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Unified Architecture Based on Winograd
Fourier Transform Algorithm for 2, 3, 4, 5, and
7-point DFTs

Fahad Qureshi, Mario Garrido, and Oscar Gustafsson

In this letter, a unified hardware architecture that can be reconfigured to
calculate 2, 3, 4, 5, or 7-point DFTs is presented. The architecture is based
on the Winograd Fourier transform algorithm (WFTA) and the complexity
is equal to a 7-point DFT in terms of adders/subtracters and multipliers
plus only seven multiplexers introduced to enable reconfigurability. The
processing element finds potential use in memory-based FFTs, where non-
power-of-two sizes are required such as in DMB-T.

Introduction: The discrete Fourier transform (DFT) is an important
algorithm in the field of digital signal processing. It transforms a signal
from the time domain into the frequency domain, providing information
about the spectrum of the signal. The direct computation of an N-point
DFT requires to calculate a number of operations proportional to N2. In
order to reduce the number of arithmetic operations, many fast algorithms
have been proposed, such as Cooley-Tukey [1], prime factor (PFA) [2]
and Winograd Fourier transform (WFTA) [3] algorithms. Here, we refer
to them collectively as fast Fourier transform (FFT) algorithms. These
algorithms are based on decomposing anN-point DFT recursively into
smaller DFTs, leading to a reduction of the computational complexity [4].

Most FFT algorithms and architectures have focused on power-of-two
size DFTs. However, recently the interest in non-power-of-two size DFTs
has increased, mainly motivated by the3780-point DFT in Chinese digital
TV (DMB-T) [5, 6] based on orthogonal frequency-division multiplexing
(OFDM). In the receiving side of OFDM systems, an inverse DFT(IDFT)
is usually required, which is easily computed using a DFT processor.

Most FFT architectures are not well optimised for the computation of
non-power-two-point FFTs, which make use of small point DFTs with
varying sizes, as well as more complex data management. Somepipelined
architectures for the3780-point DFT in DMB-T have been proposed [5,6].
However, the streaming nature of a pipelined architecture leads to the
fact that it can often process data at a much higher rate compared to the
required 7.56 Mb/s. Hence, the amount of computational resources are
often excessive. In [7], individual processing elements for 3 and5-point
DFTs was proposed and considered for a pipelined architecture. However,
they were not based on the WFTA and have a slightly higher complexity.

Memory-based FFTs are often more suitable for low data rate
applications (where the clock frequency offered by the implementation
technology is higher than the data rate), as they allow reusing the
computational resources to a higher degree [8]. For a non-power-of-
two memory-based FFT, a number of challenges remain. One is how to
carry out the more complex data management to interconnect the small
DFTs. Another one is to develop a processing element that is suitable
for computing small point DFTs of different sizes. This letter presents a
unified architecture to compute the2, 3, 4, 5, and7-point DFTs by a single
processing element. This architecture can be used as the computational
core of a memory-based architecture for any DFT whose size that can be
decomposed into the factors2, 3, 4, 5 and7.

The proposed unified architecture is based on the WFTA algorithm. This
algorithm has the minimum number of multiplications at the expense of
introducing additions [3]. Although WFTA is very efficient for small prime
size DFTs, for larger sizes the number of additions becomes too high for
practical implementations.

Architectures of2, 3, 4, 5, and 7-Point DFTs: Figure 1 shows the
individual signal flow graphs of2, 3, 4, 5, and 7-point DFTs. The
signal flow graphs of the3, 5, and 7-point DFTs are based on the
WFTA algorithm, whereas the4-point is based on the Cooley-Tukey FFT
algorithm, and the2-point is a direct computation. In the WFTA, the DFT
computation can be written as

[X(0) . . . X(N − 1)]T =O ·M · I · [x(0) . . . x(N − 1)]T , (1)

whereI is a matrix corresponding to additions between inputs,M is a
diagonal matrix with the multiplications, andO is a matrix corresponding
to additions after the multiplications. Multiplications are performed
by semi-complex multipliers at the second stage. A semi-complex
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Fig. 1 Signal flow graphs for small DFTs based on WFTA. (a)2-point. (b)3-
point. (c)4-point. (d)5-point. (e)7-point.

multiplication has a complex input but a purely real or purely imaginary
coefficient and, hence, has half the implementation cost compared to a
general complex multiplication. The multiplication coefficients for each
size are also shown in Fig. 1. Finally, the numbers at the input represent
the index of the input sequence,x(n), whereas those at one output are the
frequenciesk of the output signalX(k).

Proposed Unified Architecture:The unified architecture is based on
mapping the signal flow graphs in Fig. 1 into a single processing element.
As starting point, we consider an direct mapping of the7-point DFT onto
which all the other sizes are mapped. As the number of operations for7
points is the largest and, hence, there are enough computational resources
available, the main challenge is to reduce the number of multiplexers. To
obtain this, it is important to find common parts in the signalflow graphs
that can be mapped without multiplexers. On the one hand, multiplexer
can be avoided by setting the inputs of the circuit to zero or by setting the
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Fig. 2. Single gate multiplexers.
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Fig. 3. Proposed unified architecture.

coefficient of a multiplier to zero. This removes unnecessary connections
of the circuit. On the other hand, by setting the coefficient of a multiplier
to one, this multiplier can be bypassed, which also removes the need of a
multiplexer. Using these techniques, a solution with only two two-to-one
multiplexers and five single gate multiplixers, controlledwith four control
signals, has been found. The single gate multiplexers can beimplemented
by a single gate as shown in Fig 2.

The resulting architecture is shown in Fig. 3. The required multiplier
coefficients are shown in Table 1, where theCXY coefficient values are
based on Fig. 1, and0 and1 are required to bypass or break the operators
as discussed above. The input and output relations are shownin Table 2,
where the dashes denote don’t care conditions and0 denotes that the
input should be zeroed for proper operations. In both cases,zero values
can be fed from the stored zero value in memory or by using a single
gate multiplexer as shown in Fig. 2. Finally, the signals controlling the
multiplexers are shown in Table 3, where the dashes again denote don’t-
care conditions.

Conclusions: In this letter, a reconfigurable unified processing element
architecture for computing2, 3, 4, 5, and7-point DFTs is proposed. It is
suitable as the core computational unit when computing DFTsin memory-
based architectures. The processing element is suitable for any DFT size
which can be decomposed into the included sizes.
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