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Most of the present work for unmanned surface vehicle (USV) navigation does not take into account environmental disturbances
such as ocean waves, winds, and currents. In some scenarios, waves should be treated as special case of dynamic obstacle and can
be critical to USV’s safety. For the first time, this paper presents unique concept facing this challenge by combining ocean waves’
formulation with the probabilistic velocity obstacle (PVO) method for autonomous navigation. A simple navigation algorithm is
presented in order to apply the method of USV’s navigation in presence of waves. A planner simulation dealing with waves and

obstacles avoidance is introduced.

1. Introduction

Most of the work on motion planning over the past twenty
years has been focused on ground and aerial vehicles.
Recently, the research is also focused on unmanned surface
and underwater vehicles [1-4]. Motion planning of USV
usually do not deal with waves, currents, and winds, which
can be very critical in order to ensure USV’s safety. Generally,
we distinguish between local and global planners. The
local planner generates one or a few steps at every time
step, whereas the global planner uses a global search to the
goal over a time-spanned tree. Examples of local (reactive)
planners are [5-7], but most do not guarantee safety as they
are too slow and hence their ability to look ahead and avoid
inevitable collision states (ICSs) [8] is very limited. Recently,
iterative planners [9-14] were developed that compute
several steps at a time, subject to the available computational
time. The trajectory is generated incrementally by exploring
a search tree and choosing the best branch. These planners
also do not address the issue of safety and under actuated
models and, above all, do not take into account the environ-
mental disturbances (currents, waves, winds, clutter) in
marine environments that can be crucial to the safety of an
unmanned vehicle.

Only a few works have addressed the safety issue in dy-
namic environments, which is crucial for partial (local) plan-

ning such as USV motion planning. One approach of safe
planning is to use braking policies [15]; another is to ensure
local avoidance for a limited time [13]. However, neither one
considers the dynamic of the USV nor the environmental
disturbances. A promising approach to safe motion planning
in dynamic environment is the consideration of “regions of
inevitable collision,” first introduced in [16] and later ex-
tended in [8, 17-19], but still do not treat under actuated
model and environmental disturbances.

This paper addresses USV’s safe navigation avoiding
moving obstacles considering waves and under actuated con-
strains. Ocean waves are extremely hard to map or to predict.
Wave’s disturbance is taken into account by combining them
to occupancy grid using probabilistic velocity obstacle (PVO)
concept. Our planner generates near-time optimal trajecto-
ries by selecting at each time step a safe velocity that mini-
mizes time to the goal dealing with the most significant phe-
nomena in marine environments/waves. Using a cost func-
tion (minimum time or distance to goal, minimum fuel, etc.)
The allowed attainable velocities are sorted, and the safe and
the optimal one is chosen at each time step, for each time
step the possible motion primitives of the USV are computed
taking into account kinematic and dynamic constraints. If
the primitive is found to be safe enough, it is chosen to be the
next USV’s control, otherwise, it is discarded. The planner is



demonstrated for online motion planning dealing with waves
and USV’s dynamic constraints in marine environment.

Main Contribution. For the first time this research generates
trajectories of USV in presence of waves. The PVO concept
do not deal with USV’s dynamic model nor waves models.
We extend the PVO concept to marine environments presen-
ting full planner with optimal trajectories, treating unsolved
issue of autonomous navigation with waves constraints.

2. Probabilistic Velocity Obstacle

The probabilistic velocity obstacle (PVO) [20] concept ex-
tends the velocity obstacle (VO) [21-24] method by con-
sidering uncertainty of the obstacles both in velocity and
position. The PVO concept implemented as discrete occu-
pancy grid that is based on dividing the space into grid and
attending different statistical values in each cell [25]. The
value of each cell in the grid represents the probability of
an obstacle to be on a specific location based on the other
obstacles velocities. Each cell stores probabilistic value:

(i) a value of probability occupation P(Occ);

(ii) a probabilistic distribution function on a histogram
of possible velocities P(v,,), n = 1,...,N.

The predicted occupation of each cell is:

PC(OCC) = ch(n)(occ) ' Pc(n)(vn)a (1)

where ¢ represents the cell, Pc(n) (Occ) denotes the probability
of occupancy of the cell ¢, Pcn)(v,) denotes the probability
that the cell’s velocity is v,. We define Threak as time to col-
lision between the robot and the obstacle, and T, as stop-
ping time including delay time of the robot to change current
velocity, v,

Tsafe(V) =&t Tbreak(v)a (2)

where ¢ is the time delay of the robot dynamics. Estimating
time to collision Tireak(v) value is related to the highest
probability to collision, Psfe, that we can deal with during
robot’s motion. Considering a robot velocity v, from present
time to some specific future time t leads to a collision,
if there is a collision in the interval [0, — 1], denote as
P,...;_1(v;), or if there is a collision at time instant , P;(v,). A
cumulative probability of collision from time 0 to time step ¢
is recursively computed, P,...;:

Po---t(Vr) = Po---t—l(Vr) + (1 - Pa---t—l(vr)) ) pt(Vr)y (3)
where
Pcoll,o = 0) (4)

where P,y represents the probability to collision, Time to
collision T,y is the minimum between ¢ and Tpreq, which re-
presents the time period of a constant motion models relia-
bility:

Tcoll(vr) = min(Tpred:t ‘ Pcoll,o-nt(vr) > Psafe)~ (5)
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If Teon(v) < Tafe(v), then the velocity is dangerous and
discarded.

This paper presents waves formulation in PVO concept
and a basic formulation of PVO concept, which is not intu-
itive. Extended description and mathematical proofs of PVO
can be found in [20].

3. Waves

The PVO concept deals with static and dynamic obstacles
with uncertainties, in this paper this concept is extended for
a special terrain, water. As mentioned before, ocean waves
can cause some unwanted effects such as drifts and track-
ing control errors, and in some cases should be treated as
“virtual” obstacles and must be taken into account. For that,
a basic knowledge of ocean waves is needed.

3.1. Theory of Ocean Waves. Ocean waves are usually approx-
imated by models of winds generating waves. Common
waves modeling are based on nonlinear models of wave
spectrum, using wave response transfer function that can be
implemented as low-level control system, such as autopilot
wave filtering. The waves spectrum depends on a large num-
ber of parameters and in some cases include empirical results
[26].

All of the spectrum modes only take into account wave’s
peak as a dangerous part that can cause collision, ignoring
wave’s lower parts. In this paper, we will assume that all kinds
of waves are characterized with constant direction and fre-
quency, therefore we do not consider superposition of two
waves. In order to predict waves, we have to measure obsta-
cles, waves, USV’s velocity, and location. The next section
will focus on practical ways to measure waves, obstacles, and
USV’s motion parameters.

3.2. Measuring Waves Parameters and USV State. In order to
navigate safely, USV’s environmental parameters are needed.
Usually, motion planning methods assume accurate and
available position and velocity of the vehicle. However, in
marine environment, most of the measurement equipment
produce false alarms and inaccuracy caused by clutter and
environmental disturbances.

First, we have to know the exact position of the USV in
real time; for that a standard GPS with one pulse per second
(PPS) can be satisfied (higher accuracy estimation can be
achieved by using Kalman filter). Moreover, USV’s and ob-
stacle’s location and velocity also need to be measured.
The obstacles’ parameters can be measured by yacht sailing
radar, nevertheless, such radars have several limitations such
as: identifying objects that located close to radar’s antenna,
limited number of targets that can be tracked, and so forth.
USV’s close range obstacles identification can be handled
by vision methods. These methods are based on cameras
that located around the USV and can deal with short-range
obstacles detection combining image process concept known
as automatic target detection (ATD) algorithms.

Height and the direction waves measured by standard
equipment (such as ADCP Waves Array sensor of Teledyne
company that can be used for such application). These
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FIGURE 1: Waves height over time.
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measurements can be integrated with off-line measurements
and estimated parameters for a specific day from hydroanal-
ysis based on winds measurements. Sensors inaccuracy and
noises are not included in this model.

3.3. Wave Probability. A common statistical variable used in
hydrology is Hys; (also known as H;, the significant wave
height). This variable represents the average of the third
highest waves measured for a long period of time. Hjs
assumed to be known at each time step in real time, based
on measured technique detailed in Section 3.2. In Figure 1,
we can see an example for wave heights over time. Be-
tween the two broken lines, the bold line is the average of
the third highest lines H,/3. After many measurements and
observations (which can be done off-line), a statistical con-
nection between Hj,; and height of a single wave with A,
amplitude can be determined. From empirical model [26],
the well-accepted assumption of wave’s probability with am-
plitude A > A; is

P(A > Ay) = e ¥4/His, (6)

where A, is the constant amplitude, the wave height is ap-
proximately twice the amplitude. According to that we can
calculate at any given time for the current wave’s parameters
the collision probabilities which risks the USV, P, and
decide whether it is safe to ignore the waves (which means
that a special maneuver is needed to avoid the virtual obsta-
cle).

4. Marine Probabilistic Velocity Obstacles

In this section we present new formulation of the PVO con-
cept that can be used for USV motion planning in presence of
waves using occupancy grid. Unlike the classic PVO concept,
the MPVO defines the values over the probability grid and
time limitation regarding waves in marine environment.

4.1. Waves Occupancy Grid. Probabilistic occupancy grids
are well-known structures used for environmental repre-
sentation [25]. The space is divided in finite number of
cells, each cell stores a probabilistic estimation that combines
waves and obstacles. Just like any other obstacles, we would
like to include wave’s properties: size (height, direction) and
speed. By measuring and estimating wave’s shape frequency
and direction, we can calculate the occupancy grid of
probabilities for different waves by using (6). By measuring
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FIGURE 2: Wave simulation and occupancy grid.

wave’s frequency and height as cycled disturbance with a
constant frequency, wave characters on a grid can be defined.

In Figure 2, several waves moving from the top left corner
to the bottom right. The probability for each squared cell
is calculated based on sinusoidal equations of the wave’s
shape. Integrating this information with measured values
(wave’s shape and frequency), the grid in Figure 2 can be
represented. In the right side of Figure 2, we can see the grid
for classic wave movement. The darker cells represent higher
probability for wave’s spectrum. On the left side of Figure 2,
the grid represents wave’s shape. The probability on each cell
in the grid is

e A2/g2
Piave;; = € 8AI/Hij5 cos(wx+ gbi,j), (7)

where w is the wave’s frequency and ¢; ; is the phase at cell
cli, j]. The phase at each cell c[3, j] is

2nx

dij = D (8)

where x is the distance to the next wave peak and A is the wave
length.

As we mentioned before, the low part of the wave does
not oppose as much danger as the peaks of the waves,
therefore, only the peaks are taken into account. As can see
in Figure 2, the probability of the low part of waves is ap-
proximately zero (white cells). USV’s location is updated
from the GPS at every time step (averagely 1 second), for that,
moderated waves influence is minor. The occupancy grid
representing waves is combined with PVO method for mov-
ing obstacles and implemented as detailed in Section 5. The
occupancy grid is updated at each wave cycle, 1/w.

4.2. Danger Time. One of the most significant parameters in
PVO concept is the time danger, but unlike other terrains
stopping in front of the wave is not practice. As well known,
the best way of big vessels to deal with high wave is to
move vertically (normally) to the wave’s direction (neglecting
stability analysis and ratio of the USV to wave height). We
define Ty (v,) as the time it takes to change USV’s current
course to a vertical course regarding wave’s direction. We
define Tganger(V;) as the first time when Py > Paage so the
USV enters unsafe state:

Tdanger(vr) =1 9)



where
Pcoll,o---t(Vr) > Pgafe. (10)

In a case of Tdanger < Tsafes USV cannot change his current
course moving vertically to the wave’s direction, therefore the
velocity v, is unsafe.

4.3. Obstacles’ Properties. Obstacle’s location (latitude, longi-
tude, course) and velocity in marine environment are usually
measured by Radar sensor at each time step (1 sec) and iden-
tical to nonlinear velocity obstacles (NLVO) assumptions
[23, 24]. We assume nonlinear velocity of the obstacles with
general trajectory without wave’s dynamic effect regarding
obstacle’s location. We model the obstacles as convex shape.
However, since the Radar measure the obstacle’s state at each
time step, wave’s effect and obstacle velocity are taken into
account.

5. The Planner

In this section we describe planner’s principles. The planner
based on third highest waves value H;/3 that can be measured
online using drift actuators or offline before mission, which
enable to compute Pyaye for each cell (i, j). We seek for single
velocity that will be safe from obstacles and waves, that is,
allows the USV to avoid the obstacles and if needed to move
vertically to the waves. The algorithm sorts out the possible
velocities for the next time step by the cost function, and
then checks each velocity from the best available velocity to
the worst. If the velocity causes to collision with any obstacle
in the near future it’s discarded immediately. If the velocity
was not discarded due to risk of collision, then it is checked
from the wave’s aspect. If waves do not oppose any danger,
this velocity will be chosen for the next time step of the
USV, otherwise, other velocities are also being checked. If no
velocity is found to satisfy completely the waves’ conditions,
then the velocity that holds the least risk to the USV (and of
course does not have risk of collision) will be chosen for the
next time step of the USV, in that way we maintain minimum
risk from waves. The planner search based on one step ahead
greedy algorithm by exploring the best node at each time
step using local planning. Algorithm pseudocode is detailed
in Section 5.4.

5.1. System Dynamics. We consider 3 DOF horizontal model
neglecting heave, pitch and roll. The dynamic model of the
USV is under actuated and suitable for small marine vehicles
similar to the common USV’s scale [26] in the industry. USV
actuators dynamic’s and delays are neglected in this model.
We introduce the basic marine model and later on we detail
kinematic explicit form for our planner:

=7y,
Mv+Cv)y+ D)y =1,

(11)

where M is system inertia matrix, C-Coriolis-centripetal
matrix, D-damping matrix, 1 = (x, y, 1//)T € R represents
the USV’s position and orientation in NED system (North-
East-Down coordinate system, x-axis points toward true
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north point, etc. [26]), v = (u, v,r)T € R3 is the veloci-
ty vector, T = (u,7)7 € R? represents the USV’s controls,
where u is the propulsion force along surge DOF and r re-
presents the propulsion moment along yaw DOE. J(y) is the
transformation matrix between velocities. USV’s velocities
and rotation standard definition can be seen in [26].

The planner is based on explicit form for kinematic
model:

r#0:

x(t + Af) = x(p) + USInrAl) +v(cos(rat) = )

,
B (u(1 — cos(rAt)) + v(sin(rAt)))
y(t+At) = y(t) + » >
Ay =rt,
(12)
r=0:
x(t+ At) = x(t) + ult,
y(t+ At) = y(t) + vAt, (13)

Ay = 0.

5.2. Motion Primitives. We use trims and primitive libraries
as discrete point in control space and motion primitives
connect those points similar to Maneuver Automaton [27,
28]. The vehicle model is under actuated with two control
inputs, therefor we control only the propulsion force at surge
DOF and propulsion moment at yaw DOFE. We use a simple
set of speed controller in 3 X 3 grid points in (u,7) as set
controllers from U and R, respectively, denoted as T (i):

(U,R) (U,0) (U,-R)
(0,R)  (0,0) (0,-R) (14)
(=U,R) (-U,0) (-U,-R).

A motion primitive moves from one speed controller set
point to another. At each time step we compute the cost as
detailed in Section 5.3, w(t,(t + At)), for the updated USV
controller 7, ;(t + At):

Tr,i(t + At) = Tr,i(t) + Tmp(i): (15)

the safe controller with the lower cost is explored in the next
time step, until the USV gets to the target.

5.3. Cost Function. Our search is guided by a minimum
time cost function to produce near-time optimal trajectories
to the goal satisfying HJB equation. The cost function for
each primitive is the minimum time to the goal from the
current USV’s state to the target point. It is determined by
first computing the minimum time to the goal w(x, X, x7, Xr)
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from the current state (x, x), where (x,x) = (u,r) to the tar-
get point (xy, %s) for each axis [29, 30]:

w(x,x,xf,xf>

2
—x—xf+2 —x+.Xf+?+7,

P .
X+xp+2 x—xf+?+7, otherwise,

(16)

ifxes,

where S is the region below and above the switching curve
in the state space (analytic solution from Bang-Bang optimal
control problem):

xz
S(x, %) = {xz - Z(x—xf + Zf) >0,

)‘CZ
x2+2(x—xf—2f) <0},

where x and x are the USV’s controller 7,;(t + At) from
U and R respectively, and xs and %y are the target point,
Xy, and the velocity at the target which is zero in our case.
Considering both axes, the minimum time to the goal used
in the cost function is the largest of the times computed for
both axes [29]. This cost function produces sub time-optimal
trajectories to the goal.

(17)

5.4. Pseudocode. See Algorithm 1.

5.5. Planner Convergence. Planning in dynamic environ-
ments is a well-known NP-hard problem, and convergence
can not be proofed for general dynamic environment. On
the other hand, grid-based planning methods are known to
be resolution complete based on the fact that the grid can be
very dense and completeness can be achieved. MPVO algo-
rithm is a grid-based concept and for that convergence is the
same as resolution completeness. The convergence is a theo-
retical one, so a very dense grid leads to very long computa-
tion time, which is not applicable in dynamic environments.

6. Simulation Results

We implemented the algorithm in Matlab application and
tested it in various simulated environments. The online
planner was implemented and tested for obstacle-free, and
crowded static and dynamic marine environments. The
marine environment was simulated for random values of
H, 3, and with several values of Ps,f.. Figure 3 shows the com-
plete simulation environment: USV’s current position X,
represented by a blue point, target point X; marked by a yel-
low triangle, initial USV’s location marked by a blue triangle
and the obstacles marked by red circles. Wave’s values based
on maneuver capabilities of small USV (10 meters length)
was simulated as: Ay = 3 [m], Psgfe = 0.5 0.1, Tgpe = 5
[sec], At = 0.1 [sec], Hi;3 = 3 +rand(0,1) [m], w = 0.06

8000
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4000 | ‘ :

2000

—2000

—4000 .

—6000

®
)

—800! L
2000 4000 6000 8000

0
—8000 —6000 —4000 —2000 O

FIGURE 3: Planner simulation environment.

Set Target Point X;
Measure USV’s location X,
Measure USV’s velocity v,
Set Tsafey Psafe
for t = 0 to tf, do
Measure Hy /3
if X, = X; then

Get a New Waypoint X;
else
for i = 1ton do

for j = 1ton do
Calculate Pyaye; ;
end for
end for
for eachnodei=1---n do
Calculate P.oy ¢
if Pcoll,t < Pgfe then
Tpi(t+ At) = 7,;(t) + Tmp(i)

else
Tr,i(t + At) = Tr,i(t) + Tmp (max( Tdanger))
end if
Calculate w; (7, (t + At))
end for

Find Minw;(7,;(t +At)) i=1---n
Set 7. (t + At)
Update X,
end if
end for

ArcoriTHM 1: Planner pseudocode.

[Hz]. Figure4 shows planner simulation in crowded
dynamic environment with Pge = 0.6. The USV avoid from
the first obstacle ahead and traveling to the goal avoiding
other obstacles considering wave’s parameter as mentioned
above, in this case for all #: Pyl < Psase. In Figure 5 the
USV deals with the same scenario but Pg,. was set to lower
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FIGURE 4: Simulation in crowded dynamic environment Py = 0.6.
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FIGURE 5: Simulation in crowded dynamic environment Py, = 0.4.
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value (0.4), the vehicle react earlier to the obstacle ahead
thats because in a specific time Peojs > Psafe, 50 USV chose
conservative trajectory to avoid collision. In Figure 6 global
running time algorithms versus At introduced. Time step
was set to 0.1 [sec] from practical sensors abilities measuring
wave parameters. The algorithm overall running time for
0.1 [sec] time step measured to be 10 [sec] for approximate
time mission of 6000 [sec], which indicates planner online
planning abilities.

7. Conclusions

In this paper, a new concept dealing with ocean waves and
planning safe trajectory of USV was introduced. In order
to deal with the waves disturbances, we used a grid of pro-
babilities and rephrased the PVO concept dealing with waves.
A practical aspect to measure obstacles and waves in marine
environments was also introduced. A planner simulations
navigating through waves and avoiding obstacles considering
USV’s dynamic model constrains was developed. Future
work will focus on considering smaller waves as well as their
long-term effect over the USV’s platform.
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