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In VLSI industry, image signal processing algorithms are developed and evaluated using so	ware models before implementation
of RTL and 
rmware. A	er the 
nalization of the algorithm, so	ware models are used as a golden reference model for the
image signal processor (ISP) RTL and 
rmware development. In this paper, we are describing the uni
ed and modular modeling
framework of image signal processing algorithms used for di�erent applications such as ISP algorithms development, reference for
hardware (HW) implementation, reference for 
rmware (FW) implementation, and bit-true certi
cation.�e universal veri
cation
methodology- (UVM-) based functional veri
cation framework of image signal processors using so	ware reference models is
described. Further, IP-XACT based tools for automatic generation of functional veri
cation environment 
les and model map 
les
are described. �e proposed framework is developed both with host interface and with core using virtual register interface (VRI)
approach.�is modeling and functional veri
cation framework is used in real-time image signal processing applications including
cellphone, smart cameras, and image compression.�e main motivation behind this work is to propose the best e�cient, reusable,
and automated framework for modeling and veri
cation of image signal processor (ISP) designs. �e proposed framework shows
better results and signi
cant improvement is observed in product veri
cation time, veri
cation cost, and quality of the designs.

1. Introduction

Image signal processor (ISP) mainly corrects the output
images of the sensor so that the best possible defects and
noise-free images can be generated. It processes the stream
of image data into a form which can be easily managed by
upstreammobile baseband or multimedia processor chipsets
[1, 2]. Di�erent markets, including gaming, smartphones,
surveillance, and medical and automotive applications, are
mainly covered by the ISP. �e integration of image pro-
cessors has become a simple process by the use of industry
standard interfaces and a rich set of application programming
interfaces (APIs). It also helps to lower time tomarket of end-
product.

Restoration engine (RE) of the ISP is responsible for
removing the noise and the artifacts and generating the
RGB data from the Bayer image. Color engine (CE) of
ISP is responsible for scaling the image as per the output

requirements, sharpening the image, and converting the RGB
data to YUV.

Universal veri
cation methodology (UVM) is a generic
methodology for the functional veri
cation of hardware
designs,mainly using simulation.�e hardware designwhich
is to be veri
ed can be described using VHDL, Verilog,
SystemVerilog, or SystemC at any appropriate abstraction
level. �is can be register transfer level or behavioral or gate
level. Assertion-based veri
cation and hardware emulation
or acceleration can also be used along with the universal
veri
cation methodology [2, 3].

A SystemVerilog UVM test bench consists of reusable
veri
cation components. A veri
cation component is a con-

gurable, encapsulated, ready-to-use veri
cation environ-
ment for a design submodule, an interface protocol, or a
full system [4, 5]. Each veri
cation component follows a
standard architecture for stimulus generation, data/protocol
checking, and obtaining coverage information for a speci
c
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design or protocol.�e veri
cation environment is applied to
the designs to verify implementation of the protocol or design
architecture [6].

In our case, development and evaluation of image sig-
nal processing algorithms are done using Python so	ware
models before implementation of RTL and 
rmware. A	er
the 
nalization of the algorithm, Python models are used
as a golden reference model for the development of ISP
RTL and 
rmware. �en, Python reference models are
used in universal veri
cationmethodology based veri
cation
framework of ISP RTL for its bit-true veri
cation. �is
proposed framework shows better results and signi
cant
improvement is observed in product veri
cation time (∼
50% improvement), veri
cation cost (∼20% reduction), and
quality of the designs (∼75–80% improvement).

�is paper is organized in di�erent sections. It presents
the ISP development �ow that we have developed going
through algorithm investigation, algorithmdevelopment, ISP
RTL implementation, and its functional veri
cation using
UVM-based veri
cation environment. Section 2 discusses
the earlier functional veri
cation frameworks. Section 3
describes the ISP development �ow and modeling frame-
work. Section 4 discusses the proposed functional veri
ca-
tion framework. Section 5 discusses methodology of early
development of veri
cation framework. Section 6 discusses
IP-XACT �ow for automatic generation of veri
cation envi-
ronment 
les and map 
les. Section 7 discusses results of
experiments done by us and Section 8 concludes by listing the
performance and the advantages of the proposed framework.

2. Related Work

Marconi et al. proposed a veri
cation framework based
on SystemVerilog and universal veri
cation methodology
(UVM) for high energy physics (HEP) applications [7]. �is
veri
cation framework described the reusability and high
�exibility of veri
cation components. �e framework helped
veri
cation engineers in veri
cation of various DUTs and
architectures at di�erent abstraction levels.

Liang et al. proposed a SystemVerilog UVM-based meth-
odology for mixed-signal level veri
cation of wireless power
receiver family MCU [8]. Usage of the universal veri
ca-
tion methodology- (UVM-) based veri
cation environment
with analog design enhanced the veri
cation quality and
e�ciency.

Kim et al. proposed a FPGA-based veri
cationmethodol-
ogy for the image signal processor (ISP) of CMOS image sen-
sor [9]. A four-step veri
cation methodology composed of
ARM core based veri
cation, system veri
cation, algorithm
veri
cation, and performance veri
cation was used.

Kannavara proposed the idea of a validation framework
[10]. Main issues were mentioned which need to be resolved
for success of such validation framework.

�e studied papers were describing the di�erent frame-
works for veri
cation of image signal processors and other
applications. Earlier frameworkswere not taking into account
the �exibility in the veri
cation environment to verify designs
using both host interface and actual core in a uni
edmanner.
Modeling part of ISP designs was also not described. In our

approach, we are describing uni
ed and modular modeling
and functional veri
cation framework of real-time image
signal processors. Common infrastructure is proposed for
all the IP/subsystem/SoC level veri
cation environment. �e
proposed framework provides �exibility to use veri
cation
components in di�erent languages (SV, SC, “e,” etc.).�e pro-
posed framework is developed both with host interface and
with core using virtual register interface (VRI) approach.�e
methodology of early development of veri
cation environ-
ment before arrival of RTL is developed. IP-XACTbased tools
are developed for automatic con
guration and development
of the veri
cation environment for various IPs/SoCs.

3. ISP Development Flow

ISP development �ow is clearly understood from Figures 1
and 2. At the start, the Pythonmodel is written for evaluation
of the algorithms. At that stage, there is no hardware or

rmware partitioning done in the model. A	er evaluation,
this model is used as a reference model for the algorithmic
ISP RTL. A	er the evaluation stage, hardware and 
rmware
partitioning is done in reference model. An implementation
model is developed where both hardware and 
rmware parts
of the algorithm exist. Now the 
rmware part of this model is
used by the 
rmware developer to verify the 
rmware drivers
and the hardware part of Python reference model is used at
unit level for bit-true veri
cation of the ISP RTL.

In the initial stage of veri
cation of the ISP IP RTL,
directed test scenarios are driven from UVM-based veri
-
cation environment. Once the ISP IP RTL becomes stable
for few directed scenarios, random test data is generated
from veri
cation environment. Generated random test data
is driven to both ISP IP RTL and so	ware reference model.
Comparison between the output of ISP IP RTL and so	ware
reference model is done for its bit-true veri
cation. A	er
initial veri
cation of the ISP IP RTL by running few directed
and random test scenario simulations, light regression is run
using regression tool so as to make sure that 60–70% of the
ISP IP RTL has been veri
ed and can be used for ISP HW
system integration.�en, full regression at ISP IP level is run
to complete veri
cation of the ISP IP RTL in parallel with
initial veri
cation of the ISP HW at subsystem/SoC level.
Functional coverage is also measured to know whether all
possible functional test scenarios are covered or not.

At ISP level, ISP block diagram represents ISP hardware
speci
cations.Veri
ed ISP IPs are integrated tomake ISPHW
system and ISP reference model be used for the veri
cation.
�e ISP is then continued to be tuned formore improvements
and better performance.

Mapping between con
guration and status registers of
ISP RTL and attributes of reference model is provided
through a Python map 
le with the following:

(i) A function which translates HW inputs (parameters,
register values, memory contents, and images) to
model attributes

(ii) A function which translates model output attributes
to HW outputs (register values, memory contents,
and images)
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(iii) Python mapping 
le that describes how to transfer
hardware inputs to model inputs and model outputs
to hardware outputs. �e mapping 
le does not
describe how hardware inputs have to be provided or
how hardware outputs have to be processed. Python
script 
le provides those data andprocesses the results

It is clear from Figure 3 that the map 
le contains both
the RTL-to-model and model-to-RTL mapping. �e most
basic requirement to write a map 
le is to have the register
description 
le and instantiation parameters description 
le.
�ese 
les are in standard XML format, so that they are easily
converted to Python map 
le via IP-XACT �ow.
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�e development of uni
ed and modular modeling
framework of image signal processing algorithms provides
the following bene
ts:

(i) Reduction of the development time

(ii) Coherent modeling approach making development
and support not reserved to algorithms experts

(iii) Maximum reuse of IP

(iv) Bit-true certi
cation between models and products

(v) Algorithms/ISP developers, HW designers, FW engi-
neers, HWveri
cation engineers, and application and
marketing people using the same modeling frame-
work

4. Functional Verification

ISP RTL is veri
ed using UVM-based veri
cation environ-
ment as shown in Figure 4. Coverage-driven veri
cation
(CDV) feature of universal veri
cation methodology (UVM)
is used to generate both user-de
ned and random input
image test data for the ISP IP RTL [4, 11]. Self-checking

mechanism in test bench is performed by comparison of
output of so	ware referencemodel and ISP IP RTL. Coverage
metrics are measured to know whether all desired test
scenarios are covered or not.

Registers andmemories of ISPDUTaremodeled by using
UVM REG register and memory model [5, 12]. UVM REG
register and memory model integrated with control bus
UVC accesses ISP DUT registers and memories using host
interface. Control bus UVC acts as initiator and ISP RTL
control bus interface acts as target. Control bus UVC drives
the target control bus of the ISP RTL. A	er programming
of ISP RTL registers and/or memories, data bus UVC drives
the user-de
ned/random test image data to the data bus
interface.�e same test image data is also sent to the reference
model.

Data bus UVC monitor receives the output data of the
ISP RTL. �e output data of ISP RTL and reference model
is compared by the scoreboard and it gives the result saying
whether both outputs (image/status data) match or not.

Register sequencer executes ISP RTL register operation
sequences according to the register model speci
cation and
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con
guration. Similarly, data bus sequencer also executes
data operation sequences according to the data bus speci
ca-
tion and con
guration.Virtual sequencer controls timing and
data �ow of the entire system via reusable sequences [13, 14].

UVM REG API is developed to write simpler directed
tests which require less or no SystemVerilog/UVM under-
standing. Our own register/memory sequences are also
developed to address the SoC level register and memory
testing [12].

Since register or data sequences, sequencers, and drivers
are focused on point interfaces, ISP RTL veri
cation environ-
ment has a virtual sequence to coordinate the stimulus across
register and data interfaces and the interactions between
them [13, 15]. Virtual sequence controls the register and data
sequences as shown in Figure 5.

When host BFM is replaced with actual core, then it
becomes challenging to reuse the existing veri
cation envi-
ronment as “C” test code is used to do functional veri
cation
with core in place. At SoC level, it is important to verify
that the hardware and so	ware work seamlessly together to
deliver the functionality and performance of the image signal
processor.

As shown in Figure 6, virtual register interface (VRI)
layer is a virtual layer over veri
cation components to make
it con
gurable from embedded so	ware. It also gives high
level C-APIs and masks low level implementation details
from the users. A VRI layer is developed over veri
cation
components to con
gure the SystemVerilog UVM-based
data bus UVC and other veri
cation components from the
“C” test cases [16]. VRI layer provides the access of the
sequences of these veri
cation components to the embedded
so	ware [17]. It enables the con
guration and control of these
veri
cation environments with actual core and performs the
same exhaustive functional veri
cation at SoC level [2].

VRI approach covers the following aspects of ISP func-
tional veri
cation at SoC level:

(i) Embedded so	ware con
gures ISP veri
cation com-
ponents.

(ii) ISP veri
cation environments are reused from IP level
to SoC level.

(iii) ISP test cases are reused from IP level to SoC level.
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(iv) ISP integration test cases created by IP veri
cation
teams are used by SoC team.

�e main bene
t of the VRI approach is the reuse of
veri
cation IP (VIP) and “C” test code.�e sameVIP and “C”
test cases are reused from IP level to SoC level veri
cation.

Figure 7 shows SoC level functional veri
cation environ-
ment where using virtual sequences and ISP SoC DUT is
simultaneously bombarded at all interfaces in an automated
and coordinated way [18, 19]. Virtual sequence is controlling
the stimulus generation using several sequencers of host bus
UVC, USB UVC, Ethernet UVC, and so forth [20]. Here,
programming of ISP SoC registers is done using control bus
UVC and not the actual core. All test cases are written in
SystemVerilog language.

Figure 8 shows SoC level functional veri
cation environ-
ment where test so	waremixed with host BFM. VRI APIs are
converted to host bus UVC’s transactions.

�e basic interface between embedded processors and
internal IPs (e.g., peripheral devices) in an ISP SoC is a
set of control and status registers [16]. �ese registers that
are usually located in the memory space of the system
(memory mapped) are part of the ISP IP implementation.
�ese registers represent features of the ISP IP itself. Similarly,
any external veri
cation IP like Ethernet VIP used for the
veri
cation of an ISP SoC is interfaced to an embedded
processor through a set of control and status registers in the
same way we do with hardware ISP IPs.

VRI exposes the functionality of the VIPs (e.g., VIP
con
guration or VIP sequences) in the form of a register map
suitable to be controlled by an embedded processor. Using
VRI layer, veri
cation environment users can write both “C”
and SystemVerilog test cases to control the sameVIP. So	ware
data randomization can also be done using VRI layer.

Figure 9 shows ISP SoC level functional veri
cation
environment where test so	ware mixed with bare metal
so	ware. ISP DUT processor acts like virtual sequencer. �e
core is executing the “C” test cases along with virtual register
interface API.

An example of “C” test case for Ethernet VIP using virtual
register interface is described below:

vri ethernet packet tx pkt;

vri ethernet packet rx pkt;

rx pkt.data = new vri uint8 t[4000];

tx pkt.packet kind = ETHERNET 802 3;

tx pkt.data length = 0; //Data length 0 means sending
random number of data

tx pkt.src address high = 0x2000;

tx pkt.dest address high = 0x1000;

tx pkt.error code = 0;

for (int j = 0; j < 200; j++) {

tx pkt.src address low = j + 1;

tx pkt.dest address low = j;

ethernet send packet(1, &tx pkt); //send packet
(MAC)

ethernet receive packet(0,&rx pkt); //receive
packet (PHY)

compare packet(tx pkt,rx pkt);

};

�e main advantages of using VRI layer in the proposed
framework are as follows:

(1) Using VRI layer, veri
cation framework users can
write C test cases to control the SystemVerilog/e VIPs.
�is gives �exibility to veri
cation framework users to
use the VIPs without knowing SystemVerilog/e.

(2) �rough VRI layer, SW data randomization can also
be done.

(3) Veri
cation framework users can write both C and
SystemVerilog test cases to control the same VIP.

(4) VRI layer gives veri
cation framework users the
�exibility to use the same test cases at IP/SoC level
functional veri
cation as well as for validation.

Static Formal Veri	cation. Static formal veri
cation is used to
compliment the dynamic Metric Driven Veri
cation (MDV)
methodology in ISP veri
cation. Static formal veri
cation
methodology provides a substitute for some of the veri
-
cation tasks usually done under dynamic simulation. Static
formal veri
cation reduces the regression reruns to achieve
coverage goals and to reduce the e�ort to write additional test
scenarios.

Assertions are embedded within the ISP design code and
they are written both within and outside the design code.
Both designers and veri
ers are using it independently. �e
ISP veri
cation �ow that includes the usage of assertions is
shown in Figure 10.

Assertions are used in veri
cation environments of image
signal processor to
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(i) monitor signals on an interface that connects di�erent
blocks;

(ii) track the expected behavior of a logic gate, �ip-�op,
or module;

(iii) watch for forbidden behavior within a design block.

Some of the examples of usage of assertion-based VIP
(ABVIP) in ISP veri
cation are described as follows.

(1) Protocol Compliance Checking. As described in Figure 11,
a top-level ISP module contains a Master IP and an ABVIP
monitor.Master behavior of IP is checkedwithABVIPmaster
properties. Slave behavior is assumed with ABVIP slave
properties.

(2) As a Driver (Constraints) to Verify Other Functionalities.
As described in Figure 12, ABVIP drives de
ned, constrained
random bus tra�c to ISP DUT following interface bus
protocol.�us, ABVIP o�oad this time consuming task from
dynamic simulation and verify functionality of the ISP RTL.
Here, ISP RTL is acting as a receiver. Interface bus protocol
behavior is assumed with ABVIP interface bus properties.

(3) Protocol Conversion (Bridge) Veri	cation. As described
in Figure 13, ABVIP is used for veri
cation of protocol
conversion (bridge) in ISP SoC RTL. Formal veri
cation

is a very e�cient way for veri
cation of bridges. Using
only dynamic simulations for veri
cation of bridges cannot
e�ciently complete the full veri
cation of bridges as some test
scenarios may miss in dynamic simulations.

(4) As Protocol Monitor in Simulation. As described in
Figure 14, ABVIP is used in dynamic simulations to monitor
the bus protocol. ABVIP also provides functional coverage of
the properties covered.

5. Early Development of
Verification Framework

For early development ofUVM-based veri
cation framework
of image signal processing designs, TLM/SystemC reference
model of ISP RTL is created from so	ware reference model
[21, 22]. Regressive veri
cation of the TLM/SystemC model
with user-de
ned/random test image data is done. A	er
regression, the model is used as behavioral replica of ISP
DUT. �is speeds up development and better validation of
the veri
cation frameworkwithwider test image datawithout
waiting for ISP RTL to be available.

Standard “interfaces” are used for reusing the veri
cation
framework components. In addition to the standard method
of signals level connectivity, UVM Multilanguage (UVM-
ML) Open Architecture is used to connect SystemVerilog
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TLM port directly to SystemC TLM port. �is gives bene
t
of better simulation speed and better development cycle in
addition to clean and easy integration of blocks [1, 22]. Usage
of TLM components gives �exibility to make backdoor direct
access to the ISP RTL registers and memories.

As shown in Figure 15, a TLM/SystemC model of pro-
cessor is used for early development of “C” test cases for
con
guration of ISP RTL registers/memories via CPU inter-
face [23]. �e same “C” test cases are used for con
guring
the SystemVerilog UVM-based data bus VIPs using virtual
register interface layer. In ISP veri
cation environment,
alternative host interface path is used to perform con
g-
uration of registers/memories using SystemVerilog UVM-
based test cases. In both cases, image data and control �ow
across both bus interface and TLM boundaries [24]. �is
method improves the possibility of reusing already existing
veri
cation components in the veri
cation �ow.

Complete veri
cation framework and image test data
are ready with su�cient quality before the arrival of ISP
RTL, thus eliminating the number of veri
cation framework
problems which may arise when actual ISP RTL veri
cation

is started.When ISP RTL arrives, the TLM/SystemCmodel is
replaced with ISP RTL block with reuse of maximum of other
veri
cation components. �is enables the regress testing of
ISP design immediately. Also, the same C test cases are run
on the actual core.

6. IP-XACT Flow

In UVM-based veri
cation framework of image signal pro-
cessor, register de
nition 
le for UVM REG register model,
top-level address map 
le, register and data sequences 
le,
data checker (scoreboard) 
le to compare the output of ISP
RTL with output of Python reference model, and functional
coverage 
le are ISP IP/SoC speci
c. �ese 
les are modi
ed
for every ISP IP/SoC. IP-XACT based tools are developed
for generation of these veri
cation environment 
les [25].
First, the register map description has to be provided in XML
format.

Description of registers and memories of ISP RTL in
XML format is automatically generated from the register
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speci
cation document using spec2spirit (speci
cation-to-
SPIRIT) script as shown in Figure 16.

In data checker (scoreboard) 
le, Python referencemodel
which contains attributes is executed using system command.
�us, automatic generation of data checker 
le requires
the mapping between the registers/register-
elds/parameters
of RTL and the attributes of Python reference model. In
spirit2uvm (SPIRIT-to-UVM environment 
les) script, there
are two input 
les:

(i) XML 
le for register map informationwhich contains
the registers and memories description of ISP RTL

(ii) Data and control interface information 
le

IP-XACT based spirit2uvm tool generates ISP IP/SoC
speci
c 
les which are used in the UVM-based veri
cation
framework as shown in Figure 17. Map 
le for mapping
between the registers/register-
elds/parameters of RTL and
the attributes of Python model is also generated from IP-
XACT based tool. Development of IP-XACT based tools
helps to generate thousands of lines of code of veri
cation
environment in a very short time.

Figure 18 represents one example of input XML 
le and
generated output register de
nition 
le. �e XML 
le
contains all the required information of the ISP IP/SoC

BridgeX-protocol ABVIP

Figure 13: ABVIP for protocol conversion (bridge) veri
cation in
ISP SoC RTL.

A B

ABVIP

Figure 14: ABVIP as protocol monitor.

such as base address (<spirit:baseAddress>0x100</spirit:
baseAddress>), register name (<spirit:name>MUX<spirit:
name>), register-
eld bit width (<spirit:bitWidth>4</spirit:
bitWidth>), register-
eld bit o�set (<spirit:bitO�set>0
</spirit:bitO�set>), and register-
eld accessibility (<spirit:
access>read-only</spirit:access>). Using the information in
input XML 
le, spirit2uvm tool generates register de
nition

le.

7. Results and Discussion

�e development of uni
ed and modular modeling frame-
work of image signal processing algorithms provides the
following bene
ts:

(i) Reduction of the development time

(ii) Coherent modeling approach making development
and support not reserved to algorithms experts

(iii) Maximum reuse of IP

(iv) Bit-true certi
cation between models and products

(v) Algorithms/ISP developers, HW designers, FW engi-
neers, HWveri
cation engineers, and application and
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Figure 15: Reuse of early developed veri
cation environment.
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Figure 18: XML to REG DEF 
le conversion.

marketing people using the same modeling frame-
work

As compared to traditionalmethodology, development of
UVM-based veri
cation framework for ISP designs helped in
saving veri
cation cost and e�orts by

(i) decreasing the maintenance of multiple veri
cation
environments;

(ii) improving the quality of the veri
cation framework;

Table 1: Challenges of previous veri
cation framework.

Factors Description

Reusability

Di�erent veri
cation languages at unit level
(Specman(e)/Verilog) and system level (C/C++)
veri
cation framework.
Di�erent veri
cation methodologies both
horizontally (across projects) and vertically (unit
to system level veri
cation).

Reproducibility
Signi
cant time was spent in reproducing the
issue reported at SoC level at IP/subsystem level.

(iii) early development of reusable veri
cation frame-
work;

(iv) �exibility in the veri
cation environment to verify
designs using both host interface and actual core in
a uni
ed manner;

(v) automatic development of veri
cation environment

les;

(vi) license cost saving; UVM is open standard supported
by multiple vendor tools; thus, there is no need to pay
extra license cost for one vendor speci
c solution.

Simultaneously, development of IP-XACT based tools
helped to generate thousands of lines of code of veri
cation
environment in a very short time.�is resulted in a signi
cant
reduction in product veri
cation time and improvement in
veri
cation quality.

In our case of image signal processor designs, Specman
(e)/Verilog based veri
cation framework for IP/subsystem
level veri
cation and C/C++/Verilog based directed veri
ca-
tion framework for SoC level veri
cation were traditionally
used for functional veri
cation. �e main challenges of the
previous veri
cation framework are described in Table 1.

Experimentation results which we listed in Table 2 are
the comparison between the previous framework and the
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Table 2: Experimentation results.

Comparison features
Previous
framework

�e proposed
framework

Description

Product veri
cation time
(in weeks) of one ISP
IP/SoC

IP: ∼4 weeks
SoC: ∼12 weeks

IP: ∼2 weeks
System: ∼6-7 weeks

(veri
cation
productivity is increased

by ∼50% percent)

Reusability. �e proposed veri
cation framework can be
reused both vertically (unit level to system level) and
horizontally (across di�erent projects).
Automatic Checkers. Development and usage of automatic
checkers (assertions and scoreboard) helped to automatically

nd bugs while running simulations. Formal tools were really
helpful to 
nd real complex bugs/problems.
Automation. Automatic generation of veri
cation framework

les using IP-XACT �ow helped us to generate thousands of
lines of code of veri
cation environment in a very short time.

Veri
cation cost (in our
case)

∼500k dollars ∼400k dollars (∼20%
cost reduction)

License Cost Saving. UVM is open standard supported by
multiple vendor tools. �us, there is no need to pay extra
license cost for one vendor speci
c solution.
Specman tool cost for the old eRMmethodology was
∼4000$/per license/year. Source: ST license cost data sheet.
Minimum 40,000$ license cost saving per year (10 licenses ×
4000$).
Man-Hour Saving. Automatic development of veri
cation
environment and reuse of veri
cation components helped to
save the man-hour cost. Minimum 60,000$ manpower cost
saving per year.

Quality of the designs
(number of bugs)

15–20 functional
bugs/problems
per project

3-4 functional
bugs/problems per
project (∼75–80%
improvement)

Automatic Checkers. Development and usage of automatic
checkers (assertions and scoreboard) helped to automatically

nd bugs while running simulations. Formal tools were really
helpful to 
nd real complex bugs/problems.
Randomization, coverage-driven approach, and other features
of veri
cation framework helped to generate/analyze complex
corner scenarios which resulted in resolving corner bugs.
Interfacing issues and many corner case bugs are identi
ed
and resolved.

proposed framework in terms of product veri
cation time,
veri
cation cost, and quality of the product for image signal
processor designs. A	er analyzing results of the proposed
framework used in imaging group of STMicroelectronics, it is
found that the proposed framework shows better results and
signi
cant improvement is observed in product veri
cation
time (∼50% improvement), veri
cation cost (∼20% reduc-
tion), and quality of the designs (∼75–80% improvement).

Figure 19 represents a comparison chart between previ-
ous framework(s) and the proposedmodeling and functional
veri
cation framework in terms of product veri
cation time
(∼50% improvement), veri
cation cost (∼20% reduction),
and quality of the designs (∼75–80% improvement).

8. Conclusion

�ispaper presented thework done in developing uni
ed and
modular modeling and functional veri
cation framework
of real-time image signal processors. SystemVerilog UVM-
based veri
cation environment with UVM REG register and
memory model integrated is used to verify a variety of
image signal processor devices covering various protocols,

Number of bugs

Previous framework(s)

Proposed framework

0

5

10

15

20

25

Product veri�cation
time (weeks)

Veri�cation cost
(lakh dollars)

Figure 19: Comparison chart between previous framework(s) and
the proposed framework.
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applications, and domains. VRI approach addresses the
con
guration of veri
cation components from embedded
so	ware. IP-XACT based tools are used for automatic gen-
eration of veri
cation environment 
les andmodel map 
les.
�is paper is a very good reference for modeling the image
signal processing algorithms and for applying the advanced
and novel techniques of veri
cation and automation for
development of veri
cation environment and for functional
veri
cation of image signal processing designs.
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