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The interaction of spin and intrinsic orbital angular momentum of light is observed, as evidenced by

length-dependent rotations of both spatial patterns and optical polarization in a cylindrically symmetric

isotropic optical fiber. Such rotations occur in a straight few-mode fiber when superpositions of two modes

with parallel and antiparallel orientation of spin and intrinsic orbital angular momentum (IOAM ¼ 2ℏ) are

excited, resulting from a degeneracy splitting of the propagation constants of the modes.

DOI: 10.1103/PhysRevLett.118.083601

The angular momentum of electrons, photons, and other
quantum particles can be decomposed into spin angular
momentum (SAM) and orbital angular momentum (OAM).
Spin angular momentum, or polarization for photons, is
intrinsic, i.e., independent of the chosen rotation axis.
OAM can be decomposed into intrinsic OAM (IOAM) and
extrinsic OAM (EOAM) [1–3]. EOAM is associated with
the trajectory of the centroid of a wave packet and is relative
to a chosen spatial axis, while IOAM does not depend on
the axis location, provided that the axis is oriented such that
the net transverse momentum is zero, as shown by Berry
[2]. For example, the OAM of an electronic energy
eigenstate in an atom is intrinsic, as is that of a helical
phase vortex within an electron or photon beam [4,5]. In
contrast, EOAM exists when a photon travels in a curved
path defined by a helically coiled optical fiber. Here we
present experimental evidence for the interaction of IOAM
with SAM for photons propagating in a straight few-mode
cylindrically symmetric waveguide.
Spin-orbit interaction (SOI) involves an interaction

between SAM and OAM. An example of a spin-IOAM
interaction is Russell-Saunders ~L · ~S coupling in a single-
electron atom, which splits the degeneracy of electronic
energy levels, forming the fine structure. An example of a
spin-EOAM interaction is seen in the precession of the
linear polarization vector of photons traveling in a coiled
single-mode optical fiber, wherein the photons are forced to
follow a three-dimensional path [6]. Spin-orbit interactions
are deeply connected to a geometric (Berry) phase or gauge
potential description, as shown for the intrinsic electron
case by Mathur [7] and for the extrinsic photon case by
Chiao and Wu [8] and summarized by Bliokh et al. [3].
In the case of a narrow collimated light beam guided

along a helical trajectory by many internal reflections in a
large glass cylinder [9], the situation looks analogous to a
helically coiled fiber where the light has EOAM. From a
different perspective, such a beam can also be described by

superpositions of many eigenmodes of the cylinder, each
of which carries IOAM. This highlights the contextuality
of whether OAM is considered intrinsic or extrinsic.
Concentrating on a small region of a beam with IOAM,
e.g., by passing it through an off-center aperture such that
the apertured field has net transverse momentum, produces
a beam with EOAM [1]. Nevertheless, viewing a beam as a
whole leads to a distinction between EOAM and IOAM, as
pointed out by Berry [2].
In an optical fiber made of an isotropic material and

directed along a straight-line path, the interaction between
SAMandOAMismediated by the confining refractive-index
gradient through a spin-Hall effect called the optical Magnus
effect [10]. The refractive-index gradient plays a role
analogous to the electric potential gradient’s role in the
atomic case. Conservation of light’s angular momentum
upon reflection requires corrections to the geometrical optics
that couple light’s polarization to the trajectory it traverses
(and vice versa). This is illustrated simply in a ray picture at a
sharp interface by the Imbert-Fedorov shift, in which the
centroid of a reflected circularly polarized beam is displaced
perpendicular to the plane of reflection in a direction dictated
by the polarization handedness [3,11]. Trajectories with
OAMdo not pass through the fiber axis, so this displacement
increases the longitudinal distance between reflections for
one polarization while decreasing it for the other. Such shifts
are typically subwavelength, but the many reflections light
undergoes while traveling in an optical fiber can amplify the
total effect size up to a macroscopic level.
In a straight highly multimode fiber (with a core diameter

much greater than thewavelength of guided light), a speckle
pattern is created when many modes interfere coherently.
Spin-orbit interaction gives rise to the fiber-length-
dependent rotation of speckle patterns around the fiber axis
with a positive or negative direction of rotation determined
by the handedness of the circular polarization (helicity) of
the light [12]. This phenomenon can be adequately modeled
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using a ray-tracing or trajectory approximation, highlighting
its close connection with EOAM [10].
In the few-mode regime where the core diameter and

guided wavelength are similar, diffraction effects become
important and a wave picture is preferable. In the wave
picture, trajectories are replaced conceptually by mode
distributions describing OAM. Spin-IOAM interaction splits
the degeneracy of the propagation constants (phase veloc-
ities), distinguished by parallel or antiparallel orientation of
spin and intrinsic OAM. The shift due to theMagnus effect is
along the direction of energy flow for parallel modes and
opposes the direction of energy flow for antiparallel modes.
Superpositions of split modes with differing phase velocities
manifest rotational beating effects, which take their cleanest
forms as a continual rotation of either spatial-pattern or linear-
polarization orientation along the length of the fiber.
Intermodal coupling can complicate the observation of

rotational beating effects. In dispersion-tailored fiber, inter-
modal coupling can be suppressed to allow for stable mode
propagation [13–15]. In this Letter, we utilize a dispersion-
tailored few-mode fiber to measure the interaction between
spin and intrinsic optical OAM. Our ability to excite
selectively the four modes that have two units of IOAM
allows the clean observation of the resulting rotational
beating effects. A recent theory makes the following pre-
dictions about the relation between spatial and polarization
rotations vs fiber length [16]: (i) The rotation angles should
be linear with fiber length, (ii) the spatial rotation rate should
be an integer multiple of the polarization rotation rate,
depending on the value of the IOAM, (iii) the spatial rotation
rate should be equal in magnitude and opposite in direction
for left- and right-handed circular polarizations, and (iv) for a
given IOAM value jlj > 1, the polarization rotation rate
should be equal in magnitude and opposite in direction for
left- and right-handed IOAM. We present results of an
experiment that confirms all four of these predictions,
providing strong evidence for the existence of purely intrinsic
SOI of light. We focus on the experimentally accessible
photon case, but the same model is expected to apply to
electron SOI in analogous waveguides [16].
Spin-orbit interaction of a photon propagating in a

weakly guiding cylindrically symmetric waveguide,
labeled with cylindrical coordinates ðρ;ϕ; zÞ and time t,
is described by a time-independent Schrödinger-like wave
equation, which follows from Maxwell’s equations and has

eigenvalue β2 [16,17]:

ðĤ0 þ ĤSOÞΨ ¼ β2Ψ; ð1Þ

Ĥ0 ¼ ∇2
T þ k2ðρÞ; ð2Þ

ĤSO ¼
1

2ρ

∂VðρÞ

∂ρ
L̂zŜz; ð3Þ

with Hamiltonian-like operators Ĥ0 and ĤSO, transverse

Laplacian ∇2
T , k

2ðρÞ ¼ ½nðρÞω=c�2, where c is the speed of

light in vacuum and nðρÞ is the refractive index profile,

effective potential VðρÞ ¼ ln ½n2ðρÞ�, dimensionless

z-component spin operator Ŝz, dimensionless z-component

IOAM operator L̂z, longitudinal propagation constant β,
and wave function Ψ ¼ Ψðρ;ϕÞ exp½iðβz − ωtÞ�, where the
angular frequency is ω.
The unperturbed modes of the waveguide are constructed

in an eigenbasis of IOAM and SAM by neglecting ĤSO and

solving Ĥ0Ψ
ð0Þ ¼ β2

0
Ψ

ð0Þ. Let eigenstates of the spin

operator obey Ŝzjsσi ¼ sσjsσi. The spin handedness, or
helicity, is σ ¼ �1 and s ¼ 1 for photons. We call σ ¼ þ1

left-circularly polarized (LCP) and σ ¼ −1 right-circularly

polarized (RCP). Let IOAM eigenstates obey L̂zjli ¼

ljli, with IOAM z-component operator L̂z ¼ −i∂ϕ. The

IOAM eigenvalue of L̂z is l ¼ μjlj, which has handedness
μ ¼ �1. Our fiber modes are well modeled with paraxial
light under the weak-guidance approximation, where SAM
and IOAM are separable [18] (contrast with Ref. [19]), and
the monochromatic bound modes of the waveguide are

Ψ
ð0Þ
l;m ¼ Fψ

ð0Þ
l;me

iðβ0z−ωtÞêσ

¼ Fφl;mðρÞe
ilϕeiðβ0z−ωtÞêσ; ð4Þ

where ψ
ð0Þ
l;m ¼ φl;mðρÞe

ilϕ is the transverse spatial distri-

bution, φl;mðρÞ is the radial wave function with radial

quantum number m, êσ is the unit circular polarization
vector, and F is a normalization constant. For given ω, an

unperturbed mode Ψ
ð0Þ
l;m has a propagation constant β0 that

is degenerate in the signs of l and σ.
As in an atomic spin-orbit interaction, this degeneracy

is lifted by perturbative correction. The first-order correc-
tion to the propagation constant squared is δðβ2Þ ¼

hΨð0ÞjĤSO jΨð0Þi. Let the first-order corrected propagation
constant be β1, define β1 ¼ β0 þ δβ, and note that

δðβ2Þ ¼ β2
1
− β2

0
≈ 2β0δβ, neglecting ðδβÞ2 terms. The

linearized first-order perturbative correction to the propa-
gation constant is then [16]

δβ ¼
sσl

2β0N

Z

∞

0

φ�
l;mðρÞ

∂VðρÞ

∂ρ
φl;mðρÞdρ; ð5Þ

where N ¼
R

∞

0
ρjφl;mðρÞj

2dρ is for normalization. For

fibers, the integral in Eq. (5) is known as the polarization
correction integral [20,21]. The sign of the splitting δβ is
controlled by the product σμ. We call modes with σμ ¼ þ1

parallel modes, as IOAM and SAM are cooriented, while
σμ ¼ −1 are antiparallel modes. An important caveat occurs
specifically in the case of jlj ¼ 1 (and is conspicuously
absent in the electron case where s ¼ 1=2). The two
antiparallel combinations with lþ σ ¼ 0, corresponding
to transverse electric and transverse magnetic modes, have
distinct δβ values, which complicate the effects observed
whenmode superpositions are excited [20,22,23]. Therefore,
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we study the case jlj ¼ 2. For jlj > 1, Eq. (5) predicts that
parallel and antiparallel modes have propagation constants
that differ by 2δβ as a result of spin-IOAM interaction.While
the effects of spin-EOAM interaction are avoided by using a
waveguide along a straight path as we employ here, spin-
IOAM interaction is inescapable for jlj > 0 modes.
Propagation constant splitting implies that parallel and

antiparallel modes accumulate phase at different rates as a
function of distance. Thus, coherent superpositions of
parallel and antiparallel modes exhibit rotational beating
as a function of longitudinal propagated distance z but are
stationary with monochromatic excitation and a fixed dis-
tance. There are two such beating effects (both illustrated in
Fig. 1) that occur within the fiber and allow for independent
measurements of the splitting δβ [16]. In each case, the sign
of one property, called the control property, breaks the
symmetry and sets the direction of the rotation associated

with the other property. Let ψ
ð1Þ
σ;l;m ¼ ψ

ð0Þ
l;m expð−iσμjδβjzÞ

include the propagation constant correction to themode. One
of the two forms of the rotation is orbit-controlled spin
rotation. Representing the polarization with a Jones vector in

a Cartesian basis, êσ ¼ ½1; iσ�T , the superposition of modes
with the same IOAM but opposite SAM yields

ψ
ð1Þ
þ;μjlj;mêþ þ ψ

ð1Þ
−;μjlj;mê−

¼ φl;mðρÞe
ilϕðe−iμjδβjzêþ þ eiμjδβjzê

−
Þ

¼ 2φl;mðρÞe
ilϕ

�

cosðjδβjzÞ

μ sinðjδβjzÞ

�

; ð6Þ

where the spatial profile is unchanged and the linear
polarization rotates with z, in a direction controlled by the
IOAM handedness μ, by an angle ϕ ¼ μjδ βjz. The other

form of rotation is spin-controlled orbital rotation, where the
superposition of modes with the same SAM but opposite
IOAM yields

ψ
ð1Þ
σ;þjlj;mêσ þ ψ

ð1Þ
σ;−jlj;mêσ

¼ φl;mðρÞðe
iðjljϕ−σjδβjzÞ þ e−iðjljϕ−σjδβjzÞÞêσ

¼ 2φl;mðρÞ cos

�

jlj

�

ϕ − σ

�

�

�

�

δβ

l

�

�

�

�

z

��

êσ; ð7Þ

where the polarization remains unchanged while the spatial
profile rotates with z, in the direction set by σ, by an
angle ξ ¼ σjðδβ=lÞjz.
A cylindrically symmetric optical fiber using the con-

figuration shown in Fig. 2 provides a direct test of this
theoretical model. To minimize unwanted coupling
between waveguide modes of different order, we use a
dispersion-tailored fiber with multiple index steps, in which
the jlj ¼ 2 modes have β values well separated from those
of other modes [24]. A Ti:sapphire laser running in a
continuous-wave configuration with λ ¼ 799.953 nm is
directed onto a spatial light modulator (SLM) to create
the desired transverse spatial profile, which, in turn, excites
the desired superpositions of fiber modes with an average
power of the order of 100 μW. We measure the splitting of
jlj ¼ 2 modes using all four combinations that have one
parallel and one antiparallel mode and call these super-
positions the “experimental group” input profiles. We also
measure one “control group” fiber fundamental mode,
which has l ¼ 0 and thus experiences no spin-IOAM
interaction. Modes with jlj > 2 are not supported in our
experimental fiber at accessible wavelengths. We refer to
the profiles with cosð2ϕÞ azimuthal dependence as “clover”
profiles. Input profiles and interferograms are shown in
Fig. 3. The fork patterns made by the fringes in the l ¼ �2

interferograms verify the IOAM content of the beams. The
SLM holograms and quarter-wave plate control the input
profiles and polarization without changing the sensitive
optical alignment. The holograms, shown in Sec. 1 of the
Supplemental Material [25], produce Laguerre-Gauss spa-
tial modes, which couple well into the exact fiber modes of
interest. Clover profiles are superpositions of Laguerre-
Gauss modes [see Figs. 1(c) and 1(d)]. Input clover profiles
are circularly polarized, while all other input profiles are
horizontally polarized.
The procedure to probe modal evolution along the fiber’s

longitudinal direction is to cleave short segments (∼1 cm)
off the output end of the fiber and, at each length L, excite
the input profiles and take output measurements. This
approach is complimentary to Wang et al.’s investigation
utilizing spectroscopic measurement and fiber Bragg gra-
tings to determine the magnitude of SOI splitting in fiber
without directly observing rotation dynamics [31]. The
fiber path must be kept sufficiently straight to avoid rotation
due to spin-EOAM interaction (geometric phase rotations,

FIG. 1. Superpositions of modes for observing the change of
propagation constant δβ. Color in the legend shows the phase.
(a) The same IOAM l and opposite circular polarizations (þ and
−) combine to make (b) rotating linear polarization in orbit-

controlled spin rotation. (c) The same circular polarizations but
opposite IOAM combine to make (d) a rotating four-lobed spatial
pattern in spin-controlled orbital rotation.
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discussed in Sec. 4 of the Supplemental Material [25]). The
fiber is epoxied into place at the input and rests on two
platforms topped with double-sided tape as tension relief,
and the region of the fiber after the tension relief is stripped
of its jacket prior to the experiment. After cutting the fiber
to a new length, the output is pulled into a position that
straightens the fiber, but care is taken to avoid longitudinal
strain by pulling no harder than necessary.
We report whole-beam polarization measurements as

angles on a Poincaré sphere, where ϕ is the orientation of
the major axis, θ indicates the ellipticity of the polarization,
and the degree of polarization indicates how uniform the
polarization is [32]. Section I of [25] discusses the polari-
zation measurements in more detail. Output spatial profiles
(see Fig. 4 for a summary and Sec. I of [25] for all data) are
recorded on a beam profiler and combined with a reference
beam that has a flat phase profile to probe the output beam’s
phase structure. Orientation angles ξ of clover nodal lines are
measuredmanually by rotating a cross hair along the lines in
software. The linearly polarized inputs stay well linearly
polarized ðθ ∼ 90°Þ. Measured output orientations (ϕ and ξ)
and fit lines are shown in Fig. 5.
Residual variations in θ and the degree of polarization, as

well as a spatial profile distortion and a slight oscillation of
the ϕ values of jlj ¼ 2 modes, are observed (see Sec. II of
[25]). We believe these all result from weak intermodal
coupling. Defect-mediated mode coupling favors energy
transfer between modes with similar β values [33], so we

expect coupling to be dominantly between jlj ¼ 2 modes,
which is supported by the retention of the characteristic
number (jlj ¼ 2) of nodal lines and phase singularities in
the output profiles. The retention of linearity in Fig. 5
further supports that the unwanted coupling is weak and
that spin-IOAM rotations are robust against these unwanted
perturbations.
In agreement with the four theoretical predictions in the

introduction and as shown in Fig. 5, (i) the rotations are
linear with fiber length, (ii) the slopes of the best fit lines for
spatial and polarization rotations differ by a factor of
jlj ¼ 2, and (iii,iv) to within experimental uncertainty,
the slopes of the spatial and the polarization rotations are
equal in magnitude and opposite in direction for both
control property settings (polarization or IOAM handed-
ness). This agreement indicates that, as expected, the
parallel modes are degenerate in propagation constant
and the antiparallel modes are degenerate. The average
splitting is measured to be δβ ¼ ð22.1� 0.7Þ°=cm [25].
Furthermore, the fundamental input remains horizontally
polarized, as predicted above, since it carries zero IOAM.
This observation rules out confounding rotation effects and
supports that the observed rotations are due to spin-IOAM
interaction.

FIG. 2. Experimental apparatus. The Ti:sapphire laser is configured for continuous-wave operation. BS, nonpolarizing beam splitter.
QWP, quarter-wave plate. The spatial light modulator converts a Gaussian beam to the desired profile. The inset profiles are simulated.

In measuring the fiber output beam, the reference arm is blocked to measure the profile and unblocked to measure the interferogram.

FIG. 3. Input profiles. We use a total of five input settings. We
probe spin-IOAM interaction with four inputs in the experimental
group: two circularly polarized (σ) clover profiles and two
horizontally polarized (arrowed lines) l ¼ �2 profiles. The
control group consists of a horizontally polarized Gaussian
profile, which lacks IOAM and is hypothesized to propagate
unchanged through the fiber. Right: Intensity color legend.

FIG. 4. Representative output profile pictures. Top row profiles
are at L ¼ 43.5 cm. Bottom row profiles are at L ¼ 38.4 cm.
Columns labeled with l have IOAM input profiles, while LCP
and RCP label the circular polarization of clover input profiles.
Red cross hairs on clover profiles indicate the orientation of nodal
lines for ξmeasurement, and white arrows indicate the major axis
orientation ϕ for linearly polarized modes. Width differences are
due to the slight difference in the output objective distance from
the fiber output at different lengths. Right: Intensity color legend.
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The measurement of spin-IOAM interaction characterizes
the fine structure of the propagation constant and lays the
foundation for the investigation of the simultaneous inter-
action between spin and both EOAM and IOAM, towards
precision encoding of information in the spatial distributions
of light in optical fibers [34]. Identical dynamics are expected
in analogous electron waveguide experiments, and the
present study may motivate such investigations in the future.
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