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Abstract Anisotropic dark energy cosmological models

are constructed in the frame work of generalised Brans–

Dicke theory with a self-interacting potential. A unified dark

fluid characterised by a linear equation of state is consid-

ered as the source of dark energy. The shear scalar is con-

sidered to be proportional to the expansion scalar simulat-

ing an anisotropic relationship among the directional expan-

sion rates. The dynamics of the universe in the presence of a

unified dark fluid in anisotropic background have been dis-

cussed. The presence of an evolving scalar field makes it

possible to get an accelerating phase of expansion even for a

linear relationship among the directional Hubble rates. It is

found that the anisotropy in expansion rates does not affect

the scalar field, the self-interacting potential, but it controls

the non-evolving part of the Brans–Dicke parameter.

1 Introduction

Recent observations from distant type Ia supernovae (SNIa)

suggest that currently the universe is undergoing a state of

acceleration [1–5]. This intriguing discovery has led to the

idea of an exotic form of energy, dubbed dark energy, that

is responsible for the possible cosmic acceleration at late

times. Observations of large scale structure and the cosmic

microwave background (CMB) also provide strong evidence

in favour of dark energy [6,7]. The presence of dark energy

with a negative pressure is confirmed with additional evi-

dence from observations of X-ray clusters [8], Baryon Acous-

tic Oscillations (BAO) [9], weak lensing [10] and integrated

Sache–Wolfe effect [11,12]. In recent work by Sullivan

et al. [13] and Suzuki et al. [14] cosmic acceleration with dark

energy components has gained much support and a tighter

constraint has been put on the dark energy equation of state.
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The exact nature of dark energy is not yet known except the

fact that dark energy violates the strong energy condition and

clusters only at largest accessible scales. Dark energy consti-

tutes the highest contribution to the energy density (68.3 %

dark energy, 26.8 % dark matter and 4.9 % baryonic matter

[15–17]). A simple candidate for dark energy can be a cosmo-

logical constant in the classical FRW model with an equation

of state equal to −1. However, the cosmological constant is

entangled with serious puzzles like the fine tuning problem

and coincidence problem. The fine tuning problem is con-

cerned with the theoretically predicted value of the cosmo-

logical constant from quantum field theory which is larger

than the observed value by an order of 10123. Further it leads

to the coincidence problem: why are we accelerating in the

current epoch now that the vacuum and dust energy density

are of the same order? Therefore a good number of alternative

candidates have been proposed in recent times. Some alterna-

tive candidates for dark energy models are quintessence mod-

els [18], phantom models [19], ghost condensate [20] or k-

essence [21], holographic dark energy [22], agegraphic dark

energy [23,24], quintom [25,26] and so on. The dark energy

provides a negative pressure that generates an anti-gravity

effect driving the acceleration. High resolution CMB radia-

tion anisotropy data from Wilkinson Microwave Anisotropy

Probe (WMAP) are in good agreement with the prediction

of the � dominated cold dark matter model (�CDM) based

upon the spatial isotropy and flatness of the universe [27],

[28]. However, �CDM encounters some anomalous features

at large scale. Even though the large scale anomalies in CMB

anisotropy are still debatable, WMAP data suggest an asym-

metric expansion with one direction expanding differently

form the other two transverse directions at the equatorial

plane [29] and signal a non-trivial topology of the large scale

geometry of the universe [30,31].

The issue of global anisotropy of the universe can be sim-

ply dealt with a simple modification of the FRW model.

Recently, some plane symmetric Bianchi-I models or locally
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rotationally symmetric Bianchi-I (LRSBI) models have been

proposed to address the issues related to the smallness in the

angular power spectrum of the temperature anisotropy [32–

35]. For a planar symmetry, the universe looks the same from

all the points but the points all have a preferred axis. Recent

Planck data shows that the primordial power spectrum of

curvature perturbation is slightly redshifted from the exact

scale invariance [15]. It is obvious from the Planck data that

despite the notable success of �CDM model at high multi-

poles, it does not provide a good fit to the temperature power

spectrum at low multipoles [15]. However, it may be noted

here that there still persists uncertainty on these large angle

anisotropies and they remain as open problems. LRSBI mod-

els are more general than the usual FRW models and are based

on exact solutions to the Einstein field equations with homo-

geneous but anisotropic flat spatial sections. LRSBI models

have also been studied widely, in recent times, in different

contexts [36–41].

Brans–Dicke theory is a simple modification of Einstein

general relativity where the purely metric coupling of mat-

ter with gravity is preserved, thus the universality of free

fall (equivalence principle) is ensured [42]. Here, the grav-

itational constant is replaced with the inverse of a time-

dependent scalar field, namely, φ(t) = 1/8πG, and this

scalar field couples to gravity with a coupling constant ω. It

passes the experimental tests from the solar system [43] and

is able to provide an explanation of the accelerated expan-

sion of the universe [44]. The theory can also be tested by the

observational data coming from CMB and large scale struc-

ture [45–48]. Moreover, Brans–Dicke theory arises naturally

as the low energy limit of many quantum gravity theories

like superstring theory or Kaluza–Klein theory. Since the

Brans–Dicke theory has proved to be a better alternative to

general relativity and has a dynamical framework, it evokes

wide interests in the modern cosmology. In view of this, it is

worthwhile to discuss dark energy models in this framework.

In the present work, we have constructed some cosmo-

logical models for LRSBI universe in the frame work of

Brans–Dicke theory with a self-interacting potential and a

dynamical Brans–Dicke parameter. The unified dark fluid

(UDF), characterised by a linear equation of state, is consid-

ered as the source of dark energy. The paper is organised as

follows: In Sect. 2, the basic equations for LRSBI universe

are derived. The dynamics of evolution with a unified dark

fluid characterised by a linear equation of state is discussed in

Sect. 3. We have shown that a constant deceleration param-

eter leads to a power law for the Brans–Dicke scalar field.

Also, in the work, we concentrate upon late time dynamics

of the universe with an accelerated phase of expansion. At

late times, the deceleration parameter is believed to be slowly

varying or constant. On the other hand, a constant decelera-

tion parameter simulates two kinds of volumetric expansion,

namely: an exponential law and a power law. Cosmological

models for exponential expansion and power law expansion

are constructed in Sects. 4 and 5, respectively. The dynamics

of universe in the presence of a dark fluid is investigated for

respective models. The dynamical Brans–Dicke parameters

and self-interacting potential for both models are discussed.

Finally, we summarise our results in Sect. 6.

2 Basic Equations

We consider here the generalised Brans–Dicke theory with

a self-interacting potential. In this generalised Brans–Dicke

theory, the Brans–Dicke parameter is considered as a function

of the scalar field φ. The action for generalised Brans–Dicke

theory in a Jordan frame is given by [49,50]

S =
∫

d4x
√

−g

[

φR −
ω(φ)

φ
φ,αφ,α − V (φ) + Lm

]

, (1)

where ω(φ) is the modified Brans–Dicke parameter, V (φ)

is the self-interacting potential, R is the scalar curvature and

Lm is the matter Lagrangian. The unit system we choose here

is 8πG0 = c = 1. Varying the action in (1) with respect to

the metric tensor gi j and the scalar field φ, the field equations

are obtained as

Gi j =
ω(φ)

φ2

[

φiφ j −
1

2
gi jφ,αφ,α

]

+
1

2
[φ,i; j − gi j�φ],

(2)

�φ =
T

2ω(φ)+3
−

2V (φ) − φ
∂V (φ)

∂φ

2ω(φ)+3
−

∂ω(φ)
∂φ

φ,iφ
,i

2ω(φ)+3
. (3)

In the above equations, T = gi j Ti j is the trace of the energy

momentum tensor Ti j , � is the d’Alembert operator. Solar-

system experiments predicted a value of the coupling con-

stant of ω > 40,000 [43]. ω can be less than 40,000 on

a cosmological scale [45]. Observational constraints on the

Brans–Dicke model were obtained in a flat universe with

cosmological constant and cold dark matter using the lat-

est WMAP and SDSS data [47]. Within the 2σ range, the

value of ω satisfies ω < −120.0 or ω > 97.8. In a recent

work, the Brans–Dicke parameter is constrained from the

combination of observational data of CMB from seven year

WMAP, BAO from SDSS, SNIa data from union2 and the

X-ray gas mass fraction data from Chandra X-ray observa-

tions of the largest relaxed galaxy clusters to be in the range

0.0014 < 1
ω

< 0.0024 or 417 < ω < 714 [51]. The rate

of change of G was constrained to be −1.7510−12 year−1 <
Ġ
G

< 1.0510−12 year−1 at 2σ confidence level in the present

epoch [47]. Brans–Dicke theory reduces to Einstein’s general

relativity in the limit of a constant scalar field and an infinitely

large Brans–Dicke parameter ω. However, this consideration

may not hold always good [41,52,53].
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A plane symmetric LRSBI model is considered through

the metric

ds2 = −dt2 + A2dx2 + B2(dy2 + dz2), (4)

where A and B are the directional scale factors and are con-

sidered as functions of cosmic time only. The metric cor-

responds to considering the yz-plane as the symmetry plane

and x as the axis of symmetry. The eccentricity of such a uni-

verse is given by e =
√

1 − A2/B2. The expansion scalar θ

for this metric is θ = Ȧ
A

+ 2 Ḃ
B

, where an overhead dot rep-

resents an ordinary time derivative. Defining the directional

Hubble parameters along the axis of symmetry and symmetry

plane as H1 = Ȧ
A

and H2 = Ḃ
B

, the mean Hubble parame-

ter can be written as H = 1
3
(H1 + 2H2) and θ = 3H . The

scalar expansion can be expressed in terms of the directional

Hubble parameters as

θ = H1 + 2H2. (5)

The shear scalar for the plane symmetric metric defined in

(4) is expressed as

σ 2 =
1

2

[


i H2
i −

1

3
θ2

]

=
1

3
(H1 − H2)

2. (6)

The shear scalar may be taken to be proportional to the expan-

sion scalar which envisages a linear relationship between the

directional Hubble parameters H1 and H2 as H1 = k H2.

This assumption leads to an anisotropic relation between the

directional scale factors A and B as A = Bk . Here, k is an

arbitrary positive constant that takes care of the anisotropic

nature of the model. If k = 1, the model reduces to be

isotropic and otherwise the model is anisotropic. One may

note that such an assumption is not new and is widely used in

the literature to handle anisotropic models. The mean Hub-

ble parameter can now be expressed as H = 1
3
(k + 2)H2.

The average anisotropic parameter A = 1
3



(

�Hi

H

)2
for the

model is A = 2
(

k−1
k+2

)2
. Obviously for an isotropic model

with k = 1, A vanishes and has a finite non-zero value for

anisotropic models. One should keep in mind that the uni-

verse is observed to be mostly isotropic and any deviation

from isotropic behaviour must be considered as a sort of

small perturbation.

The field equations, for a cosmic fluid with energy

momentum tensor Ti j = (ρ + p)ui u j + pgi j , now assume

the explicit forms

9(2k + 1)H2 = (k + 2)2

×
[

ρ

φ
+

ω(φ)

2

(

φ̇

φ

)2

− 3H

(

φ̇

φ

)

+
V (φ)

2φ

]

, (7)

6(k + 2)Ḣ + 27H2 = (k + 2)2

×
[

−
p

φ
−

ω(φ)

2

(

φ̇

φ

)2

−
6H

(k+2)

(

φ̇

φ

)

−
φ̈

φ
+

V (φ)

2φ

]

, (8)

3(k2 + 3k + 2)Ḣ + 9(k2 + k + 1)H2 = (k + 2)2

×
[

−
p

φ
−

ω(φ)

2

(

φ̇

φ

)2

−
3(k+1)H

(k+2)

(

φ̇

φ

)

−
φ̈

φ
+

V (φ)

2φ

]

,

(9)

and the Klein–Gordon wave equation for the scalar field,

φ̈

φ
+ 3H

φ̇

φ
=

ρ − 3p

2ω(φ) +3
−

∂ω(φ)
∂φ

φ̇2

2ω(φ) +3
−

2V (φ) − φ
∂V (φ)

∂φ

2ω(φ) +3

(10)

where ρ is the dark energy density and p is the dark energy

pressure.

Subtracting Eq. (9) from Eq. (8), we can obtain the evo-

lution equation for the Brans–Dicke scalar field,

−
Ḣ

H
− 3H =

φ̇

φ
, (11)

which can also be expressed as

(q − 2)H =
φ̇

φ
, (12)

where q = −1 − Ḣ
H2 is the deceleration parameter. It

should be mentioned here that a positive deceleration param-

eter describes a decelerating universe whereas a negative q

implies an accelerating one. Equation (12) implies that, for a

non-static universe (H �= 0), a constant scalar field will give

us a decelerating universe with q = 2. Brans–Dicke field

equations with constant scalar field reduce to the usual Ein-

stein field equations in general relativity. Therefore, one can

conclude that in general relativity accelerating models can-

not be achieved for LRSBI models by assuming a linear rela-

tionship among the directional Hubble rates. This issue has

already been investigated earlier [38,54] and similar results

have been obtained. However, in the present work, it is inter-

esting to note that the presence of an evolving Brans–Dicke

field modifies the situation and it is possible to get acceler-

ating models even if the directional Hubble rates are propor-

tional to each other. Again, the behaviour of the Brans–Dicke

field is governed by the deceleration parameter and the con-

sequent Hubble rate. For a constant deceleration parameter

the Brans–Dicke field evolves as φ ∼ aq−2, or more specif-

ically φ ∼ (1 + z)2−q , where a is the scale factor, related

to the redshift z by 1
a

= 1 + z. Here, we consider the scale

factor at the present epoch to be 1. In other words, a constant

deceleration parameter favours a power law for the Brans–

Dicke scalar field. Moreover, it has become a usual practice,

in the literature, to use a power law scalar field (φ = φ0aα)

to address different issues in cosmology in the framework of
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Brans–Dicke theory. Also one should keep in mind that Eq.

(12) is valid only for an anisotropic model with k �= 1.

The general expressions for the Brans–Dicke parameter

and the self-interacting potential can be obtained from the

field equations (7)–(9) as

ω(φ) =
(

φ̇

φ

)−2 [

−
ρ + p

φ
−

φ̈

φ
+

3k H

k + 2

φ̇

φ

−
6Ḣ

k + 2
−

18(1 − k)

(k + 2)2
H2

]

, (13)

V (φ) = 2φ

[

9(2k+1)H2

(k+2)2
−

ρ

φ
−

ω(φ)

2

(

φ̇

φ

)2

+3H
φ̇

φ

]

.

(14)

The behaviour of the Brans–Dicke parameter and the self-

interacting potential along with the dynamics of the uni-

verse can be understood if we know the behaviour of the

energy density, pressure and the scale factor of the uni-

verse. The scale factor of the universe can be fixed from

the behaviour of the deceleration parameter or the assumed

dynamics of the late time accelerated universe. For the pres-

sure and energy density, usually, a barotropic relationship

in the form P = P(ρ), known as the equation of state, is

assumed. In this sense many equations of state with different

mathematical formulations have been proposed in the litera-

ture to address different issues in cosmology. In the present

work, we assume a linear equation of state to handle the issue

of the dark energy problem in the frame work of generalised

Brans–Dicke theory.

3 Unified dark fluid

A dark fluid model with a linear equation of state was pro-

posed in the spirit of the generalised Chaplygin gas model

(GCM) [55,56] after its success in addressing issues related

to the late time cosmic acceleration and dark energy problem.

Also CGM is known to be quite consistent with observations

[57]. Holeman and Naidu in their work in Ref. [56] coined

the linear equation of state defining the dark fluid as wet dark

fluid (WDF), claiming that such an equation of state was

used earlier to treat water and an aqueous solution [58,59].

In UDF, a constant adiabatic sound speed is assumed and

the equation of state is obtained through an integration over

the energy density. The integration constant coming out in

the process, obviously, has a behaviour similar to the cos-

mological constant and the equation of state has components

both from the dark matter and the dark energy sectors. This

is usually referred to as dark degeneracy.

A unified fluid dark energy is modelled through the equa-

tion of state

p = γ (ρ − ρ∗), (15)

where γ and ρ∗ are positive constants. This non-homogen-

eous linear equation of state (15) provides a description of

both hydro-dynamically stable (γ > 0) and unstable (γ < 0)

fluids [55]. One may notice here that the UDF equation of

state contains two parts—one behaves as the usual barotropic

cosmic fluid, and the other behaves as a cosmological con-

stant and unifies the dark energy and dark matter compo-

nents. The adiabatic speed of sound for this equation of state

is C2
s = γ . For stability of a model the adiabatic speed of

sound should be C2
s ≥ 0 and for causality, C2

s ≤ 1. Hence,

γ should lie in the range of 0 ≤ γ ≤ 1. γ = 0 refers to the

case of dark matter and γ = 1 implies a stiff fluid dominated

with dark energy (maybe the contribution coming from other

sources such as a fluid with a bulk viscosity or a cosmologi-

cal constant). The value of γ in between zero and 1 refers to

an exotic cosmic fluid unifying both the dark energy and the

dark matter and it deals with the dark sector of the universe.

However, there are no such constraints for ρ∗ and it can be

treated as a free parameter. The advantage of the equation of

state (15) is that dark energy can be described with a posi-

tive squared sound speed (contrary to the need of a negative

squared sound speed in phantom energy). In Ref. [56], Hol-

man and Naidu have claimed that the WDF model (similar

to UDF) is consistent with SNIa observations [3], WMAP

data [60,61] and constraints coming from the measurements

of the matter power spectrum [62]. They have shown that a

WDF model with γ = 0.316228 fits well to the observed

data. Babichev et al. [55] did not put any sign constraint on

the parameters γ and ρ∗. For different combinations of these

two parameters they obtained distinctive types of the cosmic

evolution scenario such as Big Bang, Big Crunch, Big Rip,

anti-Big Rip solutions with de Sitter attractor and bouncing

solutions. They have shown that, for 1+γ > 0 and γρ∗ > 0

the universe may contain either non-phantom or phantom

energy, whereas for 1 + γ > 0 and γρ∗ < 0 the universe

may contain only phantom energy leading to a Big Crunch.

On the other hand, for 1 + γ < 0 and γρ∗ < 0, the universe

may contain either non-phantom or phantom energy, whereas

for 1 + γ < 0 and γρ∗ > 0, the universe may contain only

phantom energy leading to a Big Rip in a finite time. The

WDF equation of state is considered as a linearised equation

of state of any smooth function p = p(ρ) in the vicinity of

some local point. UDF dark energy model has generated a

considerable research interest in recent times and has been

studied widely addressing different issues in relativity and

cosmology [63–71].

The parameters of the UDF can be constrained using the

observational data on the dark energy equation of state. In

the present work, we use the recent observational constraint
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Fig. 1 Observational constraints on the UDF parameters

on the dark energy equation of state, ωD = −1.06+0.11
−0.13 [72].

The range of allowed values for the parameters γ and ρ∗ as

obtained by using the data of Ref. [72] is shown in Fig. 1. In

the figure, γ is restricted within the range 0 ≤ γ ≤ 1 based

upon the stability and causality of the model which keeps the

parameter ρ∗ in the positive domain for negative ωD . In a

recent work, Liao et al. [71] have constrained the parameters

of a unified dark fluid described through a two parameter

affine linear equation of state similar to the one discussed

in this work using the Hubble parameter data H(z), type Ia

Supernovae data from Union 2 datasets, Baryon Acoustics

Oscillations observations from Sloan Digital Sky Survey and

the CMB radiation data from WMAP. They have constrained

the parameter γ to be 0.00172+0.00392
−0.00479 in 1σ for a flat uni-

verse and 0.00242+0.00787
−0.00775 in 1σ for a non-flat universe. In

another work, Xu et al. [69] constrained this parameter to be

0.000487+0.000117
−0.000487 in 1σ confidence. So far, it is believed that

a low value of γ much less than 1 fits the observational data

well.

The energy conservation equation for the matter field is

given by

ρ̇ + 3H(ρ + p) = 0. (16)

For the unified dark fluid equation of state, (16) can be inte-

grated to get

ρ = ρ� + ργ a−3(1+γ ) (17)

where ρ� = γρ∗

1+γ
and ργ = (ρ0 − ρ�). a = (AB2)

1
3 is

the average radius scale factor of the universe. ρ0 is the dark

energy density at the present epoch. Since γ and ρ∗ are pos-

itive, ρ� is positive, varying between 0 and
ρ∗

2
for γ = 0,

γ = 1, respectively. Depending upon the relative values of

ρ0 and ρ�, ργ can either be positive or negative. It is inter-

esting to note that the dark energy density has two parts:

Fig. 2 Dark energy equation of state as a function of redshift for three

positive values of the ratio
ρ�

ργ
. γ is taken to be 0.316

one behaves like a cosmological constant and the other part

dynamically evolves with the cosmic expansion.

The dark energy pressure can be expressed as

p = −ρ� + γργ a−3(1+γ ), (18)

so that the equation of state parameter ωD = p
ρ

becomes

ωD = −1 +
1 + γ

1 +
(

ρ�

ργ

)

a3(1+γ )
. (19)

The dynamical evolution of the dark energy equation of state

can also be assessed from

ωD = −1 +
1 + γ

1 +
(

ρ�

ργ

)

(1 + z)−3(1+γ )
. (20)

The dark energy pressure and the dark energy equation of

state parameter also have two parts each, one corresponds to

the usual cosmological constant and the second part evolves

dynamically with cosmic expansion. In Fig. 2, the dynami-

cal evolution of the dark energy equation of state parameter

is shown as a function of redshift for three representative

values of the ratio
ρ�

ργ
= 20, 30 and 50 corresponding to

ωD = −0.937,−0.958 and −0.974 at the present epoch. γ

is chosen to be 0.316. ωD dynamically evolves from γ at an

early epoch to −1 at late times of evolution. In the interme-

diate time zone, the behaviour of the dark energy equation

of state is the same for all the choices of
ρ�

ργ
, except the fact

that with increase in the value of the ratio, ωD becomes less

negative. In Fig. 3, the dark energy equation of state is plotted

as a function of redshift with γ = 0.316 for three negative

values of the ratio
ρ�

ργ
= −8,−20 and −50, corresponding

to ωD = −1.19,−1.07 and −1.03 at the present epoch. The

dark energy equation of state evolves in the phantom region

and increases with the cosmic expansion to behave like a

cosmological constant.
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Fig. 3 Dark energy equation of state as a function of redshift for three

negative values of the ratio
ρ�

ργ
. γ is taken to be 0.316

Deceleration parameter q = − ä
a H2 and jerk parameter

j =
...
a

a H3 are considered as important quantities in the

description of the dynamics of universe. The observational

constraints as set upon these parameters in the present epoch

from type Ia supernova and X-ray cluster gas mass fraction

measurements are q0 = −0.81 ± 0.14 and j0 = 2.16±+0.81
−0.76

[73]. In a recent work, the deceleration parameter is con-

strained from H(z) and SNIa data to be q = −0.34 ± 0.05

[74]. Experimentally it is challenging to measure the deceler-

ation parameter and jerk parameter and one needs to observe

objects of red shift z ≥ 1. In attempts to investigate the accel-

erated expansion of the universe, the sign and behaviour of

these parameters have been considered in different manners

in different works. The time variation of the deceleration

parameter is under debate even though, in certain models, a

time varying q leads to a cosmic transit from early decel-

eration to late time acceleration [75–78]. However, at a late

of time of cosmic expansion, the deceleration parameter is

believed to vary slowly with time or to become a constant.

A constant deceleration parameter leads to two different vol-

umetric expansions of the universe, namely the power law

expansion and exponential expansion. In a model with expo-

nential expansion, the radius scale factor increases exponen-

tially with time, leading to a constant Hubble rate. In a model

with power law expansion of the volume scale factor, the

scale factor can be expressed as a cosmic time raised to some

positive power. The Hubble parameter for such a power law

model behaves reciprocally to the cosmic time. In the present

work, we are interested in models describing a late time uni-

verse with the predicted cosmic acceleration and therefore we

will consider the exponential and power law expansion of the

scale factor corresponding to a constant and variable (decay-

ing) mean Hubble rate, i.e. H = H0 and H = m
t

, where H0

and m are positive constants. It is worth to mention here that

Fig. 4 Evolution of Brans–Dicke scalar field. Brans–Dicke fields for

both the exponential and the power law models are shown. For the power

law model, three representative values of the exponent m are considered

the choice of a constant deceleration parameter cannot pro-

vide a time dependent cosmic transition from a deceleration

phase in the past to an accelerated phase at late times.

4 Exponential model

In this kind of volumetric expansion, the Hubble rate is a

constant quantity i.e. H = H0=constant and the scale fac-

tor is given by a = eH0(t−t0) and it describes a de Sitter

type universe. t0 is the cosmic time in the present epoch. The

directional scale factors along the longitudinal and transverse

directions are A = e
3k H0(t−t0)

(k+2) and B = e
3H0(t−t0)

(k+2) . The decel-

eration parameter and jerk parameter, for this choice of the

Hubble rate, are q = −1 and j = 1. The directional decel-

eration parameters qx , qy and qz are the same as that of the

mean deceleration parameter q.

Integration of (12) yields for an exponential scale factor

φ = φ0e−3H0(t−t0), (21)

where φ0 is the value of the scalar field in the present epoch.

In terms of the scale factor and redshift z, we can express the

scalar field, respectively, as φ = φ0a−3 and φ = φ0(1 + z)3,

where we have used the fact 1
a

= 1+z. In Fig. 4, the evolution

of the Brans–Dicke scalar field is plotted as a function of

redshift. The scalar field decreases exponentially from a large

value at the early epoch to vanishing value at late times of

the cosmic evolution.

The rest energy density and pressure for the present model

are

ρ = ρ� + ργ

(

φ

φ0

)1+γ

, (22)
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p = −ρ� + γργ

(

φ

φ0

)1+γ

. (23)

The rest energy density and pressure in the model evolve with

the scalar field. They decrease from higher values in the past

to low values in a later period. At late times, ρ dynamically

evolves to become ρ� and the pressure p reduces to −ρ�.

At late times, a negative pressure dominates the scenario and

helps in the acceleration of cosmic expansion.

Using the fact that
φ̇
φ

= −3H0 and
φ̈
φ

= 9H2
0 we get the

Brans–Dicke parameter as

ω(φ) = ω0 + ω1φ
γ , (24)

whereω0 = −2
[

(k2+2k+3)

(k+2)2

]

andω1 =−
[

(γ+1)ργ

9H2
0

]

φ
−(1+γ )

0 .

It is interesting to note here that the Brans–Dicke parameter

has two parts: a constant ω0 and a dynamically evolving part.

The constant part is decided from the anisotropic nature of

the model. For an isotropic model with k = 1, it becomes

ω0 = − 4
3

. The anisotropic nature of the model does not affect

the evolving part of the Brans–Dicke parameter. The evolv-

ing part is mostly governed by the value of γ . The variable

Brans–Dicke parameter becomes a constant for the lower

limit of γ , whereas it varies linearly with the scalar field for

its upper limit. The allowed range of the Brans–Dicke param-

eter is ω0 + ω1 ≤ ω(φ) ≤ ω0 + ω1φ. The role played by

the parameter ρ∗ is quite interesting. In the absence of this

parameter, the cosmic fluid behaves as a barotropic fluid with

the usual relation p = γρ, and ω1 turns out to be negative.

Consequently, the Brans–Dicke parameter assumes a much

higher negative value in the early phase of cosmic evolution.

However, in the presence of this parameter, the value of ω(φ)

is a bit lifted up because of the positive contribution from ρ∗.

For the particular choice of ρ∗ =
(

1 + 1
γ

)

ρ0, ω1 vanishes

and ω(φ) behaves as a constant ω0. In Fig. 5, the functional

ωB D = ω(φ)−ω0

ω1
is shown as a function of the scalar field for

the exponential scale factor leading to a de Sitter kind of uni-

verse. The shaded area in the plot shows the allowed range

of the functional ωB D corresponding to the upper and lower

bounds on γ . The blue curve running through the shaded area

is for the representative value γ = 0.316. It is obvious from

the figure that, for this representative value of γ , the func-

tional ωB D increases with increase in the scalar field. At an

early phase of the cosmic evolution, the functional is almost

constant or has a little variation with the scalar field, whereas,

with the growth of time, the rate of change in the functional

becomes more rapid at late times. It can be concluded that

with the cosmic expansion, the functional ωB D decreases for

γ > 0. The rate of decrement slows down as the value of γ

decreases from its upper bound to the lower one. For γ = 0,

the functional becomes a constant with a value equal to 1.

However, for γ = 1, the value of ω is decided by the param-

Fig. 5 The functional ωB D , for the exponential model, as a function of

scalar field. The shaded area shows the allowed range for the functional.

The curve running through the shaded area is for γ = 0.316

eters ρ∗, ρ0, φ0 and H0. The scalar field decreases with time

and therefore, for any value of γ other than zero, the Brans–

Dicke parameter evolves to a constant ω0 at late times of the

evolution. From a dimensional consistency as demanded by

the Klein–Gordon wave equation (10), for γ �= 0, the value of

ω0 should be −1.5, which favours the anisotropic parameter

k to be 4. On the other hand, the average anisotropic parame-

ter is constrained from WMAP data [79] to be |
√

A| = 10−5,

which corresponds to k = 1.0000212 in our present model.

In fact, the universe is observed to be mostly flat and isotropic

and hence the anisotropy in cosmic expansion must be con-

sidered as a little perturbation to the isotropic behaviour.

The self-interacting potential can be expressed as

V (φ) = V0 + V1φ
1+γ , (25)

where V0 = −2ρ� and V1 = −2ργ φ
−(1+γ )

0 . The self-

interacting potential does not depend upon the anisotropic

parameter k, rather it depends upon the parameters of the uni-

fied dark fluid. For the lower limit of γ , the self-interacting

potential varies linearly with the scalar field and for the upper

limit it varies in a quadratic manner. For a particular choice of

the parameter ρ∗ =
(

1 + 1
γ

)

ρ0, the Brans–Dicke parameter

behaves like a constant with values ω0 = −1.5 and the self-

interacting potential behaves as a constant with the value of

V (φ) = V0 = −2ρ0. With the evolution of the scalar field,

the self-interacting potential evolves to a constant value of

−2ρ� at late times. However, in the absence of the parameter

ρ∗ in the dark energy equation of state, the potential vanishes.

In other words, the presence of the parameter ρ∗ induces a

self-interacting potential even in the absence of a scalar field.

The behaviour of the functional VB D = V −V0
V1

is shown in

Fig. 6. The shaded area in the graph shows the allowed range
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Fig. 6 The functional VB D , for the exponential model, as a function of

scalar field. The shaded area shows the allowed range for the functional.

The curve running through the shaded area is for γ = 0.316

of the functional VB D . The curve running through the shaded

area is for γ = 0.316, where the functional VB D increases

with the increase in the scalar field. The slope of the curve

increases with the increase in γ .

The dynamics of cosmic evolution through its expansion

history can be understood from the dark energy equation of

state parameter, ωD . From (22) and (23), we get

ωD = −1 +
1 + γ

1 +
(

ρ�

ργ

) (

φ
φ0

)−(1+γ )
. (26)

The dark energy equation of state does not depend on the

anisotropic nature of the model and depends on the parame-

ters of the UDF like the self-interacting potential. The dark

energy equation of state, for γ > 0, decreases from γ in

the quintessence region at the initial epoch to behave as a

cosmological constant with ωD = −1, at a later epoch when

the scalar field vanishes. At a given cosmic time, the dark

energy equation of state is decided by the parameters γ and

ρ∗. One should note the role played by the parameter ρ∗.

In the absence of this parameter, i.e. for ρ� = 0, the dark

energy equation of state is simply given by ωD = γ , which

can take only positive values as decided from the constraints

on the adiabatic speed of sound. But the inclusion of ρ∗ into

the equation of state modifies the relation and makes the

dark energy equation of state a dynamic one. In other words,

ρ∗ incorporates some negative pressure simulating the dark

energy necessary for the accelerated expansion.

The time variation of Newtonian gravitational constant is

given by

Ġ

G
=

φ̇

φ
= −3H0. (27)

Since, in the present model, the Hubble parameter is assumed

to be a constant quantity throughout the cosmic evolution,

obviously, Ġ
G

turns out to be a constant and its value can be

calculated in a straightforward manner. The observational

data from H(z) and Supernovae Ia constrained the Hub-

ble parameter as H0 = 68.930.53
−0.52kms−1 Mpc−1 [74] and

accordingly the time variation of G can be calculated from

the present model.

5 Power law model

In the case of power law expansion with the Hubble param-

eter behaving as H = m
t

, m being a positive constant, the

average scale factor behaves as a =
(

t
t0

)m

. The scale fac-

tors along the longitudinal and transverse directions read

A =
(

t
t0

)

(

3mk
k+2

)

and B =
(

t
t0

)

(

3m
k+2

)

. Cosmologies with a

power law scale factor are widely discussed in the litera-

ture [74,80–86]. The success of the power law model lies

with the fact that models with m ≥ 1 do not encounter the

horizon problem and do not witness the flatness problem.

In Ref. [74], from the analysis of observational constraints

from H(z) and SNIa data, Kumar has shown that a power

law cosmology is viable in the description of the accelera-

tion of the present day universe even though it fails to produce

primordial nucleosynthesis.

The deceleration parameter for this model is q = 1
m

− 1.

In order to be in the safe zone for accelerated expansion, the

predicted deceleration parameter should be negative and that

can be achieved only if m > 1. In terms of the deceleration

parameter, the parameter m can be expressed as m = 1
1+q

.

Considering the observational constraints from Ref. [73], we

put the constraints on m to be 3.03 ≤ m ≤ 20. Correspond-

ing to the constraints from Ref. [74], m can be constrained in

the range 1.4085 ≤ m ≤ 1.6393. The jerk parameter is cal-

culated to be j = (m−1)(m−2)
m

and can be constrained in the

range 0.69 ≤ j ≤ 17.1 [73] and −0.1716 ≤ j ≤ −0.1407

[74]. It is worth to mention here that the exact determina-

tion of the jerk parameter involves the observation of high-z

supernovae, which is a tough task. Therefore, current obser-

vational data have not yet been able to pin down the range

or sign of the jerk parameter. The directional Hubble rates

for this model are H1 =
(

3mk
k+2

)

1
t

and H2 =
(

3m
k+2

)

1
t
.

Consequently the directional deceleration parameters along

different spatial directions are obtained using the relation

qi = −1+ d
dt

(

1
Hi

)

as qx = k+2
3mk

−1 and qy = qz = k+2
3m

−1.

The mean deceleration parameter q is obtained from the

directional deceleration parameters as q = 1
3
(qx + qy + qz).

The directional deceleration parameters are also independent

of time. For an isotropic model, k = 1 and the directional
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deceleration parameters all reduce to qx = qy = qz = 1
m

−1

and become equal to the mean q.

The scalar field for this model becomes

φ = φ0

(

t

t0

)1−3m

. (28)

In terms of the scale factor φ = φ0 (a)
1−3m

m and in terms of the

redshift φ = φ0(1 + z)
3m−1

3m . It is obvious from (28) that the

scalar field decreases with expansion of the universe and van-

ishes at large cosmic time. The behaviour of the scalar field is

only decided by the single parameter m or more specifically

the constant negative deceleration parameter. The scalar field

is independent of the anisotropic parameter k. In Fig. 4, the

scalar field for the model is shown as a function of redshift.

In the figure we have considered three representative values

of the exponent m, namely 1.5, 3 and 7, which are within the

allowed range as calculated from the observational data for

the deceleration parameter. It is amply clear from the figure

that a model with a higher value of m has a higher scalar field

in the past, whereas it has a low value of the scalar field in

the future. Also, the variation of scalar field with m at early

time is much better exemplified than that at late times of the

evolution.

The energy density and pressure for this model with power

law expansion read

ρ = ρ� + ργ

(

φ

φ0

)

3m(1+γ )
3m−1

(29)

and

p = −ρ� + γργ

(

φ

φ0

)

3m(1+γ )
3m−1

. (30)

Just like the previous model, the energy density and pressure

evolve with the scalar field from large values at the initial

epoch to, respectively, become ρ� and −ρ� at large cosmic

time.

The variable Brans–Dicke parameter can be expressed as

ω(φ) = ω0p + ω1pφ

(

3γ m−1
3m−1

)

, (31)

where ω0p = 3m[(k+2)(k−3mk+2)−6m(1−k)]
(1−3m)2(k+2)2 and ω1p =

− (γ+1)ργ

(1−3m)2 t2
0 φ

− 3γ m−2
3m−1

0 . We have used the fact
φ̇
φ

= 1−3m
t

and

φ̈
φ

= 3m(3m−1)

t2 to get (31) from (14). It is interesting to note

that the Brans–Dicke parameter is a function of the scalar

field even in the lower limit of γ , in which it decreases with

the scalar field. In other words, the Brans–Dicke parame-

ter assumes lower values in the past and larger values in

the late time of cosmic evolution. If we consider the upper

bound of γ , the Brans–Dicke parameter evolves linearly with

the scalar field. The anisotropic nature of the model affects

only the constant part of the Brans–Dicke parameter. The

Fig. 7 The functional ωB D , for the power law model, as a function of

scalar field. The shaded area shows the allowed range for the functional.

The curve running through the shaded area is for γ = 0.316

behaviour of the evolving part is governed by the parameters

of the UDF and the exponent m. In Fig. 7, the functional

ωB D = ω−ω0p

ω1p
is plotted as a function of the Brans–Dicke

field. The shaded area shows the allowed range. In order

to get a general behaviour, we have shown the functional

for a representative value γ = 0.316. For the upper bound

of γ , the functional linearly behaves with the Brans–Dicke

field. In order to calculate the lower bound for the functional

we have used a reasonable value of the exponent m = 1.5,

which lies within the observational limits corresponding to

more recent data. Just like the previous model, the functional

ωB D for the representative value of γ varies slowly with the

Brans–Dicke field at an early epoch and varies rapidly at a

late time of evolution. ρ∗ has a significant role to play in the

behaviour of the Brans–Dicke parameter. For the particular

choice ρ∗ =
(

1 + 1
γ

)

ρ0, it behaves as a pure constant which

can be equated to −1.5, from dimensional consistency of the

Klein–Gordon wave equation.

The self-interacting potential for this model is given by

V (φ) = V0 + V1pφ
3m(1+γ )

3m−1 , (32)

where

V1p = (γ − 1)ργ φ

(

3m(1+γ )
1−3m

)

0 . (33)

Since m > 1, the self-interacting potential increases with

the increase in the scalar field. Like the previous model,

the scalar field does not depend on the anisotropic expo-

nent k and it depends on the parameters of the unified dark

fluid. For a choice of ρ∗ =
(

1 + 1
γ

)

ρ0 or γ = 1, the self-

interacting potential becomes independent of the scalar field
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Fig. 8 The functional VBD, for the power law model, as a function of

scalar field. The upper curve is for γ = 0.8 and m = 1.5. The lower

curve shows the lower bound with γ = 0. The three curves in the middle

are for three different values of the exponent m with γ = 0.316

and equals −2ρ�. This is the same value as the potential

assumes at a later epoch. In other words, there is an induced

self-interacting potential in the absence of the scalar field,

because of the parameter ρ∗. In Fig. 8, we have shown the

functional VB D = V −V0
V1p

as a function of the Brans–Dicke

field. In this figure we cannot set up the upper bound since

V1p vanishes for γ = 1. However, a curve for γ = 0.8 with

m = 1.5 is shown in the figure to get an idea. The curves

for γ = 0.316 are shown for three different values of m, e.g.

m = 1.5, 3.5 and 7. The functional VB D decreases with the

decrease in the field and at late times of the evolution it van-

ishes. For a given value of γ , the functional decreases with

the increase in m at early epochs, whereas it increases at late

times. However, the rate of increment at late times is less as

compared to the rate of decrement at an early phase.

The dark energy equation of state ωD can be calculated

from (29) and (30) as

ωD = −1 +
1 + γ

1 +
(

ρ�

ργ

) (

φ
φ0

)

3m(1+γ )
1−3m

. (34)

The dark energy equation of state decreases from γ in

the beginning to behave like a cosmological constant with

ωD = −1 at a late epoch of cosmic evolution. In the absence

of the parameter ρ∗, the dark energy equation of state is

a constant quantity i.e. γ . The presence of this parameter

makes the dark energy equation of state an evolving one.

The anisotropic nature of the model does not affect ωD . How-

ever, the dark energy equation of state is controlled by the

choice of the exponent m, which is decided by the observa-

tional constraints on the deceleration parameter and the jerk

parameter.

The time variation of the Newtonian gravitational constant

for this power law model is

Ġ

G
=

1 − 3m

t
. (35)

Here,
φ̇
φ

= 1−3m
t

inversely varies with time. The value of m

for the present is constrained from the observational data [74]

and consequently the time variation of G can be predicted to

be in the range −3.918 < Ġ
G

t < −3.226.

6 Conclusion

In the present work, we have constructed some cosmological

models mimicking the late time cosmic acceleration in the

frame work of generalised Brans–Dicke scalar tensor theory

of gravitation for a plane symmetric universe. The cosmic

fluid is considered to be a dark fluid described by a two param-

eter affine equation of state. The shear scalar is considered

to be proportional to the scalar expansion, which simulates a

linear relationship among the directional Hubble rates incor-

porating anisotropy in expansion rates along different spatial

directions. In general relativity, such an assumption does not

provide an accelerating model. However, in the frame work

of generalised Brans–Dicke theory with evolving scalar field,

it is possible to get accelerated phase of expansion with such

an assumption. Considering a constant deceleration param-

eter at a late time of evolution of the universe, we have con-

sidered two kinds of volume expansion, namely, the power

law expansion and the exponential law of expansion. More-

over, we have shown that a constant deceleration parameter

leads to a power law in the Brans–Dicke scalar field. The

presence of the extra term in the barotropic fluid equation

of state makes the dark energy equation of state an evolving

one. The dark energy equation of state evolves from a posi-

tive constant quantity equal to the adiabatic speed of sound

in the beginning to behave like a cosmological constant at

a later epoch of cosmic evolution. The scalar field is found

to decrease with the cosmic expansion. The self-interacting

potential increases with the increase in scalar field. In an ini-

tial epoch, the self-interacting potential is having a large value

and decreases with time to have a constant value decided

by the equation of state parameter at a later epoch. The

anisotropic nature of the model does not affect the behaviour

of the scalar field and the self-interacting potential. However,

the non-evolving part of the dynamic Brans–Dicke param-

eter is affected by the introduction of an anisotropy in the

expansion rates.
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