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ABSTRACT

Low-density parity-check (LDPC) codes on par with convolu-

tional turbo codes (CTC) are two of the most powerful error

correction codes known to perform very close to the Shan-

non limit. However, their different code structures usually

lead to different hardware implementations. In this paper, we

propose a unified decoder architecture that is capable of de-

coding both LDPC and turbo codes with a limited hardware

overhead. We employ maximum a posteriori (MAP) algo-

rithm as a bridge between LDPC and turbo codes. We repre-

sent LDPC codes as parallel concatenated single parity check

(PCSPC) codes and propose a group sub-trellis (GST) de-

coding algorithm for the efficient decoding of PCSPC codes.

This algorithm achieves about 2X improvement in the conver-

gence speed and is more numerically robust than the classical

”tanh” algorithm. What is more interesting is that we can

generalize a unified trellis decoding algorithm for LDPC and

turbo codes based on their trellis structures. We propose a

reconfigurable computation kernel for log-MAP decoding of

LDPC and turbo codes at a cost of ∼15% hardware overhead.

Small lookup tables (LUTs) with 9 entries of 2-bit data are

designed to implement the log-MAP algorithm. Fixed point

(6:2) simulation results show that there is negligible or nearly

no performance loss by using this LUT approximation com-

pared to the ideal case. The proposed architecture results in

scalable and flexible datapath units enabling parallel decoding

of LDPC/turbo codes.

Index Terms— LDPC codes, Turbo codes, Log-MAP al-

gorithm, SISO decoder, VLSI decoder architecture

1. INTRODUCTION

Turbo codes, introduced in 1993 [1], and low-density parity-

check (LDPC) codes, invented in 1963 [2] have recieved

tremendous attention in the coding community. Due to their

excellent error correction capability and near-capacity perfor-

mance, LDPC and turbo codes have been accepted in many

of the current and next generation wireless standards, such as

WiMax, 3GPP LTE, UMTS, DVB-S2 and WCDMA.

The success of LDPC and turbo codes is mainly due to the

efficient iterative decoding algorithm. Many efficient VLSI

architectures for LDPC decoders have been investigated [3, 4,

5, 6], as well as for turbo decoders [7, 8, 9, 10]. However, to

the best of our knowledge, a generic decoder that can support

both types of codes is still lacking in the literature.

It is known that these two families of codes have simi-

larities. For example, they can both be represented as codes

on graphs which define the constraints satisfied by code-

words. Both families of codes are decoded in an iterative

way by using the sum-product algorithm or belief propa-

gation algorithm. A few researchers have tried to connect

these two codes by applying turbo-like decoding algorithm

for LDPC codes. Mansour and Shanbhag [3] propose an

efficient turbo message passing algorithm for architecture-

aware LDPC codes. Hocevar [4] suggests a similar layered

decoding algorithm which treats the parity check matrix as

horizontal layers and passes the extrinsic messages between

layers to improve the performance. Zhang and Fossorier [11]

discuss a shuffled belief propagation algorithm to achieve a

faster decoding speed. Lu and Moura [12] propose to parti-

tion the Tanner graph into several trees and apply a turbo-like

decoding algorithm in each tree for faster convergence rate.

Dai et al. [6] propose a similar turbo-sum-product hybrid

decoding algorithm for quasi-cyclic (QC) LDPC codes by

splitting the parity check matrix into two sub-matrices where

the information is exchanged.

The main idea of all these works is to apply the divide-

and-conquer strategy to the iterative decoding of LDPC

codes. Instead of using the standard two phase message

passing algorithm, they all try to apply the turbo principle in

LDPC decoding. Our work was motivated by these results.

We unify LDPC and turbo codes as parallel concatenated

codes. We treat a LDPC code as a trellis constrained code

in which there are M trellises defined by a M × N parity

check matrix. We divide the factor graph of LDPC codes into

loop-free sub factor graphs where a log-MAP algorithm is

employed locally. A new algorithm called group sub-trellis

(GST) algorithm for the decoding of LDPC codes to achieve

near optimal performance with a reduced hardware complex-

ity will be presented. Furthermore, we propose a unified

trellis decoding flow for both LDPC and turbo codes which

leads to a flexible decoder architecture for LDPC/turbo joint

decoding.
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Fig. 1. Trellis structure for LDPC codes

2. ALGORITHM

2.1. Trellis structure for LDPC codes

The full trellis structure of an LDPC code is enormously large

and it is impractical to apply the sum-product algorithm on

it. However, alternately, a M ×N LDPC code can be viewed

as M parallel concatenated single parity check (PCSPC)

codes. Fig. 1 illustrates a trellis representation for LDPC

codes where a single parity check (SPC) code is considered

as a low-weight 2-state trellis, starting at state 0 and ending

at state 0. From this point of view, turbo codes are similar to

LDPC codes in that turbo codes are two parallel concatenated

N -state convolutional codes.

2.2. Group sub-trellis (GST) algorithm for LDPC codes

Generally, the performance of a single parity check code is

poor. However, when many of them are sparsely connected

they become a very strong code. Motivated by the turbo de-

coding principle, we divide the factor graph of an LDPC code

into several groups which are loop-free. Each group is a sub-

set of the graph (sub graph) which has simpler trellis struc-

tures so that the log-MAP algorithm can be applied on them.

We refer to this algorithm as group sub-trellis (GST) decoding

algorithm hereinafter. There are many ways to partition a fac-

tor graph, in this paper we only consider the non-accessible
partition (meaning there are no paths between any two check

nodes in each group as shown in Fig. 2). Fig. 3 shows an ex-

ample of the extrinsic message passing between groups. In

the GST algorithm, a faster convergence rate is expected be-

cause partial results generated by one group are used imme-

diately by the next group. This is similar to turbo codes in the

manner that each group is a constituent code and messages

are passed iteratively between all the constituent codes.

2.3. Log-MAP algorithm for SPC codes

The main operation in the proposed GST algorithm is the log-

MAP decoding of SPC trellis codes, where a SPC code could

be represented as a terminated 2-state convolutional code as

shown in Fig. 4. An efficient log-MAP decoding algorithm

was given in [13]: for independent random variables x0, x1,
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Fig. 2. Dividing a factor graph into groups
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Fig. 3. GST messaging passing algorithm

..., xl the extrinsic message generated by a SPC code for xi is

Λ(xi) = L
( ∑

∼{xi}
⊕xk

)
, (1)

where the compact notation ∼{xi} represents the set of all the

variables with xi excluded. The function L(·) is associative

and commutative, and is defined as

L(x1 ⊕ x2) = log
1 + eL(x1)eL(x2)

eL(x1) + eL(x2)
. (2)

For simplicity, we use the notation f(a, b) to represent the

operation L(x1 ⊕ x2), where a � L(x1) and b � L(x2).
Fig. 5 shows a forward/backward decoding flow and its corre-

sponding decoder structure to implement (1). The forward (α)

recursion and the backward (β) recursion are implemented as:

α(i + 1) = f(α(i), γ(i)) (3)

β(i) = f(β(i + 1), γ(i + 1)), (4)

where γ(i) is the branch metric and is equal to the sum of the

channel LLR Lch(xi) and the a priori information La(xi).
The α and β states are initialized to +∞ at the beginning, the

extrinsic information for xi is then computed as:

Λ(i) = f(α(i), β(i)). (5)

2.4. Log-MAP algorithm for turbo codes

We will not repeat the derivation of the log-MAP algorithm

for N -state turbo codes, but just state the results. For more

details, see [1]. Let Sk be the trellis state at time k, then the
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a posteriori probability (APP) of each information bit uk is

computed as:

L(ûk)=
∗

max
u:uk=1

{αk−1(sk−1) + γk(sk−1, sk) + βk(sk)}

− ∗
max

u:uk=0
{αk−1(sk−1) + γk(sk−1, sk) + βk(sk)}. (6)

The forward-backward recursions are defined as:

αk(sk) =
∗

max
sk−1

{αk−1(sk−1) + γk(sk−1, sk)} (7)

βk(sk) =
∗

max
sk+1

{βk+1(sk+1) + γk(sk, sk+1)}, (8)

where γk is the transition probability and the max∗(·) func-

tion is defined as

∗
max(a, b) = max(a, b) + log(1 + e−|a−b|). (9)

To implement (6-9) in hardware, a special add-compare-select

(ACS) function unit is usually used [7].

3. ARCHITECTURE

3.1. Look-up-table approximation for LDPC decoding

To compute f(a, b) = log 1+eaeb

ea+eb in hardware, we separate it

into sign and magnitude calculation:

sign(f(a, b)) = sign(a) sign(b)
|f(a, b)| = f(|a|, |b|) = min(|a|, |b|) + log(1 + e−(|a|+|b|))

− log(1 + e−
∣∣|a|−|b|

∣∣
).

Note that this f(·) function is mathematically equivalent to

the classical ”tanh” function Ψ(x) = − log(tanh(|x/2|)),
but it is operating in a different domain. Due to its widely

dynamic range (up to +∞), the Ψ(x) function has a high

complexity and is prone to quantization noise. Though many

Table 1. Proposed LUT approximation
|x| 0 0 < x ≤ 0.75 0.75 < x ≤ 2 x > 2

g(x) 0.75 0.5 0.25 0

Table 2. Proposed 9-entry 2-bit LUT for q : 2 quantization
|x| 0 1 2 3 4 5 6 7 8 > 8

LUT 3 2 2 2 1 1 1 1 1 0

approximations have been studied to improve the numerical

accuracy of Ψ(x) [14, 15, 16], it is still very expensive to im-

plement it in hardware. However, the non-linear term in the

f(·) function has a much lower dynamic range: 0 < g(x) �
log(1 + e−x) < 0.7, and thus is numerically more robust

and less sensitive to quantization noise. It is interesting to

know that g(x) is exactly the same as the non-linear term in

the turbo log-MAP algorithm (see (9)). To implement g(x) in

hardware, we propose to use a 4-value look-up-table (LUT) as

shown in table 1. To translate this approximation into finite

precision arithmetic, we propose to use a q : 2 quantization

scheme (2 of q bits are used for the fractional part) which

leads to a low complexity LUT as shown in table 2. In sec-

tion 4.2 we will show this approximation leads to nearly no

performance loss (< 0.05 dB) compared to the floating point

data representation.

3.2. Reconfigurable kernel for LDPC/turbo decoding

Fig. 6(a) shows a logic circuit implementation for the LDPC

f(·) function unit. As a comparison, the turbo ACS unit is

also depicted in Fig. 6(b). Interestingly, they look very sim-

ilar except for the position of the LUTs and the multiplexer.

Fig. 6(c) shows the proposed architecture referred to as FACS

(flexible ACS) for LDPC/turbo joint decoding. In terms of

bit precision, the turbo ACS unit usually requires a higher bit

precision for the internal α/β state metrics [17]. As a com-

promise, we conform the bit precision of f(·) to that of the

turbo ACS unit. Also note that to improve timing, a ”double-

side” LUT (DLUT) is used to handle both positive and nega-

tive indices.

Assuming 10-bit precision is used for X and V and 8-bit

precision is used for Y and W in the FACS unit, the synthesis

results for a TSMC 90nm CMOS technology are summarized

in table 3 in terms of maximum achievable frequency (assum-

ing no clock skews) and area requirements at two frequencies.

From table 3, about 15% area and timing overhead is observed

for the proposed FACS unit.

3.3. Dual-mode SISO Engine

Based on the reconfigurable FACS unit, an LDPC and turbo

dual-mode SISO decoder architecture is shown in Fig. 7. The
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Table 3. Synthesis result for different kernels (90 nm)

Kernel Max freq Area@400MHz Area@800MHz

FACS 820 MHz 1404 μm2 2413 μm2

ACS 890 MHz 1250 μm2 2072 μm2

f(a, b) 930 MHz 1182 μm2 1876 μm2

α/β recursion units, extrinsic Λ-S1 unit, branch unit, and

memory stacks are shared between LDPC and turbo modes,

saving substantial area. The SISO decoder is a reusable core

and has been implemented in a 90 nm CMOS technology.

The area distribution is summarized in table 4.

A. Turbo Mode: For an 8-state turbo decoder, all the elements

of the architecture are used as shown in Fig. 7. We adopted a

Next Iteration Initialization (NII) scheme, or a so called 1-α,

1-β scheme, as suggested in [18] and [19] in order to avoid

the calculation of training sequences as initialization values

for the β state metrics (the boundary metrics are initialized

from the previous iteration). The α and β units implement

(7) and (8) respectively based on two consecutive windows

of data. Both α and β units compute 8 state metrics in par-

allel. A branch unit is used to compute the branch metrics

γ based on the channel inputs (systematic ys and parity yp)

and a priori information La. The α unit works in the natural

order whereas the β unit and Λ unit work in the reverse order

on the input data. Two stacks are used to delay and align data.

To implement (6), we separate the LLR calculation into two

cycles. Λ-S1 performs the first 8 ACS operations, and Λ-S2
performs 6 max∗(·) and 1 subtraction operations.

B. LDPC Mode: For LDPC decoding, the decoder uses a sub-

set of the architecture, as shown in Fig. 8 where the grayed

blocks are not used. In the LDPC mode, the decoder can pro-
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Fig. 7. SISO engine architecture (LDPC + turbo mode)
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cess 8 sub trellises simultaneously since each α, β and Λ-S1
block contains 8 FACS units.

A unified dataflow graph for LDPC/turbo decoding is

shown in Fig. 9, in which the X-axis represents the trellis

flow and the Y-axis represents the decoding time so that a box

may represent the processing of a block of L data in L time

steps. In turbo mode, L is equal to the sliding window size. In

LDPC mode, L is equal to the length of one SPC trellis. The

architecture can be reconfigured to support the decoding of 1)

8-state turbo codes, or 2) 8 SPC codes. During the decoding

operation, the α-unit (in order), the β-unit (in reverse) and

the Λ-unit (in reverse) work in parallel to achieve a real time

decoding with a latency of L.

Table 4. SISO decoder area distribution @ 90 nm, 500 MHz

Unit α β Λ-S1 Λ-S2 Stacks

Area (mm2) 0.013 0.013 0.015 0.008 0.045

3.4. Top level architecture

For high throughput applications, multiple SISO decoders can

be used in parallel to reduce the decoding latency and increase

the decoding speed. Since parallel turbo decoder architectures

have been well studied [8, 20, 9], in this section, we will fo-

cus more on the parallel implementation of the proposed GST

algorithm for LDPC codes.

In the GST algorithm (see Fig. 3), suppose a factor graph

is partitioned evenly into S groups where each group con-

tains T number of 2-state sub trellises. Since each SISO de-

coder can process 8 sub trellises in parallel, we can dedicate

P = �T/8� SISO decoders to process one group of sub trel-

lises in parallel. As discussed before, message passing be-

tween groups is done iteratively to achieve a faster conver-
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gence speed. Fig. 10 shows the proposed GST decoder archi-

tecture. In this architecture, one iteration consists of S sub

iterations. Among these S sub iterations, P number of SISO

decoders are used in a time-shared manner. Each group has

an extrinsic memory to store the most recent extrinsic infor-

mation generated by this group. During each sub-iteration,

the a priori information La is formed by subtracting the old

extrinsic information generated by this group from the total

extrinsic information generate by all S groups:

La(uk) = Λall
e (uk) − Λold

e (uk). (10)

The new extrinsic information generated by this group based

on (1) is then stored back to the extrinsic memory. An accu-

mulating memory is used to save the column sum generated

by S groups. The updating of the column sum is as follows:

Λdelta
e (uk) = Λnew

e (uk) − Λold
e (uk) (11)

Λall
e (uk) = Λall

e (uk) + Λdelta
e (uk). (12)

The total memory requirement (in bits) for the extrinsic mem-

ory is equal to the total number of non-zero elements in the

parity check matrix multiplied by the word length of Λe. And

the total memory requirement for the accumulating memory

is equal to the LDPC code size multiplied by the word length

of Λall
e .
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4. RESULTS

4.1. ASIC synthesis result

Table 5 shows the ASIC synthesis results for some practical

LDPC and turbo codes. In table 5, only the area of the SISO

decoders and memories are shown (turbo interleaver and the

LDPC permuter are not included).

4.2. Simulation result for LDPC codes

We show the simulation result for one WiMax LDPC code

with code size = 2304 and code rate = 1/2. We divide its

factor graph into 12 groups. Each group corresponds to one

block row of the parity check matrix and contains 96 sub trel-

lises. Fig. 11 compares the bit error rate (BER) performance

of the GST decoder based on floating point and fixed point

simulation with a maximum iteration I = 15. Also shown in

the figure is the floating point BER of the standard Gallager’s

two-phase decoding algorithm. As can be seen from the fig-

ure, the proposed GST algorithm achieves better BER per-

formance than the standard Gallager’s two-phase algorithm

when the maximum iteration is the same. This is because

the GST algorithm has a faster convergence rate as shown in

Fig. 12. The fixed point simulation result shows only a degra-

dation of < 0.05dB at BER 1x10−6 compared to the ideal

performance, while a scaled (s=0.75) min-sum approximation

has about 0.3dB degradation.

5. CONCLUSION

A unified decoder architecture for LDPC and turbo codes has

been presented. Multi-mode decoding is achieved by employ-

ing a flexible FACS unit. By representing LDPC codes as

parallel concatenated single parity check (PCSPC) codes, we
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Table 5. Synthesis results for some practical LDPC and turbo codes @ 90nm technology, 500 MHz

Code type Code size Parallelism SISOs Quant. Max iter. SISO area Memory area Throughput

LDPC 802.16e 576 - 2304 bit 24 - 96 12 6:2 12 1.2 mm2 1.06 mm2 192 - 750 Mbps

LDPC 802.11n 648 - 1944 bit 27 - 81 11 6:2 12 1.1 mm2 0.95 mm2 180 - 640 Mbps

Turbo 3GPP-LTE 40 - 6144 bit 1 - 8 8 6:2 6 0.8 mm2 1.2 mm2 15 - 250 Mbps
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Fig. 12. Comparison of the convergence rate

propose a group sub-trellis (GST) decoding algorithm which

achieves 2X improvement in the convergence speed. The uni-

fied LDPC/turbo architecture is attractive in supporting multi-

standard communication systems.
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