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It is shown that a wide class of q-deformed harmonic oscillators, including those of the
Macfarlane type and Dubna type, can be described in a unified way. The Hamiltonian of the
oscillator is assumed to be given by a q-deformed anti-commutator of the q-deformed ladder
operators. By solving q-difference equations, explicit coordinate representations of ladder
operators and wave functions are derived, and unified parametric representations are found
for q-Hermite functions and related formulas for oscillators of the Macfarlane and Dubna
types. In addition to the well-known solutions with globally periodic structure, it is found
that there exist an infinite number of solutions with globally aperiodic structure.

§1. Introduction

A prototype of a q-deformed harmonic oscillator was found in the model inves-
tigated by Macfarlane in a “parametric coordinate” representation. 1) In his original
theory, the Hilbert space is composed of wave functions related to the Rogers-Szegö
polynomials on the unit circle. 2) - 4) The q-deformed oscillators with a real coordi-
nate on the infinite interval were explored in succeeding models. 5), 6) Independently,
the Dubna group found a different kind of q-deformed harmonic oscillator in their
study of a one-dimensional relativistic system. 7) - 13) In their approach also, a rather
“abstract coordinate” was used for the oscillator.

In this article, we investigate these two seemingly different types of q-deformed
harmonic oscillators, those of the Macfarlane type and the Dubna type, in a single
real coordinate representation and find a wide class of new oscillators as their de-
scendants. As a basic postulate, ladder operators of the oscillator are assumed to
be composed of products of functions that include separately the position operator
and the momentum operator. 7), 10), 11) We call such functions “part-functions”. In
particular, a kind of q-deformed derivative consisting of a difference of exponential
functions is chosen for the part-function of the momentum. Other part-functions are
obtained by solving the q-difference equations deduced from the condition that the
ladder operators satisfy a q-deformed commutation relation.

One of the part-functions of the ladder operator is obtained as an infinite sum of
Gaussian functions with arbitrary coefficients. It is the freedom in this arbitrariness
that enables us to determine the global structure of the q-deformed oscillator system.
Connection of the ladder operators and the wave functions realized by properly
adjusting the coefficients results in the periodic global structure. This was recognized
first in oscillators of the Macfarlane type. 5), 6) In addition to such globally periodic
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2 I. S. Sogami and K. Koizumi

solution, there exist infinitely many new solutions with aperiodic global structure.
The Hamiltonian, which is assumed to be given by a q-deformed anticommu-

tator of the ladder operators, has the same eigenvalue spectrum (expressed by a
definite function of the deformation parameter) for all q-deformed oscillators stud-
ied in this article. Derivation of its eigenfunctions results in different q-deformed
Hermite functions 5), 10), 14) for the oscillators of the Macfarlane and Dubna types.

With this constructive approach, we are able to clarify the similarities and dif-
ferences of q-deformed oscillators of the Macfarlane and Dubna types in a unified
way and, as an unexpected outcome, to disclose explicitly the existence of infinite
families of new oscillator systems with different global structures.

§2. Algebra of q-deformed harmonic oscillator

We investigate a system consisting of a q-deformed harmonic oscillator with
deformation parameter q and the Hamiltonian

Ĥq =
1
2
{Â, Â†}q =

1
2
(qÂÂ† + q−1Â†Â), (2.1)

where Â† and Â are, respectively, the raising and lowering operators satisfying the
q-deformed commutation relation (q-mutator)

[Â, Â†]q = qÂÂ† − q−1Â†Â = 1. (2.2)

As in the case of an ordinary (non-deformed) harmonic oscillator system, the
ground state of the Hamiltonian Ĥq is defined by the conditions

Â|0〉 = 0, 〈0|0〉 = 1, (2.3)

and excited states are generated from it by applying the raising operator as

|n〉 = Nn(Â†)n|0〉. (2.4)

To confirm that the states |n〉 so constructed are eigenstates of the Hamiltonian and
to obtain the eigenvalue, it is sufficient to use the q-deformed commutation relation

[Â, Ĥq]q =
1
2
(q + q−1)Â, (2.5)

which leads readily to the recursion formula

q

(
En − 1

2
q + q−1

q − q−1

)
= q−1

(
En−1 − 1

2
q + q−1

q − q−1

)
. (2.6)

Using this relation and noting E0 = 1
2 , we find the general formula for the energy

eigenvalue spectrum of the q-deformed harmonic oscillator as follows:

En(q) =
1
2
+

1− q−2n

q2 − 1
. (2.7)
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Unified Description of q-Deformed Harmonic Oscillators 3

The equal spacing law for eigenvalues of the ordinary harmonic oscillator becomes,
in the present case, the geometrical progression

En+1 − En = q−2 (En − En−1) , n = 1, 2, · · · (2.8)

with constant ratio q−2 for the difference between adjacent eigenvalues. Note that
this spectrum can be derived using an algebraic procedure only. Therefore, its form
is common to all q-deformed oscillators specified in later sections and is independent
of the details of their representations. Normalization of the eigenvectors results in
the recursion formula(

Nn

Nn+1

)2

= 〈n|ÂÂ†|n〉 = 1
2q

(2En + 1) , (2.9)

from which the normalization constant Nn in Eq. (2.4) is derived as

Nn =
n∏

m=1

(
q − q−1

1− q−2m

) 1
2

. (2.10)

§3. q-deformed ladder operators in the x-representation

Following the basic postulate made in the Introduction, the part-function of the
ladder operators that includes the momentum operator p̂ is assumed to take the form

D(p̂) = i
exp(sp̂)− exp(tp̂)

s− t , (3.1)

where s and t are real parameters. Note that this part-function is a kind of q-
deformed derivative which has the limit

lim
s→0

lim
t→0
D(p̂) = lim

t→0
lim
s→0
D(p̂) = ip̂. (3.2)

Other part-functions depending on the position operator x̂ are introduced below at
the stage when an explicit coordinate representation is chosen and determined by
solving q-difference equations. It turns out to be appropriate to define the deforma-
tion parameter q as

q = exp
(
s2 + t2 + 3st

)
(3.3)

in terms of the real parameters s and t.
For an arbitrary state vector |ψ〉, the ladder operators Â and Â† consisting of

separable part-functions have x-representations defined by

〈x|Â|ψ〉 = A(x)ψ(x), 〈x|Â†|ψ〉 = A†(x)ψ(x), (3.4)

where ψ(x) = 〈x|ψ〉. The lowering and raising operators in the x-representation,
A(x) and A(x)†, are postulated to have the separable forms

A(x) =
f(x)
g(x)

exp[−ih(x)]D
(
1
i

d

dx

)
1

f(x)g(x)
(3.5)
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4 I. S. Sogami and K. Koizumi

and

A†(x) = − 1
f(x)g(x)

D

(
1
i

d

dx

)
f(x)
g(x)

exp[ih(x)], (3.6)

where f(x), g(x)2 and h(x) are functions that take real values for x ∈ R. It is
essential to assume that the part-functions f(x), g(x) and h(x) are continued ana-
lytically into the complex x plane. For brevity, dependence of the part-functions on
the q-parameter is not explicitly expressed. These functions are determined by the
conditions that the ladder operators satisfy the q-mutator in Eq. (2.2) and reduce
to those of the ordinary (non-deformed) harmonic oscillator in the limit q → 1. By
definition, the function f(x) has an intrinsic uncertainty of an arbitrary multiplica-
tive constant, and the sign of the function g(x) also is indeterminate. As will be
clarified in §§5 and 6 and in the Appendix, the function g(x) has additional intrinsic
freedoms of uncertainty in q-deformed oscillator systems of the Dubna type.

As a necessary condition that the basic q-mutator in Eq. (2.2) includes a constant
term, the parameters s and t must satisfy one of the following conditions:

s �= 0 and t = 0 (s = 0 and t �= 0) (3.7)

or
s+ t = 0. (3.8)

Without loss of generality, we choose the parameter s the “basic” one. Namely, the
parameter t is eliminated by choosing the condition t = 0 in Eq. (3.7) and by setting
t = −s in Eq. (3.8). As shown in subsequent sections, systems subject to the former
and latter conditions are identified generically as q-oscillators of the Macfarlane type
and the Dubna type, respectively.

The x-representation of the Hamiltonian Ĥq, Hq, is constructed as follows:

〈x|Ĥq|ψ〉 = Hqψ(x) =
1
2

[
qA(x)A†(x) + q−1A†(x)A(x)

]
ψ(x). (3.9)

The ground-state eigenfunction ψ0(x) of the Hamiltonian Hq which is annihilated
by the lowering operator (i.e., A(x)ψ0(x) = 〈x|Â|0〉 = 0) is determined to be

ψ0(x) = 〈x|0〉 = K0(I)f(x)g(x), (3.10)

where the normalization constant K0(I) is given by

K0(I) =
[∫

I
f(x)2|g(x)|2dx

]− 1
2

. (3.11)

For the wave functions ψ(x) and φ(x), the inner product is defined by

〈ψ|φ〉 =
∫

I
dx 〈ψ|x〉〈x|φ〉 =

∫
I
dxψ∗(x)φ(x), (3.12)

where I is the domain of integration which depends on global structure of the q-
deformed oscillators specified in §6. For later use, it is necessary to prove that the
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Unified Description of q-Deformed Harmonic Oscillators 5

operators A(x) and A†(x) are mutually adjoint on the Hilbert space generated by
eigenstates of the Hamiltonian Hq.

For the following analysis, it is convenient to introduce the function

F (x) =
[
f(x+ is)
f(x)

]2
. (3.13)

Note that, owing to the analyticity of the function f(x), the function F (x) must
satisfy the condition lims→0 F (x) = 1.

§4. q-deformed harmonic oscillators of the Macfarlane type (q = es
2
)

Let us first investigate q-deformed harmonic oscillators of the Macfarlane type.
In this case (t = 0), where the deformation parameter is given by q = es

2 ≥ 1,
there exist upper as well as lower bounds on the energy spectrum for every definite
q except for q �= 1. In fact, we have

1
2
≤ En <

1
2
+

1
q2 − 1

. (4.1)

In the limit s → ∞, all the eigenvalues accumulate at 1
2 . For the right-hand side

of the basic q-mutator to be 1, the functions f(x), g(x) and h(x) must satisfy the
following three relations:

q − q−1

s2g(x)4
= 1, (4.2)

[
f(x− is)
f(x)g(x)2

+
f(x)

f(x− is)g(x− is)2
]

= q−2
[

f(x)
f(x− is)g(x)2 +

f(x− is)
f(x)g(x− is)2

]
exp{i[h(x)− h(x− is)]} (4.3)

and

f(x)2f(x− 2is)2 = q−2f(x− is)4 exp{i[h(x)− h(x− 2is)]}. (4.4)

Taking the sign ambiguity of the function g(x) into consideration, we choose the
solution of Eq. (4.2) as

g(x) =

(
q − q−1

s2

) 1
4

. (4.5)

The fact that g(x) is a constant simplifies Eq. (4.3) into the form

exp{i[h(x)− h(x− is)]} = q2, (4.6)

which results in
h(x)− h(x− is) = −2is2 + 2lπ, (4.7)
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6 I. S. Sogami and K. Koizumi

with arbitrary integer l. This difference equation has the general solution

h(x) = −2sx− i2lπ
s
x+

∞∑
n=−∞

an exp
(
2nπ
s
x

)
, (4.8)

where the coefficients an are arbitrary. Note that, as a consequence of the difference
equation, a periodic function of x of period is appears here as a power series in the
scaled variable x/s in the solution h(x). Owing to the condition that the function
h(x) must be real for x ∈ R, the integer l must be 0. Further, for the function h(x)
to be definite for x ∈ R in the limit s→ 0, it must be the case that an = 0 for n �= 0.
As a result, we obtain

h(x) = −2sx+ a0. (4.9)

In terms of the function F (x) in Eq. (3.13), the relation (4.4) can be expressed
by

F (x+ is) = q2F (x), (4.10)

which has the general solution

F (x) =

[ ∞∑
n=−∞

bn exp
(
2nπ
s
x

)]
exp (−2isx) . (4.11)

Here, a periodic function of period is appears as a multiplicative uncertainty. Owing
to the necessary condition lims→0 F (x) = 1, the coefficients in the periodic function
are severely restricted to satisfy b0 �= 0 and bn = 0 (n �= 0). Consequently, we obtain

F (x) ≡
[
f(x+ is)
f(x)

]2
= q exp (−2isx) = exp(s2 − 2isx). (4.12)

The coefficient b0 = q is specified from the definite form of the function f(x) derived
below. Then, solving Eq. (4.12) for f(x), we find

f(x) =
∞∑

m=−∞
cm exp

(
−s

2

8
− 2m2π2

s2

)
exp

(
2mπ
s
x

)
exp

[
−1
2

(
x− i1

2
s

)2

− i1
2
sx

]

=
∞∑

m=−∞
cm exp

[
−1
2

(
x− 2mπ

s

)2
]
, (4.13)

which is real for x ∈ R. The coefficients cm here must be chosen so as to make f(x)
square integrable, i.e.,

∫ ∞

−∞
f(x)2dx =

√
π
∑
n,m

cncm exp

[
−(m− n)2π2

s2

]
<∞. (4.14)

In the derivation of the part-function in Eq. (4.13), it is implicitly assumed that the
central Gaussian component with m = 0 in the sum that survives in the limit s→ 0
is symmetric with respect to the origin, x = 0.
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Unified Description of q-Deformed Harmonic Oscillators 7

In this way, all part-functions of the ladder operatorsA(x) andA†(x) in Eqs. (3.5)
and (3.6) have been obtained. In the case of h(x) = −2sx, where a0 = 0 in Eq. (4.9),
we find the solution of the Macfarlane type that was investigated by Shabanov. 5)

In order to derive the eigenfunction of the q-Hamiltonian in Eq. (2.1), we utilize
the relation among the ladder operators

A†2 =i
(
q − q−1

)− 1
2 exp[ih(x)]

{
q−1 exp(2isx)− 1

}
A†

− q−1 exp {2i[h(x) + sx]}
(
q−2A†A+ q−1

)
, (4.15)

which leads readily to the recursion formula

ψn+1(x) =− i
[
1− q−2(n+1)

]− 1
2 exp[ih(x)]

[
q−1 exp(2isx)− 1

]
ψn(x)

− exp{2i[h(x) + sx]}q−1

[
1− q−2n

1− q−2(n+1)

] 1
2

ψn−1(x). (4.16)

To extract the q-deformed Hermite functions from the eigenfunctions, which reduce
properly to the Hermite polynomial in the limit s→ 0, we set

ψn(x) = K0 s
n f(x)g(x)exp {in[h(x) + sx]}

×
n−1∏
m=0

[
q(1− q−2(m+1))

]− 1
2
Hn(x; q−1), (4.17)

provided that
∏−1

m=0 1/
√
q(1− q−2(m+1)) = 1. Then, Eq. (4.16) gives rise to the

recursion formula of the q-Hermite function Hn(x; q) as

Hn+1(x; q−1) =
i

s

[
q

1
2 exp(−isx)−q− 1

2 exp(isx)
]
Hn(x; q−1)

− 1
s2

(1− q−2n)Hn−1(x; q−1). (4.18)

It is straightforward to prove that the relation Nn ψn+1 = Nn+1A
†ψn is equivalent

to the second recursion formula of the q-Hermite function as follows:

is
[
q−

1
2 exp(isx) + q

1
2 exp(−isx)

]
Hn+1(x; q−1)

= q−n
[
q−1 exp(2isx)Hn(x− is; q−1)− q exp(−2isx)Hn(x+ is; q−1)

]
. (4.19)

With these formulas and the conditions H0(x; q−1) = 1 and H−1(x; q−1) = 0, we
find that the q-Hermite function has the power series representation

Hn(x; q−1) =
(
i

s

)n n∑
m=0

(−1)mq−
(2m−n)

2

[
n
m

]
q−1

exp [i(2m− n)sx] , (4.20)
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8 I. S. Sogami and K. Koizumi

where the q-binomial coefficient is defined by

[
n
m

]
z

=

n−1∏
k=0

(1− z2(k+1))

n−m−1∏
k=0

(1− z2(k+1))
m−1∏
k=0

(1− z2(k+1))

, (4.21)

provided that
∏−1

k=0(1−z2(k+1)) = 1. This functionHn(x; q) is the q-Hermite function
of the Macfarlane type. 5)

§5. q-deformed harmonic oscillators of the Dubna type (q = e�s
2
)

In a q-deformed harmonic oscillator of the Dubna type, no upper bound exists
in the eigenvalue spectrum in Eq. (2.7), since q = e−s2 ≤ 1. In sharp contrast to
the case of an ordinary harmonic oscillator, where the energy eigenvalue increases
with equal spacing, the spacing between adjacent eigenvalues increases in powers of
q−2 = exp(2s2): En+1 − En = exp[2(n+ 1)s2].

For the q-deformed commutation relation in Eq. (2.2) to hold, the functions
f(x), g(x) and h(x) must satisfy the relations

[
f(x+ 2is)
f(x+ is)

]2
= q−2

[
f(x+ is)
f(x)

]2
exp{i[h(x)− h(x+ 2is)]}, (5.1)

[
f(x)

f(x− is)
]2

= q−2
[
f(x− is)
f(x− 2is)

]2
exp{i[h(x)− h(x− 2is)]} (5.2)

and

q

[
f(x)2f(x+ is)−2

g(x+ is)2
+
f(x)2f(x− is)−2

g(x− is)2
]

−q−1

[
f(x)−2f(x+ is)2

g(x+ is)2
+
f(x)−2f(x− is)2
g(x− is)2

]
= −4s2g(x)2. (5.3)

The two relations in Eqs. (5.1) and (5.2) require that the functions h(x) and f(x),
which are analytic in the complex x plane, satisfy the difference equations

h(x)− h(x+ 2is) = lπ (5.4)

with l ∈ Z, and

F (x+ is) = q−2 exp (ilπ)F (x). (5.5)

General solutions of these equations are given by

h(x) = i
lπ

2s
x+

∞∑
n=−∞

an exp
(
nπ

s
x

)
(5.6)
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Unified Description of q-Deformed Harmonic Oscillators 9

and

F (x) ≡
[
f(x+ is)
f(x)

]2
=

∞∑
n=−∞

bn exp
(
2nπ
s
x+

lπ

s
x− 2isx

)
. (5.7)

The conditions that h(x) is real for x ∈ R and has a definite limit as s→ 0 specify
the function h(x) to be

h(x) = a0. (5.8)

Just as in the previous section, the function F (x) in the present case [q = exp(−s2)]
is uniquely determined by the condition lims→0 F (x) = 1 as

F (x) ≡
[
f(x+ is)
f(x)

]2
= q−1 exp(−2isx) = exp(s2 − 2isx). (5.9)

This is identical to the function F (x) in Eq. (4.12), which was obtained in the case
q = exp(s2). Therefore, we find that in the cases of q-deformed oscillators of both
the Macfarlane and Dubna types, the part-function f(x) takes the same form, which
is given in Eq. (4.13).

The remaining equation (5.3) is expressed by

F (x)
[
q3g(x+ is)2 − q−1g(x− is)2

]
− F (x)−1

[
q−3g(x+ is)2 − qg(x− is)2

]
= −4s2g(x)2g(x− is)2g(x+ is)2 (5.10)

in terms of the function F (x) in Eq. (3.13). In the Appendix, we solve this nonlinear
difference equation for g(x)2, which must be real for x ∈ R, and obtain

gκ,λ
µ,ν (x)

2 = Gκ,λ
µ,ν(x)

(
q−1 − q
s2

) 1
2

cos sx, (5.11)

with

Gκ,λ
µ,ν(x) = tanhκ

[
(2µ+ 1)π

2s
x

]
cothλ

[
(2ν + 1)π

2s
x

]
, (5.12)

where κ and λ are arbitrary real numbers, and µ and ν are arbitrary integers. It is
essential to recognize that the factors Gκ,λ

µ,ν(x) satisfy the relations

Gκ,λ
µ,ν(x) exp

(
is
d

dx

)
Gκ,λ

µ,ν(x) = exp
(
is
d

dx

)
. (5.13)

Owing to these relations, the factors Gκ,λ
µ,ν(x) have no influence on the structure of

the ladder operators A(x) and A†(x). Therefore, it is possible to interpret that these
factors are redundant. Then, the infinite number of solutions in Eq. (5.11) can be
reduced to the simplest choice,

g(x) =

(
q−1 − q
s2

) 1
4 √

cos sx. (5.14)
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10 I. S. Sogami and K. Koizumi

Note that here again the phase of the part-function g(x) is irrelevant, since only
the product of this part-function appears in the ladder operators. With the part-
functions f(x), g(x) and h(x) thus obtained, the x dependence of the ladder operators
is locally and naturally fixed.

In the previous section, Eq. (4.15) relating the operators A†2, A†A and A† en-
abled us to derive the recursion formula for the eigenfunction of the Hamiltonian. In
the case of q-deformed oscillators of the Dubna type, there exists no such relation.
Following Mir-Kasimov, 10), 11) we introduce here a new operator as

T =
1
g(x)

cosh
(
is
d

dx

)
1
g(x)

, (5.15)

which also is not influenced by the factor Gκ,λ
µ,ν(x), due to the relation (5.13). Among

the operator T and the ladder operators, there exists the bilinear relation

T 2 = s2q−1
(
A†A+

q

1− q2
)
. (5.16)

Therefore, the operator T 2 and the Hamiltonian Hq have the common eigenfunction
ψn(x) satisfying

T 2ψn(x) = s2
q−2n

1− q2 ψn(x). (5.17)

As the square-root of T 2, the operator T satisfies

Tψn(x) = ±s
(
q−2n

1− q2
) 1

2

ψn(x), (5.18)

since ψn(x) is naturally assumed to be non-degenerate. Without loss of generality,
the positive eigenvalue in Eq. (5.18) can be taken in the following argument. It is
straightforward to prove that there exists the linear relation

T =
s

2 sin sx

[
1√
q
exp[ih(x)]A+

√
q exp [−ih(x)]A†

]
(5.19)

among T and the ladder operators. Applying this relation to the eigenfunction ψn(x),
we find the recursion formula

ψn+1(x) = 2
[

1
1− q2(n+1)

] 1
2

sin sx exp [ih(x)] ψn(x)

−
{

(1− q2n)2

[1− q2n]
[
1− q2(n+1)

]
} 1

2

exp[2ih(x)]ψn−1(x). (5.20)

In parallel with Eq. (4.17) for the q-deformed oscillator of the Macfarlane type,
let us define the q-deformed Hermite function Hn(x; q) of the Dubna type by

ψn(x) = K0s
nf(x)g(x) exp[inh(x)]

n−1∏
m=0

[
1− q2(m+1)

]− 1
2 Hn(x; q) (5.21)
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Unified Description of q-Deformed Harmonic Oscillators 11

provided that
∏−1

m=0 1/
√
1− q2(m+1) = 1. Then, the relation (5.20) leads to the

recursion formula

Hn+1(x; q) =
2
s
sin sxHn(x; q)− 1

s2

(
1− q2n

)
Hn−1(x; q) (5.22)

for the q-Hermite function. In analogy to Eq. (4.19), we find the second recursion
formula

2is cos sxHn+1(x; q)

= q−n [exp(2isx)Hn(x− is; q)− exp(−2isx)Hn(x+ is; q)] . (5.23)

From these formulas, we obtain the power series representation 10), 14)

Hn(x; q) =
(
i

s

)n n∑
m=0

(−1)m
[
n
m

]
q

exp [i(2m− n)sx] . (5.24)

Note that the q-Hermite functions in Eqs. (4.20) and (5.24) are periodic functions
of the same period 2π/s.

The simplest choice of h(x) for which the q-Hermite function reduces to the ordi-
nary Hermite function in the limit q → 1 is h(x) = 0. In this case, the eigenfunctions
ψn(x) are the same as those of the Kasimov solutions, 10) up to factors of the cosine
function related to a measure function that was introduced in the inner product in
Kasimov’s formalism in order to cancel singularities of the ladder operators.

It should be emphasized that the inner product is defined by Eq. (3.12) for all
types of oscillators in the present unified theory. As shown at the end of the next sec-
tion, singularities of the ladder operators are cancelled by zeros of the eigenfunctions
without recourse to a measure function.

§6. Global structure of the operators and state vectors of q-deformed
oscillator systems

In the preceding two sections, the part-functions f(x), g(x) and h(x) of the
ladder operators were derived locally from the condition that the q-mutator holds
locally for each value of the coordinate x. With these components, we determine here
the global structure of the ladder operators and the eigenfunctions of the Hamiltonian
operator.

In oscillator systems of both the Macfarlane and Dubna types, the function
f(x) is represented as an arbitrary superposition of Gaussian functions centered at
the positions x = 2π

s ×(integers). The freedom existing in the way of choosing the
superposition allows different types of the global structure of the ladder operators
and the state vectors. More precisely, different global structures of the system are
realized with different choices of the coefficients cm in Eq. (4.13). We distinguish
two kinds of global structure as follows:

• Aperiodic structure
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12 I. S. Sogami and K. Koizumi

The domain of the oscillator coordinate x is taken to be the infinite interval
I∞ = (−∞,∞). The part-function f(x) is defined over the whole interval I∞
by the superposition

f(x) =
∞∑

m=−∞
cm(s)fm(x) (6.1)

of the Gaussian functions

fm(x) = exp

[
−1
2

(
x− 2mπ

s

)2
]
, (6.2)

with the coefficients cm(s) that make the ground-state wave function ψ0(x) in
Eq. (3.10) square-integrable. For the definite choice of the function f(x), the
ladder operators are defined in Eqs. (3.5) and (3.6), and the eigenvalue problem
for the Hamiltonian consisting of those ladder operators is solved. There are
systems with finite and infinite numbers of Gaussian factors. Note that the
choice cm = cm′ for all m,m′ is forbidden. Therefore, any choice of f(x) of
this kind over the whole interval I∞ cannot allow for the periodic nature of the
function g(x) in Eqs. (4.5) and (5.14) and the q-Hermite functions in Eqs. (4.20)
and (5.24) to be preserved.

• Periodic structure
In this case, the domain of the oscillator coordinate I∞ is taken to be the infinite
sum of the finite interval as

I∞ =
∞⋃

m=−∞
Im (6.3)

where

Im =
[
(2m− 1)π

s
,
(2m+ 1)π

s

]
. (6.4)

In the defining equations (3.5) and (3.6), the ladder operators A(x) and A†(x)
are constructed independently on each interval Im with the part-function fm(x)
in Eq. (6.2). All operators and functions including the part-function f(x) must
be defined in this way. Then, all of them are smoothly connected over the
whole interval I∞. The resulting q-deformed oscillator system is periodic, in
conformity with the property of the part-functions g(x) and the q-Hermite
functions.

The q-deformed harmonic oscillators of both the Macfarlane and Dubna types can
have these global structures. Therefore, in addition to the periodic solution that
have already been studied intensively, 5), 6) there exists an infinite variety of aperiodic
solutions for the q-deformed oscillators of both types.

All eigenfunctions ψn(x) in Eqs. (4.17) and (5.21) are proportional to the part-
function g(x). This is essential in an oscillator system of the Dubna type. This
important characteristic arises from the fact that all eigenfunctions include a product
of the part-function f(x) and the q-Hermite function. The mechanism which causes
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Unified Description of q-Deformed Harmonic Oscillators 13

the part-function g(x) to be proportional to cos sx is contained explicitly in the
second recursion formula (5.23). Therefore, every element in the Hilbert space H
generated by the eigenfunctions ψn(x) is considered to include the part-function
g(x). In an oscillator system of the Dubna type, the ladder operators, being inversely
proportional to g(x), have singularities at the values x = π

2s × (odd number). These
singularities are cancelled by the zero-points of the elements of the Hilbert space
H in the inner product. Owing to this cancellation, the raising operator A†(x) is
proved to be adjoint to the lowering operator A(x) in the Hilbert space H.

§7. Discussion

In this constructive approach, q-deformed harmonic oscillators of the Macfar-
lane and Dubna types were proved to appear as coordinate representations of the
same algebra of the q-deformed ladder operators for disconnected sectors q > 1 and
q < 1 of the deformation parameter q. In each case, the eigenvalues of the Hamil-
tonian given by the q-deformed anti-commutator constitute a spectrum that can be
expressed by a single function En(q) of the parameter q, irrespective of the choice
of the representation. Specifically, the single function En(q) represents the energy
spectra of oscillators of the Macfarlane type for q > 1 and those of the Dubna type
for q < 1.

In §§4 and 5, the part-functions of the ladder operators were obtained for the
two types of oscillators. The part-functions f(x) in the two cases turned out to
be identical. Furthermore, the other part-functions g(x) and h(x) in the two cases,
which are seemingly different, can be unified by using parametric representations as
follows:

g(x) =

(
es

2 − e−s2

s2

) 1
4 √

cos tx (7.1)

and
h(x) = −2(s+ t)x+ a0. (7.2)

This sort of unification is possible, because all the differences between the two types
of oscillators stem simply from different choices of the s and t parametrization in
the part-function D of the momentum operator. Therefore, it is not unnatural to
expect that the eigenfunctions derived in §§4 and 5 have a common parametric
representation. In fact, the eigenfunctions ψn(x) in Eqs. (4.17) and (5.21) have the
integrated form

ψn(x) = K0s
nf(x)g(x) exp{in[h(x) + (s+ t)x]}

×
n−1∏
m=0

{
e(s+t)2

[
1− e−2s2(m+1)

]}− 1
2 Hn(x; e−s2

), (7.3)

with the unified q-Hermite function Hn(x; e−s2
), which satisfies the two recursion

formulas

Hn+1(x; e−s2
) =

i

s

(
e

1
2
(s+t)2−isx − e− 1

2
(s+t)2+isx

)
Hn(x; e−s2

)
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14 I. S. Sogami and K. Koizumi

− 1
s2

(1− e−2ns2
)Hn−1(x; e−s2

) (7.4)

and

is

{
exp

[
isx− 1

2
(s+ t)2

]
+ exp

[
−isx+ 1

2
(s+ t)2

]}
Hn+1(x; e−s2

)

= e−ns2
{
exp

[
2isx− (s+ t)2

]
Hn(x− is; e−s2

)

− exp
[
−2isx+ (s+ t)2

]
Hn(x+ is; e−s2

)
}
. (7.5)

The power series representation of the unified q-Hermite function is given by

Hn(x; e−s2
) =

(
i

s

)n n∑
m=0

(−1)m
[
n
m

]
e−s2

exp
{
(2m− n)

[
isx− 1

2
(s+ t)2

]}
. (7.6)

The parametric unification realized in this way is a direct proof of the close relation-
ship of the two types of q-deformed oscillator systems.

The main difference between the two types of the q-deformed oscillators appears
in the part-function g(x). However, since the ladder operators are more basic than
the individual part-functions, we realize that these differences are not essential. In
fact, the singularities arising from the factor 1/g(x) in the ladder operators do not
cause any harmful effect on their action and the redundant factors investigated in
the Appendix have no influence to the ladder operators themselves.

The global structure considered in the previous section is also a generic property
of the q-deformed harmonic oscillators investigated in the present formalism. The
existence of the periodic solution and the infinite number of aperiodic solutions shows
a rich structure of our q-deformed oscillator system.

In this way, we have developed a unified theory for seemingly different types
of q-deformed harmonic oscillators. In spite of its mathematical beauty, however,
the physical implications of this theory have not yet been clarified, and realistic
applications of the q-deformed harmonic oscillator 15), 16) are very limited at the
present stage. Nevertheless, it is meaningful to further investigate systems of q-
deformed oscillators in view of the important roles played in physics by the harmonic
oscillator.

Appendix

Here we solve the difference equation (5.10) for g(x)2. Noting that the function
F (x) is proportional to the factor exp (−2isx), we set

g(x)2 = ξ(x) exp (−isx) + η(x) exp (isx) , (A.1)

in which ξ(x) and η(x) are assumed not to include the factor exp (isx). Substitution
of this expression into Eq. (5.10) results in the following equations for the unknown
functions ξ(x) and η(x):

1
q

[
q2ξ(x+ is)− ξ(x− is)

]
= −4s2ξ(x)ξ(x− is)ξ(x+ is), (A.2)
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Unified Description of q-Deformed Harmonic Oscillators 15

q
[
q2ξ(x− is)− q−4ξ(x+ is)

]
= −4s2

[
ξ(x)η(x− is)η(x+ is) + q2η(x)ξ(x− is)η(x+ is)

+ q−2η(x)η(x− is)ξ(x+ is)
]
, (A.3)

1
q

[
q4η(x+ is)− q−2η(x− is)

]
= −4s2

[
η(x)ξ(x− is)ξ(x+ is) + q2ξ(x)ξ(x− is)η(x+ is)

+ q−2ξ(x)η(x− is)ξ(x+ is)
]

(A.4)

and

q
[
η(x− is)− q−2η(x+ is)

]
= −4s2η(x)η(x− is)η(x+ is). (A.5)

These simultaneous difference equations have the solutions

ξ(x) = η(x) =
1
2

(
q−1 − q
s2

) 1
2

tanhκ
[
(2µ+ 1)π

2s
x

]
cothλ

[
(2ν + 1)π

2s
x

]
, (A.6)

where κ and λ are arbitrary real numbers, and µ and ν are arbitrary integers. Con-
sequently we find the solutions of Eq. (5.10) as

gκ,λ
µ,ν (x)

2 = Gκ,λ
µ,ν(x)

(
q−1 − q
s2

) 1
2 1
2
[exp (−isx)± exp (isx)] , (A.7)

where

Gκ,λ
µ,ν(x) = tanhκ

[
(2µ+ 1)π

2s
x

]
cothλ

[
(2ν + 1)π

2s
x

]
. (A.8)

The condition that g(x)2 be real for x ∈ R selects out the solutions

gκ,λ
µ,ν (x)

2 =

(
q−1 − q
s2

) 1
2

Gκ,λ
µ,ν(x) cos sx. (A.9)
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