operation to reduce the inheritance tree’s size,
followed by the branch function on every particle to make
the tree thread-safe.

Extended inheritance trees: Our thread-safe inheritance
tree supports most of our data storage needs. However, parts
of our algorithm require storage of sets of objects, rather
than integer values. For example, our story sampling equa-
tion (5) needs the set of stories associated with each named
entity, as well as the number of times each story-to-entity
association occurs. To support these operations we imple-
mented an extended inheritance tree that integrates the our
thread-safe inheritance tree with the inverted representation
of [31]. Details of this novel data structure and its incorpo-
ration with the sampler can be found in [1, 2]

Purging unnecessary data: Because the RCRP prior
only looks at a finite time window from t−∆ to t, we only
need particle data from that window in memory, while an-
tecedent data can be safely purged to disk. The same ob-
servation applies to the incoming word and entity streams;
we only need data from that window in memory. These
features keep our algorithm’s memory usage constant if ∆
is assumed constant, which is critical for on-line execution.
Moreover, our bounded memory requirements allow us to
handle datasets of the scale seen in our experiments.

5. EXPERIMENTS
Our experiments assess our approach for both accuracy
and scalability. Our goal is to provide the user with a
representation of news stories that would allow them to
find relevant stories easily and satisfactorily. We consider
two datasets: news articles from Yahoo! and the TDT5
dataset[26]. We first describe the two datasets and then give
three evaluations: clustering accuracy, structured browsing,
and finally, an ablation study to understand the contribution
of every component of our model.

5.1 Corpora

Yahoo! News Dataset.

We examine our model on English news samples of vary-
ing sizes extracted from Yahoo! News over a two-month

WWW 2011 – Session: Spatio-Temporal Analysis March 28–April 1, 2011, Hyderabad, India

273



period. Details of the news samples are listed in Table 1.
We use a sophisticated named entity recognizer [34] which
disambiguates and resolves named entities to Wikipedia en-
tries in the data preprocessing step. In addition, we remove
common stop-words and tokens which are neither verbs, nor
nouns, nor adjectives from the news articles. For the pur-
pose of modeling, we divide each of the samples into a set
of 12-hour epochs according to the article publication date
and time.

TDT5 Dataset.

The Topic Detection and Tracking dataset (TDT) [26]
contains several hundred thousand news articles, along with
storyline relevance judgments from human raters. We use
a month of data from the TDT5 corpus, comprising 46,793
documents. Of these, 1771 are annotated as belonging to
one of 37 storylines; the others do not participate in evalua-
tion, but must still be processed and should not distract the
system from properly processing the annotated documents.
Named entities are extracted using the Stanford NER sys-
tem [18]. After applying a stoplist of 500 words [28], the
vocabulary of both words and named entities is pruned to
the 3000 most frequent terms.

5.2 Evaluating Clustering Accuracy
We evaluate the clustering accuracy of our model over the
Yahoo! news dataset. The dataset contains 2525 editorially
judged “must-link” (45%) and “cannot-link” (55%) article
pairs included in the modeling samples. The must-link arti-
cle pairs refer to the pairs of articles that are considered re-
lated to the same story, whereas cannot-link pairs are those
considered not related.

Table 1: Details of Yahoo! News samples and
corresponding clustering accuracies of our method
(Story) and the baseline (LSHC) evaluated 2525 la-
beled must-link and cannot-link pairs.
No. Sample # Words # Entities Story LSHC

size Accuracy Accuracy
1 111,732 19,218 12,475 0.801 0.738
2 274,969 29,604 21,797 0.806 0.791
3 547,057 40,576 32,637 0.817 0.800

For the sake of evaluating clustering, we compare against a
variant of a single-link clustering baseline [14]. This simple
baseline is the best performing system on TDT2004 task
and was shown to be competitive with Bayesian models [33].
This method scales linearly with the number of all previously
seen documents, however, in [25], the authors showed that
using locality sensitive hashing (LSH), one can restrict the
subset of documents examined with little effect of the final
accuracy. Here, we use a similar idea, but we even allow the
baseline to be fit offline. First, we compute the similarities
between articles via LSH [20, 19], then construct a pairwise
similarity graph on which a single-link clustering algorithm
is applied to form larger clusters. The single-link algorithm
is stopped when no two clusters to be merged have similarity
score larger than a threshold tuned on a separate validation
set. In the remainder of this paper, we simply refer to this
baseline as LSHC.
We ran both our method and the baseline on the datasets
listed in Table 1. For our method, we used 200 topics.
From Table 1, we see that our method outperformed the
baseline on all the datasets tested. We believe that this
outcome stems from the fact that the baseline method does

Table 2: Clustering accuracies of our method on var-
ious samples vs. number (K) of topics.

No. K=50 K=100 K=200 K=300
1 0.778 0.809 0.801 0.800
2 0.754 0.795 0.806 0.792

not make use of any statistical topic-document models that
could help link two articles related to the same story but
written with rather different wordings. Note that all clus-
tering algorithms working at the surface-word level would
suffer from this problem. Moreover, the fact that our on-

line, single-pass algorithm is competitive with an off-line

algorithm, is an encouraging result due to the streaming na-
ture of our application.
To study the importance of the number of topics to our
model, we performed another set of experiments with dif-
ferent numbers of topics. Table 2 shows that the number of
topics matters in the clustering accuracy of our method but
it becomes less of a concern if we use a sufficient number of
topics – see [2, 1] for more details.
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Figure 4: Some example storylines and topics ex-
tracted by our system. For each storyline we list the
top words in the left column, and the top named en-
tities at the right; the plot at the bottom shows the
storyline strength over time. For topics we show the
top words. The lines between storylines and topics
indicate that at least 10% of terms in a storyline are
generated from the linked topic.

5.3 Structured Browsing
We illustrate the utility of our model by describing some
of the topics and stories and then showing how this repre-
sentation can support structured browsing. The storylines
in Figure 4 include the UEFA soccer championships, a tax
bill under consideration in the United States, and tension
between India and Pakistan. Our model identifies connec-
tions between these storylines and relevant high-level topics:
the UEFA story relates to a more general topic about sports;
both the tax bill and the India-Pakistan stories relate to the
Politics topics, but only the latter story relates to the topic
about civil unrest. Note that each storyline contains a plot
of strength over time; the UEFA storyline is strongly mul-
timodal, peaking near the dates of matches. This demon-
strates the importance of a flexible nonparametric model for
time, rather than using a unimodal distribution.
One way for end-users to take advantage of the organi-
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Figure 5: An example of structure browsing affordances
provided by our model. Starting with the story about

India-Pakistan tension, the user may request similar sto-

ries by topic, obtaining a story about the Middle East

conflict (left), which shares topics such as politics, unrest

and diplomacy. Alternatively the user may request topi-

cally similar stories, but require that the term “nuclear”

be present — this leads to a storyline about the North

Korean nuclear weapons program.

Table 3: Evaluation of complete model, with varying
number of topics. Lower scores are better.

# Topics 1 30 50 100 200
Cdet 0.80 0.79 0.76 0.714 0.75

Table 4: Ablation test, removing key features from
the 100-topic model.

ablated feature Cdet

1 time 0.74
2 entities 0.90
3 topics 0.81
4 storyline word distributions 0.75

zation obtained by our model is to browse the collection of
high-level topics and then descend to specific stories indexed
under each topic — like opening a physical newspaper and
going directly to the sports page. However, our model pro-
vides a number of other affordances for structured browsing
which were not possible under previous approaches. Fig-
ure 5 shows two examples. First, users can request similar
stories by topic: starting from a story about India-Pakistan
tension, the system returns a story about the Middle-east
conflict, which also features topics such as diplomacy, pol-
itics, and unrest. In addition, users can focus their query
with specific keywords or entities: the right side of Figure 5
shows the result of querying for similar stories but requir-
ing the keyword nuclear to have high salience in the term
probability vector of any story returned by the query. Sim-
ilarly, users might require a specific entity — for example,
accepting only stories that are a topical match and include
the entity Vajpayee. This combination of topic-level analysis
with surface-level matching on terms or entities is a unique
contribution of our model, and was not possible with previ-
ous technology.

5.4 Evaluating IndividualModel Components
We evaluate against human-annotated storylines in the
TDT5-May dataset to assess the contribution of specific
components of our system: the recurrent Chinese restau-
rant process for modeling time, multilevel modeling of top-

Figure 6: Time Scalability

ics and storylines, and the incorporation of named entities.
We assess the importance of each component by measuring
the effect of removing it on the accuracy of the “first story
detection” task, which is the problem of correctly identi-
fying the first document in each annotated storyline; this
is considered to be the most difficult problem in the TDT
task [7]. We use the TDT scoring software and report the
standard metric, which is the macro-averaged minimum cdet
cost. Our system outputs the probability that each story is
new, this probability is taken to be P (std = new) averaged
over particles. The minimum cdet cost is a measure that
combines both false alarms and misses in a single number.
Lower numbers are better [26]. Evaluation is performed in
a streaming setting, meaning that the system must make a
judgement for each document shortly after it is received –
rather than after viewing the entire dataset.
Our quantitative evaluation of storyline quality is shown
in Tables 3 and 4. Experimenting with a range of topics,
we find the strongest results around 100. The average time
to process one document ranged from 50ms for K = 50 to
80ms for K = 200 thanks to our effective extended inheri-
tance tree. FixingK = 100, we then tested the contributions
of each feature of our model (Table 4).
Each key aspect of our system improves performance: the
two-level topic/storyline model strongly outperforms a model
that ignore topics (line 3 of Table 4); the RCRP model out-
performs the CRP model, demonstrating the importance of
modeling time (line 1); named entities improve performance
(line 2) and the story specific language model also enhances
outcome (line 4).
Our second evaluation concerns scalability. Our goal is a
system that can be deployed over a long time period, con-
tinually processing data with time and memory costs that
are constant in the length of the history. As shown in Fig-
ure 6, our system scales well as the history grows: after
an initial build-up period, the time taken by our system
to process 1000 documents increases very slowly as the to-
tal number of documents processed by the system increases.
After the build-up period, the average time to process a doc-
ument stabilized around 60 ms per document for K = 100
(the residual growth is due to the increasing number of sto-
ries). Finally we would like to mention that our method is
completely unsupervised, in contrast to many TDT systems
which tune their parameters over a training dataset from
an earlier TDT run. Our use of TDT5 here was merely to
evaluate the contribution of each component of our model.

6. RELATEDWORK
Modeling: Our approach is non-parametric over sto-
ries, allowing the number of stories to be determined by
the data. Similarly, Zhang et al. [33] describe an online
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clustering approach using the Dirichlet Process, which they
evaluate on the same first-story detection task that we con-
sider here. This work equates storylines with clusters, and
does not model high-level topics. Non-parametric cluster-
ing has been combined with topic models, with the cluster
defining a distribution over topics [32, 29]. We differ from
these approaches in several respects: we incorporate tempo-
ral information and named entities, and we permit both the
storylines and topics to emit words.
There have been several efforts to augment topic models
with time [10, 30]. These approaches allow topic strength
to vary smoothly; however, they do not incorporate a multi-
level model that distinguishes individual storylines from high-
level topics, and thus must treat topic evolution as a rela-
tively slow phenomenon. Consequently, such models have
been applied successfully to long-term corpora (over several
years or even decades), but have not been shown to success-
fully model rapidly-changing corpora such as news or blogs.

Inference: Recent work on topic models has focused on
improving scalability; we focus on sampling-based methods,
which are most relevant to our approach. Yao et al. use
Gibbs sampling but do not resample the topics for docu-
ments outside a fixed temporal window [31]; we differ by
developing a Monte Carlo sampling approach that handles
the streaming setting explicitly. Banerjee and Basu also de-
velop online sampling equations, but they instantiate the
parameters θ and φ whereas we marginalize them [9]. Our
approach is most influenced by the particle filter of [12],
from which we take the idea of efficiently storing the hidden
variable history.

7. CONCLUSION
We present a scalable probabilistic model for extracting
storylines in news and blogs. The key aspects of our model
are (1) a principled distinction between topics and storylines,
(2) a non-parametric model of storyline strength over time,
and (3) an online efficient inference algorithm over a non-
trivial dynamic and non-parametric model. We see many
promising directions for future research. One particularly
appealing possibility would be a hierarchical nonparametric
model of topics and storylines that features multiple levels
of increasing detail.
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