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Abstract.

A theory has been presented previously in which the geometrical structure of a real
four-dimensional space time manifold is expressed by a real orthonormal tetrad, and
the group of diffeomorphisms is replaced by a larger group. The group enlargement
was accomplished by including those transformations to anholonomic coordinates
under which conservation laws are covariant statements. Field equations have been
obtained from a variational principle which is invariant under the larger group.
These field equations imply the validity of the Einstein equations of general rela-
tivity with a stress-energy tensor that is just what one expects for the electroweak
field and associated currents. In this paper, as a first step toward quantization, a
consistent Hamiltonian for the theory is obtained. Some concluding remarks are
given concerning the need for further development of the theory. These remarks
include discussion of a possible method for extending the theory to include the
strong interaction.

1. INTRODUCTION. In Sections 1 and 2, we describe a theory in which the
classical (unquantized) gravitational and electroweak fields appear as manifesta-
tions of geometrical structure in a real four-dimensional space-time manifold. In
Section 3, we obtain the Hamiltonian for the theory as a first step toward quantizing
the theory. In Section 4, we make some concluding remarks concerning the further
development of the theory. One of these remarks suggests a method for extending
the theory to include the strong interaction. [NOTE: In several prior papers, one
of us (Pandres, 1981, 1984A, 1984B, 1995, 1998, 1999), has based the theory, not
on a manifold, but on a space in which paths, rather than points are the primary
elements. In this paper, however, we show that the theory can be based entirely on
a manifold.
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It is well known that any general relativistic metric gµν may be expressed in
terms of an orthonormal tetrad of vectors hiµ. The expression is

gµν = gijh
i
µh

j
ν (1)

where gij = gij = diag(−1, 1, 1, 1), and the summation convention has been
adopted. Indices take the values 0, 1, 2, 3, and gµν is defined by gµνgνα = δµα, where
δµα is the Kronecker delta. Latin (tetrad) indices are raised and lowered by using gij

and gij, just as Greek (space time) indices are raised and lowered by using gµν and
gµν . Partial differentiation is denoted by a comma. Covariant differentiation with
respect to the Christoffel symbol Γα

µν = 1
2
gασ (gσµ,ν +gσν ,µ −gµν ,σ ) is denoted by

a semicolon.

1.1. Motivation. We recall (Pandres 1962, 1999) an argument which is a gen-
eralization of the “elevator” argument that led Einstein from special relativity to
general relativity. The special relativistic equation of motion for a free particle is

d2xi

ds2
= 0 , (2)

where −ds2 = gijdx
idxj . Consider the image-equation of this free-particle equation

under the transformation
dxi = hiµdx

µ (3)

where the curl f i
µν = hiν ,µ −hiµ,ν is not zero. Eq. (3) establishes a one-to-one

correspondence between coordinate increments dxi and dxµ. Since hiν ,µ−hiµ,ν is
not zero, we cannot integrate Eq. (3) to get a one-to-one correspondence between

coordinates xi and xµ. However, it follows from Eq. (3) that
dxi

ds
= hiµ

dxµ

ds
. Upon

differentiating this with respect to s, using the chain rule, and multiplying by hi
α,

we see that Eq. (2) may be written

d2xα

ds2
+ hi

αhiµ,ν
dxµ

ds

dxν

ds
= 0 . (4)

We follow Eisenhart (1925) in defining Ricci rotation coefficients by γiµν = hiµ;ν =
hiµ,ν −hiσΓσ

µν . Multiplication by hi
α gives hi

αhiµ,ν = Γα
µν +γ

α
µν , and upon using

this in Eq. (4) we have

d2xα

ds2
+ Γα

µν
dxµ

ds

dxν

ds
= −γαµν

dxµ

ds

dxν

ds
. (5)

The relation γµνi = hjµγjναhi
α illustrates our general method for converting be-

tween Greek and Latin indices.
Now, the affine connection for spin in general relativity is expressed in terms

of the Ricci rotation coefficients by Γµ = 1
8
γijµ

(
γiγj − γjγi

)
+ aµI , where the γi

are the Dirac matrices of special relativity, I is the identity matrix, and aµ is an
arbitrary vector. It is well known that the spin connection contains complete infor-
mation about the electromagnetic field, and that one half of Maxwell’s equations
are identically satisfied on account of the existence of the spin connection. Further-
more, the manner in which the electromagnetic field enters the spin connection is
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in agreement with the principle of minimal electromagnetic coupling. An under-
standing of the spinor calculus in Riemann space, and the role played by the spin
connection, was gained through the work of many investigators during the decade
after Dirac’s discovery of the relativistic theory of the electron; see, e.g., Bade and
Jehle (1953) for a general review. Many of these investigators recognized the de-
scription of the electromagnetic field as part of the spin connection. An especially
lucid discussion of this has been given by Loos (1963). The subsequent unifica-
tion of the electromagnetic and weak fields by Weinberg (1967), and Salam (1968)
causes us to expect that the spin connection might also contain a description of the
weak field.

We now recall (Pandres, 1995) calculations that suggest that the electroweak field
is described by Mµνi, the “mixed symmetry” part of γµνi under the permutation
group on three symbols. One may object to using γµνi to describe the electoweak
field since γijµ is used in the spin connection. However, these geometric objects
cannot be considered to be the same since the method of converting from one to
the other is not a diffeomorphism. The method for converting between Greek and
Latin indices involves hiµ. Thus the components of γµνi are quite independent of
the components of γijµ, although if one is zero the other is also zero. The totally
symmetric part of γµνi vanishes because it is antisymmetric in µ and ν. Thus, we
have γµνi = Mµνi + Aµνi, where Aµνi is the totally antisymmetric part. Clearly,
Aα

µν makes no contribution to the right side of Eq. (5), so

d2xα

ds2
+ Γα

µν
dxµ

ds

dxν

ds
=
dxµ

ds
Mµ

α
i v

i , (6)

where vi =
dxi

ds
is the (constant) first integral of Eq. (2). The totally antisymmetric

part of γµνi is
Aµνi =

1
3
(γµνi + γiµν + γνiµ) . (7)

Thus, the mixed symmetry part is Mµνi = γµνi − Aµνi, so, we have

Mµνi =
1
3 (2γµνi − γiµν − γνiµ) . (8)

The antisymmetry of γµνi in its first two indices may be used to obtain an expression
for Mµνi in terms of fiµν . We have fiµν = hiν ,µ−hiµ,ν = hiν;µ − hiµ;ν , so that
fiµν = γiνµ − γiµν . If we subtract from this the corresponding expressions for
fµνi and fνiµ, we see that γµνi = 1

2
(fiµν − fµνi − fνiµ). By using this and the

corresponding expressions for γiµν and γνiµ in Eq. (8), we obtain

Mµνi =
1
3 (2fiµν − fµνi − fνiµ) , (9)

which may be written

Mµνi =
1
3

(
2δni δ

α
µδ

σ
ν − hnµδ

α
ν hi

σ − hnνhi
αδσµ

)
fnασ , (10)

where δαµ is the Kronecker delta. It is important to notice that Eq. (10) may be
rewritten into the form

Mµνi =
1
3

(
2δni δ

α
µδ

σ
ν − hnµδ

α
ν hi

σ − hnνhi
αδσµ

)
Fnασ , (11)
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where
Fiµν = fiµν + e0ijkh

j
µh

k
ν , (12)

and enijk is the Levi-Civita symbol. In rewriting Eq. (10) as Eq. (11), we have used
the easily verifiable fact that

(
2δni δ

α
µδ

σ
ν − hnµδ

α
ν hi

σ − hnνhi
αδσµ

)
e0njkh

j
αh

k
σ = 0 .

Now, Fiµν is the usual field strength (see, e.g., Nakahara, 1990) for a U(1) ×
SU(2) gauge field, provided that hiµ is transformed on its tetrad indices as a gauge

potential, rather than as a Lorentz vector. We wish to make it clear that we will not
require that hiµ be transformed as a gauge potential. In our view, the need for such a
transformation rule arises from the fact that coordinate transformations are limited
to the diffeomorphisms. In Section 2, we enlarge the group of diffeomorphisms to the
conservation group. The mass-changing effect of a non-diffeomorphic conservative
transformation is similar to what one would get if hiµ were to be transformed as a
gauge potential. It is eminently reasonable that when a particle is subjected to a
rotation in isospace the gravitational field may change.

From Eq. (11), we see that in the expression, Eq. (10), for Mµνi, the curl fnασ
may simply be replaced by the gauge field Fnασ. The Fnασ may be viewed as a
field with “bare” or massless quanta, which are “clothed” by the factor
1
3

(
2δni δ

α
µδ

σ
ν − hnµδ

α
ν hi

σ − hnνhi
αδσµ

)
, and thus may acquire mass. The analysis in

Section 2.4 suggests that Mµνi may describe the physical electroweak field as it
appears in the appropriate way in our Lagrangian, and in the stress-energy tensor
of the Einstein equations. For this identification to be valid, the quantity Mµν0 =
1
3
(2f0µν − fµν0 − fν0µ) must describe the electromagnetic field; hence, it must be

the curl of a vector. The presence of the terms −fµν0 − fν0µ may cause one to ask
how Mµνi can be identified as the electroweak field.

Our answer is this: The orthodox physical interpretation, which we adopt, is that
hiµ describes an observer-frame. Now, if hiµ describes a freely falling, nonrotating

observer frame, our expression for Mµν0 reduces to Mµν0 = 1
3
f0µν . This may

be seen as follows. The condition for a freely falling, nonrotating frame (Synge,
1960) is hiν;αh0

α = 0. In terms of the Ricci rotation coefficients, the condition is
γµν0 = 0. From this and Eq. (8), we see that for an hiµ which describes a freely
falling, nonrotating observer frame, Mµν0 = 1

3 (γ0νµ − γ0µν) =
1
3 (h0ν;µ − h0µ;ν) =

1
3
(h0ν ,µ − h0µ,ν) =

1
3
f0µν . Moreover, in the nonrelativistic limit (i.e., for v1, v2, v2

small compared to one), the electromagnetic term
dxµ

ds
Mµ

α
0 v

0 dominates the right

side of Eq. (6).

2. GRAVITATIONAL AND ELECTROWEAK UNIFICATION.

It is clear that no meaningful physics can be done without an observer. Thus
the principle of parsimony (Occam’s razor) suggests that we consider a theory in
which the observer-frame hiµ is the only fundamental field; i.e., in which geomet-
rical structure is expressed by hiµ, rather than by gµν . For this purpose we need
an invariant Lagrangian constructed from hiµ and its derivatives, to be used in a
variational principle (analogous to the Hilbert variational principle for gravitation,
but with hiµ varied rather than gµν).
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2.1. Weitzenböck Invariants. Soon after Einstein (1928A, 1928B) introduced
tetrads into physics, Weitzenböck (1928) considered quantities constructed from hiµ
and its derivatives which are invariant under the diffeomorphisms (the coordinate
transformations of general relativity). Weitzenböck listed the invariants

A = 1
4
f iµνfνµi B = 1

4
f iµνfiµν Φ = 1

4
CνCν Ψ = 1

2
(Cν,ν +C

µhi
νhiµ,ν )

where the vector Cν is defined by

Cν = hi
µf i

µν . (13)

As Weitzenböck noted, the most general Lagrangian which yields second-order field
equations that are linear in the second derivatives of hiµ is L = aA+bB+φΦ+ψΨ,
where the coefficients a, b, φ, ψ, are constants.

In order to optimize clarity in our discussion, we shall use an equivalent list of
invariants

W1 = f iµνfνµi W2 = f iµνfiµν W3 = CνCν W4 = Cν
;ν . (14)

That our list is equivalent to Weitzenböck’s is clear: W1 = 4A, W2 = 4B, W3 = 4Φ
and W4 = Cν,ν +C

µΓν
µν =

(
Cν,ν +C

µhi
νhiµ,ν

)
− Cµ

(
hi

νhiµ,ν −Γν
µν

)
= 2Ψ −

Cµ
(
hi

νhiµ,ν −Γν
µν

)
. We see from the definition of Γα

µν and Eq. (1) that Γν
µν =

1
2g

σνgσν ,µ= hi
νhiν ,µ. Thus, we have W4 = 2Ψ − Cµhi

ν
(
hiµ,ν −hiν ,µ

)
= 2Ψ −

Cµhi
νf i

νµ = 2Ψ− CµCµ = 2Ψ− 4Φ.
Clearly, we may write the Lagrangian as

L = k1W1 + k2W2 + k3W3 + k4W4 (15)

where the coefficients k1, k2, k3, k4, are constants.
Weitzenböck recognized that if the fields to be varied are just the components of

gµν , then there is essentially no freedom of choice for the coefficients. He showed
that except for a common multiplicative constant, one must choose a = −2, b =
−1, φ = −4, ψ = 4; i.e., k1 = −1

2
, k2 = −1

4
, k3 = 1, k4 = 2. With this choice, L

is just the Ricci scalar R, which is the Lagrangian for the free gravitational field.
However, since the fields to be varied in our theory are the components of hiµ,
there exists a nondenumerable infinity of inequivalent Lagrangians corresponding
to different ratios of the constants k1, k2, k3, k4. Thus, we are confronted with a
dilemma that was anticipated by Einstein (1949). He noted that with the introduc-
tion of a richer structure (such as our tetrad), the diffeomorphism group “will no
longer determine the equations as strongly as in the case of the symmetric tensor
as structure.” Einstein also suggested the solution for this dilemma: “Therefore
it would be most beautiful, if one were to succeed in expanding the group once
more, analogous to the step which led from special relativity to general relativity.”
Einstein’s suggestion was in accord with the prophetic statement by Dirac (1930)
that “The growth of the use of transformation theory, as applied first to relativity
and later to the quantum theory is the essence of the new method in theoretical
physics. Further progress lies in the direction of making our equations invariant
under wider and still wider transformations.” Dirac went on to remark “This state
of affairs is very satisfactory from a philosophical point of view, as implying an
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increasing recognition of the part played by the observer in himself introducing the
regularities that appear in his observations . . . .” Dirac’s remark supports our use
of the observer-frame hiµ as the only fundamental field.

In Sec. 2.3., we shall see that k1W1 + k2W2 is not invariant under a group
larger than the diffeomorphisms for any choice of the constants k1 and k2. By
contrast, k3W3 + k4W4 is invariant under a group larger than the diffeomorphisms
for arbitrary choice of k3 and k4. But, W4 = Cν

;ν is a covariant divergence; so, the
term k4W4 would make no contribution to field equations. Hence, we shall choose
for our Lagrangian the invariant W3 = CνCν . We shall see that this Lagrangian
is just the sum of the gravitational Lagrangian R and terms which we tentatively
label as the electroweak Lagrangian E. The terms R and E are each invariant
only under the diffeomorphisms; it is their sum that is invariant under the larger
group. By using Eq. (12), we also note that Cν may be rewritten into the form
Cν = hiµFiµν . Thus, in the expression for Cµ, just as in the expression for Mµνi,
the curl fiµν may simply be replaced by the gauge field Fiµν .

2.2. Holonomic and Anholonomic Coordinates. It is possible to establish
a one-to-one correspondence between points x of the manifold and coordinates
xα (at least in finite coordinate patches). Such coordinates are called (Schouten,
1954) holonomic coordinates. Let transformation coefficients X α̃

µ have a nonzero

determinant, and let the components of X α̃
µ have definite values at each point x.

Then, these components are one-valued functions of holonomic coordinates, i.e.,
X α̃

µ = X α̃
µ (x

σ). The relation

dxα̃ = X α̃
µ (x

σ) dxµ (16)

establishes a one-to-one correspondence between coordinate increments dxα and
dxα̃. The inverse relation to Eq. (16) is

dxµ = Xµ
α̃ (xσ) dxα̃ (17)

where Xµ
α̃ (xσ) is defined by Xµ

α̃X
α̃
ν = δµν . Eq. (16) may be integrated to give a

one-to-one correspondence between coordinates xµ and xα̃ if and only if

X α̃
ν ,µ−X α̃

µ,ν = 0 . (18)

Thus, if Eq. (18) is satisfied, the xα̃ are also holonomic coordinates. If Eq. (18) is
not satisfied, then the xα̃ are called (Schouten, 1954) anholonomic coordinates.

There does not exist a one-to-one correspondence between points x of the man-
ifold and anholonomic coordinates. Thus, in an equation such as Eq. (17), the
holonomic coordinates xσ cannot be eliminated in favor of anholonomic coordi-
nates xσ̃. A transformation to anholonomic coordinates must be accompanied by
what Schouten calls a “mitschleppen,” i.e., a “dragging along” of the holonomic
coordinates. (In this sense, holonomic and anholonomic coordinates are not on the
same footing. They can be put on the same footing through the introduction of a
path space, as we have done in several prior papers. In this paper, however, our
setting is a manifold.) We can enlarge the covariance group so that it includes
transformations to anholonomic coordinates, because our group elements are the
transformation coefficients (which have definite values at each point x).
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We shall need partial derivatives with respect to anholonomic as well as holo-
nomic coordinates. Let F be a function with a definite value at each point x. If xα

and xα̃ are both holonomic, the relation between F,α and F,α̃ is

F,α̃ = F,µX
µ
α̃ . (19)

Thus, regardless whether xα̃ is holonomic or anholonomic, we may take Eq. (19)
as the definition of F,α̃ (where xα remains holonomic). Let the coordinates xα̂ also
be either holonomic or anholonomic. Then, of course, F,α̂ = F,µX

µ
α̂, and we easily

find that F,α̂ = F,µ̃X
µ̃
α̂, where X

µ̃
α̂ = X µ̃

σX
σ
α̂.

2.3. The Conservation Group. The transformation law for a tetrad of vectors
is

hiµ = hiα̃X
α̃
µ . (20)

Upon differentiating Eq. (20) with respect to xν , we have hiµ,ν = hiα̃,ν X
α̃
µ +

hiα̃X
α̃
µ,ν

= hiα̃,σ̃X
σ̃
νX

α̃
µ + hiα̃X

α̃
µ,ν . If we subtract this from the corresponding expres-

sion with µ and ν interchanged, we obtain

f i
µν = f i

α̃σ̃X
α̃
µX

σ̃
ν + hiα̃

(
X α̃

ν ,µ −X α̃
µ,ν

)
(21)

where f i
α̃σ̃ = hiσ̃,α̃ −hiα̃,σ̃. We see from Eq. (21) that f i

µν transforms as a tensor
if and only if Eq. (18) is satisfied, i.e., if and only if the transformation is a dif-
feomorphism. We also see from Eqs. (14) and (21) that no linear combination of
W1 and W2 with constant coefficients is invariant under a larger group than the
diffeomorphisms. By contrast, if we multiply Eq. (21) by hi

µ = hi
ρ̃Xµ

ρ̃ and use
Eq. (13), we get

Cν = Cα̃X
α̃
ν +Xµ

α̃

(
X α̃

ν ,µ −X α̃
µ,ν

)
. (22)

We see from Eq. (22) that Cν transforms as a vector if and only if

Xν
α̃

(
X α̃

ν ,µ −X α̃
µ,ν

)
= 0 . (23)

Accordingly, we recall (Pandres, 1981) that CνCν is invariant under transformations
that satisfy Eq. (23).

2.3.1. Conservative Coordinate Transformations. In the discussion that led to
Eq. (23), xα was required to be holonomic. We now relax that requirement and
allow xα and/or xα̃ to be either holonomic or anholonomic. A transformation
which satisfies Eq. (23) is called conservative. This terminology is appropriate for
the following reason: A relativistic conservation law is an expression of the form
V α,α = 0 , where V α is a vector density of weight +1. This is a covariant statement
under a coordinate transformation relating xα and xα̃ if and only if it implies
and is implied by the relation V α̃,α̃ = 0. The transformation law for a vector
density of weight +1 is V α̃ = ∂x

∂x̃ X
α̃
µV

µ , where ∂x
∂x̃ is the (non-zero) Jacobian

determinant of Xµ
α̃. Upon differentiating V α̃ with respect to xα̃, we obtain V α̃,α̃ =(

∂x
∂x̃ X

α̃
µ

)
,α̃ V

µ + ∂x
∂x̃ V

α,α. For arbitrary V µ, we see that a conservation law is a
covariant statement if and only if

(
∂x
∂x̃
X α̃

µ

)
,α̃ = 0 . (24)
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For this reason, we call a coordinate transformation conservative if it satisfies
Eq. (24). Now,

(
∂x
∂x̃
X α̃

µ

)
,α̃ =

(
∂x
∂x̃

)
,αX

α̃
µ + ∂x

∂x̃
X α̃

µ,α̃ =
(
∂x
∂x̃

)
,µ +

∂x
∂x̃
X α̃

µ,ν X
ν
α̃

so, if we use the well-known formula

(
∂x
∂x̃

)
,µ=

∂x
∂x̃ X

α̃
νX

ν,α̃,µ

for the derivative of a determinant, and note that X α̃
νX

ν
α̃,µ = −X α̃

ν ,µX
ν
α̃, we

find that Eq. (24) is equivalent to Eq. (23).

2.3.2. The conservation group. We now recall (Pandres, 1981) an explicit proof
that the conservative coordinate transformations form a group. [Finkelstein (1981),
however, has pointed out that the group property follows implicitly from the deriva-
tion given above.] First, we note that the identity transformation xα̃ = xα is a
conservative coordinate transformation. Next, we consider the result of following a
coordinate transformation from xα to xα̃ by a coordinate transformation from xα̃

to xα̂. Upon differentiating
X α̂

µ = X α̂
ρ̃X

ρ̃
µ (25)

with respect to xν , subtracting the corresponding expression with µ and ν inter-
changed, and multiplying by Xν

α̂ we obtain

Xν
α̂

(
X α̂

ν ,µ−X α̂
µ,ν

)
=X ρ̃

µX
σ̃
α̂

(
X α̂

σ̃,ρ̃ −X α̂
ρ̃,σ̃

)

+Xν
ρ̃

(
X ρ̃

ν ,µ−X ρ̃
µ,ν

)
.

(26)

We see from Eq. (26) that if Xν
ρ̃

(
X ρ̃

ν ,µ −X ρ̃
µ,ν
)
and X σ̃

α̂

(
X α̂

σ̃,ρ̃−X α̂
ρ̃,σ̃
)
vanish,

then
Xν

α̂

(
X α̂

ν ,µ −X α̂
µ,ν
)
vanishes. This shows that if the transformations from xα

to xα̃ and from xα̃ to xα̂ are conservative coordinate transformations, then the
product transformation from xα to xα̂ is a conservative coordinate transformation.
If we let xα̂ = xα, we see from Eq. (26) that the inverse of a conservative coordinate
transformation is a conservative coordinate transformation. From Eq. (25), we see
that the product of matrices X ρ̃

µ and X α̂
ρ̃ (which represent the transformations

from xα to xα̃ and from xα̃ to xα̂, respectively) equals the matrix X α̂
µ (which rep-

resents the product transformation from xα to xα̂). It is obvious, and well known,
that if products admit a matrix representation in this sense, then the associative
law is satisfied. This completes the proof that the conservative coordinate trans-
formations form a group, which we call the conservation group.

To show that the conservation group contains the diffeomorphisms as a proper
subgroup, we need only exhibit transformation coefficients which satisfy Eq. (23),
but do not satisfy Eq. (18). Let

X α̃
ν = δα̃ν + δα̃0 δ

2
νx

1 . (27)

Upon differentiating Eq. (27) with respect to xµ and subtracting the corresponding
expression with µ and ν interchanged, we obtain

X α̃
ν ,µ −X α̃

µ,ν = δα0
(
δ1µδ

2
ν − δ1νδ

2
µ

)
. (28)
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A nonzero component of Eq. (28) is X 0̃
2,1 −X 0̃

1,2 = 1 , which shows that Eq. (18)
is not satisfied. It is easily verified that

Xν
α̃ = δνα̃ − δν0 δ

2
α̃x

1 (29)

satisfies our condition Xµ
α̃X

α̃
ν = δµν . If we multiply Eq. (28) by Eq. (29), we see

that Eq. (23) is satisfied.

2.4. The Lagrangian. We now recall (Pandres, 1999) evidence that the invari-
ant W3 = CνCν is an appropriate Lagrangian for gravitational and electroweak
unification.

The Riemann tensor is defined as usual by Rα
βµν = hi

α
(
hiβ;µ;ν − hiβ;ν;µ

)
while

the Ricci tensor Rµν and Ricci scalar R are defined, as usual, by Rµν = Rα
µαν and

R = Rα
α. By using hi

αhiβ;µ;ν =
(
hi

αhiβ;µ
)
;ν
− hi

α
;νh

i
β;µ = γαβµ;ν + γασνγ

σ
βµ, we

easily find that

Rα
βµν = γαβµ;ν − γαβν;µ + γασνγ

σ
βµ − γασµγ

σ
βν . (30)

From Eq. (13), we see that Cµ = hi
ν
(
hiµ,ν −hiν ,µ

)
= hi

ν
(
hiµ;ν − hiν;µ

)
= γνµν −

γννµ = γνµν . By using Cµ = γνµν , we find from Eq. (30) that

Rµν = Cµ;ν − Cαγ
α
µν − γαµν;α + γασνγ

σ
µα , (31)

and, from Eq. (31)
CµCµ = R + γµiνγµνi − 2Cµ

;µ . (32)

The first term on the right side of Eq. (32) is the Ricci scalar, which is the La-
grangian for gravitation. The last term is a covariant divergence, which contributes
nothing to the field equations. We now consider the interpretation of the term
γµiνγµνi. From Eqs. (7) and (8), we see that

AµνiMµνi = 0 , (33)

and that
Mµνi +Miµν +Mνiµ = 0 . (34)

From γµνi =Mµνi+Aµνi , and Eq. (33), we get γµiνγµνi =MµiνMµνi−AµνiAµνi.

But, MµiνMµνi = 1
2
MµiνMµνi +

1
2
MνiµMνµi = 1

2
MµiνMµνi +

1
2
M iνµMµνi =

1
2

(
Mµiν +M iνµ

)
Mµνi = 1

2M
µνiMµνi , where we have used Eq. (34). Thus, we

have γµiνγµνi =
1
2M

µνiMµνi − AµναAµνα. We now define a vector

Aµ = 1
3!
(−g)−1/2eµαβσAαβσ , (35)

and find that
AµναAµνα = −6AµAµ . (36)

In obtaining Eq. (36), we have used the well known identity (see, e.g., Weber,
1961) for expressing the product of two Levi-Civita symbols as a determinant of
Kronecker deltas. We now see that Eq. (32) may be written

CµCµ = R+ 1
2M

µνiMµνi + 6AµAµ − 2Cµ
;µ . (37)

The term MµνiMµνi is in the form of the usual electroweak Lagrangian, and the
AµAµ term has precisely the form that is needed (see, e.g., Moriyasu, 1983) for the
introduction of mass.
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2.5. Field Equations. We have previously (Pandres, 1981) considered the vari-

ational principle δ

∫
CµCµ

√−g d4x = 0 where hiµ is varied. We note that
√−g

equals h, the determinant of hiµ; and that CµCµ = CiCi. Hence, our variational
principle may be written

δ

∫
CiCi h d

4x = 0 . (38)

The variational calculation (Pandres, 1984A) using CiCi is less tedious than that
using CµCµ. We find from Eq. (38) that

∫
h
(
2CiδCi − CiCih

k
νδhk

ν
)
d4x = 0 , (39)

where we have used δh = hhk
νδhkν = −hhkνδhkν . We note that

(hhi
ν),ν =h,ν hi

ν + hhi
ν,ν

=h
(
hk

µhkµ,νhi
ν + hk

ν,νh
k
µhi

µ
)

=h
(
hk

νhkν,µhi
µ − hk

νhkµ,νhi
µ
)

=− hCµhi
µ = −hCi

Thus, we see that
Ci = −h−1 (hhi

ν),ν . (40)

Variation of Eq. (40) gives δCi = h−2 (hhi
ν),ν δh − h−1δ (hhi

ν),ν
= Cih

k
νδhk

ν − h−1 [δ (hhi
ν)] ,ν . Upon using this expression for δCi in Eq. (39), we

obtain ∫
hCkCkh

i
νδhi

νd4x− 2

∫
Ci [δ (hhi

ν)] ,ν d
4x = 0 , (41)

and, integration by parts gives
∫
h
(
Ci,ν −hiνCk,k +

1
2h

i
νC

kCk

)
δhi

νd4x−
∫ [

Ciδ (hhi
ν)
]
,νd

4x = 0 . (42)

By using Gauss’s theorem, we may write the second integral of Eq. (42) as an
integral over the boundary of the region of integration. We discard this boundary
integral by demanding that Ciδ (hhi

ν) shall vanish on the boundary, and demand
that δhi

ν be arbitrary in the interior of the (arbitrary) region of integration. Thus,

we get field equations Ci,ν −hiνCk,k +
1
2h

i
νC

kCk = 0 , and, upon multiplying by
hj

ν , we write these field equations as

Ci,j −δijCk,k +
1
2δ

i
jC

kCk = 0 . (43)

We note that Cα
;σ =

(
Ckhk

α
)
;σ = Ck,σ hk

α + Ckhk
α
;σ = Ck,σ hk

α + Ckγk
α
σ.

Thus, we have Ck,σ hk
α = Cα

;σ + Cργαρσ. If we multiply by hiαhj
σ, we get

Ci,j = hiαhj
σ (Cα

;σ + Cργαρσ) , and C
k,k = Cα

;α + CαCα . If we use these expres-
sions for Ci,j and Ck,k in Eq. (43), we obtain the relation hiαhj

σ (Cα
;σ + Cργαρσ)−

δijC
α
;α − 1

2δ
i
jC

αCα = 0 , and, upon multiplying this by hiµh
j
ν , we rewrite our field

equations as
Cµ;ν − Cαγ

α
µν − gµνC

α
;α − 1

2gµνC
αCα = 0 . (44)
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2.5.1. The field equations as Einstein equations. The Einstein equations of gen-
eral relativity may be interpreted in two ways. One interpretation is as differential
equations for the metric, when the stress-energy tensor is given. Alternatively,
these equations may be looked upon as a definition of the stress-energy tensor in
terms of the metric. The second interpretation has been stressed particularly by
Schrödinger (1960) [“I would rather you did not regard these equations as field
equations, but as a definition of Tik the matter tensor.”] and by Eddington (1924)
[“and we must proceed by inquiring first what experimental properties the physi-
cal tensor possesses, and then seeking a geometrical tensor which possesses these
properties”]. It is the second interpretation that we adopt.

From Eqs. (31) and (32), we find that an identity for the Einstein tensor Gµν =
Rµν − 1

2gµνR is

Gµν =Cµ;ν − Cαγ
α
µν − gµνC

α
;α − 1

2gµνC
αCα

+ γµ
α
ν;α + γασνγ

σ
µα + 1

2gµνγ
αiσγασi .

(45)

Equation (44) just states that the first line on the right side of Eq. (45) vanishes.
Thus, we may write our field equations as

Gµν = γµ
α
ν;α + γασνγ

σ
µα + 1

2gµνγ
αiσγασi . (46)

By using the well known symmetry of the Einstein tensor, i.e., Gµν = Gνµ. we see
from Eq. (46) that the symmetric part of our field equations is

Gµν = 1
2 (γµ

α
ν + γν

α
µ);α + 1

2 (γ
α
σνγ

σ
µα + γασµγ

σ
να) +

1
2gµνγ

αiσγασi . (47)

Since γµ
α
ν = Mµ

α
ν + Aµ

α
ν , we see that (γµ

α
ν + γν

α
µ);)α = (Mµ

α
ν +Mν

α
µ);α =(

Mµ
α
ih

i
ν +Mν

α
ih

i
µ

)
;α

= Jµih
i
ν + Jνih

i
µ + Mµ

α
σγ

σ
να + Mν

α
σγ

σ
µα , where

Jµi = Mµ
α
i;α is a (conserved) electroweak current. From Eq. (33), the repeated

use of Eq. (34), the total antisymmetry of Aµνα, and the antisymmetries of γµνα
and Mµνα in their first two indices, we find after a tedious but straightforward
calculation that Eq. (47) may be written

Gµν = Aij
µAijν − 1

2gµνA
ijαAijα + 1

2

(
Jµih

i
ν + Jνih

i
µ

)
−Mµν , (48)

where Mµν = Mα
µiMαν

i − 1
4gµνM

ασiMασi . The terms in Eq. (48) that involve
Aijµ may be written in a more simple form. From Eq. (35), we have Aµ =
1
3!
(−g)−1/2gµρe

ραβσAαβσ , and we find that Aµ = − 1
3!
(−g)1/2eµαβσAαβσ. Thus,

AµAν = − 1
36gµρe

ραβσeνθλτA
θλτAaβσ. By expressing the product of Levi-Civita

symbols as a determinant of Kronecker deltas, we get AµAν =
1
2
Aij

µAijν − 1
6
gµνA

ijαAijα. From this and Eq. (36), we see that Eq. (48) may be
written

Gµν = 2AµAν + gµνA
αAα + 1

2

(
Jµih

i
ν + Jνih

i
µ

)
−Mµν . (49)

The right side of Eq. (49) is just what one would expect for the stress-energy tensor
of the electroweak field, its associated currents, and gauge symmetry breaking terms
corresponding to those in the Lagrangian, Eq. (37).
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2.6. Solutions of the field equations.

2.6.1. Solutions with Ci = 0. It is clear that our field equations, Eq. (43) are
satisfied if Ci = 0. Consider the tetrad hiµ = δiµ + δi0δ

2
µx

1, where x1 is a Greek
(space-time) coordinate. We have shown (Pandres, 1981) that this tetrad yields
Ci = 0, gives a Ricci scalar R = 1

2 , and gives a metric gµν which satisfies the well
known (Synge, 1960) Einstein equations for a charged dust cloud.

2.6.2. Solutions with Ci constant and lightlike. It is also clear that our field
equations are satisfied if Ci is constant and lightlike. Consider the tetrad

hiµ = δiµ +
(
δi0 + δi1

)
δ0µ

(
ex

1 − 1
)

(50)

where the coordinate x1 is Greek. We have shown (Pandres, 1984A) that this tetrad
yields a nonvanishing but constant and lightlike Ci.

2.6.3. Solutions with Ci which does not vanish, and is neither constant nor

lightlike.. It is clear from Secs. 2.6.1 and 2.6.2 above that a tetrad satisfies our
field equations if it satisfies the condition of either vanishing or being constant and
lightlike. In a previous paper, (Pandres, 1984A), we made the false assertion that
a tetrad satisfies our field equations only if it satisfies this condition. The false
assertion was based on the following argument: It is clear that for distinct values
of i and j, the field equations state that Ci,j = 0. This fact led us to assume that
the component Ci can depend only on the single coordinate xi; i.e., that C0,0 can
depend only on x0; C1,1 only on x1, etc. This assumption would be true if the
Latin coordinates were holonomic, but is false, because they are nonholonomic. An
example of a tetrad which satisfies our field equations, but yields a Ci which is
neither constant nor lightlike has been found by one of us (Green). His tetrad is

hi
µ =

[(
x0
)2 −

(
x1
)2

+
(
x2
)2 −

(
x3
)]
δ
µ
i . (51)

In Eq. (51), the coordinates x0, x1, x2, x3 are Greek. The tetrad in Eq. (51) satisfies
our field equations, but yields Ci =

(
−6x0,−6x1,−6x2,−6x3

)
which is neither

constant nor lightlike.

2.6.4. Solutions that yield flat Riemann space-times. We note that our field
equations admit non-trivial solutions for which gµν is the metric of a flat space-
time. One of us (Green, 1991) has exhibited the tetrad

hi
µ = δ

µ
0 δ

0
i + δ

µ
3 δ

3
i +

(
δ
µ
1 δ

1
i + δ

µ
2 δ

2
i

)
cosx3 +

(
δ
µ
2 δ

1
i − δ

µ
1 δ

2
i

)
sinx3 , (52)

where the coordinate x3 is Greek. For this hi
µ, the quantity Mµνi does not vanish,

but Ci = 0, and gµν = diag(−1, 1, 1, 1). He has also exhibited (Green, 1997) the
tetrad

hi
µ =1

2

[(
δ
µ
0 δ

0
i + δ

µ
1 δ

1
i

)(
F +

1

F

)
+
(
δ
µ
0 δ

1
i + δ

µ
1 δ

0
i

)(
F − 1

F

)]

+ δ
µ
2 δ

2
i + δ

µ
3 δ

3
i ,

(53)

where F = x0 + x1, and the coordinates x0 and x1 are Greek. For this hi
µ,

the quantity Mµνi does not vanish, but Ci is constant and lightlike, and gµν =
diag(−1, 1, 1, 1).
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3. THE HAMILTONIAN. In this section the Hamiltonian for this theory will
be derived. As the dynamics is constrained, the Dirac-Bergmann procedure will be
used to find all the constraints and to produce a consistent Hamiltonian.

3.1. The Primary Hamiltonian. Let h be the determinant of hiµ as before. The
16 canonical position variables are defined by

Qα
i ≡ h h α

i . (54)

Let Qi
α be the matrix inverse of Qα

i , so that Qα
i Q

i
β = δαβ and Qi

αQ
α
j = δij . Let Q

be the determinant of Qα
i . Then Q = det(Qα

i ) = det(h h α
i ) = h4 · h−1 = h3 , and

so, h = Q
1

3 . Using Eq. (40) we have

Ci = −Q−

1

3Qν
i,ν , (55)

and therefore the Lagrangian density may be expressed by

L = gijQ
µ
i,µQ

ν
j,ν Q

−

1

3 . (56)

The momenta are defined as usual by P i
µ =

δL

δQ
µ
i,0

where Qµ
i,0 is the derivative of

Q
µ
i with respect to the Greek x0 variable. We assume that the x0 variable has a

time-like direction at each point in space-time. We also assume that the values
of Qα

i and P i
µ as well as their derivatives on a space-like surface σ determine the

dynamics. From Eq. (56) we have

P i
µ = 2gijQν

j,νδ
0
µ Q

−

1

3 . (57)

For the remainder of this section we will use a bar over an index to indicate a
restriction of the index range to the values 1, 2, and 3. Thus there are 12 primary
constraints

P i
µ̄ = 0 µ̄ = 1, 2, 3 . (58)

The 4 nonzero momenta are seen to be a multiple of the Latin components of the
curvature vector:

P i
0 = 2gijQν

j,ν Q
−

1

3 = −2gijCj = −2Ci . (59)

The Hamiltonian density H is defined by H = P i
µQ

µ
i,0 − L. Using the constraints

and Eq. (59), we have

H = P i
0Q

0
i,0 −

1

4
gijP

i
0P

j
0Q

1

3

But using Eq. (55), Q0
i,0 = Q

µ
i,µ −Q

µ̄
i,µ̄ = −Q 1

3Ci −Q
µ̄
i,µ̄ = 1

2Q
1

3 gijP
j
0 −Q

µ̄
i,µ̄, and

therefore

H =
1

2
gijP

i
0P

j
0Q

1

3 − P i
0Q

µ̄
i,µ̄ − 1

4
gijP

i
0P

j
0Q

1

3

=
1

4
gijP

i
0P

j
0Q

1

3 − P i
0Q

µ̄
i,µ̄ .
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Hence we have the following primary Hamiltonian density

Hp =
1

4
gijP

i
0P

j
0Q

1

3 − P i
0Q

µ̄
i,µ̄ + v

µ̄
i P

i
µ̄ (60)

with Lagrange multipliers vµ̄i . In cases where Ci is zero on the boundary of σ, a
partial integration yields the following primary Hamiltonian density:

Hp =
1

4
gijP

i
0P

j
0Q

1

3 +Q
µ̄
i P

i
0,µ̄ + v

µ̄
i P

i
µ̄ . (61)

The full Hamiltonian is Hp =

∫

σ

Hp d
3x.

3.2. The Dirac-Bergmann Procedure and the Consistent Hamiltonian.

When the dynamics are constrained, consistency requires that the time derivative
of a constraint must be zero. We follow the Dirac-Bergmann algorithm (Bergmann
and Goldberg, 1955), (Dirac, 1964), (Sundermeyer, 1982), (Weinberg, 1995) for
constrained dynamics. The Hamiltonian equations of motion state that for any
function X of Qµ

i and P i
µ we have

dX

dt
= {X,Hp} =

δX

δQ
µ
i

δHp

δP i
µ

− δX

δP i
µ

δHp

δQ
µ
i

.

Dirac refers to the constraint equations as weak equations, since one must be careful
to use these equations only after time derivatives and other variations are calculated.
We shall use x to represent the variable of integration for the first functional in the
bracket and y to represent the variable of integration for the second functional.
When there is no possible confusion these variables will be suppressed. We will
also suppress display of the integrals over σ and only show the integrands.

Since, in general, Ci may have any value on the boundary, we proceed from

equation Eq. (60). Substituting W = gijP
i
0P

j
0 , and noting that

δQ

δQ
β
i

= QQi
β, we

have
dP i

ᾱ

dt
= − δHp

δQᾱ
i

= − 1

12
WQ

1

3Qi
ᾱδ(x− y) + P i

0δ,ᾱ(x− y)

and thus for consistency

1

12
WQ

1

3Qi
ᾱδ(x− y)− P i

0δ,ᾱ(x− y) = 0 ,

which becomes after integration with respect to the y variable

1

12
WQ

1

3Qi
ᾱ + P i

0,ᾱ = 0 . (62)

We assume fixed boundary conditions so that the variation on the boundary is zero
and thus the boundary term is zero. Equation Eq. (62) represents 12 secondary
constraints on the theory.

Before proceeding with the constraint algorithm a comment is in order. Compu-
tation of P i

0,0 = [P i
0, Hp], yields P

i
0,0 = − 1

12WQ
1

3Qi
0. Hence, we have 1

12WQ
1

3Qi
α +

14



P i
0,α = 0 for α = 0, 1, 2, 3. Since Q

1

3Qi
α = hiα and P i

0 = −2Ci and W = 4CkCk we

see that Eq. (62) along with the dynamics for P i
0 imply that Ci

,j =
1
6
δijC

kCk which
is the Latin form of the field equations.

Proceeding with the algorithm we note that multiplication of Eq. (62) by Q0
i (x)

yields the condition
Q0

iP
i
0,ᾱ = 0 . (63)

The computation of further constraints is rather tedious. It will be useful to note

that
δQi

α

δQ
β
j

= −Qi
βQ

j
α. Because of Eq. (63) we must require that

0 =[Q0
iP

i
0,ᾱ, Hp]

=P i
0,ᾱ

(
1

2
gijP

j
0Q

1

3 −Q
γ̄
i,γ̄

)
δ −Q0

i (x)δ,ᾱ(x− y) ·
(
1

2
gjkP

j
0P

k
0Q

1

3Qi
0

)
(y)

After the integration with respect to y we have

0 =
1

2
gijP

i
0,ᾱP

j
0Q

1

3 − P i
0,ᾱQ

γ̄
i,γ̄ +

1

12

(
gjkP

j
0P

k
0Q

1

3Qi
0

)

,ᾱ

Q0
i

=
2

3
gijP

i
0,ᾱP

j
0Q

1

3 − P i
0,ᾱQ

γ̄
i,γ̄ +

1

36
WQ

1

3Qk
βQ

β
k,ᾱ +

1

12
WQ

1

3Qi
0,ᾱQ

0
i

=
1

36
WQ

1

3

(
−2gijQ

i
ᾱP

j
0Q

1

3 + 3Qi
ᾱQ

γ̄
i,γ̄ +Qi

βQ
β
i,ᾱ − 3Qi

0Q
0
i,ᾱ

)
.

In the last line, the secondary constraint Eq. (62) has been used. Since Q = 0 is
not acceptable, we find that

W = 0 or −2gijQ
i
ᾱP

j
0Q

1

3 +3Qi
ᾱQ

γ̄
i,γ̄ +Q

i
βQ

β
i,ᾱ−3Qi

0Q
0
i,ᾱ = 0 . (64a,b)

Type I Regions. We define Type I regions as simply connected regions of
the space-like surface σ where W ≡ 0. In Type I regions the secondary constraint
Eq. (62) implies that P i

0,ᾱ = 0 also. We then require that

0 = [W,Hp] = −2gijP
j
0

δHp

δQ0
i

= −2gijP
j
0 · 1

12
WQ

1

3Qi
0

and since W is assumed to be zero, this is automatically satisfied. Thus in the
W = 0 case, the algorithm terminates. The secondary constraints in this case may
be summarized by the 4 conditions:

P i
0 = Ki , where Ki is constant and lightlike. (65)

These represent 4 first class, secondary constraints.
Type II Regions. We define Type II regions as simply connected regions of

σ where W is not identically zero. In this case we assume that −2gijQ
i
ᾱP

j
0Q

1

3 +

3Qi
ᾱQ

γ̄
i,γ̄ +Qi

βQ
β
i,ᾱ − 3Qi

0Q
0
i,ᾱ is identically zero. Returning to the constraint given

by Eq. (62) we require that

0 =

[
1

12
WQ

1

3Qi
ᾱ + P i

0,ᾱ , Hp

]

=− 1

36
WQ

1

3

(
2Qi

0gklQ
k
ᾱP

l
0Q

1

3 − 3Qi
0Q

k
ᾱQ

γ̄
k,γ̄ + 3Qi

γ̄Q
k
ᾱv

γ̄
k

+Qi
ᾱQ

k
0Q

γ̄
k,γ̄ −Qi

ᾱQ
k
γ̄v

γ̄
k −Qk

γQ
γ
k,ᾱQ

i
0 − 3Qi

0,ᾱ

)
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If we assume that W and Q are not identically zero, then we have 12 tertiary
constraints:

0 =2Qi
0gklQ

k
ᾱP

l
0Q

1

3 − 3Qi
0Q

k
ᾱQ

γ̄
k,γ̄ + 3Qi

γ̄Q
k
ᾱv

γ̄
k +Qi

ᾱQ
k
0Q

γ̄
k,γ̄

−Qi
ᾱQ

k
γ̄v

γ̄
k −Qk

γQ
γ
k,ᾱQ

i
0 − 3Qi

0,ᾱ

(66)

By multiplication by appropriate factors of Qβ
i we may split these 12 equations as

follows. Multiplication of Eq. (66) by Q0
i implies that 2gijQ

i
ᾱP

j
0Q

1

3 − 3Qk
ᾱQ

γ̄
k,γ̄ −

Qk
βQ

β
k,ᾱ + 3Qk

0Q
0
k,ᾱ = 0. This is equivalent to the 3 constraints given in Eq. (64b).

Next, multiplication of Eq. (66) by Qᾱ
i yields the single constraint

Qk
0Q

γ̄
k,γ̄ = 0 . (67)

Finally, multiplication of Eq. (66) by Qβ̄
i results in the conditions Qk

ᾱv
β̄
k− 1

3δ
β̄
ᾱQ

k
γ̄v

γ̄
k+

Qi
0Q

β̄
i,ᾱ = 0. Using Eq. (67) these 9 equations are seen to be traceless and hence

these 8 equations may be used to reduce the number of unknown Lagrange multi-
pliers from 12 to 4. The result is

v
β̄
k = λQ

β̄
k + λβ̄Q0

k −Q
j
0Q

β̄
j,γ̄Q

γ̄
k , (68)

where λ and λβ̄ represent 4 arbitrary Lagrange multiplier functions.

It follows from Eq. (67) that we must require

0 =

[
Qk

0Q
γ̄
k,γ̄ , Hp

]

=Qγ̄
k,γ̄

δQk
0

δQα
l

(
δα0

(
1

2
gilP

i
0Q

1

3 −Q
β̄

l,β̄

)
+ vᾱl

)
+Qk

0

δQ
γ̄
k,γ̄

δQᾱ
l

vᾱl

=Qγ̄
k,γ̄

(
−Qk

αQ
l
0

)(
δα0

(
1

2
gilP

i
0Q

1

3 −Q
β̄

l,β̄

)
+ vᾱl

)

+Qk
0(x)δ

γ̄
ᾱδ

l
kδ,γ̄(x− y)vᾱl (y)

=−Q
γ̄
k,γ̄Q

k
ᾱQ

l
0v

ᾱ
l −Ql

0v
ᾱ
l,ᾱ ,

where the constraints have been used and an integration by parts has been per-
formed on the second term. Now using Eq. (68) we find

λ
β̄

,β̄
= −

(
Qk

β̄Q
γ̄
k,γ̄ +Qk

0Q
0
k,β̄

)
λβ̄ +Qk

0Q
β̄
k,γ̄Q

l
0Q

γ̄

l,β̄
(69)

This differential equation represents one condition on the 3 multipliers λβ̄ .
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Finally we proceed from the constraint given in Eq. (64b).

0 =

[
−2gijQ

i
ᾱP

j
0Q

1

3 + 3Qi
ᾱQ

γ̄
i,γ̄ +Qk

βQ
β
k,ᾱ − 3Qi

0Q
0
i,ᾱ , Hp

]

=

(
−2gklP

l
0Q

k
βQ

j
ᾱQ

1

3 +
2

3
gklP

l
0Q

k
ᾱQ

j
βQ

1

3 + 3Qγ̄
k,γ̄Q

k
βQ

j
ᾱ − 3Qj

ᾱδ,β̄

+Q
γ
k,ᾱQ

k
βQ

j
γ −Q

j
βδ,ᾱ − 3Q0

i,ᾱQ
i
βQ

j
0 + 3Qj

0δ,ᾱδ
0
β

)

·
(
δ
β
0

(
1

2
gjmP

m
0 Q

1

3 −Q
γ̄
j,γ̄

)
+ v

β̄
j

)

− 1

6
gklQ

k
ᾱQ

l
0gmnP

m
0 Pn

0 Q
2

3

Substituting for vβ̄j using Eq. (68) and using the constraints Eqs. (62), (64b)

and (67) yields

0 =gklQ
k
0P

l
0Q

1

3

(
Qi

ᾱQ
β̄

i,β̄
− 2

3
Qi

βQ
β
i,ᾱ − 1

2
Qi

0Q
0
i,ᾱ

)
− 1

12
gklP

k
0 P

l
0gijQ

i
ᾱQ

j
0Q

2

3

+ 5Qi
0,ᾱQ

β̄

i,β̄
− 3Qi

0,β̄Q
β̄
i,ᾱ + 2gklQ

k
β̄P

l
0Q

i
0Q

β̄
i,ᾱQ

1

3

−Qi
0Q

β̄
i,γ̄

(
3Qj

ᾱQ
γ̄

j,β̄
+ 2Qj

β̄
Q

γ̄
j,ᾱ

)
− 1

2
gklP

k
0Q

l
0,ᾱQ

1

3

+

(
6Qi

ᾱQ
β̄

i,β̄
+ 2Qi

β̄Q
β̄
i,ᾱ

)
λ+

(
3Qi

ᾱQ
0
i,β̄ −Qi

β̄Q
0
i,ᾱ

)
λβ̄

+ 6λ,ᾱ

(70)

These 3 equations along with Eq. (69) may be used to solve for λ and the λβ̄ and
since these are first order differential equations in the lambdas, we expect that
there will be 4 arbitrary constants in our solutions for the Lagrange multipliers.
This completes the Dirac-Bergmann algorithm. For a summary see Table I.

For tetrads that satisfy the field equations we may check to determine whether
the tetrad also agrees with the results of the Dirac-Bergmann algorithm. For tetrads
with Ci = 0 or Ci constant and lightlike these results are clearly consistent and the
region is Type I. When Ci is nonconstant and the field equations are satisfied it is
not so obvious because all the tertiary constraints must be checked. For the example
given in Eq. (51), one finds that the tertiary constraints are indeed satisfied and

the solutions for the Lagrange multipliers are λ = −16x0

7φ
+
κ0x0

φ6
and λᾱ = κᾱφ6,

where φ = (x0)2 − (x1)2 − (x2)2 − (x3)2, and κα are 4 arbitrary constants.
At present we do not have a physical interpretation of all the constraints. Recall

that Gauss’s law shows up as one of the constraints in the free electromagnetic field
(Dirac, 1964). We expect that our secondary constraints will also have a similarly
important interpretations.

In the case of Type I regions with P i
0 = 0 we see that the Hamiltonian is consis-

tent with what is expected in a theory that describes gravitation. Multiplication of
Eq. (62) by Qᾱ

i implies that 1
4WQ

1

3 +Qᾱ
i P

i
0,ᾱ = 0. By comparison to Eq. (61) we
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see that Hp is weakly zero if P i
0 = −2Ci is zero (Type I). Many investigators (e.g.,

Misner, 1957) expect that the correct Hamiltonian for gravity should be weakly
zero.

Of the two types of regions, it would seem that the Type I regions would be
more physically relevant. The 16 first class constraints would correspond to 16
gauge degrees of freedom. All the constraints are first class so that there is no
need for the Dirac bracket. The Type II regions, however, have no gauge degrees of
freedom and the Dirac bracket would be needed to define the symplectic structure
on the 4-dimensional phase space.

Table I

CASE: W = 0 W 6= 0

Primary P i
ᾱ = 0 P i

ᾱ = 0
Constraints: (12 First Class) (12 Second Class)

Secondary P i
0 = Ki, with 1

12
WQ

1

3Qi
ᾱ + P i

0,ᾱ = 0

Constraints: constant Ki lightlike (12 Second Class)
(4 First Class)

Tertiary None Qk
0Q

β̄

k,β̄
= 0 and

Constraints: 2gijQ
i
ᾱP

j
0Q

1

3 − 3Qk
ᾱQ

β̄

k,β̄

−Qk
βQ

β
k,ᾱ + 3Qk

0Q
0
k,ᾱ = 0

(4 Second Class)

Gauge Fixing 16 required Gauge fixed by
Constraints: constraint algorithm

Degrees of
Freedom 0 4

4. CONCLUDING REMARKS.

4.1 Possible Inclusion of the Strong Interaction.

It may be possible to extend our theory to include the strong interaction, by
replacing the real orthonormal tetrad hiµ with a complex orthonormal tetrad Zi

µ

which is restricted so that the space-time metric

gµν = gijZi
µZ

j
ν (71)

remains real. A bar indicates complex conjugation. That there exist complex
tetrads which yield real metrics may be seen in the following way. It is known (see,
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e.g., Barut, 1980) that there exist two complex groups which preserve the canonical
Lorentz metric. One of these groups has complex transformation coefficients tim
which satisfy the relation gmn = gijt

i
mt

j
n where gij = gmn = diag(−1, 1, 1, 1). This

group does not contain SU(3) as a subgroup, and hence is of no interest here. The
other group has complex transformation coefficients T i

m which satisfy the relation

gmn = gijT i
mT

j
n (72)

where a bar indicates complex conjugation. This group contains SU(3) as a proper
subgroup. The components of the complex tetrad Zi

µ = T i
mh

m
µ are complex valued

functions of the real space-time coordinates xα. The complex conjugate of Zi
µ is

just Zi
µ = T i

mh
m
µ because hiµ remains real. It is easily seen from Eq. (72) that

Eq. (73) yields the same (real) metric as Eq. (1), i.e., gµν = gijh
i
µh

j
ν . Just as the

real tetrad hiµ provides a richer structure than gµν (a structure which describes
the gravitational and electroweak fields), the complex tetrad Zi

µ provides an even
richer structure (a structure which offers the possibility for describing the strong
interaction, while still describing gravity with the real metric of general relativity).

4.1.1. Currents for Strong Isospin and Hypercharge. Working by analogy with
Eq. (40), we define Ci by

Ci == −Z−1 (ZZi
ν),ν , (73)

where Z is the determinant of Zi
µ, and note that gijCiCj , is invariant not only

under real conservative coordinate transformations on Greek indices, but also under
complex conservative Lorentz transformations on Latin indices, i.e., transformations
Zm̃

µ = Lm̃
iZ

i
µ which satisfy

Lj
m̃

(
Lm̃

i,j − Lm̃
j,i

)
= 0 (74)

and gij = gm̃ñLm̃
iL

ñ
j where gij = gm̃ñ = diag(−1, 1, 1, 1). For an infinitesimal com-

plex Latin Lorentz transformation, one easily finds that

Li
m̃ = δim + gijǫjm where ǫjm is anti-Hermitian. The conservative condition,

Eq. (74), is satisfied if and only if ǫim,i − ǫii,m = 0. From the ǫim one can read off
the generators for the transformation coefficients Li

m̃.
Field equations may be derived from a variational principle with Lagrangian

gijCiCj . The reality constraint on gµν is just

gij

(
Zi

µZ
j
ν − Zi

µZj
ν

)
= 0 .

This constraint may be imposed by using Lagrange multipliers, and for the density

h, we have h =
√
−g =

√
ZZ. Thus, our variational principle is

δ

∫ [
gijCiCj +Λµνgij

(
Zi

µZ
j
ν − Zi

µZj
ν

)]√
ZZd4x = 0 (75)

where Zi
µ, Zi

µ and Λµν are varied independently. (Independent variation of Zi
µ

and Zi
µ is equivalent to varying the real and imaginary components of Zi

µ inde-
pendently.)
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After integration by parts, Noether’s theorem gives (conserved) currents corre-
sponding to strong isospin I3 and hypercharge Y

I3 = C1Z1
α − C1Z1

α − C2Z2
α + C2Z2

α

Y = C1Z1
α − C1Z1

α + C2Z2
α − C2Z2

α − 2C3Z3
α + 2C3Z3

α
(76)

It is clear that our discussion of the strong interaction is more speculative than the
discussions in previous Sections. Much more work must be done before it may be
possible to make a more definite claim.

The results presented in this paper indicate that this theory may lead to the fun-
damental theory that unifies all the known forces. The theory contains no adjustable
parameters. The standard model, by contrast, requires that many parameter values
and symmetries must be ”put in by hand.” The reason for this is that the standard
model does not unify the electroweak and the strong interactions. And, of course
gravity is not included in the standard model. In our theory, by contrast, gravity is
present from the outset, and all forces are completely unified. Indeed, our theory is
constructed by analogy with general relativity, while the U(1)×SU(2) electroweak
theory and the SU(3) strong theory (the building blocks of the standard model)
are constructed by analogy with electromagnetism.

4.2. Quantization of the theory.. The theory thus far is at the classical level. Be-
fore quantization via canonical methods or path integrals, gauge constraints must
be introduced to fix the gauge. Type I regions would require 16 gauge constraints,
while none are required for Type II regions. Alternatively one may introduce 16
fermionic ghost variables and their conjugate momenta in Type I regions (Sun-
dermeyer, 1982), (Henneaux and Teitelboim, 1992), (Weinberg, 1996). These extra
degrees of freedom act as negative degrees of freedom which have the effect of fixing
the gauge.

The quantized theory must be examined to determine whether it is finite, or, at
least, renormalizable and free of anomalies. There are several reasons for believing
that the quantized theory will be either finite or renormalizable. First, Rosenfeld
(1930) noted certain advantages that tetrads present for the quantization of grav-
ity. Second, our Lagrangian CµCµ involves only first derivatives of hiµ; whereas
the Ricci scalar R, the Lagrangian for gravitation alone, involves first and second
derivatives of gµν . Third, the conservation group is much larger than the diffeomor-
phisms, and experience with gauge theory suggests that larger groups offer more
promise of successful quantization. Fourth, we recall that the theory of weak inter-
actions alone was not renormalizable, but the theory became renormalizable with
the inclusion of electromagnetism. This provides hope that gravitation will become
renormalizable with the inclusion of the electroweak and/or strong interaction.

4.3. Fundamental geometrical issues.. It is possible that certain geometric prin-
ciples could lead to a determination of coupling constants and masses. The larger
symmetry of the conservation group suggests that the basic geometry is not a space
of points, but a space of paths. Hence, we would investigate connections between
this theory and string theory. It appears possible that the path-space could provide
a geometrical foundation for string theory. The need for such a foundation has been
emphasized especially by Witten (1988), and Schwarz (1988) has noted that this
foundation could be provided by a “stringy space.”
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Einstein, A. (1928B). “Neue Möglichkeit für eine einheitliche Feltheorie von

Gravitation und Elektrizität,” Preussischen Akademie der Wissenshaf-

ten, Phys.-math. Klasse, Sitzungsberichte 1928, 224.
Einstein, A. (1949), in Albert Einstein: Philosopher-Scientist, edited by

P. A. Schilpp, Harper & Brothers, New York, Vol. I, p. 89.
Eisenhart, L. P. (1925). Riemannian Geometry, Princeton University Press,

Princeton, p 97.
Finkelstein, D. (1981). Private communication.
Green, E. L. (1991). Reported in Pandres (1995).
Green, E. L. (1997). Reported in Pandres (1999).
Henneaux, M. and Teitelboim, C. (1992). Quantization of Gauge Systems,

Princeton University Press, Princeton.
Loos, H. G. (1963). “Spin Connection in General Relativity,” Annals of

Physics, 25, 91.
Misner, C. (1957). ”Feynman Quantization of General Relativity,” Reviews

of Modern Physics 29, 497-509.
Moriyasu, K. (1983). An Elementary Primer for Gauge Theory, World

Scientific, Singapore, p. 110.
Nakahara, M. (1990). Geometry, Topology and Physics, Adam Hilger, New

York, p. 344.
Pandres, D., Jr. (1962). “On Forces and Interactions between Fields,”
Journal of Mathematical Physics,3, 602.

Pandres, D., Jr. (1981). “Quantum Unified Field Theory from Enlarged
Coordinate Transformation Group,” Physical Review D, 24, 1499.

Pandres, D., Jr. (1984A). “Quantum Unified Field Theory from Enlarged
Coordinate Transformation Group. II,” Physical Review D, 30, 317.

Pandres, D., Jr. (1984B). “Quantum Geometry from Coordinate Transf-
ormations Relating Quantum Observers,” International Journal of Theo-

retical Physics, 23, 839.

Pandres, D., Jr. (1995). “Unified Gravitational and Yang-Mills Fields,”
International Journal of Theoretical Physics, 34, 733.

Pandres, D., Jr. (1998). “Gravitational and Electroweak Interactions,”
21



International Journal of Theoretical Physics, 37, 827-839.
Pandres, D., Jr. (1999). “Gravitational and Electroweak Unification,”

International Journal of Theoretical Physics, 38, 1783-1805.
Rosenfeld, I. (1930). Zur Quantelung der Wellen felder, Annalen der Physik, 5, 113.
Salam, A. (1968). “Weak and Electromagnetic Interactions,” Proceedings

of the 8th Nobel Symposium on Elementary Particle Theory, edited by
N. Svartholm, Almquist Forlag, Stockholm, p. 367.

Schouten, J. A. (1954). Ricci-Calculus, 2nd Ed. North-Holland, Amsterdam,
p. 99ff.

Schrödinger, E. (1960). Space-Time Structure, Cambridge University Press,
Cambridge, p. 97, 99.

Schwarz, J. (1988). In Superstrings: A Theory of Everything ?, Edited by
P. C. W. Davis and J. Brown, Cambridge University Press, Cambridge,
p. 70.

Sundermeyer, K. (1982). Constrained Dynamics, Springer-Verlag, Berlin.
Synge, J. L. (1960). Relativity: The General Theory, North-Holland,

Amsterdam, p. 14, 357.
Weber, J. (1961). General Relativity and Gravitational Waves, Interscience,

New York, p. 147.
Weinberg, S. (1967). “A Model of Leptons,” Physical Review Letters, 19,

1264.
Weinberg, S. (1995). The Quantum Theory of Fields, Vol.I, Cambridge

University Press, Cambridge.
Weinberg, S. (1996). The Quantum Theory of Fields, Vol.II, Cambridge

University Press, Cambridge.
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