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Collision avoidance is a crucial function for all ground vehicles, and using integrated chassis
systems to support the driver presents a growing opportunity in active safety. With actuators
such as in-wheel electric motors, active front steer and individual wheel brake control, there
is an opportunity to develop integrated chassis systems that fully support the driver in
safety critical situations. Here we consider the scenario of an impending frontal collision with
a stationary or slower moving vehicle in the same driving lane. Traditionally, researchers
have approached the required collision avoidance maneuver as a hierarchical scheme, which
separates the decision making, path planning and path tracking. In this context a key decision
is whether to perform straight-line braking, or steer to change lanes, or indeed perform
combined braking and steering. This paper approaches the collision avoidance directly from
the perspective of constrained dynamic optimization, using a single optimization procedure
to cover these aspects within a single online optimization scheme of model predictive control
(MPC). While the new approach is demonstrated in the context of a fully autonomous safety
system, it is expected that the same approach can incorporate driver inputs as additional
constraints, yielding a flexible and coherent driver assistance system.

Keywords: Collision avoidance; model predictive control; active front steering; torque
vectoring

1. Introduction

Recently the development of Advanced Driver Assistance System (ADAS) has received
much attention due to the continuing high number of accidents registered in road traffic
statistics. Over the years, many car companies have successively equipped their vehicles
with the most up-to-date driving assistance systems, from the earliest anti-lock braking
systems (ABS), to the more recent electronic stability control (ESC) system, to adaptive
cruise control (ACC) system, and to the latest collision avoidance and crash mitigation
systems. One of the most important applications of ADAS is the collision avoidance sys-
tem for autonomous road vehicles, for example, Volvo City Safety equipped cars have
shown the effectiveness of helping the driver to avoid rear-end collisions at low speeds
by automatically braking when a potential collision is detected [1]. Similar functionality
can be found in Mercedes-Benzs Pre-Safe Brake and Volkswagens Front Assist and C-
ity Emergency Brake [2]. These systems use brakes only to achieve collision avoidance.
The availability of multiple actuators, like individual wheel braking, active front wheel
steering, active rear wheel steering, etc. enables an agile response from the vehicle, even
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compared to that of the most skilled human driver. In [3], the proposed system helps the
driver to steer around the obstacle by overlaying steering torque and braking individual
wheels. In [4], an emergency driving support (EDS) algorithm is developed to support
the driver to avoid collision using motor driven power steering (MDPS) and electronic
stability control (ESC). In [5], the performance of front steer and four-wheel steer vehi-
cles are compared. It is shown that, by adding more actuators, better maneuverability
and more agile vehicle response can potentially be achieved.
It is common that in collision avoidance maneuver, a hierarchical control is employed,

at the higher level, a collision free path is planned and updated in real-time, at the
lower level, a path tracking controller commands the actuators to track the planned path
[6, 7]. For examples, in the well-known DARPA challenge, the winning vehicle such as
Boss[8] incorporated trajectory generation and trajectory tracking algorithms. In [9], a
polynomial path planning algorithm and a tracking control based on model predictive
control (MPC) are proposed. In [10], a collision avoidance method with steering control
is proposed by generating a trajectory for obstacle avoidance based on application of
the velocity potential field. In [3], the optimal collision avoidance path planning was
treated as a problem of finding the optimal acceleration as a function of time or path
length, an optimal braking and steering control are used for path following. For these
two-layer approaches, the trajectory generation often assumed vehicle operation below
handling limits, which facilitates using simple planning algorithm. Hence it usually leads
to conservative vehicle performance compare to what could be achieved by handling
at friction limits. For the tracking control methods in this hierarchical scheme, PID
control[11, 12], pure pursuit strategy[13, 14], LQR[15], MPC[16, 17] control have been
proposed previously. Several research works have been conducted for vehicle dynamics
control with MPC. In [18], a linear time variant MPC approach is presented by using a
single track model and steering wheel angle as command signal combined with a solver
for quadratic programming. In addition, the longitudinal deceleration is incorporated
into the MPC problem for combined braking and steering in [19].
By contrast, in [20], an approach called Modified Hamiltonian Algorithm (MHA) is

proposed for direct torque distribution. In this approach, first a global acceleration vector
is determined using a particle model; secondly, vehicle stability control is considered by
constraining yaw moment to follow a desired yaw moment profile; lastly, control allocation
is achieved by minimizing a Hamiltonian function at individual wheel level. Even though
this approach avoided using a path planner, it still involves tracking a motion profile
from the higher level, hence it can be seen as tracking a velocity profile instead of a
position profile when compared to the traditional collision avoidance scheme.
In [21] and [22], path tracking controllers based on MPC are presented to follow desired

speeds while allowing to temporary deviate from desired paths to best meet collision
avoidance and stabilization criteria. While the bicycle model may pose problems for
vehicles handling at friction limits, the underlying idea of optimization with both velocity
and position states is quite useful. In this paper, we propose a control scheme that
integrates the path planning, and tracking by directly optimize the steering angles and
driving/braking torques to achieve collision avoidance. The collision avoidance problem is
formulated as an optimal control problem based on full vehicle models by defining a cost
function and a collision avoidance constraint on the vehicle position. The underlying idea
is to convert the optimal control problem to a convex quadratic programming problem
(QP) via MPC control scheme, then the QP problem is solved online to directly yield the
steering angle and driving forces [23]. In this way, we can avoid using the path planner
and path tracking controller separately, thus it retains the potential to achieve better
performance.
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Figure 1. A collision avoidance scenario.

The paper is organized as follows. In Section 2, we define the vehicle model used
in the MPC controller, and introduce a corresponding simplified tire model in Section
3. Section 4 presents the formulation of collision avoidance optimization problem and
develops the MPC control solutions. In Section 5 we carry out performance evaluation via
joint simulations of CarSim and Matlab Simulink, and in Section 6, we draw conclusions
of the research.

2. Vehicle model

Consider the scenario illustrated in Figure 1. In this scenario, vehicle A is moving along
a road when it detects vehicle B as an obstacle. The obstacle (Vehicle B) can be static or
moving. Vehicle A is supposed to perform an evasive manoeuvre to pass vehicle B, and
return to the original lane or stay in the new lane (depends on the objective).
The collision avoidance controller is to make use of the 3-degree-of-freedom (DOF) pla-

nar two-track vehicle model shown in Figure 2 [24], where vx, vy, r are the longitudinal ve-
locity, lateral velocity and yaw rate in the vehicle body axis system. Fxfl, Fxfr, Fxrl, Fxrr
are the longitudinal forces of front-left, front-right, rear-left, rear-right tires respectively.
Similarly, Fyfl, Fyfr, Fyrl, Fyrr are the lateral forces of 4 tires and αfl, αfr, αrl, αrr are
tire lateral slip angles. Parameters lf and lr are the distance from the vehicle CG to the
front and rear axle respectively, and lt is a half track. δ is the front road wheel steering
angle, β is the body slip angle, and r is the vehicle yaw rate. The vehicle total mass and
yaw moment of inertia are m and Izz respectively. OXY is the world axis system and
(X,Y ) is the cartesian coordinates, ψ is the yaw angle with respect to the X axis.
The wheel torque controller is assumed to have full authority of driving and braking

torques at each wheel and to have access to appropriate sensors. Using these notations,
the motion of the vehicle can be described by the following dynamic and kinematic
equations:
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Figure 2. The two-track vehicle model. The arrows show the positive direction of each angle or force [24].

m(v̇x − vyr) = Fxfl cos δ − Fyfl sin δ + Fxfr cos δ − Fyfr sin δ + Fxrl + Fxrr,

m(v̇y + vxr) = Fxfl sin δ + Fyfl cos δ + Fxfr sin δ + Fyfr cos δ + Fyrl + Fyrr,

Izz ṙ = (Fxfr cos δ − Fyfr sin δ + Fxrr − Fxfl cos δ + Fyfl sin δ − Fxrl)lt

+ (Fxfl sin δ + Fyfl cos δ + Fxfr sin δ + Fyfr cos δ)lf − (Fyrl + Fyrr)lr, (1)

ψ̇ = r,

Ẋ = vx cosψ − vy sinψ,

Ẏ = vx sinψ + vy cosψ.

In the state space model (1), the front axle steering angle δ is treated as a control input
and available in real-time. Since the longitudinal and lateral tire forces interact, they
cannot both be used as independent control inputs. It is preferred to use longitudinal
tire forces as control inputs since they can be directly regulated by driving/braking
torques. Hence it is desirable to eliminate the lateral tire forces in the model equations
(1), and this can be done by the introduction of a suitable reduced-order tire force model.

3. Tire model

To give an explicit formula for the lateral tire force, a friction ellipse relationship between
peak longitudinal and lateral tire forces is assumed, as illustrated in Figure 3 [24]. For
each tire, the equation of the friction ellipse is given by:

(
Fx∗∗
Fmaxx∗∗

)2 + (
Fy∗∗
Fmaxy∗∗

)2 = 1, (2)
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Table 1. B, C ,D ,E at different vertical loads [24]

Fz(N) 1594 3187 4780 6374 7968 9562 11155 12749
B 12.7603 12.5691 12.3569 12.1300 11.8914 11.6432 11.3866 11.1227
C 1.4481 1.4490 1.4499 1.4510 1.4522 1.4535 1.4549 1.4564
D 0.9988 0.9871 0.9741 0.9601 0.9455 0.9302 0.9144 0.8982
E 0.0293e-15 0.0603e-15 0.0387e-15 0.0033e-15 0.1406e-15 0.0347e-15 0.0107e-15 0.0004e-15

LSE(N) 5.0962 10.0173 14.7306 19.2219 23.4742 27.4771 31.2175 34.6881

where the subscript ∗∗ denotes fl, fr, rl, rr. In the friction ellipse equation (2), the
maximum achievable longitudinal force is always Fmaxx∗∗ = µFz∗∗, where µ is the road
friction coefficient and Fz∗∗ is the vertical load of the corresponding tire. The maximum
lateral force Fmaxy∗∗ is achieved when there is no longitudinal slip, and varies with tire slip
angle. It can be expressed via the Pacejka magic formula [25]:

Fy∗∗(α) = µFz∗∗M(α), (3)

with

M(α) = D sin{Ctan−1[Bα− E(Bα− tan−1Bα)]},

where B, C, D, E are parameters of the magic formula. Substituting equation (3) into
equation (2), the lateral forces of combined slip can be expressed by the longitudinal
forces:

Fy∗∗ =M(α)
√

(µFz∗∗)2 − F 2
x∗∗. (4)

Thus equation (4) is used to eliminate the lateral tire forces in model (1). In this study,
the magic formula parameters B, C, D, E for the tire model (4) are fitted with the
least-squares estimation (LSE) method, using the CarSim tire data from the tire ‘215/55
R17’ [26]. The obtained parameters are shown in Table 1 [24].
According to Table 1, the parameter E is quite small for all vertical loads, so for

simplicity we use the approximation E = 0. Further analysis shows that parameters
B, C, D have certain linearity with respect the vertical loads as shown in Figure 4.

Figure 3. The elliptical relationship between longitudinal and lateral tire forces at different slip angles [24].
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Figure 4. Least-squares estimation fitted results

Therefore, they are further fitted as linear equations:

B = −1.4758× 10−4Fz + 13.0409,

C = 7.4666× 10−7Fz + 1.4465,

D = −9.0695× 10−6Fz + 1.0161.

Figure 4 illustrates the parameter fitting results and the comparison of pure lateral force
provided by CarSim tire data and the calculated force from equation (4) at different
vertical loads, showing a satisfactory match.
It is also worthwhile testing equation (4) in a combined slip situation, where the lon-

gitudinal tire force is nonzero. Here we simulate a double lane change maneuver at 120
km/h on a surface with friction coefficient µ = 0.6. The lateral forces from CarSim are
compared with those of the reduced-order model in Figure 5. Again this shows that
equation (4) reproduces the lateral forces to a satisfactory level.
The above fitting procedure is equally applicable to an actual vehicle, provided the

basic tire characteristics are available, i.e. friction ellipse and pure lateral force curve,
both at a representative set of vertical loads.

4. Controller design

4.1. The optimal control problem for collision avoidance

In this section, we reformulate the collision avoidance problem into an optimal control
problem. For autonomous driving and collision avoidance, suppose we have a reference
longitudinal speed vxd and a reference lateral position for the lane position yd. Moreover,
for lateral stability, we want to have the reference lateral speed vyd = 0. Then we can
establish the following performance index:

J =

∫ t

0
[wvx(vx − vxd)

2 + wvy(vy − vyd)
2 + wy(Y − yd)

2]dt,
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Figure 5. Internal lateral tire force and calculated tire force with equation (4) in a DLC maneuver

where wvx, wvy, wy are positive weights of tracking errors with respect to vxd, vyd, yd.
Also, we define ρ as a measurement of the distance between the ego vehicle and the
obstacle:

ρ = (X − xo)
2/a2 + (Y − yo)

2/b2, (5)

where (xo yo) is the geometric center of obstacles and (a b) are the parameters that define
an elliptical shape of the obstacle.
Using this performance index J , the optimization problem can be formulated as:

min
|u|≤umax

J

s.t. ξ̇ = f(ξ, u), (6)

ξ(0) = ξ0,

ρ ≥ 1, (7)

where ξ = [vx vy r ψ X Y ]T is the vehicle state vector, u = [δ Fxfl Fxfr Fxrl Fxrr]
T is the

input vector, and umax is the upper limit of the input vector. Equation (6) represents the
vehicle model (1), and equation (7) is the geometric constraint for collision avoidance.

4.2. The MPC formulation

Theoretically, the constrained nonlinear optimization problem formulated in Section 4.1
can be handled with the Pontryagins minimum principle, which would lead to a two-
point-boundary-value-problem (TPBVP). Unless the system is quite simple, only off-
line numerical solution can be found, hence it is not very helpful for real-time collision
avoidance. On the other hand, the model predictive control (MPC) utilizes the model
to be controlled to predict the future evolution of the system over a receding finite-time
horizon, and minimizes a predefined cost function with future controls to be solved. It
is real-time implementable by seeking a near optimal solution instead of a true one. In
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what follows, we present the formulation to solve the optimal control problem.
As shown in equation (6), the vehicle model (1) can be written as:

ξ̇ = f(ξ, u).

Additionally, the output equations are defined as:

η(t) = c · ξ(t),

where,

c =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1



 ,

i.e. outputs of the system is η(t) = [vx vy Y ]T . At sampling instant k, suppose the current
measured states, inputs and outputs are: ξk, uk and ηk respectively (in the remaining
paper, the superscripts or subscripts k is used to denote kth sampling instant). Then at
sampling instant k, the linearized system is:

˙̃
ξ = Ak · ξ̃ +Bk · ũ,

η̃ = Ck · ξ̃, (8)

where

ξ̃ = ξ − ξk, ũ = u− uk, η̃ = η − ηk,

Ak =
∂f

∂ξ

∣

∣

∣

(ξk,uk)
=

















0 rk vky 0 0 0

−rk 0 −vkx 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0

cosψk − sinψk 0 −vkx sinψ
k − vky cosψ

k 0 0

sinψk cosψk 0 vkx cosψ
k − vky sinψ

k 0 0

















,

Ck =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1



 , Bk =
∂f

∂u

∣

∣

∣

(ξk,uk)
=

















b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

















, with
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b11 =
∂f1
∂δ

∣

∣

∣

(ξk,uk)
= −F kxfl sin δ

k − F kyfl cos δ
k − F kxfr sin δ

k − F kyfr cos δ
k,

b12 =
∂f1
∂Fxfl

∣

∣

∣

(ξk,uk)
=

cos δk

m
+

M(αfl)F
k
xfl sin δ

k

m
√

(µF kzfl)
2 − (F kxfl)

2
,

b13 =
∂f1
∂Fxfr

∣

∣

∣

(ξk,uk)
=

cos δk

m
+

M(αfr)F
k
xfr sin δ

k

m
√

(µF kzfr)
2 − (F kxfr)

2
,

b14 =
∂f1
∂Fxrl

∣

∣

∣

(ξk,uk)
=

1

m
,

b15 =
∂f1
∂Fxrr

∣

∣

∣

(ξk,uk)
=

1

m
.

b21 =
∂f2
∂δ

∣

∣

∣

(ξk,uk)
= F kxfl cos δ

k − F kyfl sin δ
k + F kxfr cos δ

k − F kyfr sin δ
k,

b22 =
∂f2
∂Fxfl

∣

∣

∣

(ξk,uk)
=

sin δk

m
−

M(αfl)F
k
xfl cos δ

k

m
√

(µF kzfl)
2 − (F kxfl)

2
,

b23 =
∂f2
∂Fxfr

∣

∣

∣

(ξk,uk)
=

sin δk

m
−

M(αfr)F
k
xfr cos δ

k

m
√

(µF kzfr)
2 − (F kxfr)

2
,

b24 =
∂f2
∂Fxrl

∣

∣

∣

(ξk,uk)
= −

M(αrl)F
k
xrl

m
√

(µF kzrl)
2 − (F kxrl)

2
,

b25 =
∂f2
∂Fxrr

∣

∣

∣

(ξk,uk)
= −

M(αrr)F
k
xrr

m
√

(µF kzrr)
2 − (F kxrr)

2
.

b31 =
∂f3
∂δ

∣

∣

∣

(ξk,uk)
= (F kxfl sin δ

k + F kyfl cos δ
k − Fxfr sin δ

k − Fyfr cos δ
k)lt

+(Fxfl cos δ
k − Fyfl sin δ

k + F kxfr cos δ
k − F kyfr sin δ

k)lf ,

b32 =
∂f3
∂Fxfl

∣

∣

∣

(ξk,uk)
=
lf sin δ

k

Izz
−

lfM(αfl)F
k
xfl cos δ

k

Izz

√

(µF kzfl)
2 − (F kxfl)

2
−
lt cos δ

k

Izz
−

ltM(αfl)F
k
xfl sin δ

k

Izz

√

(µF kzfl)
2 − (F kxfl)

2
,

b33 =
∂f3
∂Fxfr

∣

∣

∣

(ξk,uk)
=
lf sin δ

k

Izz
−

lfM(αfr)F
k
xfr cos δ

k

Izz

√

(µF kzfr)
2 − (F kxfr)

2
+
lt cos δ

k

Izz
+

ltM(αfr)F
k
xfr sin δ

k

Izz

√

(µF kzfr)
2 − (F kxfr)

2
,

b34 =
∂f3
∂Fxrl

∣

∣

∣

(ξk,uk)
= −

lt
Izz

+
lrM(αrl)F

k
xrl

Izz

√

(µF kzrl)
2 − (F kxrl)

2
,

b35 =
∂f3
∂Fxrr

∣

∣

∣

(ξk,uk)
=

lt
Izz

+
lrM(αrr)F

k
xrr

Izz
√

(µF kzrr)
2 − (F kxrr)

2
.
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The LTV-MPC is a discrete-time strategy, so the model used for controller synthesis
should be discretised. There are several methods can be used for this purpose such as the
Euler or trapezoidal method (in this work the Matlab function ‘c2d’ was used, and the
Euler method was selected). Therefore the linearized model (8) is used in discrete-time
form:

ξ̃(k + 1) = Adk · ξ̃(k) +Bd
k · ũ(k),

η̃(k) = Cdk · ξ̃(k), (9)

where Adk, B
d
k , C

d
k are system matrices of the discrete system.

The fundamental basis of the MPC formulation is to use the prediction model (9) to
calculate the future states of the dynamic system over a fixed prediction horizon Np. At
a given time k, from the predictions at instants k, k + 1, · · · , k + Np, a cost function is
evaluated and minimised under given constraints by solving an optimal control problem
with respect to the inputs[27]. At time k+1, the same problem is solved, on the receding
horizon k + 1, k + 2, · · · , k +Np + 1 and so on.
Generally, the cost function to be minimised takes the following form [27]:

J =

Np
∑

i=1

||η̃(k + i)− η̃ref (k + i)||2Q +

Nc−1
∑

j=0

||∆ũ(k + j)||2R, (10)

where η̃(k + i) is the (predicted) output for the linearized system and η̃ref (k + i) is the
output reference for the linearized system. Nc is the control horizon, Nc ≤ Np, which
defines the dimension of the optimisation problem. The weighting matrices Q and R,
respectively represent the weights associated with the tracking errors and the control
input energy; usually they are in diagonal form, i.e. Q = diag [qvx , qvy , qr, qψ, qX , qY ]
and R = diag [rδ, rfl, rfr, rrl, rrr]. The parameters Np, Nc, and weighting matrices Q
and R together determine the performance of the MPC control system. Since it is based
on the linearized system, at sampling instant k the following equations hold:

η̃ref (k + i) = [vxd vyd yd]
T − ηk, ∀i = 1, 2, · · · , Np.

∆ũ(k + j) = ũ(k + j)− ũ(k + j − 1), ∀j = 0, 1, · · · , Nc − 1.

Denoting the optimisation vector to be:

∆U =
[

∆ũ(k)T ∆ũ(k + 1)T · · · ∆ũ(k +Nc − 1)T
]T
,

the optimal control problem is formulated as follows:

argmin
∆U

J(ξ̃(k),∆U), (11)

s.t. ξ̃(k + 1) = Adk · ξ̃(k) +Bd
k · ũ(k), (12)

η̃(k) = Cdk · ξ̃(k), (13)

umin ≤ u(i) ≤ umax, ∀i = k, k + 1, · · · , k +Nc − 1, (14)

ρ(i) ≥ 1, ∀i = k, k + 1, · · · , k +Nc − 1, (15)

where umin and umax are vectors of minimum and maximum longitudinal forces, equiv-
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alent to the upper limits on braking torque and driving torque respectively. The vehicle
position (X, Y ) is also to be constrained, with constraint (15).
In this formulation, equation (11) is the performance index to be minimised, and (12)

and (13) are the state and output equations respectively. Condition (14) represents the
constraint on driving and braking inputs, while (15) is the newly introduced geometric
constraint imposed on vehicle position. Constraint (15) is the crucial component for col-
lision avoidance, and in the following it will be shown to act as a further input constraint.

4.3. Constraints in canonical form

The MPC solution procedure translates the optimal control problem described by equa-
tions (11) – (15) into a quadratic programming (QP) problem w.r.t. the optimisation
vector ∆U , from which an optimal control sequence ∆ũ(k + i), i = 0, 2, · · · , Nc − 1
can be solved. By the receding horizon principle, only the first control is applied at the
current step. In the next sampling instant, the whole procedure is repeated. While the
QP procedure is quite standard, a key step is to convert the constraints (14) and (15)
into the canonical (standard) format used in QP:

G ·∆U ≤ γ, (16)

where G is the coefficient matrix with proper dimensions and γ is a column vector of
upper bounds.

4.3.1. Input saturation constraints

Constraint (14) is an input saturation constraint, for which the following matrix equation
holds:















ũ(k)
ũ(k + 1)
ũ(k + 2)

...
ũ(k +Nc − 1)















=















I5
I5
I5
...
I5















ũ(k − 1) +















I5 0 0 · · · 0
I5 I5 0 · · · 0
I5 I5 I5 · · · 0
...

...
...
. . .

...
I5 I5 I5 · · · I5





























∆ũ(k)
∆ũ(k + 1)
∆ũ(k + 2)

...
∆ũ(k +Nc − 1)















, (17)

where In is the n× n identity matrix. Denoting

N1 =















I5
I5
I5
...
I5















5Nc×5

, N2 =















I5 0 0 · · · 0
I5 I5 0 · · · 0
I5 I5 I5 · · · 0
...

...
...
. . .

...
I5 I5 I5 · · · I5















5Nc×5Nc

,

the constraint becomes:

Umin − Uk ≤ N1ũ(k − 1) +N2∆U ≤ Umax − Uk,
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where

Umin =















umin

umin

umin

...
umin















5Nc×1

, Umax =















umax

umax

umax

...
umax















5Nc×1

, Uk =















uk

uk

uk

...
uk















5Nc×1

.

Note that the system is linearized at every sampling instant, so we always have:

ũ(k − 1) = [0 0 0 0 0]T ,

It follows that the constraint (14) in canonical form can be imposed as:

[

−N2

N2

]

∆U ≤

[

−(Umin − Uk)
Umax − Uk

]

.

4.3.2. The collision avoidance constraint

At sampling instant k, using the distance measurement ρ defined in equation (5), the
collision avoidance constraint (15) can be linearized as:

ρ = ρk +
∂ρ

∂X

∣

∣

∣

(ξk,uk)
(X −Xk) +

∂ρ

∂Y

∣

∣

∣

(ξk,uk)
(Y − Y k),

△
= ρk + p1 · X̃ + p2 · Ỹ ,

where

p1 =
∂ρ

∂X

∣

∣

∣

(ξk,uk)
, p2 =

∂ρ

∂Y

∣

∣

∣

(ξk,uk)
.

Therefore, collision avoidance constraint (15) becomes:

p1 · X̃(k + i) + p2 · Ỹ (k + i) ≥ 1− ρk, ∀i = 1, 2, · · · , Np.

Hence, denoting P = [0 0 0 0 p1 p2], the constraint equation (15) becomes:

P · ξ̃(k + i) ≥ 1− ρk, ∀i = 1, 2, · · · , Np.

This constraint should hold in the whole prediction horizon for each sampling instant.
From the discrete state equation, we can obtain the following future states:

ξ̃(k + 1) = Adkξ̃(k) +Bd
k ũ(k),

ξ̃(k + 2) = (Adk)
2ξ̃(k) +AdkB

d
k ũ(k) +Bd

k ũ(k + 1),

...

ξ̃(k +Np) = (Adk)
Np ξ̃(k) + (Adk)

Np−1Bd
k ũ(k) + (Adk)

Np−2Bd
k ũ(k + 1) + · · ·

+ (Adk)
Np−NcBd

k ũ(k +Nc − 1).
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Since the linearization takes place in at each sampling instant, we have ξ̃(k) = 0, hence
the above equations can be reorganized into a matrix form:











ξ̃(k + 1)

ξ̃(k + 2)
...

ξ̃(k +Np)











=W











ũ(k)
ũ(k + 1)

...
ũ(k +Nc − 1)











,

where,

W =











Bd
k 0 0 · · · 0

AdkB
d
k Bd

k 0 · · · 0
...

...
...

. . .
...

(Adk)
Np−1Bd

k (Adk)
Np−2Bd

k (Adk)
Np−3Bd

k · · · (Adk)
Np−NcBd

k











6Np×4Nc

.

Then, by using the relationship in equation (17), the collision avoidance constraint can
be further convert to:

INp
⊗ PW [N1 · ũ(k − 1) +N2 ·∆U ] ≥ N3,

where ⊗ denotes the Kronecker product, and

N3 =











1− ρk

1− ρk

...
1− ρk











Np×1

.

It follows that the collision avoidance constraint can be given in canonical form as:

−INp
⊗ PWN2 ·∆U ≤ −N3.

5. Performance evaluation

To evaluate the performance of the proposed collision avoidance scheme based on MPC,
the algorithm was implemented and tested using a joint platform of Matlab-Simulink in
co-simulation with the commercial vehicle simulation package CarSim 8.1 (Mechanical
Simulation Corporation 2011). The vehicle used in the simulation is a D-class sedan
passenger car, with the parameters described in Table 2. The joint simulation platform
of CarSim and Simulink is illustrated in Figure 6. Note that in the simulation we use
wheel torque input T∗∗ instead of driving/braking forces as it can be directly generated
by CarSim, and since the wheel spin dynamics are much faster than the chassis motion
dynamics, we use T∗∗ = Fx∗∗ ·Rt to approximate the driving/braking torque.
The vehicle starts at (0, 0), and moves along the horizontal axis. The obstacle is placed

at (25, 0), with radius 2 meters and is static. The control parameters are listed in Table
3.
Simulation results of the MPC control are illustrated in Figure 7 to Figure 10. Figure 7

shows the graphic outputs of CarSim, the red vehicle is implemented with the proposed
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Table 2. Vehicle parameters

Description Symbol Value
Sprung mass ms 1370(kg)
Unsprung mass mu 80× 2(kg)
Yaw moment of inertia Izz 2315.3(Nm)
Wheelbase L 2.78(m)
Distance to CG from front axle lf 1.11(m)
Distance to CG from rear axle lr 1.67(m)
Half track lt 0.775(m)
Tire effective rolling radius Rt 0.325(m)
Road friction coefficients µ 0.85

Figure 6. Simulink-CarSim joint simulation platform

Table 3. Control parameters

Description Symbol Value
Desired longitudinal velocity vxd 72(km/h)
Desired lateral velocity vyd 0(km/h)
Desired lateral offset yd 0(m)
Longitudinal velocity weight wvx 1
Lateral velocity weight wvy 1
Lateral offset weight wy 10
Prediction horizon Np 20
Control horizon Nc 15
Sampling period Ts 0.05(sec)

collision avoidance strategy, the green vehicle is the obstacle. It shows the red vehicle
successfully steers around the obstacle and returns to its original lane as expected. Figure
8 illustrates the vehicle states, it shows the longitudinal speed has small fluctuations
around the reference speed during the maneuver, and the lateral velocity and yaw rate
converge to 0 after a transient response. This shows that the vehicle eventually enters a
stable state after the collision avoidance maneuver. Figure 9 and Figure 10 illustrates the
control inputs, i.e. driving/braking forces and front wheel steering angles. It is clear to see
that the wheel steering angles in Figure 10 do not change continuously due to the discrete
nature of the MPC control. It is the same with the driving/braking forces in Figure 9,
but not very obvious. This is because the incremental change of driving forces are quite
small compare to the scale of existing forces. Figure 9 also shows the driving forces are
stabilized in the end and the forces of front and rear tires have different signs, this could
be due to the insufficient information in the cost function that only considers position
and velocity, without specifying forces or energy used. Hence, the MPC optimizer could
not distinguish a better solution when it finds many. Overall, the steering behavior of
MPC to avoid the obstacle is quite reasonable, it turns left a bit to go around the obstacle
then turns right to return to the original lane (determined by yd ).
It is worth mention that even though the optimization framework is successful in the

relatively simple scenario, it is also found that for more complex scenario with varying
speed and dynamic obstacles, the MPC optimizer with static weighting parameters usu-
ally yields unsatisfactory results. Intuitively, there could be some relationship between
these parameters and various types of risks. However, an adaptive mechanism is needed
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Figure 7. Collision avoidance maneuver of MPC control
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to establish such a relationship. Currently, an adaptive mechanism based on evolutionary
algorithm that performs online simulations and searching is under study.

6. Conclusions

This study has considered the problem of obstacle avoidance of road vehicles via an MPC
control scheme. The problem is treated as a optimal control problem by establishing a
cost function and a collision avoidance constraint in the MPC formulation and the op-
timization problem is solved using quadratic programming algorithm for MPC control.
Unlike many collision avoidance schemes that require a path planner to plan a collision
free path and a controller to tracking this path, the proposed MPC control do not re-
quire a path planner as it directly find the optimal driving/braking forces that meet
the collision avoidance constraints. Obviously, the form of a cost function is crucial in
determining the behavior of the vehicle. In this article, the cost function is in a quadratic
form, and the weighting parameters are variable. Intuitively, we could presume that there
might be a relationship between these parameters and potential risks. To tackle more
complex scenario of varying speeds and dynamic obstacles, it is essential to establish
an adaptive optimal mechanism that allows some control parameters change with the
environments, which is a challenging task. Our future study will try to establish such an
adaptive optimal mechanism by incorporating an evolutionary algorithm that performs
online simulations and searching of optimal parameters for the MPC optimizer.
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