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We consider modified gravity models driven by a scalar field whose effects are screened in high density

regions due to the presence of nonlinearities in its interaction potential and/or its coupling to matter. Our

approach covers chameleon, fðRÞ gravity, dilaton and symmetron models and allows a unified description

of all these theories. We find that the dynamics of modified gravity are entirely captured by the time

variation of the scalar field mass and its coupling to matter evaluated at the cosmological minimum of its

effective potential, where the scalar field has sat since an epoch prior to big bang nucleosynthesis. This

new parametrization of modified gravity allows one to reconstruct the potential and coupling to matter and

therefore to analyze the full dynamics of the models, from the scale dependent growth of structures at the

linear level to nonlinear effects requiring N-body simulations. This procedure is illustrated with explicit

examples of reconstruction for chameleon, dilaton, fðRÞ and symmetron models.
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I. INTRODUCTION

The discovery of the acceleration of the expansion of the

Universe [1] has led to a reappraisal of some of the tenets

of modern cosmology. In particular, the possibility of

modifying the laws of gravity on short or large scales is

taken more and more seriously [2].

In view of Weinberg’s theorem stating that any Lorentz

invariant field theory involving spin-2 fields must reduce to

general relativity (GR) at low energy [3], any attempt to

modify GR must involve extra degree(s) of freedom. The

majority of known models involve scalar fields and can be

separated into two broad classes, the ones involving non-

linearities in the kinetic terms and others with nonlinear

interaction potentials. All these models have a coupling

of the scalar field to matter and there could be an environ-

mental dependence which would manifest itself in the

screening behavior of the scalar field in high density

regions [4,5]. Examples of such models abound: the dila-

tonic models [6,7] generalizing the Damour-Polyakov

mechanism [8] where the coupling to gravity turns off

in dense environments, the chameleon models [9–13]

where a thin shell shielding the scalar field in dense bodies

is present, and the symmetron models [14–20] where the

scalar field has a symmetry breaking potential where the

field is decoupled at high density.

Some models are essentially spin-offs of the previous

ones like the fðRÞ theories [21–31] (for recent reviews of
the fðRÞ gravity see [32,33]) which are only valid when

they behave like chameleon theories with a thin shell

mechanism in dense environments [31]. In all these

examples, the large-scale properties on cosmological dis-

tances are intimately linked to the small-scale physics as

probed in the solar system or laboratory tests of gravity.

Stringent constraints on the possible modifications of grav-

ity follow from the cosmology of these models too. In

particular, they may lead to potentially lethal variations

of particle masses or Newton’s constant during big bang

nucleosynthesis (BBN). This must be avoided at all costs

as this may destroy the formation of elements, one of the

big successes of the big bang model. Such a catastrophe

can be avoided provided the scalar fields sit at the

minimum of the density dependent effective potential prior

to BBN. If this is the case, then the minimum of these

models is stable enough to prevent large excursions of the

scalar field and therefore of scalar masses/Newton’s con-

stant when the electron decouples during BBN. One of the

most important consequences of this fact, which is com-

mon to chameleons, dilatons and symmetrons is that the

cosmological background with the scalar field at the den-

sity dependent minimum of the effective potential behaves

essentially like the�-cold dark matter (�CDM) model and

is therefore almost indistinguishable from a cosmology

comprising matter, radiation and a pure cosmological con-

stant. This is a major drawback and would immediately

render irrelevant the modified gravity/dark energy models

with screening properties.

Fortunately, this is far from being the case as first

anticipated in [10,34] where the equation governing the

density contrast of CDM was first studied. Indeed, inside

the Compton wavelength of the scalar field, the density

contrast grows anomalously compared to its usual growth

in the matter dominated era. If this discrepancy were large

enough on astrophysical scales, this may be detectable by
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future galaxy surveys. It turns out that the perturbation

equation at the linear level depends on the time evolution

of the scalar field mass and the coupling strength to matter.

With these two functions, all the time and space properties

of the linear perturbations can be calculated.

In fact, these two time-dependent functions capture a lot

more about the modified gravity models with screening

properties: they allow one to reconstruct fully and uniquely

the whole nonlinear dynamics of the models [5,35]. Hence

given these two functions, not only can one compute linear

perturbations, but one can study the gravitational pro-

perties of the models in the solar system and laboratory

experiments. One can also analyze the cosmological be-

havior of the models withN-body simulations. This way of

defining the models, a reversed engineering procedure

from the mass and coupling functions to the nonlinear

dynamics, is a lot more versatile than the usual direct route

where a model is defined by its Lagrangian comprising the

kinetic terms and an interacting potential. Indeed, all the

usual models such as chameleons, fðRÞ, dilaton and sym-

metrons can be explicitly rediscovered by specifying

the particular ways the mass and coupling functions behave

in time. Moreover, one can design new families of models.

At the linear level of cosmological perturbations, this

approach is equivalent to a space and time dependent

parametrization [36–45] in terms of the two Newtonian

potentials obtained in the Jordan frame: the modified

Poisson equation and the constitutive relation linking the

two Newtonian potentials are directly and uniquely deter-

mined by the mass and coupling functions in the Einstein

frame. For instance, we shall see below that one recovers

the phenomenological description of fðRÞ models which

uses a space and time dependent parametrization [40] as a

simple application of our formalism.

The paper is arranged as follows: in a first part we

describe the modified gravity models with scalar fields

and their cosmological background and gravitational prop-

erties. We only study models where gravity is modified due

to nonlinearities in the potential and/or the coupling func-

tion of the scalar field to matter. Our analysis excludes the

cases where the kinetic terms are not canonical and leading

to the Vainshtein screening mechanism. We then describe

the tomography of models with canonical kinetic terms, i.e.

how to reconstruct their full dynamics using the time

evolution of the mass and coupling functions. In Sec. IV,

we focus on fðRÞ models. In Sec. V we analyze the growth

of structure. In Sec. VI, we consider the constraints on

these models resulting from the variation of the fundamen-

tal constants. We conclude in Sec. VII.

Throughout this paper the metric convention is chosen

as ð�;þ;þ;þÞ; Greek indices ð�; �; � � �Þ run over

0, 1, 2, 3 while Latin indices ði; j; k; � � �Þ run over 1, 2, 3.

We shall adopt the unit c ¼ 1 and mPl denotes the Planck

mass. Unless otherwise stated a subscript 0 will always

mean the present-day value of a quantity.

II. MODIFIED GRAVITY

In this paper we propose a parametrization of a broad

class of theories with a scalar degree of freedom, such as

the chameleon, dilaton and symmetron theories, and fðRÞ
gravity. The success of these theories relies on mechanisms

that suppress the fifth force in local, high-matter-density

environments. We will find that the complete nonlinear

Lagrangian comprising the kinetic terms and the interac-

tion potential together with the coupling of the scalar field

to matter can be reconstructed from the knowledge of the

scalar field mass mðaÞ and the coupling strength �ðaÞ as
functions of time when the field sits at the minimum of the

density dependent effective potential.

This mechanism relies on the fact that the scalar field

must track that minimum since before BBN in order to

preserve the constancy of particle masses at this epoch. In

this section, we recall the setting of scalar field models and

analyze their background evolution.

A. Modifying gravity with a scalar field

The action governing the dynamics of a scalar field � in

a scalar-tensor theory is of the general form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
m2

Pl

2
R� 1

2
ðr�Þ2 � Vð�Þ

�

þ
Z

d4x
ffiffiffiffiffiffiffi

�~g
p

Lmðc ðiÞ
m ; ~g��Þ; (1)

where g is the determinant of the metric g��, R is the Ricci

scalar and c
ðiÞ
m are various matter fields labeled by i. A key

ingredient of the model is the conformal coupling of �
with matter particles. More precisely, the excitations of

each matter field c
ðiÞ
m couple to a metric ~g�� which is

related to the Einstein-frame metric g�� by the conformal

rescaling

~g �� ¼ A2ð�Þg��: (2)

The metric ~g�� is the Jordan frame metric. Wewill analyze

these models in the Einstein frame and come back to the

Jordan frame picture later.

The fact that the scalar field couples to matter implies

that the scalar field equation becomes density dependent.

More precisely, the scalar field equation of motion (EOM)

is modified due to the coupling of the scalar field � to

matter:

h� ¼ ��T þ dV

d�
; (3)

where T is the trace of the energy momentum tensor T��,

h � r�r� and the coupling of � to matter is defined by

�ð�Þ � mPl

d lnA

d�
: (4)

This is equivalent to the usual scalar field EOM with the

effective potential
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Veffð�Þ ¼ Vð�Þ � ½Að�Þ � 1�T: (5)

The role of this effective potential Veffð�Þ is crucial in all

the modified gravity models we will consider. In essence,

the effective potential is required to possess a unique

matter dependent minimum in the presence of pressureless

matter where T ¼ ��m. The resulting potential

Veffð�Þ ¼ Vð�Þ þ ½Að�Þ � 1��m (6)

has a minimum �minð�mÞ. The mass of the scalar field at

the minimum

m2 ¼ d2Veff

d�2

���������min

(7)

must be positive. In many cases (such as the generalized

chameleon and dilaton models discussed below) Vð�Þ is a
decreasing function and �ð�Þ is an increasing function as

�, though this is not the case for the generalized symme-

tron model.1 This guarantees that the effective potential

always has a minimum. In a cosmological setting we will

also impose that m2 � H2 with H being the Hubble

expansion rate. It can be shown easily that, depending on

the shapes of Vð�Þ and �ð�Þ, the chameleon, fðRÞ, dilaton
and symmetron models are all described in a such a way.

When matter is described by a pressureless fluid with

T�� ¼ �mu
�u� (8)

and u� � dx�=d� where � is the proper time, the matter

density �m is conserved

_� m þ ��m ¼ 0 (9)

where � � r�u
� and the trajectories are determined by

the modified geodesics

_u � þ �
_�

mPl

u� ¼ ��
@��

mPl

: (10)

In the weak-field limit with

d s2 ¼ �ð1þ 2�NÞdt2 þ ð1� 2�NÞdxidxi; (11)

and in the nonrelativistic case, this reduces to the modified

geodesic equation for matter particles

d2xi

dt2
¼ �@ið�N þ lnAð�ÞÞ: (12)

This can be interpreted as the motion of a particle in the

effective gravitational potential defined as

� ¼ �N þ lnAð�Þ; (13)

and is clearly a manifestation of the dynamics of modified

gravity.

When a particle of mass M in a homogeneous back-

ground matter density is the source of gravity, the scalar

field satisfies

ðr2 þm2Þ� ¼ �
M

mPl

�ð3ÞðrÞ; (14)

in which �ð3ÞðrÞ is the three-dimensional Dirac � function

and m the scalar field mass in the background, implying

that

� ¼ �ð1þ 2�2e�mrÞGNM

r
; (15)

where GN ¼ ð8	Þ�1m�2
Pl is the Newton constant. When

��Oð1Þ and m�1 � r, this implies a substantial devia-

tion from Newton’s law. For bodies much bigger than a

point particle following the modified geodesics, nonlinear

effects imply that the effective coupling felt by the body is

much smaller than� or the mass becomes much larger than

the inverse of the typical size of the body (m�1 � r). This
is what happens in the chameleon model and fðRÞ gravity
(the latter) and the dilaton and symmetron models (the

former), and guarantees that solar system and laboratory

tests of gravity are evaded.

B. Screening of modified gravity

In this section, we shall unify the description for the

screening2 mechanisms [4,5] involved in the chameleon,

fðRÞ gravity, dilaton and symmetron models. As we shall

see, the screening of large and dense bodies can be ex-

pressed with a single criterion generalizing the thin-shell

condition for the chameleon models. The constraints we

find are typically stated in terms of the scalar field massm0

in the cosmological background today and the current

Hubble scale H0, making 
 � H0=m0 a key quantity.

Physically, 
 represents the range of the scalar fifth force

to the Hubble radius and a particular value that will be

recurrent is m0=H0 � 103 or 
� 10�3. This value means

that the scalar field leaves its mark up to scales of the order

of megaparsec, which again signals the transition where

the modifications of gravity can be seen on linear pertur-

bations or not.

1. Chameleons

The chameleon models (at least in their original form

[9]—see [10–13,34] for other proposals) are characterized

by a runaway potential and a nearly constant coupling �.
Chameleons are screened deep inside a massive body,

where the field settles at the minimum �c of Veffð�Þ and
stays constant up until a radius Rs close to the radius of the

body, R. In this case, the field profile is given by

1For the generalized symmetron models, the potential is not
monotonic but has the shape of a Mexican hat. However, in the
part of the potential which will be of interest here, it is mono-
tonically decreasing.

2To be clear, the ‘‘screening’’ of a body refers to the fact that
the deviation from Newtonian gravity, i.e., the fifth force exerted
by this body on a nearby test mass, is suppressed to evade local
constraints—in analogy to the screening of the electric force
from a charged particle.
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� ¼ �c; R � Rs (16)

The field varies sharply inside a thin shell according to

1

r2
d

dr

�

r2
d�

dr

�

¼ �
�m

mPl

; Rs � r � R (17)

and decays outside

� ¼ �1 � �

4	mPl

�

1� R3
s

R3

�
M

r

e�m1ðr�RÞ

r
(18)

where�1 is the minimum of the effective potential outside

the body and m1, M are respectively the masses of the

scalar field and the body. At short distance compared to the

large range m�1
1 , the effective gravitational potential is

� ¼ �
�1
mPl

þGNM

r

�

1þ 2�2

�

1� R3
s

R3

��

: (19)

Gravity is strongly modified by a factor (1þ 2�2) if there

is no shell inside the body (i.e., Rs ¼ 0) and one retrieves

GR when Rs is close to R where

�R

R
¼ j�1 ��cj

6�mPl�N

; (20)

with �R � R� Rs and �N � GNM=R is the Newtonian

potential at the surface of the body. The mass is screened

when

j�1 ��cj � 2�mPl�N ; (21)

which is also the criterion to have a thin shell.

More precisely, this implies several very stringent ex-

perimental constraints on the chameleon models. The first

one comes from the Lunar Ranging experiment [46] which

measures the acceleration difference between Earth and the

Moon in the gravitational field of the Sun

� ¼ 2ðaearth � amoonÞ
aearth þ amoon

& 10�13: (22)

For the chameleon model we have [9]

� 	 �2

�
�R

R


�
2

; (23)

implying that

�
�R

R


& 10�7: (24)

The Cassini experiment [47] imposes that the modification

of the unscreened Cassini satellite in the vicinity of the Sun

should be such that

�2
�R�
R�

& 10�5: (25)

Another type of constraint comes from cavity experiments

where two small test bodies interact in a vacuum cavity

[48]. This implies that

�
�Rcav

Rcav

& 10�3: (26)

Finally, a loose bound must be imposed to guarantee that

galaxies are not far off from being Newtonian [49]

�
�Rgal

Rgal

& 1; (27)

otherwise the modifications of gravity would have

been seen by now in observations of galaxy clusters.

These constraints strongly restrict the parameter space of

the chameleon models.

2. Symmetrons

Symmetrons [16–20] are models with a Mexican hat

potential, a local maximum at the origin and two global

minima at ��? like for example

Vð�Þ ¼ V0 þ�2�2
?

�

� 1

2

�
�

�?

�
2

þ 1

4

�
�

�?

�
4
�

: (28)

In general the term ð�=�?Þ4 can be replaced by any even

function which is bounded below, without changing the

qualitative properties of the model.

Meanwhile, the coupling behaves like

Að�Þ ¼ 1þ A2

2
�2; (29)

close to � ¼ 0.
Let us consider a spherically dense body that is em-

bedded in a homogeneous background. Inside this body the

matter density �m is constant and the scalar field profile is

� ¼ C
sinhmcr

r
; r < R; (30)

where the scalar field mass is given by m2 ¼ A2�m ��2

and��2 is the negative curvature of the potential Vð�Þ at
the origin. The field outside the body, on scales shorter than

the large range m�1
1 associated to the scalar field value �1

which minimizes Veffð�Þ outside, is

� ¼ �1 þD

r
; r > R; (31)

where

C ¼ �1
mc coshmcR

;

D ¼ sinhmcR�mcR coshmcR

mc coshmcR
�1:

(32)

If the body is dense enough, we have m2
c 	 A2�m and

mcR � 1, implying thatD 	 �R�1. Identifying the cou-
pling to matter �1 ¼ mPlA2�1, we find that the modified

Newtonian potential outside the body is
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� ¼ �GNM

r

�

1þ A2�
2
1

�N

�

þO

�
R2

r2

�

¼ �GNM

r

�

1þ �2
1

A2m
2
Pl�N

�

þO

�
R2

r2

�

: (33)

for r sufficiently large compared to R. For R � r � m�1
1

the fifth force is screened provided

2A2m
2
Pl�N � 1; (34)

which is equivalent to

j�1 ��cj � 2mPl�1�N ; (35)

where �c ¼ 0. Note that this is the same screening crite-

rion as in the chameleon case.

The screening in the symmetron model depends on A2,

�N and the environment through the environmental field

value �1. Two test masses which are not screened when

put in vacuum will be screened by a factor ð�1=�?Þ2 if

they are in a region of high matter density (which implies

�1 � �?).

The transition of the minimum of Veffð�Þ from� ¼ 0 to
� ¼ �? in the cosmological background happens in the

recent past of the Universe provided

�2 � A2�m0; (36)

where �m0 is the present matter density. For a polynomial

potential Vð�Þ, the mass-squaredm2
? at the minimum�? is

of order �2, implying that the mass of symmetrons in the

present cosmological background satisfies

m2
0 � A2m

2
PlH

2
0 ; (37)

One may see effects of modified gravity on astro-

physical scales when m0=H0 & 103 which implies that

A2m
2
Pl & 106.

Using the screening criterion we find that the Sun and

the Milky Way with �� � 10�6 are marginally screened

whereas Earth with �
 � 10�9 and the Moon with

�moon � 10�11 are not screened. However, for the Solar

System tests such as the Lunar Ranging experiment3 and

the Cassini satellite, what is more relevant is the value of

the symmetron field �gal in the Milky Way, which deter-

mines the strength �ð�galÞ of the modification of gravity.

This imposes

A2�
2
gal

��
& 10�5: (38)

For a generic symmetron potential we have4 �2
gal � �1

�gal
�2

?

where �? is the minimum of Veffð�Þ in the cosmological

background with matter density �1. Using
�1
�gal

� 10�6, this

leads to

10�6�2
?

1

2A2m
2
Pl��

� 10�6

��

H2
0

m2
0

& 10�5 (39)

which is easily satisfied for m0=H0 � 103. Finally, in cav-

ity experiments, the field � inside the cavity is almost

identical to the field in the bore, i.e., �� 0, implying no

deviation from usual gravity in such experiments.

3. Dilaton

Dilatonic theories [6,7] are very similar to symmetrons

inasmuch as they share the same type of coupling function,

Að�Þ ¼ 1þ A2

2
ð���?Þ2; (40)

but they differ as the dilaton potential Vð�Þ is a monotoni-

cally decreasing function of �. All the dynamics can be

analyzed in the vicinity of �? as the minimum of the

effective potential is close to �? for large enough A2.

The density dependent minimum of Veffð�Þ is given by

�minð�mÞ ��? ¼ �V0ð�?Þ
A2�m

; (41)

with the mass given by

m2 ¼ m2
? þ A2�m; (42)

where m? ¼ mð�?Þ and the potential is chosen to be a

quintessence potential such that m2
? �H2

0 .

Let us consider a spherically dense body. Inside the body

we have

� ¼ �c þ C
sinhmcr

r
; r < R; (43)

and outside

� ¼ �1 þD

r
; (44)

for distances shorter than the range m�1
1 . When mcR � 1,

we find that

D 	 �Rð�1 ��cÞ; (45)

and the effective Newtonian potential is

� ¼ �GNM

r

�

1þ A2ð�1 ��cÞð�1 ��?Þ
�N

�

þO

�
R2

r2

�

;

(46)

for R � r � m�1
1 . Outside the body we have

�1 ��? ¼ �1
A2mPl

(47)

with �1 ¼ �ð�1Þ and therefore

V 0ð�?Þ ¼ ��1
�1
mPl

; (48)

from which we deduce that

3The Nordtvedt effect leads to a weak bound [16].
4See Eq. (19) in [16] for a more accurate expression.
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�1 ��c ¼
�1

A2mPl

�

1� �1
�c

�

; (49)

and finally

� ¼ �GNM

r

�

1þ �2
1

A2m
2
Pl�N

�

1� �1
�c

��

þO

�
R2

r2

�

:

(50)

for R � r � m�1
1 . The screening criterion is (almost) the

same as in the symmetron case

2A2m
2
Pl�N �

�

1� �1
�c

�

; (51)

or equivalently

j�1 ��cj � 2�ð�1ÞmPl�N ; (52)

which is the same as in the chameleon and dilaton cases.

The mass of the dilaton today in the cosmological

background is

m2
0 	 A2�m0 ¼ 3A2m

2
Pl�m0H

2
0 ; (53)

in which �m0 is the present value of the fractional energy

density of matter�m, implying that A2m
2
Pl � 106 for mod-

els with m0=H0 � 103.
As in the symmetron case, this implies that both the Sun

and the Milky Way are marginally screened when sur-

rounded by the cosmological vacuum. But given that

what matters for the magnitude of modified gravity is the

dilaton value �1 ¼ �gal in the Milky Way, the Cassini

bound can be written as

A2ð�gal ��cÞð�gal ��?Þ
�N

& 10�5; (54)

which leads to

1

A2m
2
Pl��

�1
�gal

& 10�5: (55)

Using
�1
�gal

� 10�6, we see that the Cassini bound is satisfied

for dilatons.

4. The screening criterion

We have seen that all the models of the chameleon,

dilaton and symmetron types lead to a screening mecha-

nism provided that

j�1 ��cj � 2�ð�1ÞmPl�N ; (56)

where �c is the value inside the body assumed to be at the

minimum of the effective potential, �1 is the minimum

value outside the body and�N is Newton’s potential at the

surface of the body. This is a universal criterion which is

independent of the details of the model. In fact, it depends

only on the values of the scalar field which minimizes the

effective potential Veffð�Þ inside and outside the body. If

this criterion is satisfied, then the value inside the body

does not deviate much from the minimum value there.

Phenomenologically, we have just recalled that stringent

local constraints on modified gravity can be expressed in

terms of the screening condition. In the following we shall

assume that the Milky Way satisfies the screening criterion.

When this is the case, local tests of gravity in the Solar

System and in the laboratory can be easily analyzed as�gal

can be determined analytically. In the chameleon, dilaton

and symmetron cases, this allows one to determine bounds

on the ratio m0=H0 which essentially dictates if modified

gravity has effects on astrophysical scales. The screening

condition for the Milky Way may be relaxed slightly for

some model parameters because it is itself in a cluster

with higher density than the background. In this case, full

numerical simulations are required to determine �gal and

see if local tests of gravity are satisfied. This may enlarge

the allowed parameter space of the models slightly and

lead to interesting effects. Numerical simulations are left

for future work.

One of the advantages of the screening condition is that

it only depends on the minimum values of the scalar field in

different matter densities. In the following section, we will

find an explicit formula for �c ��1 which depends only

on the time variation of the massmðaÞ and coupling�ðaÞ in
a cosmological background. This may seem surprising as

the behavior of the scalar field may appear to be loosely

connected to the scalar field dynamics in a static environ-

ment. In fact, the relation between both regimes of modi-

fied gravity, cosmological and static, follows from the fact

that the scalar field sits at the minimum of its effective

potential Veffð�Þ since before BBN. As it evolves from

BBN through the dark ages and then the present epoch, the

cosmological values of the scalar field experience all the

possible minima of Veffð�Þ. Hence realizing a tomography

of the cosmological behavior of the scalar field, i.e., just

knowing its mass and coupling to matter as a function of

time since before BBN, will allow us to analyze the gravi-

tational properties of the models.

5. The reason for a universal screening condition

As we have seen in the examples above, we get the same

screening condition for all known models. Below we argue

why this is the case for a whole range of models satisfying

only some simple assumptions.

We start with the most general model for the behavior of

the scalar field in matter

r2� ¼ Veff;� ¼ V;� þ �ð�Þ�m

mPl

(57)

and we will analyze the standard setup (a spherical body of

density �c and radius R embedded in a background of

density �1) under the following assumptions:

(1) The effective potential has a matter dependent

minimum �ð�Þ.
(2) For any (physical) solution to the field equation, the

mass of the field at r ¼ 0, mS ¼ mð�S; �cÞ, is a
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positive monotonically increasing function of the den-

sity �c and satisfies5 lim�c!1mð�Sð�cÞ; �cÞ ¼ 1.

(3) Outside the body, where �1 � �c, and within

the Compton wavelength of the field m�1
1 the solu-

tion to the field equation is well approximated by

� ¼ �1 þ D
r
. This means that a first order Taylor

expansion around �1 holds outside the body.

Now we can look at the solutions to the field equation

under the previous assumptions. The field starts out

at some field value � ¼ �S inside the body, and close to

r ¼ 0 the solution can therefore be written

� ¼ �S þ B

�
sinhðmSrÞ

mSr
� 1

�

(58)

for some constant B. We can for our purposes, without loss

of generality, assume that B> 0. Because of our assump-

tion on mS, for a large enough �c the field must start off

very close to the minimum � ¼ �c inside the body where

the driving force Veff;� vanishes. Otherwise the solution

(� emSr=r) grows too fast inside the body and overshoots

the exterior solution. For a sufficiently large �c the field

stays close to �c almost all the way to6 r ¼ R. It follows
from a second order Taylor expansion around �S that this

is guaranteed to be the case as long as

Veff;���ð�S; �cÞð�1 ��SÞ
Veff;��ð�S; �cÞmSR

� 1: (59)

When all these conditions are satisfied, there exists a

critical solution in the limit �c ! 1 which reads

� ¼ �c r < R; (60)

� ¼ �1 þ ð�c ��1ÞR
r

r > R; (61)

which, apart from the numerical values of �1 and �c, is

completely model independent. This critical solution and

its implications, for the case of power-law chameleon

theories, was discussed in [9]. Another regime which can

be described by exact solutions without having to solve

model dependent equations is realized when �1 �
�1mPl�N . In this regime the theory is effectively linear

and the solution reads

� ¼ �1 þ �1�cR
2

6mPl

�
r2

R2
� 3

�

r < R; (62)

� ¼ �1 � �1�cR
3

3mPlr
r > R; (63)

where �1 ¼ �ð�1Þ. This is the same type of solution as

found in Newtonian gravity, and the fifth force to gravity

ratio on a test mass outside the body is

F�

FG

¼ 2�2
1; (64)

while for the critical solution we find

F�

FG

¼ 2�2
1

� j�1 ��cj
2�1mPl�N

�

: (65)

Comparing the two cases we see that the critical solution

corresponds to a screened fifth force given that

j�1 ��cj � 2�1mPl�N ; (66)

which is exactly the screening condition we have found for

chameleons, symmetrons and dilatons by solving the field

equation explicitly. It is easy to show that the assumptions

we started with do hold for these models. The critical

solution, which formally only holds in the limit �c ! 1,

will be a good approximation for the case of finite �c as

long as the screening condition holds by a good margin.

As current local gravity experiments give very tight con-

straints, if one wants to have cosmological signatures i.e.

�1 ¼ Oð1Þ, then this will be true in most cases.

For the case where j�1 ��cj � 2mPl�1�N we would

have to solve the model dependent equation to get accurate

solutions. These solutions will interpolate between the two

regimes found above, see e.g. [50] for a thorough deriva-

tion of chameleon equations in all possible regimes.

C. Cosmological scalar field dynamics

Here we consider the cosmological evolution of the

scalar field � in modified gravity models with a minimum

of Veffð�Þ at which the scalar field mass m satisfies

m2 � H2. The cosmology of the scalar field is tightly

constrained by BBN physics due to the coupling of the

scalar field to matter particles. The fact that the scalar field

evolves along the minimum of Veffð�Þ implies that the

masses of fundamental particles

mc ¼ Að�Þmbare; (67)

in which mbare is the bare mass appearing in the matter

Lagrangian, evolve too. In practice, tight constraints on the

time variation of masses since the time of BBN

�mc

mc

¼ �
��

mPl

; (68)

where �� is the total variation of the field since BBN,

impose that �mc =mc must be less than �10%. At a

5As �c ! 1 we have �S ! �c; the minimum for the matter
density is �c. The reason we explicitly write the limit here instead
of taking �S ¼ �c directly is to account for models where
lim�!�c

Veff;�� ¼ 0, but where lim�c!1Veff;��ð�Sð�cÞ;�cÞ¼1
as can be the case for generalized symmetron models as we shall
see later on. Loosely speaking we can state this condition as
follows: the mass at the minimum inside the body is increasing
with �c.

6For chameleons the solution only grows in a thin-shell close
to the surface, but for large enough densities the field hardly
moves at all.
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redshift of order ze 	 109, electrons decouple and give a

‘‘kick’’ [10] to the scalar field which would lead to a large

violation of the BBN bound. To avoid this, the field must be

close to the minimum of Veffð�Þ before ze and simply

follow the time evolution of the minimum given by

dV

d�

���������min

¼ ��
�m

mPl

: (69)

Moreover, the total excursion of the scalar field following

the minimum must be small enough. In practice, we will

always assume that j�=mPlj � 1 along the minimum

trajectory, implying that the BBN bound for the time

dependent minimum is always satisfied. The models are

then valid provided the electron kick does not perturb the

minimum too much. We analyze this now.

The background evolution of the scalar field is governed

by the homogeneous scalar field equation

€�þ 3H _�þ dVeff

d�
¼ 0: (70)

We assume that the contribution of the scalar field to the

Hubble rate in the Friedmann equation is negligible until

the acceleration of the Universe sets in

H2 ¼ �rad þ �m þ ��

3m2
Pl

; (71)

where

�� ¼ 1

2
_�2 þ ½Að�Þ � 1��m þ Vð�Þ: (72)

The models that we consider here have a dynamical mini-

mum located at �minðtÞ such that

dVeff

d�

���������min

¼ 0: (73)

Defining �� � ���min, we have for linear perturbations

around the minimum

€��þ 3H _��þm2�� ¼ F; (74)

where

F ¼ � 1

a3
d

dt

�

a3
d�min

dt

�

: (75)

Using the minimum equation, we find that

_� min ¼
3H

m2
�A

�m

mPl

; (76)

and the forcing term is then

F ¼ � 3�m0a
�3

mPl

d

dt

�
A�H

m2

�

: (77)

We must also take into account the kicks that the field

receives every time a relativistic species decouples. These

kicks correspond to the abrupt variation of the trace of the

energy momentum tensor of a decoupling species at the

transition between the relativistic and nonrelativistic re-

gimes. The abrupt change of T
�
� for the decoupling species

happens on a time scale much smaller than one Hubble

time and can be modeled out using an ‘‘instantaneous

kick’’ approximation [10] where the contribution to the

scalar field equation is a � function. For kicks at the

decoupling times tj, the source term becomes

F ¼ � 3�0

mPla
3

d

dt

�
A�H

m2

�

� A�
X

j

�jHjmPl�ðt� tjÞ;

(78)

where �j 	 gi=g?ðmjÞ & 1 depends on the number of

relativistic species g?ðmjÞ at time tj and the number of

degrees of freedom of the decoupling species gj.

Let us now go through the different cosmological eras.

During inflation, the Hubble rate is nearly constant and the

field is nearly constant.7 Indeed, the trace of the energy

momentum tensor is

T 	 �12H2m2
Pl; (79)

in which �m ¼ �pm ¼ 3H2m2
Pl is nearly constant in the

slow roll approximation. As a result, the source term in the

perturbed scalar field equation vanishes, and averaging

over the oscillations with the fast period 1=m � 1=H
we have

h��2i / a�3; (80)

implying that the field reaches the minimum of the effec-

tive potential very rapidly during inflation.

Assuming that reheating is instantaneous and that the

field is not displaced during reheating, the field starts in the

radiation era at the minimum of the effective potential

during inflation. As the minimum has moved to larger

values, the field rolls down towards the new minimum,

overshooting and then stopping at a value

�overshoot 	 �inflation þ
ffiffiffiffiffiffiffiffiffiffi

6�i
�

q

mPl; (81)

depending on the initial density fraction �i
� in the scalar

field [10]. After this the field is in an undershoot situation

where the field is essentially moved according to the kicks

€�þ 3H _� ¼ �A�
X

j

�jHjmPl�ðt� tjÞ: (82)

Each kick brings the field to smaller values, with a

variation

��j ¼ ��jAj�jmPl; (83)

7Note the parametrization mðaÞ ¼ m0a
�r to be introduced

below only applies when the scalar field is sourced by the
pressureless matter, and does not apply to the inflationary era,
in which � remains nearly constant simply because the density
of the inflaton does so.
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in the radiation era [10]. Although the details depend on the

kicks and the initial energy density of the field, we can

assume that after all the kicks before BBN, the field is close

to the minimum of Veffð�Þ. We will assume that this is the

case by zini 	 1010 where the matter density is equivalent

to the one in dense bodies on Earth today. If this were not

the case then the field would move by

��e ¼ ��eAe�emPl; (84)

when the electron decouples during BBN, and the masses

of particles would vary too much during BBN. Note that

for the rest of this subsection a subscript e will be used to

denote the value of a quantity at the electron decoupling.

Hence viable models must be such that the scalar field

remains in the neighborhood of the minimum since well

before BBN. In this case, the deviation of the field from the

minimum can be easily obtained from

€��þ 3H _��þm2��

¼ � 3�m0a
�3

mPl

d

dt

�
A�H

m2

�

� Ae�e�eHemPl�ðt� teÞ;

(85)

where we only take into account the electron kick. Defining

�� ¼ a�3=2c , we find that

€c þ
�

m2 þ 9w

4
H2

�

c ¼ � 3�m0a
�3=2

mPl

d

dt

�
A�H

m2

�

� Ae�e�eHea
3=2
e mPl�ðt� teÞ:

(86)

As m2 � H2, the solution is obtained using the

WKBapproximation and reads

��

mPl

¼ � 9�m0H
2
0

a3m2

d

dt

�
A�H

m2

�

��ðt� teÞAe�e�e

He
ffiffiffiffiffiffiffiffiffiffi
mem

p a3=2e

a3=2
sin

Z t

te

mðt0Þdt0;

(87)

in which the second term is only present when t > te, �
being the Heaviside function. We will always assume that

� and m vary over cosmological times; hence we have

d

dt

�
A�H

m2

�

¼ gðtÞA�H
2

m2
; (88)

in which gðtÞ is a slowly varying function of time whose

value is of order unity. Averaging over the rapid oscilla-

tions, we have

h��2i
m2

Pl

¼81�2
m0g

2A2�2

a6
H4

0

m4
0

m4
0

m4

H4

m4
þA2

e�
2
e�

2
e

2

a3e
a3

H2
e

m2
e

me

m
:

(89)

The first term is of order�2
0H

8
0=m

8
0 � 1 now, implying that

it has a negligible influence on the particle masses. This

guarantees that the minimum is indeed a solution of the

equations of motion. The second term corresponds to the

response of the scalar field to a kick. It is initially very

small as suppressed by H2
e=m

2
e � 1, implying a tiny

variation of the fermion masses during BBN. Its influence

increases with time as 1=ma3 and we must impose

that this never compensates for the fact that H2
e=m

2
e is

extremely small.

Consider an interesting example with mðaÞ ¼ m0a
�r

which will reappear later. In such a case the second term

in the above equation can be rewritten as

A2
e�

2
e�

2
e

2

a3e
a3

H2
e

m2
e

me

m
�H2

0

m2
0

�r0

�m0

ar�1
e ar�3; (90)

where we have assumed A2
e�

2
e�

2
e �Oð1Þ and �r0 � �m0

is the fractional energy density for radiation (photons and

massless neutrinos) at present. From this formula we can

easily see that

(1) when r < 3 the minimum of Veff given by the mini-

mum equation is an attractor, because the magnitude

of the oscillation decreases in time;

(2) assuming thatH0 � 10�3m0 (see below) and�m0 �
103�r0, then today we have h��2i=m2

Pl � 10�9ar�1
e

which is of order one if r ¼ 0. Clearly, for

r & 2 the amplitude of oscillation can be too big

(
ffiffiffiffiffiffiffiffiffiffiffiffiffi

h��2i
p

� �min) at early times;

(3) if r  3 which is the case for fðRÞ gravity models in

which fðRÞ � Rþ R0 � R1ðR?=RÞn,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

h��2i
p

=mPl

increases with time but never becomes significantly

large. For example, if r ¼ 3 then
ffiffiffiffiffiffiffiffiffiffiffiffiffi

h��2i
p

=mPl �
10�15 today, which means that, although the mini-

mum of Veffð�Þ is not strictly speaking an attractor,

it is extremely stable to kicks and governs the back-

ground dynamics of the model.

D. The equation of state

We have described how the cosmological constraint

from BBN imposes that the scalar field must be at the

minimum of the effective potential since BBN. As such

the minimum of the effective potential acts as a slowly

varying cosmological constant. We have also seen that

when m2 � H2, a large class of models are such that the

minimum is stable. In this case, the dynamics are com-

pletely determined by the minimum equation

dV

d�

���������min

¼ ��A
�m

mPl

: (91)

In fact, the knowledge of the time evolution of the mass m
and the coupling � is enough to determine the time evo-

lution of the field. Indeed, the mass at the minimum of Veff ,

m2 � d2Veffð�Þ
d�2

���������min

; (92)
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and the minimum relation leads to

V00 � d2V

d�2
¼ m2ðaÞ � �2Að�Þ �m

m2
Pl

� d�

d�
Að�Þ �m

mPl

;

(93)

where the couplings to matter � can be field dependent.

Using the minimum equation, we deduce that the field

evolves according to

d�

dt
¼ 3H

m2
�A

�m

mPl

: (94)

This is the time evolution of the scalar field at the back-

ground level since the instant when the field starts being

at the minimum of the effective potential. In particular,

we have

1

2

�
d�

dt

�
2

¼ 27

2
�m�

2A2

�
H

m

�
4

�m (95)

which is tiny compared to �m.

Because of the interaction between the scalar field and

matter, the energy momentum tensor of the scalar field is

not conserved. Only the total energy momentum

_� tot ¼ �3Hð�tot þ ptotÞ (96)

is conserved, where the total energy density is

�tot � �m þ �� (97)

with

�� ¼
_�2

2
þ Veffð�Þ; (98)

ptot � p� ¼
_�2

2
� Vð�Þ; (99)

and where we have neglected the radiation component in

the matter era. It is crucial to notice that the energy density

of the scalar field involves the effective potential Veff while

the pressure only involves V. This is a crucial feature of

scalar-tensor theories.

We can define the effective equation of state of the dark

energy fluid as

w� ¼ p�

��

: (100)

Using the Friedmann equation we find the Raychaudhuri

equation involving the effective equation of state w� as

€a

a
¼ � 1

6m2
Pl

½�m þ ð1þ 3w�Þ���

� � 1

6m2
Pl

ð1þ 3wtotÞ�tot (101)

where we have defined the total equation of state

wtot ¼
ptot

�tot

: (102)

The Universe is accelerating provided €a  0 which

leads to

wtot � � 1

3
(103)

as expected, which is equivalent to

w� � � 1

3

�

1þ �m

��

�

: (104)

The situation of the modified gravity models can be easily

analyzed as

w� þ 1 ¼
_�2 þ ðA� 1Þ�m

_�2

2
þ Vð�Þ þ ðA� 1Þ�m

; (105)

which can be approximated as

w� þ 1 	
_�2

Vð�Þ þ ðA� 1Þ�m

��

: (106)

The first term corresponds to the usual quintessence con-

tribution and the second term can be approximated as
��
mPl

�m

��
�� �

mPl

V;�

V;��

�m

��
¼ 3�2�m

H2

m2

�m

��
. This implies that

w� þ 1 	 ðA� 1Þ�m

��

	 3�m�
2

�
H

m

�
2 �m

��

: (107)

In the recent past of the Universe where �m and �� have

been of the same order of magnitude, this implies that the

background scalar field acts as a cosmological constant due

to the large H2=m2 suppression. In the past, the back-

ground cosmology deviates from a �CDM model only if

�� becomes so small that it compensates for m2=H2. We

will not consider this situation in the following.

III. MODIFIED GRAVITY TOMOGRAPHY

A. Reconstruction of the dynamics

We have seen that when m2 � H2 a large class of

models are such that the minimum of the effective potential

is stable or quasistable, and in these cases the dynamics are

completely determined by the minimum equation

dV

d�

���������min

¼ ��A
�m

mPl

: (108)

In fact, the knowledge of the time evolution of the mass m
and the coupling � is enough to determine the bare poten-

tial Vð�Þ and the coupling function Að�Þ completely. To

see this, integrating Eq. (94) once, we find

�ðaÞ ¼ 3

mPl

Z a

aini

�ðaÞ
am2ðaÞ�mðaÞdaþ�c; (109)

where �c is the initial value of the scalar field at

aini < aBBN and we have taken Að�Þ 	 1, as the temporal

variation of fermion masses must be very weak. If the
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coupling � is expressed in terms of the field � and not the

scale factor a, this is also equivalent to

Z �

�c

d�

�ð�Þ ¼
3

mPl

Z a

aini

1

am2ðaÞ�mðaÞda: (110)

Similarly the minimum equation implies that the potential

can be reconstructed as a function of time

V ¼ V0 �
3

m2
Pl

Z a

aini

�2ðaÞ
am2ðaÞ�

2
mðaÞda; (111)

where V0 is the initial value of the potential at a ¼ aini.
This defines the bare scalar field potential Vð�Þ parametri-

cally when �ðaÞ and mðaÞ are given. Hence we have found
that the full nonlinear dynamics of the theory can be

recovered from the knowledge of the time evolutions of

the mass and the coupling to matter since before BBN.

B. Tomography

The previous reconstruction mapping gives a one-to-one

correspondence between the scale factor a and the value of

the field�ðaÞ in the cosmic background. As the scale factor

is in a one-to-one correspondence with the matter energy

density �mðaÞ, we have obtained a mapping �m ! �ð�mÞ
defined using the time evolution of mðaÞ and �ðaÞ only.
Given these evolutions, one can reconstruct the dynamics of

the scalar field for densities ranging from cosmological to

Solar System values using Eqs. (109) and (111). By the

same token, the interaction potential can be reconstructed

for all values of � (and �m) of interest, from the Solar

System and Earth to the cosmological background now: a

tomography of modified gravity.

In particular, we can now state the screening condition

of modified gravity models as

Z aout

ain

�ðaÞ
am2ðaÞ�mðaÞda � �outm

2
Pl�N ; (112)

with constant matter densities �in;out ¼ �mða ¼ ain;outÞ in-
side and outside the body respectively, and where we have

defined �out � �ða ¼ aoutÞ. It is remarkable that the gravi-

tational properties of the screened models are captured by

the cosmological mass and coupling functions only.

C. Dilatons

Let us consider a first example: the dilaton models in

which the coupling function �ð�Þ vanishes for a certain

value �? of the scalar field �. On the other hand, we

assume that the potential is positive definite and is of

runaway type. It is enough to study the dynamics in the

vicinity of the field �?, where

�ð�Þ 	 A2mPlð���?Þ; (113)

from which we deduce that

ln

��������

���?

�c ��?

��������
¼ 9A2m

2
Pl�m0H

2
0

Z a

aini

da

a4m2ðaÞ ; (114)

and therefore

j�ð�Þj ¼ j�ð�cÞj exp
�

9A2m
2
Pl�m0H

2
0

Z a

aini

da

a4m2ðaÞ

�

:

(115)

In particular, we find the relation between the coupling at

the initial time and other cosmological times.

The initial coupling (taken at aini < aBBN) is the same as

in dense matter on Earth, as long as the field minimizes its

effective potential in a dense environment, and it is related

to the cosmological value of � today, �ð�0Þ, by

j�ð�0Þj ¼ j�ð�cÞj exp
�

9A2m
2
Pl�m0H

2
0

Z 1

aini

da

a4m2ðaÞ

�

:

(116)

It is possible to have a very small coupling in dense matter

j�ð�cÞj � 1 for any value of the coupling on cosmologi-

cal scales j�ð�0Þj provided that A2 > 0 and that the time

variation of mðaÞ is slow and does not compensate for the

1=a4 divergence in the integrand. In this situation, the

coupling function � converges exponentially fast towards

zero: this is the Damour-Polyakov mechanism [8]. The

fact that A2 > 0 guarantees that the minimum of the cou-

pling function is stable and becomes the minimum of the

effective potential which attracts the scalar field in the long

time regime. If A2 < 0, the effect of the coupling is desta-

bilizing and implies that � diverges exponentially fast

away from �?.

Alternatively, a smooth variation of the coupling func-

tion to matter in the cosmological background and there-

fore interesting consequences for the large-scale structure

can be achieved when the evolution of the mass of the

scalar field compensates for the 1=a4 factor in the radiation
era and evolves in the matter era. This is obtained for

models with

m2ðaÞ ¼ 3A2H
2ðaÞm2

Pl: (117)

Indeed,HðaÞ � a�2 in the radiation era, which implies that

the time variation of � between BBN and matter-radiation

equality is

�ð�Þ ¼ �ð�cÞ exp
�

3
�m0

�r0

ða� ainiÞ
�

; (118)

and in the matter dominated era

�ð�Þ ¼ �ð�eqÞ
�
a

aeq

�
3

¼ �ð�eqÞ
�mðaeqÞ
�mðaÞ

; (119)

where a subscript eq denotes the value of a quantity at

the matter-radiation equality. This is the behavior of the

dilaton models we have already analyzed gravitationally

in § II B 2.
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D. Symmetron

In the symmetron models the coupling to matter van-

ishes identically in dense regions or at redshifts z > z?,
while a larger coupling is obtained after a transition at a

redshift z? and in the low-matter-density regions. This can

be obtained by choosing

�ðaÞ ¼ �?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�
a?
a

�
3

s

; (120)

for z < z? and � ¼ 0, z > z?. Similarly we choose

mðaÞ ¼ m?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�
a?
a

�
3

s

: (121)

Using the reconstruction mapping, it is straightforward to

find that

�ðaÞ ¼ �?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�
a?
a

�
3

s

; (122)

for z < z? and � ¼ 0 before. The potential for z < z?
as a function of a can then be reconstructed, using the

technique introduced above, as

VðaÞ ¼ V0 þ
�2

?�
2
?

2m2
?m

2
Pl

��
a?
a

�
6

� 1

�

; (123)

where

�? ¼ �m0

a3?
; (124)

is the matter density at the transition between �ðaÞ ¼ 0
and �ðaÞ> 0. The potential as a function of � is then

Vð�Þ ¼ V0 þ


4
�4 ��2

2
�2; (125)

where

�? ¼ 2�?�?

m2
?mPl

; (126)

and

m? ¼
ffiffiffi

2
p

�;  ¼ �2

�2
?

; (127)

together with

�ð�Þ ¼ �?

�?

�: (128)

This completes the reconstruction of the particular sym-

metron model presented in [16] from mðaÞ and �ðaÞ.

E. Generalized symmetrons

With the parametrization developed in this paper it is

easy to create new models (in a more intuitive way than

starting with the Lagrangian) by changing the mass and

coupling functions. Here we give a simple example by

generalizing the symmetron models.

We start by generalizing the coupling function Eq. (120)

�ðaÞ ¼ �?

�

1�
�
a?
a

�
3
�
1=q

; (129)

for z < z? and � ¼ 0 for z > z?. Similarly we choose

mðaÞ ¼ m?

�

1�
�
a?
a

�
3
�
1=p

; (130)

where the field evolves as

�ðaÞ ¼ �?

�

1�
�
a?
a

�
3
�
1=ðm�nÞ

; (131)

where we have defined

m ¼ 2ðp� qþ pqÞ
p� 2qþ pq

; n ¼ 2p� 2qþ pq

p� 2qþ pq
; (132)

and where

�? ¼ ðm� nÞ�?�?

m2
?mPl

: (133)

Eventually we find

Vð�Þ ¼ V0 þ
ðm� nÞ�2

?�
2
?

m2
?m

2
Pl

�
1

m

�
�

��

�
m
� 1

n

�
�

��

�
n
�

(134)

and

�ð�Þ ¼ �?

�
�

�?

�
n�1

: (135)

The indices m and n should be taken to be even integers to

keep the potential symmetric around � ¼ 0. The standard
symmetron corresponds to the choice m=2 ¼ n ¼ 2.
We can now show explicitly that this generalized sym-

metron model has the screening property as we did for

the original symmetron model in § II B 2. Let us consider

a spherically dense body of density �c and radius R
embedded in a homogeneous background. The field profile

inside the body is

� ¼ �S

sinhmSr

mSr
; r < R (136)

where

m2
S ’

�
d�ð�Þ
d�

�

S

�c

mPl

¼ m2
?

n� 1

m� n

�c

�?

�
�S

�?

�
n�2

(137)

is the scalar field mass at r ¼ 0,�S the corresponding field

value and �? is as in the symmetron model the critical

matter density when the transition of the minimum of

Veffð�Þ from � ¼ 0 to � ¼ ��? takes place in the cos-

mological background.

The field outside the body, on scales shorter than the

large range m�1
? , is
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� ¼ �� þ
D

r
; r > R (138)

Matching at r ¼ R gives us the solution

�S coshðmSRÞ ¼ �? (139)

D ¼ �?R

�
tanhðmSRÞ

mSR
� 1

�

(140)

The first condition, which determines �S, can be written

�S

�?

cosh

�
ffiffiffiffi
�

p �
�S

�?

�
n=2�1

�

¼ 1 (141)

where � ¼ n�1
m�n

�c

�?
ðm?RÞ2. We can change it into a simple

equation for mSR

ðmSRÞ2coshn�2ðmSRÞ ¼ � (142)

From these equations we see that when � � 1 we get

�S 	 0, mSR � 1 and therefore D 	 ��?R. Note that

if n > 2 the mass vanishes at � ¼ 0; however, this is not a
problem for the screening mechanism. Even though a large

� pushes the field down towards � ¼ 0, mS is still an

increasing function of � according to Eq. (142).

The fifth force on a test mass outside the body is found to

be screened as long as

j�c ��1j � 2mPl���N (143)

where �c ¼ �S 	 0 and �1 ¼ �?. This condition is

equivalent to � � 1 and shows that the screening property
is present in this model.

Comparing the case n ¼ 2 with n > 2 we find that even

though �S=�? is larger in the latter case, the coupling

�ð�SÞ is smaller as long as we have screening. This means

that the force between two test masses in a dense environ-

ment is more screened for larger n. Local constraints

for the generalized symmetrons are therefore satisfied for

(at least) the same range as the standard symmetron:

m0=H0 * 103.

IV. RECONSTRUCTING fðRÞ MODELS

A. Gravity tests and chameleons

Consider now the important case of a nonvanishing

coupling function �ðaÞ. Defining �ðaÞ ¼ �0gðaÞ and

m ¼ m0fðaÞ, we find that

���c

mPl

¼ 9�0�m0

H2
0

m2
0

Z a

aini

da
gðaÞ

a4f2ðaÞ ; (144)

which allows one to test the screening properties of these

models.

Let us first consider the Solar System tests. Evaluating

Eq. (144) in the Galactic background, we find that8

�gal ��c

mPl

¼ 9�0�m0

H2
0

m2
0

Z agal

aini

da
gðaÞ

a4f2ðaÞ ; (145)

where agal 	 10�2 is the scale factor when the matter

density in the cosmological background equals the

Galactic density �gal 	 106�c. Defining

�R

R
¼ �gal ��c

6mPl�c��
; (146)

where R is the radius of a spherical body, the modification

of gravity in the Solar System has a strength

2�gal�c

3�R�
R�

: (147)

In this expression �gal is the value of the coupling function

�ð�Þ in the Galactic background, �� is the value of the

Solar Newtonian potential (�� � 10�6) and �c is the cou-

pling inside a dense body. The magnitude should be less

than 10�5 to comply with the Cassini bound in the Solar

System [47]. This condition is independent of �c and reads

�0�gal

Z agal

aini

da
gðaÞ

a4f2ðaÞ & 10�5
m2

0

9�m0H
2
0

��: (148)

The integral

I �
Z agal

aini

da
gðaÞ

a4f2ðaÞ ; (149)

is potentially divergent for small values of aini � 10�10.

Hence we must impose that fðaÞ2=gðaÞ compensates the

1=a4 divergence in the integrand. As mentioned above, we

have assumed that galaxies are screened to minimize the

disruption of their dynamics, although the necessity of

this condition should be ascertained using N-body simula-

tions [30]. Enforcing the screening condition imposes

j�gal ��0j & 6�0mPl�gal; (150)

in which the Galactic Newtonian potential is �gal � 10�6

and

�0 ��gal

mPl

¼ 9�0�m0

H2
0

m2
0

Z 1

agal

da
gðaÞ

a4f2ðaÞ : (151)

A slightly stronger bound is obtained from the Lunar

Ranging experiment [46] with the 10�5 on the right-hand

side of Eq. (148) replaced by 10�7.

Strong constraints can also be obtained from laboratory

experiments. Using the fact that the initial matter density at

zini � 1010 is roughly the same as that in a typical test mass

in the laboratory, gravity is not modified provided test

bodies are screened, i.e.,

j�lab ��cj & 2�cmPl�lab; (152)

where�lab � 10�27 for typical test bodies in cavity experi-

ments of size L, and �lab ¼ �ðalabÞ is determined by

mðalabÞ � 1=L (see the Appendix for more details).

8Again, here for simplicity we have assumed that the scalar
field minimizes Veffð�Þ in the Galactic background. While this is
true for a certain parameter space, in general it should be tested
against numerical simulations.
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B. fðRÞ Gravity reconstruction

Viable fðRÞ models are nothing but chameleons [31]

with a constant value of the coupling function �ð�Þ ¼
1=

ffiffiffi

6
p

. We have already described the background dynam-

ics of these models. Here we shall derive the mapping

between the evolution of the scalar field mass mðaÞ and
the function fðRÞ for curvature values ranging from the

ones in dense bodies to cosmological ones. These models

are equivalent to chameleon models where the potential is

given by9

Vð�Þ ¼ m2
Pl

RfR � f

2f2R
(153)

in which fR ¼ df=dR. The mapping between R and � is

given by

fR ¼ exp

�

�2�
�

mPl

�

: (154)

Given the mass function mðaÞ, we have

�ðaÞ ¼ 9��m0H
2
0mPl

Z a

aini

da

a4m2ðaÞ þ�c; (155)

and

V ¼ V0 � 3
Z a

aini

�2

am2ðaÞ
�2
mðaÞ
m2

Pl

da: (156)

We can reconstruct RðaÞ using the fact that

Rð�Þ ¼ �eð2�ð�=mPlÞÞ 1

�mPl

d

d�
½eð�4�ð�=mPlÞÞVð�Þ�;

(157)

and fðRÞ using

fðRÞ ¼ Rð�Þeð�2�ð�=mPlÞÞ � 2

m2
Pl

eð�4�ð�=mPlÞÞVð�Þ; (158)

which is equivalent to

fðRÞ ¼ 2

m2
Pl

eð�4�ð�=mPlÞÞVð�Þ � 1

�mPl

eð�4�ð�=mPlÞÞ dV

d�
;

(159)

once we have obtained Vð�Þ from the above implicit

parametrization.

When ��=mPl � 1 as required from the BBN con-

straints, the above equations can be simplified and read

fðRÞ ¼ R� 2
Vð�Þ
m2

Pl

(160)

where

Rð�Þ ¼ � 1

�mPl

dV

d�
þ 4

m2
Pl

Vð�Þ: (161)

This is the parametric reconstruction mapping of fðRÞ
models.

C. Large curvature fðRÞ models

We can apply these results to the case with m ¼ m0a
�r

leading to models where

���c

mPl

¼ 9�m0�H
2
0

ð2r� 3Þm2
0

a2r�3
ini

��
a

aini

�
2r�3

� 1

�

; (162)

which reduces to

���c

mPl

¼ 9�m0�H
2
0

ð2r� 3Þm2
0

a2r�3 (163)

at late times. Similarly we have

VðaÞ ¼ V0 �
3�2�2

m0

2ðr� 3Þm2
Plm

2
0

ða2r�6 � a2r�6
ini Þ: (164)

Now for late enough times we have

V ¼ V0 � C

�
���c

mPl

�ð2ðr�3Þ=ð2r�3ÞÞ
(165)

for a constant C. Notice that for 3=2< r < 3, these models

are chameleons with an inverse power-law potential

Vð�Þ ���n with

n ¼ 2
3� r

3� 2r
: (166)

We can equivalently find that

Rð�Þ 	 2C

�m2
Pl

r� 3

2r� 3

�
���c

mPl

��ð3=ð2r�3ÞÞ
þ 4

V0

m2
Pl

:

(167)

Finally we find that

fðRÞ ¼ R� 2

m2
Pl

�

V0 þ C

�R� 4 V0

m2
Pl

R?

��n
�

; (168)

where R? ¼ 2ðr� 3ÞC=½ð2r� 3Þ�m2
Pl� and

n ¼ 2

3
ðr� 3Þ: (169)

Large curvature models are defined for r > 3 here. This

completes, in this particular example, the reconstruction of

the fðRÞ models from the knowledge of the function mðaÞ.
The gravitational constraints for these models have been

fully analyzed in [5]. We have summarized these con-

straints in Fig. 1 where we see that the strongest constraints

on the range of the scalar interaction arise for r & 3, i.e.,
for inverse power-law chameleon models. For r * 3,
i.e., for large curvature fðRÞ models, the screening of the

9In the discussion of fðRÞ gravity we shall use R to denote the
Ricci scalar.
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Milky Way is a loose constraint which needs to be further

analyzed with N-body simulations.

D. Comparison with the B parametrization

The fðRÞ theories are generally parametrized using [28]

B ¼ fRR
fR

H
dR

dH
; (170)

and fR � 1 now. As �=mPl � 1 we have that

fR � 1 ¼ �2�
�

mPl

; (171)

allowing one to reconstruct the field history entirely:

fR � fR0 ¼ 18�2�m0H
2
0

Z 1

a

1

a4m2ðaÞ da; (172)

which depends on the mass evolution uniquely. This can be

rewritten using the B function. In fact, using

dH

H
¼ � 3

2
ð1þ wÞHdt; (173)

in an era dominated by a fluid of equation of state w, we
find that

B ¼ � fRR
fR

2

3ð1þ wÞ
_R

H
: (174)

With fR ¼ eð�2�ð�=mPlÞÞ we have

fRR
dR

dt
¼ �2�

fR
mPl

d�

dt
(175)

and therefore

B ¼ 4�

3ð1þ wÞmPl

d�

Hdt
; (176)

and using the minimum equation we get

B ¼ 6�2

1þ w
�m

H2

m2
: (177)

Because � ¼ 1=
ffiffiffi

6
p

, in the matter dominated era this gives

B ¼ �m

H2

m2
; (178)

which is completely determined by mðaÞ. Hence we find

that

fR � fR0 ¼ 3
Z 1

a

BðaÞ
a

da: (179)

The knowledge of BðaÞ and fR0 determines the background

evolution in the fðRÞ gravity models in a completely

equivalent way to the mðaÞ parametrization.

V. GROWTH OF LARGE-SCALE STRUCTURE

We have shown that the nonlinear structure of the

screened models can be reconstructed from the knowledge

of the mass and coupling functions. These functions are

time dependent only. In particular, we have seen that this

allows one to fully analyze the gravitational tests and the

cosmological background evolution. Moreover we have

shown that the cosmological dynamics typically is indis-

tinguishable from a�CDMmodel at the background level.

Here we will find that this is not the case at the perturbative

level and that the mass and coupling function allow a full

description of the linear and nonlinear regimes.

A. Linear structure growth

The linear perturbation equations for a scalar field

coupled to matter particles are listed in [51] in the cova-

riant and gauge invariant formalism. Denoting by �m the

density contrast of the pressureless matter, vm its velocity

and �� the perturbation10 in the scalar field, their evolu-

tion equations are as follows:

�00
mþa0

a
�0

m�1

2

�m

m2
Pl

a2�mþk�ðaÞm�1
Pl ðk����0vmÞ¼ 0;

(180)

FIG. 1 (color online). The constraints onm0=H0 as a function of

r for�0 ¼ 1=
ffiffiffi

6
p

and s ¼ 0. Validmodelsmust be above the (listed

from top to bottom at r ¼ 2) mauve (cavity), green (m>H), red

(solar system), brown (galaxy), light red ( _�), and cyan (mL * 1)
lines. The blue line (bottom line at r ¼ 2) gives the detectability of
effects on the CMB by the Planck satellite. The strongest con-

straints are the cavity and galactic bounds for small and large r
respectively. Models with r * 3 satisfy the constraints and can

lead to a modified gravity regime on large scales.

10Note that this is different from above, where we used �� to
denote the oscillation of the background � around �minðtÞ.
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v0
m þ a0

a
vm þ �ðaÞm�1

Pl ð�0vm � k��Þ ¼ 0; (181)

��00 þ 2
a0

a
��0 þ ½k2 þ a2m2ðaÞ���

þ �ðaÞ �m

mPl

a2�m þ k�0Z ¼ 0; (182)

where a prime denotes the derivative with respect to the

conformal time, kZ ¼ �0 in the Newtonian gauge is a

variable of the curvature perturbation which is irrelevant

for our discussion since it is multiplied by �0=mPl �
H ¼ a0=a, and we have neglected contribution from

radiation as we are focusing on late times.

Neglecting the terms proportional to �0 in the above

equations we get the following equation [10]

�00
m þ a0

a
�m � 1

2

�m

m2
Pl

a2�m

�

1þ 2�2ðaÞ
1þ a2m2ðaÞ

k2

�

¼ 0; (183)

where we have used the fact that, given that in Eq. (182) the

term k2 þ a2m2 � H 2, �� follows the solution

�� 	 � �ðaÞ
k2 þ a2m2ðaÞ

�m

mPl

a2�m; (184)

and rapidly oscillates around it (see more details below).

On very large scales, k � amðaÞ, we can see that

Eq. (183) reduces to

�00
m þ a0

a
�m � 1

2

�m

m2
Pl

a2�m ¼ 0; (185)

which governs the growth of matter density perturbation in

the �CDM model. The effect of modified gravity is in-

corporated in the second term in the brackets of Eq. (183)

and becomes significant when amðaÞ=k & 1, namely for a

light scalar field mass mðaÞ or on small length scales. For

all models shown here the cosmic microwave background

(CMB) radiation spectrum is the same as the �CDM
prediction, because the scales relevant for the CMB are

very large and therefore not affected by the modified

gravity.

In order to illustrate these considerations, we have com-

puted the linear matter power spectra PðkÞ for a number of

generalized chameleon (Fig. 2) and symmetron (Fig. 3)

models.

For the generalized chameleon models, we have used

m ¼ m0a
�r; � ¼ �0a

�s (186)

The impact of gravity tests for� ¼ 1=
ffiffiffi

6
p

, s ¼ 0 have been
given in Fig. 1. There we can see that values of r * 3 are

favored by the local gravity tests. We have varied the four

parameters in the parametrization of �ðaÞ and mðaÞ: �0, r,
s and m0. Because m0 is not dimensionless, we have

defined a new variable 
 � H0=m0 instead. We find the

following results, all as expected:

(1) increasing the coupling �0 strengthens the modifi-

cation of gravity, which causes more matter cluster-

ing, resulting in a higher matter power spectrum;

(2) r characterizes how fast the scalar field mass

decreases in time: the higher r the faster it decays.

Given thatm0 is fixed, a higher value of rmeans that

the Compton wavelength (essentially the range of

the modification to gravity) decreases faster in the

past, and therefore the modification of gravity starts

to take effect later—this would mean less matter

clustering;

(3) s specifies how fast the coupling function changes in

time: s ¼ 0 implies �ðaÞ remains constant, while

s > 0 (s < 0) means �ðaÞ decreases (increases) in

time. If �0 is fixed, the larger s is, the larger �ðaÞ
becomes at high redshifts—this would mean a

stronger modification to gravity and stronger matter

clustering;

(4) 
 specifies how heavy the scalar field is, or equiv-

alently the range of the modification of gravity:

smaller 
 means shorter Compton length of the

scalar field, and therefore weaker matter clustering.

The potential of the generalized symmetron models has

been given in Eqs. (132) and (134), but one should be

careful that the parameters p, q (or equivalent n,m) cannot

take arbitrary values. For example, �n might not be

well defined if �< 0. Here let us consider the special

case with p ¼ 2 (n ¼ 2, m ¼ 2þ q), in which the poten-

tial becomes

Vð�Þ ¼ V0 þ
q�2

?�
2
?

m2
?m

2
Pl

�
1

2þ q

�
�

��

�
2þq

� 1

2

�
�

��

�
2
�

(187)

and this avoids the situation in which the scalar field

becomes massless at � ¼ 0. Furthermore, choosing

q ¼ 2; 4; 6; � � � not only ensures that �2þq is well defined

for any value of �, but also makes the potential symmetric

about � ¼ 0, as in the original symmetron model. Finally,

with p ¼ 2 another property of the original symmetron

model, that �ð�Þ / �, is preserved as well.

Again, the results in Fig. 3 are as expected:

(1) increasing a? implies that the modification of grav-

ity starts to take effect at a later time, and this will

weaken the matter clustering;

(2) increasing �? increases the coupling strength over-

all, and leads to stronger matter clustering;

(3) increasing q increases �ðaÞ for a > a? and causes

stronger structure growth;

(4) decreasing 
, as in the chameleon case, decreases

the range of the modification of gravity, and there-

fore leads to less matter clustering.

Before we finish this subsection, let us come back to the

evolution of the scalar field perturbation ��. As explained

above, an analytic approximation to this can be obtained in

Eq. (184). However, as for the background evolution,
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where � oscillates quickly around �minðtÞ, we may expect

that the true value of �� oscillates around the analytic

solution as well. This is confirmed in Fig. 4.

In the model shown in Fig. 4 we have chosen r ¼ 3:0.
Obviously, the larger r is, the larger the scalar field mass

mðaÞ becomes at early times. A rapid decrease of mðaÞ
would mean that the effective potential for �� changes its

steepness very quickly. Suppose the oscillation of �� has

some initial kinetic energy, then as the effective potential

becomes less steep the amplitude of the oscillations in-

creases since the kinetic energy does not disappear quickly.

Consequently, if we increase r further we get even stronger
oscillations and if, in contrast, we decrease r then the

oscillations become weaker. We have checked explicitly

that for r ¼ 1:0 there is essentially no oscillation.

At late times H0=m0 ¼ 
� 10�3, which implies that

the period of the oscillation is roughly 10�3 the Hubble

time, and is much longer than the typical time scales for

human observations. As a result, one cannot average ��
over several periods to get h��i. Indeed, as the amplitude

of oscillation in Fig. 4 is bigger than the analytic solution

of �� in Eq. (184), the value of �� one observes at a given

time is rather random and could be far from the one given

in Eq. (184). This is the case for the fðRÞ gravity model in

[30], where r ¼ 4:5.
Whilst this seems to be a problem, this is not really the

case. Indeed in the Solar System the matter density is so

high that the oscillation is faster than it is in the cosmo-

logical background, and we actually observe the averaged

value h��i. On linear scales, as �� oscillates, overshoot-

ing and undershooting the value given in Eq. (184), we

have checked by replacing the numerical solution of ��
by the analytical formula given in Eq. (184) that we

obtain identical power spectra PðkÞ in the two approaches.

FIG. 2. The relative difference of the matter power spectrum PðkÞ in the chameleon model from that in the �CDM model with

exactly the same background expansion history, initial conditions and physical parameters. Upper left panel: The dependence of the

result on the modified gravity parameter �0. Upper right panel: The dependence of the result on the parameter r. Lower left panel: The
dependence of the result on the parameter s. Lower right panel: The dependence of the result on the parameter 
 � H0=m0.
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Hence the mean value solution Eq. (184) gives a very

good description of the statistical properties of linear

perturbations.

B. The Jordan frame picture

In this section we compare our results with a simple

and effective way of parametrizing linear perturbations

which has been used in the literature in the past few years

[38–45] (other interesting and more general approaches

for the linear regime include the parametrized post-

Friedmann framework of [36,37] and the fully covariant

parametrization of [52–54]). Such a way of parametrizing

any modification of gravity utilizes two arbitrary func-

tions �ðk; aÞ and �ðk; aÞ through the (modified) Poisson

equation

� k2� ¼ 4	�ðk; aÞGNa
2��m; (188)

and the slip relation

� ¼ �ðk; aÞ�: (189)

HereGN is the bare Newton constant, and� and� are the

two gravitational potentials in the Newtonian gauge:

d ~s2 ¼ �a2ð1þ 2�Þd�2 þ a2ð1� 2�Þdx2; (190)

in which ð�; xÞ are the conformal time and comoving

coordinates.

So far we have focused on the Einstein frame. In

the Jordan frame as described by the line element above,

the perturbative dynamics can be described using two

Newtonian potentials where we have the relation

FIG. 3. The relative difference of the matter power spectrum PðkÞ in generalized symmetron models from that in the �CDM model

with exactly the same background expansion history, initial conditions and physical parameters. Upper left panel: The dependence of

the result on the parameter a? (the scale factor value at which the symmetry breaking of the effective potential happens). Upper right

panel: The dependence of the result on the modified gravity parameter �?. Lower left panel: The dependence of the result on the

parameter q. Lower right panel: The dependence of the result on the parameter 
 � H0=m?. As an example we have chosen p ¼ 2.
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d ~s2 ¼ A2ð�Þds2; (191)

and ds2 is the line element in the Einstein frame expressed

in the Newtonian gauge. Expanding in perturbation around

a background value with A½�ðtÞ� 	 1, we can relate these

two potentials to the Einstein frame Newton potential

� ¼ �N þ �
��

mPl

; � ¼ �N � �
��

mPl

: (192)

Hence we see that in the Jordan frame the two Newtonian

potentials are not equal, a fact which can be interpreted as

resulting from the existence of a nonanisotropic stress

contribution coming from the scalar field. It is useful to

define

�ðk; aÞ ¼ 2�2

1þ m2a2

k2

: (193)

Using the definitions in Eq. (192), the analytical approxi-

mation for �� in Eq. (184) and the Poisson equation

� k2�N ¼ 1

2

�m

m2
Pl

a2�m; (194)

it can be derived easily that

�ðk; aÞ � �

�
¼ 1� �ðk; aÞ

1þ �ðk; aÞ ; �ðk; aÞ ¼ 1þ �ðk; aÞ:

(195)

These results are valid for all the models which can be

described by a field tracking the minimum of the effective

potential since before BBN. More precisely we find that

�ðk; aÞ ¼ ð1þ 2�2Þk2 þm2a2

k2 þm2a2
;

�ðk; aÞ ¼ ð1� 2�2Þk2 þm2a2

ð1þ 2�2Þk2 þm2a2
:

(196)

These are closely related to the popular parametrization of

modified gravity used in the literature. Here they are valid

for any model of modified gravity at the linear level of

cosmological perturbations as long as the background

cosmology is described by a scalar field slowly evolving

in time and following the time dependent minimum of the

effective potential where m2 � H2.

As a numerical illustration, in Fig. 5 we have compared

the function �ða; kÞ calculated using three different

methods: (1) the full numerical solution as shown by the

black solid curve, (2) the value obtained by using the

definitions in Eq. (192), the analytical approximation for

�� in Eq. (184) and �N solved from the Poisson equation

numerically (the red dashed curve) and (3) Eq. (196) as

shown by the blue dotted curve. We can see that the latter

two agree with each other very well, showing that the

parametrization given in Eq. (196) works very well in

practice and describes the statistical properties of linear

perturbations.

The full numerical solution, however, again shows the

oscillating behavior, but the oscillation always centers

around the averaged value defined by the previous formu-

las. As discussed earlier, over many oscillations there will

be a cancellation and the net effect on a statistical observ-

able today is the same for all three curves.

FIG. 4 (color online). An illustration of the time evolution of

the scalar field perturbation ��. The black solid curve is the

numerical solution while the green dashed curve is the analytical

approximation given in Eq. (184). The results here are for

k ¼ 1 hMpc�1 but the qualitative feature remains for other

values of k. The modified gravity parameters are shown beside

the curves.

FIG. 5 (color online). The time evolution of �ðk; aÞ for a

chosen value of k ¼ 0:1 hMpc�1 as an illustration. The black

solid is the full numerical solution, the red dashed curve is

obtained using the numerical value of �N using the analytical

solution of �� given in Eq. (184), while the blue solid curve is

Eq. (196). The modified gravity parameters are shown beside the

curves.
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C. fðRÞ gravity in the Jordan frame

Let us concentrate now on the case of fðRÞ gravity. The
perturbations are then determined by

�ðk; aÞ ¼
4
3
k2 þm2a2

k2 þm2a2
; �ðk; aÞ ¼

2
3
k2 þm2a2

4
3
k2 þm2a2

:

(197)

For large curvature models with m ¼ m0a
�r, this

becomes

�ðk; aÞ ¼
4
3

k2

m2
0

a3nþ4 þ 1

k2

m2
0

a3nþ4 þ 1
; �ðk; aÞ ¼

2
3

k2

m2
0

a3nþ4 þ 1

4
3

k2

m2
0

a3nþ4 þ 1
:

(198)

When n ¼ 2
3
ðr� 3Þ � 1, we retrieve the phenomenologi-

cal parametrization [40]

�ðk; aÞ 	
4
3

k2

m2
0

a4 þ 1

k2

m2
0

a4 þ 1
; �ðk; aÞ ¼

2
3

k2

m2
0

a4 þ 1

4
3

k2

m2
0

a4 þ 1
:

(199)

Our parametrization in Eq. (196) covers all the possible

fðRÞ models.

D. Nonlinear effects

Matter clustering on galactic and cluster scales is an

important probe of modified gravity. The nonlinearity in

both the structure formation process and the dynamics of

the scalar field for scales k * 0:1 hMpc�1 require full

numerical simulations [55,56].

The �ðaÞ, mðaÞ parametrization can completely specify

the nonlinear dynamics of � with two temporal functions.

Indeed, as we have seen above, one can reconstruct the

potential Vð�Þ and the coupling function together with the
background evolution �ðaÞ. Then one can study the non-

linear evolution of the scalar field perturbation which, in

the quasistatic limit, is governed by

r2� ¼
�

�ð�Þ �m

mPl

� �ð ��Þ ��m

mPl

�

þ dVð�Þ
d�

� dVð ��Þ
d�

;

(200)

where the overbar means the background value.

One can easily obtain dVð�Þ=d� analytically or numeri-

cally, and this can be used to solve the quasistatic dynamics

numerically. An advantage is that temporal functionsmðaÞ,
�ðaÞ completely specify the dynamics of �, in particular

its spatial configuration, and there is no need for a k-space
parametrization.

On linear scales, this is equivalent to the Jordan-frame

description with the two spatially dependent functions

�ðk; aÞ and �ðk; aÞ being defined by �ðk; aÞ which depends
on the two functions mðaÞ and �ðaÞ, as given in Eq. (196).

But in practice, working with two temporal functions is

much more direct. Furthermore, the parametrization

described in Eq. (196) fails to faithfully describe the non-

linear effects or the environmental dependence. In essence,

by going from mðaÞ and �ðaÞ to �ðk; aÞ and �ðk; aÞ, one
not only introduces spatial dependence but also loses the

ability to describe nonlinear structure formation: in this

sense, we may describe the approach using �ðk; aÞ and

�ðk; aÞ as the linear parametrization of structure formation

while mðaÞ and �ðaÞ provide a fully nonlinear parametri-
zation of modified gravity.11

Past experience has shown that in modified gravity [e.g.,

chameleon and fðRÞ] models, nonlinear effects become

important as soon as the linear perturbation result deviates

from the corresponding �CDM prediction. This empha-

sizes the importance of using full numerical simulations

in the study of these models. However, the full numerical

simulations are generally very time and resource-

consuming, and are therefore left for future work.

VI. VARIATION OF CONSTANTS

We have seen that the background evolution of the scalar

field is specified by the time dependent mass and coupling

functions. As the scalar field evolves, the particle masses

and the gauge coupling constants change in time too. The

time variation of masses and gauge couplings is tightly

constrained by laboratory experiments [57]. In this section,

we analyze the time drift of the fine structure constant and

the electron to proton mass ratio.

A. The fine structure constant

The scalar field also has an effect on gauge couplings

and particle masses. The fermion masses are given by

mFð�Þ ¼ Að�Þmbare; (201)

where mbare is the bare mass in the Lagrangian.

Meanwhile, quantum effects such as the presence of

heavy fermions lead to the potential coupling of � to

photons [58]

Sgauge ¼ � 1

4g2bare

Z

d4x
ffiffiffiffiffiffiffi�g

p
BFð�ÞF��F

��; (202)

where gbare is the bare coupling constant and

BFð�Þ ¼ 1þ ��

�

mPl

þ . . . : (203)

The scalar coupling to the electromagnetic field would lead

to a dependence of the fine structure constant on � as

11Our parametrization also provides a clear characterization of
the class of physical models (namely a scalar field coupled to
matter) considered here, which is important in parametrizing
modified gravity [54], and not automatically incorporated in the
ð�;�Þ parametrization.
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1

�
¼ 1

�bare

BFð�Þ; (204)

implying that

_�

�
	 ���

_�

mPl

(205)

where we have assumed that ���=mPl � 1. Using the

evolution equation we find that

_�

H�
	 �9����m

H2

m2
: (206)

Hence the negative variation of the fine structure constant

in one Hubble time is related to the small ratio H=m � 1
and the couplings of � to matter and photons. The best

experimental bound on the variation of � now comes from

aluminum and mercury single-ion clocks [59]: _�
�
j0 ¼

ð�1:6� 2:3Þ � 10�17 yr�1. Taking H�1
0 � 1:5 � 1010 yr,

we get the conservative bound j _�
H�

j0 & 2 � 10�7. As a

result, the experimental bounds on the time variation of

� lead to constraints on �0��0 as �0��0 & 0:8 � 10�7 m2
0

H2
0

.

For models with �0 ¼ Oð1Þ, �m0 � 0:25 and m0=H0 	
103 where effects on large-scale structure are present,

��0 & 0:1, which is a much tighter bound than present

experimental ones ��0 & 1011 [60].

The time evolution in the past is also particularly inter-

esting. For symmetron models, we find that the time varia-

tion of � is

_�

H�
	 �9�?���m0

�
H0

m?

�
2 1

a3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ða?
a
Þ3

q : (207)

Here, the time variation of � increases as one reaches the

transition a?. This is a large variation which may happen in

the recent past of the Universe and may have observable

consequences in the emission lines of distant objects.

It should however be noted that even though _�=� can be

very large, the relative difference of � between Earth and

some other sparser place in the Universe is constrained to

be less than

��������

��

�

��������
<
�?��

mPl

¼ 3�?���m0

�
H0

m?

�
2 �?

�m0

(208)

If we instead consider a quadratic coupling to photons,

BFð�Þ ¼ 1þ A
�
2

2
�2, we find

��������

��

�

��������
<A�

2

�2
?

2
¼ 3�?���m0

�
H0

m?

�
2 �?

�m0

(209)

where �� ¼ �A�
2=A2 ¼ �?mPlA

�
2 .

Interestingly, for both cases and for our fiducial parame-

ter values m? � 103H0, �? � �m0 and �� �� ¼ Oð1Þ
this term is of the same order as the claimed variation of

� reported in [61].

B. The variation of masses

Fundamental fermions such as the electrons have a

universal mass dependence mF ¼ Að�Þmbare, implying

that

_mF

HmF
¼ 9�2�m

H2

m2
: (210)

Nucleons such as the proton have a mass given by the

phenomenological formula

mp ¼ CQCD�QCD þ bumu þ bdmd þ Cp�; (211)

where �QCD � 217 MeV is the QCD scale, bu þ bd � 6,

bu�bd�0:5, CQCD � 5:2, mbare
u �5MeV, mbare

d �10MeV

and Cp�bare � 0:62 MeV. Assuming conservatively that

�QCD is scalar independent, we get

_mp

Hmp
	 9�m�

H2

m2

�
bum

bare
u þ bdm

bare
d

mp

�� Cp�bare

mp

��

�

:

(212)

It is particularly important to study the variation of

� ¼ me

mp

(213)

from which we find that its time variation is positive for

modified gravity models:

_�

�
	 9�m�

H2

m2

�

�þ Cp�bare

mp

��

�

: (214)

The current experimental constraint is _�
�
j0 ¼ ð�3:8�

5:6Þ10�14 yr�1 which yields the upper bound on �0: �
2
0 &

10�5 m2
0

H2
0

. For �0 ¼ Oð1Þ, this entails that m0=H0 * 102:5.

Again for symmetron models, the electron to proton mass

ratio would vary rapidly in time around the transition time

a?. It would be interesting to study if such a variation could
have relevant effects on the physics of distant objects.

VII. CONCLUSION

We have developed a novel parametrization of modified

gravity models first presented in [5]. Starting with the time-

evolution of the mass and the matter coupling of a scalar

field in the cosmological background, we have been able to

reverse engineer the complete dynamics of these models in

a simple way.

We have applied these results to well-known modified

gravity models: chameleons, fðRÞ gravity, dilatons and

symmetrons. In each case, we have explicitly given the

mapping and the full reconstruction. We have also shown

how one can apply local constraints using this formalism

and then use it to make predictions for linear cosmological

perturbations.

New classes of models can be engineered in a

more intuitive way than starting from a Lagrangian. The
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Lagrangian itself can be completely reconstructed. One

only needs to specify two functions whose physical mean-

ing is easily grasped: namely the mass (the inverse range of

the fifth force) and the coupling to matter.

The real strength of this approach compared to existing

parametrizations in the literature is that we can reconstruct

the whole theory at the linear and nonlinear levels and

be sure that it corresponds to a concrete physical model

defined via a Lagrangian. This effectively supersedes ex-

isting parametrizations of modified gravity with a screen-

ing mechanism by being able to make predictions for

nonlinear clustering of matter via N-body simulations.

This will be the subject of future work.
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APPENDIX: THE CAVITY CONSTRAINT

In this Appendix, we will explicitly develop the calcu-

lation leading to the cavity constraint for chameleon and

fðRÞ models.

Consider a cavity of radius L with a residual density

�cav � �c where �c is the density of the bore surround-

ing the cavity. The field inside the cavity is �cav and

deviates slightly from this value across the cavity.

Expanding the effective potential around �cav and putting

�� ¼ ���cav, we have

1

r2
d

dr

�

r2
d

dr
��

�

�m2
cav�� ¼ Veff;�ð�cavÞ (A1)

where mcav is the scalar field mass inside the cavity and

Veff;� � dVeffð�Þ=d� is nonzero unless �cav minimizes

the effective potential. Inside the cavity the solution is

�� ¼ A
sinhðmcavrÞ

r
� Veff;�ð�cavÞ

m2
cav

; (A2)

outside the cavity we have

� ¼ �c þ B
e�mcr

r
; (A3)

where A, B are constants of integral, �c is the minimum of

the effective potential outside the cavity andmc the mass at

that minimum. Matching at r ¼ L, we find that

B ¼ emcL

1þmcL
½sinhðmcavLÞ �mcavL�A; (A4)

and

A

�
mc

1þmcL
sinhðmcavLÞ þ

mcav

1þmcL

�

¼ �c ��cav þ
Veff;�ð�cavÞ

m2
cav

: (A5)

Evaluating the solution at the origin and putting

��ðr ¼ 0Þ ¼ 0 we have

A ¼ Veff;�ð�cavÞ
m3

cav

: (A6)

This leads to

1þ sinhðmcavLÞ
mcavL

¼ � �cavm
2
cav

Veff;�ð�cavÞ
; (A7)

where we have used mcL � 1.
For potentials V � 1=�n and as long as �cav is much

less than the effective minimum in the cavity we have

sinhðmcavLÞ
mcavL

¼ n; (A8)

which implies that

mcavL ¼ Oð1Þ; (A9)

where mcav is dominated by the potential term.

[1] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.

Phys. D 15, 1753 (2006).

[2] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.

Rep. 513, 1 (2012).

[3] S. Weinberg and E. Witten, Phys. Lett. 96B, 59 (1980).

[4] J. Khoury, arXiv:1011.5909.

[5] P. Brax, A.-C. Davis, and B. Li, arXiv:1111.6613.

[6] P. Brax, C. van de Bruck, A. C. Davis, and D. J. Shaw,

Phys. Rev. D 82, 063519 (2010).

[7] P. Brax, C. van de Bruck, A.-C. Davis, B. Li, and

D. J. Shaw, Phys. Rev. D 83, 104026 (2011).

[8] T. Damour and A.M. Polyakov, Nucl. Phys. B423, 532

(1994).

[9] J. Khoury and A. Weltman, Phys. Rev. D 69, 044206

(2004); D. F. Mota and D. J. Shaw, ibid. 75, 063501

(2007).

[10] P. Brax, C. van de Bruck, A.-C. Davis, J. Khoury, and

A. Weltman, Phys. Rev. D 70, 123518 (2004).

[11] P. Brax, C. van de Bruck, and A. C. Davis, J. Cosmol.

Astropart. Phys. 11 (2004) 004.

[12] P. Brax, C. van de Bruck, D. F. Mota, N. J. Nunes, and

H.A. Winther, Phys. Rev. D 82, 083503 (2010).

BRAX et al. PHYSICAL REVIEW D 86, 044015 (2012)

044015-22

http://dx.doi.org/10.1142/S021827180600942X
http://dx.doi.org/10.1142/S021827180600942X
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/0370-2693(80)90212-9
http://arXiv.org/abs/1011.5909
http://arXiv.org/abs/1111.6613
http://dx.doi.org/10.1103/PhysRevD.82.063519
http://dx.doi.org/10.1103/PhysRevD.83.104026
http://dx.doi.org/10.1016/0550-3213(94)90143-0
http://dx.doi.org/10.1016/0550-3213(94)90143-0
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.75.063501
http://dx.doi.org/10.1103/PhysRevD.75.063501
http://dx.doi.org/10.1103/PhysRevD.70.123518
http://dx.doi.org/10.1088/1475-7516/2004/11/004
http://dx.doi.org/10.1088/1475-7516/2004/11/004
http://dx.doi.org/10.1103/PhysRevD.82.083503


[13] R. Gannouji, B. Moraes, D. F. Mota, D. Polarski, S.

Tsujikawa, and H.A. Winther, Phys. Rev. D 82, 124006

(2010).

[14] M. Pietroni, Phys. Rev. D 72, 043535 (2005).

[15] K. A. Olive and M. Pospelov, Phys. Rev. D 77, 043524

(2008).

[16] K. Hinterbichler and J. Khoury, Phys. Rev. Lett. 104,

231301 (2010).

[17] K. Hinterbichler, J. Khoury, A. Levy, and A. Matas, Phys.

Rev. D 84, 103521 (2011).

[18] P. Brax, C. van de Bruck, A.-C. Davis, B. Li, B. Schmauch,

and D. J. Shaw, Phys. Rev. D 84, 123524 (2011).

[19] A.-C. Davis, B. Li, D. F. Mota, and H.A. Winther,

Astrophys. J. 748, 61 (2012).

[20] J. Clampitt, B. Jain, and J. Khoury, J. Cosmol. Astropart.

Phys. 01 (2012) 030.

[21] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).

[22] S.M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,

Phys. Rev. D 70, 043528 (2004).

[23] S.M. Carroll, A. de Felice, V. Duvvuri, D. A. Easson,

M. Trodden, and M. S. Turner, Phys. Rev. D 71, 063513

(2005).

[24] T. Faulkner, M. Tegmark, E. F. Bunn, and Y. Mao, Phys.

Rev. D 76, 063505 (2007).

[25] I. Navarro and K. Van Acoleyen, J. Cosmol. Astropart.

Phys. 02 (2007) 022.

[26] L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa,

Phys. Rev. D 75, 083504 (2007).

[27] S. Carloni, A. Troisi, and P. K. S. Dunsby, Gen. Relativ.

Gravit. 41, 1757 (2009).

[28] Y.-S. Song, W. Hu, and I. Sawicki, Phys. Rev. D 75,

044004 (2007).

[29] B. Li and J. D. Barrow, Phys. Rev. D 75, 084010 (2007).

[30] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).

[31] P. Brax, C. van de Bruck, A. C. Davis, and D. J. Shaw,

Phys. Rev. D 78, 104021 (2008).

[32] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).

[33] A. De Felice and S. Tsujikawa, Living Rev. Relativity 13,

3 (2010).

[34] P. Brax, C. van de Bruck, A.-C. Davis, and A.M. Green,

Phys. Lett. B 633, 441 (2006).

[35] P. Brax and A.-C. Davis, Phys. Rev. D 85, 023513 (2012).

[36] E. Bertschinger, Astrophys. J. 648, 797 (2006).

[37] W. Hu and I. Sawicki, Phys. Rev. D 76, 104043 (2007).

[38] B. Jain and P. Zhang, Phys. Rev. D 78, 063503 (2008).

[39] L. Amendola, M. Kunz, and D. Sapone, J. Cosmol.

Astropart. Phys. 04 (2008) 013.

[40] E. Bertschinger and P. Zukin, Phys. Rev. D 78, 024015

(2008).

[41] Y.-S. Song and K. Koyama, J. Cosmol. Astropart. Phys. 01

(2009) 048.

[42] R. Bean and M. Tangmatitham, Phys. Rev. D 81, 083534

(2010).

[43] S. F. Daniel, E. V. Linder, T. L. Smith, R. R. Caldwell,

A. Cooray, A. Leauthaud, and L. Lombriser, Phys.

Rev. D 81, 123508 (2010).

[44] L. Pogosian, A. Silvestri, K. Koyama, and G. Zhao, Phys.

Rev. D 81, 104023 (2010).

[45] G. Zhao, H. Li, E. V. Linder, K. Koyama, D. J. Bacon, and

X. Zhang, Phys. Rev. D 85, 123546 (2012).

[46] J. G. Williams, S. G. Turyshev, and D. Boggs,

arXiv:1203.2150.

[47] B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425,

374 (2003).

[48] E. G. Adelberger (EOT-WASH Group Collaboration),

arXiv:hep-ex/0202008.

[49] R. Pourhasan, N. Afshordi, R. B. Mann, and A. C. Davis,

J. Cosmol. Astropart. Phys. 12 (2011) 005.

[50] T. Tamaki and S. Tsujikawa, Phys. Rev. D 78, 084028

(2008).

[51] B. Li and H. Zhao, Phys. Rev. D 80, 044027 (2009).

[52] C. Skordis, Phys. Rev. D 79, 123527 (2009).

[53] P.G. Ferreira andC. Skordis, Phys.Rev.D81, 104020 (2010).

[54] J. Zuntz, T. Baker, P. G. Ferreira, and C. Skordis,

arXiv:1110.3830.

[55] B. Li and J. D. Barrow, Phys. Rev. D 83, 024007 (2011).

[56] B. Li, G. B. Zhao, R. Teyssier, and K. Koyama, J. Cosmol.

Astropart. Phys. 01 (2012) 051.

[57] F. Luo, K.A. Olive, and J.-P. Uzan, Phys. Rev. D 84,

096004 (2011).

[58] P. Brax, C. Burrage, A.-C. Davis, D. Seery, and

A. Weltman, Phys. Lett. B 699, 5 (2011).

[59] J.-P. Uzan, Living Rev. Relativity 14, 2 (2011).

[60] J. H. Steffen, A. Upadhye, A. Baumbaugh, A. S. Chou,

P. O. Mazur, R. Tomlin, A. Weltman, and W. Wester, Phys.

Rev. Lett. 105, 261803 (2010).

[61] J. K. Webb, V.V. Flambaum, C.W. Churchill, M. J.

Drinkwater, and J. D. Barrow, Phys. Rev. Lett. 82, 884

(1999).

UNIFIED DESCRIPTION OF SCREENED MODIFIED GRAVITY PHYSICAL REVIEW D 86, 044015 (2012)

044015-23

http://dx.doi.org/10.1103/PhysRevD.82.124006
http://dx.doi.org/10.1103/PhysRevD.82.124006
http://dx.doi.org/10.1103/PhysRevD.72.043535
http://dx.doi.org/10.1103/PhysRevD.77.043524
http://dx.doi.org/10.1103/PhysRevD.77.043524
http://dx.doi.org/10.1103/PhysRevLett.104.231301
http://dx.doi.org/10.1103/PhysRevLett.104.231301
http://dx.doi.org/10.1103/PhysRevD.84.103521
http://dx.doi.org/10.1103/PhysRevD.84.103521
http://dx.doi.org/10.1103/PhysRevD.84.123524
http://dx.doi.org/10.1088/0004-637X/748/1/61
http://dx.doi.org/10.1088/1475-7516/2012/01/030
http://dx.doi.org/10.1088/1475-7516/2012/01/030
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1103/PhysRevD.71.063513
http://dx.doi.org/10.1103/PhysRevD.71.063513
http://dx.doi.org/10.1103/PhysRevD.76.063505
http://dx.doi.org/10.1103/PhysRevD.76.063505
http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://dx.doi.org/10.1103/PhysRevD.75.083504
http://dx.doi.org/10.1007/s10714-008-0747-9
http://dx.doi.org/10.1007/s10714-008-0747-9
http://dx.doi.org/10.1103/PhysRevD.75.044004
http://dx.doi.org/10.1103/PhysRevD.75.044004
http://dx.doi.org/10.1103/PhysRevD.75.084010
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1103/PhysRevD.78.104021
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1016/j.physletb.2005.12.055
http://dx.doi.org/10.1103/PhysRevD.85.023513
http://dx.doi.org/10.1086/506021
http://dx.doi.org/10.1103/PhysRevD.76.104043
http://dx.doi.org/10.1103/PhysRevD.78.063503
http://dx.doi.org/10.1088/1475-7516/2008/04/013
http://dx.doi.org/10.1088/1475-7516/2008/04/013
http://dx.doi.org/10.1103/PhysRevD.78.024015
http://dx.doi.org/10.1103/PhysRevD.78.024015
http://dx.doi.org/10.1088/1475-7516/2009/01/048
http://dx.doi.org/10.1088/1475-7516/2009/01/048
http://dx.doi.org/10.1103/PhysRevD.81.083534
http://dx.doi.org/10.1103/PhysRevD.81.083534
http://dx.doi.org/10.1103/PhysRevD.81.123508
http://dx.doi.org/10.1103/PhysRevD.81.123508
http://dx.doi.org/10.1103/PhysRevD.81.104023
http://dx.doi.org/10.1103/PhysRevD.81.104023
http://dx.doi.org/10.1103/PhysRevD.85.123546
http://arXiv.org/abs/1203.2150
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1038/nature01997
http://arXiv.org/abs/hep-ex/0202008
http://dx.doi.org/10.1088/1475-7516/2011/12/005
http://dx.doi.org/10.1103/PhysRevD.78.084028
http://dx.doi.org/10.1103/PhysRevD.78.084028
http://dx.doi.org/10.1103/PhysRevD.80.044027
http://dx.doi.org/10.1103/PhysRevD.79.123527
http://dx.doi.org/10.1103/PhysRevD.81.104020
http://arXiv.org/abs/1110.3830
http://dx.doi.org/10.1103/PhysRevD.83.024007
http://dx.doi.org/10.1088/1475-7516/2012/01/051
http://dx.doi.org/10.1088/1475-7516/2012/01/051
http://dx.doi.org/10.1103/PhysRevD.84.096004
http://dx.doi.org/10.1103/PhysRevD.84.096004
http://dx.doi.org/10.1016/j.physletb.2011.03.047
http://dx.doi.org/10.1103/PhysRevLett.105.261803
http://dx.doi.org/10.1103/PhysRevLett.105.261803
http://dx.doi.org/10.1103/PhysRevLett.82.884
http://dx.doi.org/10.1103/PhysRevLett.82.884

