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Abstract. This paper presents hierarchical finite elements on the basis of the Carrera Unified Formulation for free vibrations

analysis of beam with arbitrary section geometries. The displacement components are expanded in terms of the section coordinates,

(x, y), using a set of 1­D generalized displacement variables. N­order Taylor type expansions are employed. N is a free parameter

of the formulation, it is supposed to be as high as 4. Linear (2 nodes), quadratic (3 nodes) and cubic (4 nodes) approximations

along the beam axis, (z), are introduced to develop finite element matrices. These are obtained in terms of a few fundamental

nuclei whose form is independent of both N and the number of element nodes. Natural frequencies and vibration modes are

computed. Convergence and assessment with available results is first made considering different type of beam elements and

expansion orders. Additional analyses consider different beam sections (square, annular and airfoil shaped) as well as boundary

conditions (simply supported and cantilever beams). It has mainly been concluded that the proposed model is capable of detecting

3­D effects on the vibration modes as well as predicting shell­type vibration modes in case of thin walled beam sections.

1. Introduction

Beam structures are widely used in many engineering applications. Well­known examples are aircraft wings

and helicopter rotor blades in aerospace engineering, and concrete made beams in civil constructions. Classical

1­D models for beams made of isotropic materials are based on the Euler­Bernoulli and Timoshenko theories. The

former does not account for transverse shear effects on cross­sections deformations. The latter provides a model

which foresees a constant shear deformation distribution on the cross­sections. Both models yield better results

for slender beams than for short beams and do not properly account for bending/torsion coupling. Higher­order

beam elements are required in engineering fields as aeroelasticity where the proper analysis of torsional and bending

vibration modes is fundamental to predict aeroelastic responses as well as critical phenomena such as flutter.

A review of several beam and plate theories for vibration, wave propagations, buckling and post­buckling has

been presented by Kapania and Raciti [1,2]. Particular attention was given to models that account for transverse

shear­deformation. A review about developments in finite element formulations for thin and thick laminated beams

was provided.

Eisenberger et al. [3] have presented a method to compute the exact vibration frequencies of asymmetrical

laminated beams. Shear deformations and rotary inertia effects were accounted for. General layouts and geometries

of the structure can be analyzed using this method.
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Marur and Kant [4] have proposed three higher order models to analyze free vibrations of deep fiber reinforced

composite beams. Across the cross­section, axial and shear strain variations were assumed to be cubic and quadratic,
respectively. These models accounted for warping of cross­section and shear correction coefficient was not required.

Recently, the same authors [5] have used higher order theory and isoparametric 1­D finite element formulations
to study vibrations of angle ply laminated beams. Transverse shear and normal strain effects were accounted for.
Symmetric and asymmetric, deep and thin, angle ply beam were investigated.

Kant et al. [6] have formulated an analytical solution for natural frequencies of composite and sandwich beams
based on a higher order refined theory. Their model accounted for cubic axial, transverse shear and quadratic
transverse normal strain. Numerical experiments showed that the higher­order model furnish lower frequencies,
moreover the first­order model is influenced by shear correction factor.

Shi and Lam [7] have conducted free vibrations analysis of composite beam using a finite element formulation
based on a third­order shear deformation beam theory. Their studies on flexural frequencies showed that the influence
of higher­order terms is negligible on the fundamental frequencies, while it is significant on the frequencies of high
flexural modes.

Zhou and Cheung [8] have addressed the problem of transverse vibrations of tapered beams with continuous­
ly varying rectangular cross­section. The equation of motion were obtained exploiting Euler­Bernoulli model,
eigenfrequency equation was developed by the Rayleigh­Ritz method.

A closed form solution with higher­order mixed theory for free vibrations analysis of composite beams has been

presented by Kameswara et al. [9]. Numerical examples were conducted on beams of various span­to­height ratios.
The results showed that the presented theory offers significantly lower natural frequencies than those computed
through Timoshenko model in case of thick sandwich beams.

Lee and Wooh [10] have developed a technique based on higher­order plate theory to analyze static and free
vibrations behavior of box beam composite structures. Their work underlined the importance of shear deformation
in improving the accuracy of the free vibrations analysis of composite beams.

A higher­order finite element model based on classical laminated theory has been developed by Ganesan and
Zabihollah [11,12]. Vibration response of laminated tapered composite beams was investigated. Curvature was a
degree of freedom of each element. This feature ensured continuous curvature and stress distribution across element

interfaces. Higher frequencies analysis capabilities were then enhanced. It was also shown how a higher­order
formulation needs fewer elements to obtain accurate results.

Şimşek and Kocatürk [13] have used a third­order shear deformation theory to study free vibrations of beams with
different boundary conditions. Results were compared with the Timoskenko and Euler­Bernoulli models responses.
Investigating different thickness­to­length ratios, it was highlighted that higher­order models furnish significantly
better results than classical theories in case of short beams and high mode numbers.

Hsu et alii [14] have dealt with free­vibrations analysis of non­uniform Euler­Bernoulli beam exploiting the
Adomian modified decomposition method. Various boundary conditions were accounted for. The efficiency of the
method was shown comparing the results with those furnished in literature.

This paper presents the free vibrations finite element analysis of beams based on higher­order models. The
proposed formulation is embedded in the framework of the Carrera Unified Formulation (CUF) [15,16]. CUF offers a
systematic procedure to obtain refined structural models considering the order of the theory as a free parameter of the
formulation. Different beam elements (2, 3, and 4 nodes) as well as different higher­order models for cross­section
displacements field are used. Their development and static analysis assessments have been recently presented in
Carrera et al. [17]. Euler­Bernoulli and Timoshenko beam models are obtained as particular cases of the first­order
formulation. Homogenous cross­sections and isotropic materials are considered. Three main problems are analyzed:
a rectangular simply supported cross shaped beam, an annular cross shaped beam, and a wing/rotor blade model.

Natural frequencies and modal shapes are computed. The results are compared with benchmarks retrieved from the
classical theories and with shell finite element and analytical models.

2. Preliminaries

The adopted coordinate frame is presented in Fig. 1. The beam boundaries over z are 0 6 z 6 L. The origin
is placed on the center of gravity of the section even when a generic not­rectangular shape is considered. The
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Fig. 1. Coordinate frame and geometry of a rectangular cross­section.

displacements vector is:

u(x, y, z) =
{

ux uy uz

}T
(1)

Superscript T represents the transposition operator. The stress, σ, and the strain, ǫ, are grouped as it follows:

σp =
{

σxx σyy σxy

}T
, ǫp =

{

ǫxx ǫyy ǫxy

}T

σn =
{

σxz σyz σzz

}T
, ǫn =

{

ǫxz ǫyz ǫzz

}T (2)

Subscript “n” stands for terms laying on the cross­section, while “p” stands for terms laying on planes orthogonal to

Ω. Linear strain­displacement relations are used:

ǫp = Dpu

ǫn = Dnu = (DnΩ + Dnz)u
(3)

with:

Dp =







∂
∂x

0 0

0 ∂
∂y

0

∂
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∂
∂x

0






, DnΩ =







0 0 ∂
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0 0 ∂
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0 0 0






, Dnz =







∂
∂z

0 0

0 ∂
∂z

0

0 0 ∂
∂z






(4)

In case of orthotropic materials, the Hooke law holds:

σ = Cǫ (5)

According to Eq (2), the previous equation becomes:

σp = C̃ppǫp + C̃pnǫn

σn = C̃npǫp + C̃nnǫn

(6)

where matrices C̃pp, C̃nn, C̃pn and C̃np are:

C̃pp =





C̃11 C̃12 C̃16

C̃12 C̃22 C̃26

C̃16 C̃26 C̃66



 , C̃nn =





C̃55 C̃45 0

C̃45 C̃44 0

0 0 C̃33



 , C̃pn = C̃
T

np =





0 0 C̃13

0 0 C̃23

0 0 C̃36



 (7)

For the sake of brevity, the dependence of the coefficients [C̃]ij versus Young’s moduli, Poisson’s ratio, the shear

moduli and the fibre angle is not reported. It can be found in Tsai [18] or Reddy [19].
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Table 1

Mac Laurin’s polynomials

0 1 F1 = 1

1 3 F2 = x F3 = y
2 6 F4 = x2 F5 = xy F6 = y2

3 10 F7 = x3 F8 = x2y F9 = xy2 F10 = y3

. . . . . . . . .

N
(N+1)(N+2)

2
F (N2+N+2)

2

= xN F (N2+N+4)
2

= xN−1y . . . F N(N+3)
2

= xyN−1 F (N+1)(N+2)
2

= yN

3. Unified formulation

In the framework of the Carrera Unified Formulation (CUF) [15], the displacement field is assumed as an expansion

of a certain class of functions Fτ :

u = Fτuτ , τ = 1, 2, . . . , Nu (8)

where Fτ are functions of the coordinates x and y on the cross­section. uτ is the displacement vector and Nu stands

for the number of terms of the expansion. According to the Einstein notation, the repeated subscript τ indicates
summation. Mac Laurin polynomials are chosen as expansion functions. The maximum expansion order, N , is

supposed to be 4. Table 1 presents Nu and Fτ as functions of N . For example, the second­order displacement field

is:

ux = ux1 + xux2 + yux3 + x2ux4 + xyux5 + y2ux6

uy = uy1 + xuy2 + yuy3 + x2uy4 + xyuy5 + y2uy6

uz = uz1 + xuz2 + yuz3 + x2uz4 + xyuz5 + y2uz6

(9)

The Timoshenko beam model (TBM) can be obtained by acting on Fτ expansion. Two conditions have to be

imposed. 1) first­order approximation kinematic field:

ux = ux1 + xux2 + yux3

uy = uy1 + xuy2 + yuy3

uz = uz1 + xuz2 + yuz3

(10)

2) the displacement components ux and uy have to be constant above the cross­section:

ux2 = uy2 = ux3 = uy3 = 0 (11)

The Euler­Bernoulli beam (EBBM) can also be obtained through penalization of ǫxz and ǫyz . This condition can be

done by using a penalty value χ in the following constitutive equations:

σxz = χC̃55ǫxz + χC̃45ǫyz

σyz = χC̃45ǫxz + χC̃44ǫyz

(12)

Classical theories and first­order models require the assumption of opportunely reduced material stiffness coefficients

to correct Poisson’s locking (see Carrera and Brischetto [20,21]). Unless differently specified, for classical and

first­order models Poisson’s locking is corrected according to Carrera and Giunta [22].

4. Finite element formulation

By introducing the shape functions, Ni, and the nodal displacement vector, qτi:

qτi = {quxτi
quyτi

quzτi
}T (13)

the displacement vector becomes:

uτ = NiFτqτi (14)

For the sake of brevity, the shape functions are not reported here. They can be found in Bathe [23]. Elements with

2, 3 and 4 nodes are formulated. These elements are addressed as B2, B3, B4, respectively. The stiffness and mass
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matrices of the elements and the external loadings that are coherent to the models are obtained via the Principle of

Virtual Displacements:

δLint =

∫

V

(δǫT
p σp + δǫT

n σn)dV = δLext − δLine (15)

where Lint stands for the strain energy, Lext is the work of the external loadings, and Line is the work of the inertial

loadings. δ stands for the virtual variation. The virtual variation of the strain energy is rewritten using Eqs (3), (6)

and (14):

δLint =

∫

l

δqT
τiNi

[
∫

Ω

DT
p (Fτ I)C̃ppDp(FsI)dΩ

]

Njqsjdz+

+

∫

l

δqT
τiNi

[
∫

Ω

DT
p (Fτ I)C̃pnDnΩ(FsI)dΩ

]

Njqsjdz+

+

∫

l

δqT
τiNi

[
∫

Ω

DT
p (Fτ I)C̃pnFsdΩ

]

Nj,zqsjdz+

+

∫

l

δqT
τiNi

[
∫

Ω

DT
nΩ(Fτ I)C̃npDp(FsI)dΩ

]

Njqsjdz+

+

∫

l

δqT
τiNi

[
∫

Ω

DT
nΩ(Fτ I)C̃nnDnΩ(FsI)dΩ

]

Njqsjdz+

+

∫

l

δqT
τiNi

[
∫

Ω

DT
p (Fτ I)C̃nnFsdΩ

]

Nj,zqsjdz+

+

∫

l

δqT
τiNi,z

[
∫

Ω

Fτ C̃npDp(FsI)dΩ

]

Njqsjdz+

+

∫

l

δqT
τiNi,z

[
∫

Ω

Fτ C̃nnDnΩ(FsI)dΩ

]

Njqsjdz+

+

∫

l

δqT
τiNi,z

[
∫

Ω

Fτ C̃nnFsdΩ

]

Nj,zqsjdz

(16)

where I is the identity matrix. Eq. (16) in a compact format becomes:

δLint = δqT
τiK

ijτsqsj (17)

where Kijτs is the stiffness matrix in the form of the fundamental nucleus.

In order to simplify the expressions of the components of Kijτs, the line and surface integrals are indicated by

letter I whose subscripts point the integration domain and superscripts point either Ni or Fτ and their derivatives.

For example two integrals and their respective notations are shown:

I
τ,xs,y
Ω

=

∫

Ω

Fτ,xFs,ydΩ, Fτ,x =
∂Fτ

∂x
, Fs,y =

∂Fs

∂y
(18)

and:

Ii,zj,z
l =

∫

l

Ni,zNj,zdz, Ni,z =
∂Ni

∂z
, Nj,z =

∂Nj

∂z
(19)

Substituting Eqs (18) and (19) in Eq. (17), a compact form of the fundamental nucleus components is obtained:



490 E. Carrera et al. / Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section

Kijτs
xx = C̃11I

τ,xs,x
Ω

Iij
l + C̃16I

τ,ys,x
Ω

Iij
l + C̃16I

τ,xs,y
Ω

Iij
l + C̃66I

τ,ys,y
Ω

Iij
l + C̃55I

τs
Ω

Ii,zj,z
l

Kijτs
xy = C̃12I

τ,xs,y
Ω

Iij
l + C̃26I

τ,ys,y
Ω

Iij
l + C̃16I

τ,xs,x
Ω

Iij
l + C̃66I

τ,ys,x
Ω

Iij
l + C̃45I

τs
Ω

Ii,zj,z
l

Kijτs
xz = C̃13I

τ,xs
Ω

Iij,z
l + C̃36I

τ,ys

Ω
Iij,z
l + C̃55I

τs,x
Ω

Ii,zj
l + C̃45I

τs,y
Ω

Ii,zj
l

Kijτs
yx = C̃12I

τ,ys,x
Ω

Iij
l + C̃26I

τ,ys,y
Ω

Iij
l + C̃16I

τ,xs,x
Ω

Iij
l + C̃66I

τ,xs,y
Ω

Iij
l + C̃45I

τs
Ω

Ii,zj,z
l

Kijτs
yy = C̃22I

τ,ys,y
Ω

Iij
l + C̃26I

τ,xs,y
Ω

Iij
l + C̃26I

τ,ys,x
Ω

Iij
l + C̃66I

τ,xs,x
Ω

Iij
l + C̃44I

τs
Ω

Ii,zj,z
l

Kijτs
yz = C̃23I

τ,ys

Ω
Iij,z
l + C̃36I

τ,xs
Ω

Iij,z
l + C̃45I

τs,x
Ω

Ii,zj
l + C̃44I

τs,y
Ω

Ii,zj
l

Kijτs
zx = C̃55I

τ,xs
Ω

Iij,z
l + C̃45I

τ,ys

Ω
Iij,z
l + C̃13I

τs,x
Ω

Ii,zj
l + C̃36I

τs,y
Ω

Ii,zj
l

Kijτs
zy = C̃45I

τ,xs
Ω

Iij,z
l + C̃44I

τ,ys

Ω
Iij,z
l + C̃23I

τs,y
Ω

Ii,zj
l + C̃36I

τs,x
Ω

Ii,zj
l

Kijτs
zz = C̃55I

τ,xs,x
Ω

Iij
l + C̃45I

τ,ys,x
Ω

Iij
l + C̃45I

τ,xs,y
Ω

Iij
l + C̃44I

τ,ys,y
Ω

Iij
l + C̃33I

τs
Ω

Ii,zj,z
l

(20)

Line integrals of shape functions are numerically computed via Gauss’ method. Selective integration is adopted

to overcome shear locking phenomena (see Bathe [23]). Surface integrals of Fτ are evaluated numerically by

partitioning the integration area in a certain number of sub­domains:

∫

Ω

f(x, y)dΩ ≃
M
∑

m=1

f(xm, ym)Ωm (21)

where xm and ym are the coordinates of the center of gravity of Ωm. M is evaluated through a convergence study.

This numerical technique is adopted to be able to analyze arbitrary cross­section geometries since analytical solutions

of the surface integrals could not be efficient from a numerical point of view. The sub­domains can have arbitrary

geometries. The triangular shape is usually preferred since it permits a better partitioning of irregular cross­sections

(e.g. annular or airfoil shaped).

The virtual variation of the work of the inertial loadings is:

δLine =

∫

V

ρüδuT dV (22)

where ρ stands for the density of the material, and ü is the acceleration vector. Equation (22) is rewritten using

Eqs (3), and (14):

δLine =

∫

l

δqT
τiNi

[
∫

Ω

ρ(Fτ I)(FsI)dΩ

]

Njq̈sjdz (23)

where q̈ is the nodal acceleration vector. The last equation can be rewritten in the following compact manner:

δLine = δqT
τiM

ijτsq̈sj (24)

where Mijτs is the mass matrix in the form of the fundamental nucleus. Its components are:

M ijτs
xx = M ijτs

yy = M ijτs
zz = ρIτs

Ω
Iij
l

M ijτs
xy = M ijτs

xz = M ijτs
yx = M ijτs

yz = M ijτs
zx = M ijτs

zy = 0
(25)

It should be noted that no assumptions on the approximation order have been done. It is therefore possible to obtain

refined beam models without changing the formal expression of the nucleus components of the stiffness matrix, K,

and of the mass matrix, M. For the sake of brevity, the derivation of the loadings vector variationally coherent to the

model is not reported, it can be found in Carrera et al. [17]. The undamped dynamic problem can be written as it

follows:
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Mä + K[a] = p (26)

where a is the vector of the nodal unknowns and p is the loadings vector. Introducing harmonic solutions, it is

possible to compute the natural frequencies, ωk, for the homogenous case, by solving an eigenvalues problem:

(−ω2

kM + K)ak = 0 (27)

where ak is the k­th eigenvector.

5. Results and discussion

Free vibrations of different beam models are analyzed. Clamped and simply supported boundary conditions are

accounted for. The beams are supposed to have square cross­section, annular cross­section or an airfoil shaped

section. An isotropic material is used. Young’s modulus, E, is equal to 75 [GPa]. The Poisson ratio, ν, is equal to

0.33.

5.1. Square cross­section beam

A simply supported beam is considered as a first assessment of the proposed FEs. The coordinate frame and the

cross­section geometry are shown in Fig. 1. The sides of the section are equal to 0.2 [m]. The span­to­height ratio,

L/h, is equal to 100 and 10. Slender and relatively short beams are therefore investigated. The first five bending

modes are analyzed. As benchmark for the k­th natural frequency, Euler­Bernoulli’s solution for simply supported

beams [24] is used:

fkb
=

π

2

(

k

L

)2 (

EI

ρA

)
1
2

(28)

The first five frequencies of the beam are reported in Tables 2, 3, 4 and 5. They have been computed for different beam

elements, expansion orders and span­to­height ratios. Considering slender beams, the results match the benchmark

values. In case of short beams, the differences between the FE and the benchmark solution become remarkable as

the frequencies grow. As far as the first natural frequency of the slender beams is concerned, no differences have

been found for N > 2. Ten B3 elements are enough to get the convergence. For higher frequencies a third­order

approximation and 40 B3 elements are needed. Short beams require fourth­order models as well as a higher number

of elements. In both cases, first­order approximation matches Timoshenko’s model. Linear terms of ux and uy can

be neglected. Higher­order than linear approximation yields a more flexible structure. This effect is not found in

case of linear expansion because of the presence of Poisson’s locking correction effect. A higher number of elements

enhances the flexibility of the structure. In Fig. 2 two bending modes are shown underlining the 3­D capabilities of

the adopted finite element formulation.

5.2. Annular cross­section beam

A beam with annular cross­section is considered. The coordinate frame and the cross­section geometry are shown

in Fig. 3. The outer diameter of the section is equal to 2 [m]. While the inner diameter is equal to 1.96 [m]. The

span­to­diameter ratio, L/d, is equal to 100 and 10.

In Table 6 the solution obtained through the present beam model is compared to that furnished by NASTRAN

using shell elements. The beam is clamped. Bending and radial modes are considered. In both cases the beam

model is able to match the shell solution. In Figs 4 and 5 the second radial mode is plotted as it is computed by

NASTRAN and CUF beam model. A further comparison is addressed in Table 7 where a Navier type closed form

solution for shell structures is adopted as in [25–27]. The beam is simply supported. Bending and circumferential

modes are accounted for. The beam model solution matches the analytical one.

In Table 8 the first five natural frequencies related to bending modes are shown. They have been computed for

different expansion orders and span­to­height ratios, 40 B4 elements have been used. The beam is simply supported.

Reference solutions for the bending modes frequencies are obtained through Eq. (28). The positions held by each
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Table 2

Effect of the number of elements on f1, [Hz]. Square cross­section

beam. L/h = 100

No. Elem. Elem. Type EBBM TBM N = 1 N = 2

f1b
= 1.195 [Hz]

10 B2 1.209 1.209 1.209 1.212

20 B2 1.198 1.198 1.198 1.199

40 B2 1.195 1.195 1.195 1.195

10 B3 1.195 1.194 1.194 1.194

10 B4 1.195 1.194 1.194 1.194

Table 3

Effect of the number of elements on f2, f3, f4 and f5, [Hz]. Square cross­section

beam. L/h = 100

No. Elem. Elem. Type EBBM TBM N = 1 N = 2 N = 3

f2b
= 4.780 [Hz]

10 B2 5.023 5.020 5.020 5.061 5.061

20 B2 4.837 4.835 4.834 4.845 4.844

40 B2 4.792 4.790 4.790 4.793 4.792

10 B3 4.779 4.777 4.777 4.777 4.777

20 B3 4.778 4.776 4.778 4.776 4.775

40 B3 4.778 4.775 4.775 4.775 4.775

10 B4 4.778 4.775 4.775 4.775 4.775
f3b

= 10.755 [Hz]

10 B2 12.053 12.039 12.039 12.268 12.265

20 B2 11.052 11.041 11.041 11.091 11.089

40 B2 10.822 10.811 10.811 10.824 10.822

10 B3 10.764 10.753 10.753 10.754 10.752

20 B3 10.748 10.738 10.738 10.738 10.736

40 B3 10.747 10.737 10.737 10.737 10.735

10 B4 10.747 10.737 10.737 10.737 10.735
f4b

= 19.119 [Hz]

10 B2 23.546 23.491 23.491 24.319 24.309

20 B2 20.080 20.043 20.043 20.206 20.200

40 B2 19.338 19.304 19.304 19.343 19.337

10 B3 19.193 19.159 19.159 19.165 19.159

20 B3 19.107 19.073 19.073 19.074 19.069

40 B3 19.101 19.068 19.068 19.068 19.063

10 B4 19.102 19.068 19.068 19.069 19.064
f5b

= 29.874 [Hz]

10 B2 41.858 41.674 41.674 44.090 44.053

20 B2 32.278 32.180 32.180 32.596 32.579

40 B2 30.417 30.332 30.332 30.428 30.414

10 B3 30.174 30.090 30.090 30.117 30.104

20 B3 29.857 29.775 29.775 29.777 29.764

40 B3 29.835 29.754 29.754 29.755 29.742
10 B4 29.840 29.758 29.758 29.760 29.747

Table 4

Effect of the number of elements on f1, [Hz]. Square cross­section beam. L/h = 10

No. Elem. Elem. Type EBBM TBM N = 1 N = 2 N = 3 N = 4

f1b
= 119.495 [Hz]

10 B2 120.442 119.139 119.139 119.398 119.189 119.188

20 B2 119.334 118.058 118.058 118.142 117.938 117.938

40 B2 119.059 117.790 117.790 117.831 117.629 117.628

10 B3 118.970 117.704 117.704 117.730 117.528 117.528

20 B3 118.968 117.701 117.701 117.728 117.526 117.525

10 B4 118.968 117.701 117.701 117.728 117.526 117.525
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Table 5

Effect of the number of elements on f2, f3, f4 and f5, [Hz]. Square cross­section beam. L/h = 10

No. Elem. Elem. Type EBBM TBM N = 1 N = 2 N = 3 N = 4

f2b
= 477.978 [Hz]

10 B2 493.730 473.328 473.328 477.234 474.082 474.061

20 B2 475.873 457.071 457.071 458.270 455.421 455.402

40 B2 471.565 453.138 453.138 453.701 450.923 450.904

10 B3 470.289 451.971 451.971 452.335 449.577 449.558

20 B3 470.152 451.846 451.846 452.203 449.447 449.428

40 B3 470.143 451.838 451.838 452.194 449.438 449.420
10 B4 470.143 451.838 451.838 452.194 449.438 449.419

20 B4 470.143 451.838 451.838 452.193 449.438 449.419

f3b
= 1075.451 [Hz]

10 B2 1156.717 1056.451 1056.451 1074.491 1059.816 1059.585

20 B2 1065.371 981.051 981.051 986.227 974.316 974.136

40 B2 1044.240 963.387 963.387 965.718 954.395 954.226

10 B3 1038.897 958.907 958.907 960.406 949.233 949.064

20 B3 1037.438 957.684 957.684 959.105 947.969 947.802
40 B3 1037.344 957.605 957.605 959.019 947.885 947.720

10 B4 1037.348 957.608 957.608 959.022 947.888 947.722

20 B4 1037.338 957.600 957.600 959.013 947.879 947.713

f4b
= 1911.912 [Hz]

10 B2 2172.952 1866.073 1866.073 1916.540 1874.242 1873.035

20 B2 1881.179 1650.792 1650.792 1664.375 1634.155 1633.350

40 B2 1817.182 1602.055 1602.055 1607.875 1580.005 1579.276

10 B3 1804.577 1592.389 1592.389 1596.216 1568.820 1568.098
20 B3 1797.092 1586.644 1586.644 1589.041 1562.889 1562.178

40 B3 1796.597 1586.264 1586.264 1589.627 1562.490 1561.784

10 B4 1796.656 1586.309 1586.309 1589.676 1562.537 1561.831

20 B4 1796.565 1586.239 1586.239 1589.600 1562.464 1561.758

40 B4 1796.564 1586.238 1586.238 1589.598 1562.463 1561.757

f5b
= 2987.363 [Hz]

10 B2 3630.433 2905.289 2905.289 3010.050 2916.029 2911.758

20 B2 2914.789 2434.784 2434.784 2461.974 2403.275 2400.840
40 B2 2766.529 2331.254 2331.254 2342.333 2289.951 2287.836

10 B3 2747.013 2317.445 2317.445 2325.157 2273.664 2271.579

20 B3 2721.350 2299.292 2299.292 2305.461 2254.936 2252.901

40 B3 2719.614 2298.060 2298.060 2304.121 2253.658 2251.638

10 B4 2719.990 2298.327 2298.327 2304.409 2253.932 2251.911

20 B4 2719.504 2297.982 2297.982 2304.033 2253.574 2251.556

40 B4 2719.496 2297.976 2297.976 2304.026 2253.568 2251.550
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Fig. 2. Bending modes of the beam with square cross­section. Type of element: B4. Fourth order model. 40 beam elements. L/h = 100.
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Table 6
Comparison between NASTRAN shell and present

beam elements solution on bending and radial natu­

ral frequencies, [Hz]. Clamped annular cross­section

beam. L/d = 10

f1 f2

Bending Modes

NASTRAN Shell 5.073 29.072

Present Beam, N = 4 5.080 29.090

Radial Modes

NASTRAN Shell 40.377 121.120

Present Beam, N = 4 40.254 120.762

Table 7

Comparison between analytical shell solution and present

beam finite element formulation on bending and circumfer­

ential natural frequencies, [Hz]. Simply supported annular

cross­section beam. L/d = 10

Analytical Shell Present Beam, N = 4

f1b
14.021 14.019

f1c 22.880 23.386
f2b

51.504 51.470

y

xO z

d

Fig. 3. Coordinate frame and geometry of an annular cross­section.

Fig. 4. II radial vibration mode of the annular cross­section beam obtained through NASTRAN shell model. L/d = 5.
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Table 8

First five bending frequencies, [Hz], of the beam with annular cross­section. Type of element: B4. 40 beam

elements

f1 f2 f3 f4 f5

L/d = 100

Ref. Sol. Eq. 28 0.145 0.580 1.304 2.318 3.622

EBBM 0.145(1,2)∗ 0.579(3,4) 1.303(5,6) 2.316(7,8) 3.617(9,10)

TBM 0.145(1,2) 0.579(3,4) 1.302(5,6) 2.310(7,8) 3.602(9,10)

N = 1 0.145(1,2) 0.579(3,4) 1.302(5,6) 2.310(7,8) 3.602(9,10)

N = 2 0.145(1,2) 0.579(3,4) 1.302(5,6) 2.310(7,8) 3.603(9,10)

N = 3 0.145(1,2) 0.579(3,4) 1.300(5,6) 2.306(7,8) 3.592(9,10)

N = 4 0.145(2,3) 0.579(4,5) 1.300(6,7) 2.306(8,9) 3.592(10,11)

L/d = 10
Ref. Sol. Eq. 28 14.489 57.958 130.405 231.831 362.235

EBBM 14.402(1,2) 56.602(3,4) 123.825(6,7) 212.170(9,10) 317.343(11,12)

TBM 14.180(1,2) 53.523(3,4) 111.116(6,7) 180.425(8,9) 256.845(11,12)

N = 1 14.180(1,2) 53.523(4,5) 111.116(7,8) 180.425(11,12) 256.845(15,16)

N = 2 14.183(2,3) 53.564(4,5) 111.268(7,8) 180.761(11,12) 257.412(14,15)

N = 3 14.019(2,3) 51.485(6,7) 103.487(13,14) 162.839(19,20) 225.148(23,24)

N = 4 14.019(2,3) 51.470(10,11) 103.369(21,22) 162.382(29,30) 223.927(39,40)

(∗): between brackets the positions of the frequencies in the eigenvalues vector are reported.

-303

x [m]
01020 z [m]

-3

0

3

y [m]

Fig. 5. II radial vibration mode of the annular cross­section beam obtained through the present beam formulation. N = 4. L/d = 5.

frequency in the eigenvalues vector are reported as well. Each frequency appears twice because of the symmetry of

the structure with respect to the longitudinal axis. In case of slender beams, the results match the benchmark values.

Considering short beams, higher­order models lead to results which are significantly different from the solutions

provided by classical models. Higher the mode number, larger the difference. The usage of refined models permits

the identification of a larger amount of vibration modes. The number of modes not predicted by classical models

increases as the span­to­height ratio decreases and the expansion order increases. In Fig. 6 the positions of the first

three bending frequencies in the eigenvalues vector are plotted for different beam models in case of short beams.

With classical theories these frequencies held the first three positions of the vector. New vibration modes appears as

the model is refined. In particular, longitudinal and circumferential modes have been found in between the bending

ones. In Table 9 the first ten natural frequencies are reported with the indication of the type of vibration mode to

whom they are associated with. Short beams are considered. Classical theories are only able to gather bending and

longitudinal modes. First­ and second­order models can get torsional modes. At least a third­order model is needed

to evaluate circumferential modes. Figures 7, 8, 9 and 10 show two circumferential modes. Third­order models

furnish two­lobes modes, while three­lobes modes are detected by fourth­order models. In both cases out­of­plane

components are observed. The 3­D plots highlight the distribution of the circumferential mode along z.
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Table 9

First ten frequencies, [Hz], of the beam with annular cross­section. Type of element:

B4. 40 beam elements. L/d = 10

EBBM TBM N = 1 N = 2 N = 3 N = 4

1 14.402b∗ 14.180b 14.180b 12.920l 10.973l 0.385l

2 14.402b 14.180b 14.180b 14.183b 14.019b 14.019b

3 56.602b 53.523b 47.888l 14.183b 14.019b 14.019b

4 56.602b 53.523b 53.523b 53.564b 34.798c 23.386c

5 65.881l 65.881l 53.523b 53.564b 34.851c 23.464c

6 123.825b 111.116b 80.508t 80.508t 51.485b 29.214c

7 123.825b 111.116b 111.116b 111.268b 51.485b 29.277c

8 197.642l 180.425b 111.116b 111.268b 61.117c 45.405c

9 212.170b 180.425b 143.558l 132.889l 61.146c 45.445c

10 212.170b 197.642l 161.015t 161.015t 80.508t 51.470b

(∗): “b” stands for bending mode, “l” stands for longitudinal mode, “t” stands for

torsional mode, c stands for circumferential mode.

 0
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EBBM TBM N=1 N=2 N=3 N=4

M
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e 
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m
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Beam model

Bending modes
Longitudinal modes

Circumferential modes

Fig. 6. Frequencies and vibration modes versus beam models in case of annular cross­section. Type of element: B4. 40 beam elements. L/d =
10.
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Fig. 7. IV vibration mode of the beam with annular cross­section, f4 = 34.798 Hz. Type of element: B4. Third order model. 40 beam elements.

L/d = 10.
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Fig. 8. IV vibration mode of the annular cross­section at z = L/4, f4 = 34.798 Hz. Type of element: B4. Third order model. 40 beam elements.

L/d = 10.
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Fig. 9. XV vibration mode of the beam with annular cross­section, f15 = 74.204 Hz. Type of element: B4. Fourth order model. 40 beam

elements. L/d = 10.
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Fig. 10. XV vibration mode of the annular cross­section at z = L/4, f15 = 74.204 Hz. Type of element: B4. Fourth order model. 40 beam

elements. L/d = 10.
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Table 10

First five bending frequencies, [Hz], of the beam with airfoil cross­section. Type of element:

B4. 40 beam elements

f1 f2 f3 f4 f5

L/b = 25

Ref. Sol. Eq. (29) 0.235 1.472 4.122 8.078 13.352

EBBM 0.235(1)∗ 1.470(3) 4.116(4) 8.064(5) 13.328(7)

TBM 0.235(1) 1.470(3) 4.114(4) 8.058(5) 13.312(7)

N = 1 0.235(1) 1.470(3) 4.114(4) 8.058(5) 13.312(7)

N = 2 0.236(1) 1.476(3) 4.133(4) 8.099(5) 13.388(8)

N = 3 0.235(1) 1.473(3) 4.119(4) 8.058(5) 13.290(8)

N = 4 0.235(1) 1.473(3) 4.117(4) 8.052(5) 13.277(8)

L/b = 5

Ref. Sol. Eq. (29) 5.873 36.804 103.052 201.955 333.810

EBBM 5.863(1) 36.692(3) 102.511(4) 200.236(6) 329.634(8)

TBM 5.859(1) 36.536(3) 101.491(4) 196.639(6) 320.461(8)

N = 1 5.859(1) 36.536(3) 101.491(4) 196.639(8) 320.461(9)

N = 2 5.963(1) 37.071(3) 103.047(5) 199.759(8) 325.149(11)

N = 3 5.913(1) 36.312(3) 98.705(5) 185.376(8) 290.665(11)

N = 4 5.903(1) 36.142(3) 97.876(5) 182.813(8) 284.400(11)

(∗): between brackets the positions of the frequencies in the eigenvalues vector are reported.

y

xO z

b

h

Fig. 11. Coordinate frame and geometry of an airfoil cross­section.

5.3. Wing and rotor blade cross­sections

NACA 2415 airfoil profile is adopted as the cross­section, see Fig. 11. The chord length, b, is assumed equal to

1 [m]. A three cells section is evaluated. The cells are obtained by inserting two beams along the span­wise direction

at 25% and 75% of the chord. The span­to­chord ratio, L/b, is considered as free parameter and is assumed to be

equal to 25 and 5. The first value is characteristic of helicopters rotor blades, while the latter represents a typical

value for aircrafts wings. The beam is clamped at z = 0. Reference values of the k­th bending natural frequencies

are given by the following expression based on Euler­Bernoulli’s assumptions:

fkb
=

1

2π
(
(λkL)2

L2

(

EI

ρA

)
1
2

(29)

for the sake of brevity, the values of λkL are not reported here. They can be found in Craig [24].

Table 10 shows the first five natural frequencies related to bending modes along y. In case of slender beams, the

results match the benchmark values. For short beams, the contribution of the higher­order terms is significant. As

far as the position of the bending frequencies in the eigenvalues vector is concerned, refined theories are able to

gather more vibration modes than the classical ones. In Table 11 a comparison between the TBM and linear model

is conducted by reporting the first ten frequencies and their own mode. Short beams are considered. Timoshenko’s

model is not able to get the torsional mode since its kinematics assumptions are based on constant distribution of

ux and uy above the cross­section. This aspect is also shown in Fig. 12. A longitudinal mode is presented in case
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Table 11

Comparison of the first ten frequencies,

[Hz], of the beam with airfoil cross­

section using TBM and linear expansion.

Type of element: B4. 40 beam elements.
L/b = 5

TBM N = 1

1 5.859
b∗y 5.859by

2 32.692bx 32.692bx

3 36.536by 36.536by

4 101.491by 101.491by

5 179.031bx 161.015t

6 196.639by 179.031bx

7 263.523l 191.366l

8 320.461by 196.639by

9 431.618bx 320.461by

10 470.721by 431.618bx

(∗): “by” stands for bending mode along

y;

“bx” stands for bending mode along x;

“l” stands for longitudinal mode,
“t” stands for torsional mode.
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Fig. 12. VII vibration mode of the airfoil cross­section beam. Comparison between TBM and linear expansion. Type of element: B4. 40 beam

elements. L/b = 5.

of short beams. It has been computed both with the TBM and linear model. In the latter case there are significant

contributions of the linear components of ux and uy on the longitudinal mode. The cross­sections undergo in­plane

components of displacement which are not constant as x, y and z vary. In Figs 13, 14 and 15 three vibration modes
are presented. The adopted model is able to predict the 3­D shape variations of the wing cross­section. In Figs 16

the vibration modes of a section placed at z = 3L/4 are shown for different expansion orders in case of short beams.

More refined the model, more detailed the computed solution. Higher than second­order models are needed to
predict properly the cross­section free vibrations behavior.

6. Conclusions

In this paper, free vibrations analysis of beam models based on higher­order theories has been presented. Carrera’s

Unified Formulation (CUF) has been used for the systemic implementation of refined models. Two­, three­ and

four­node finite elements have been derived according to CUF. The element stiffness and mass matrices are obtained
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Fig. 13. I vibration mode of the airfoil cross­section beam, f1 = 5.903 Hz. Type of element: B4. 40 beam elements. Fourth order model. L/b =
5.
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Fig. 14. II vibration mode of the airfoil cross­section beam, f2 = 36.142 Hz. Type of element: B4. 40 beam elements. Fourth order model.

L/b = 5.
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Fig. 15. IV vibration mode of the airfoil cross­section beam, f4 = 182.813 Hz. Type of element: B4. 40 beam elements. Fourth order model.

L/b = 5.

in a compact form, named fundamental nucleus, that does not depend on the theory approximation order. It is

assumed as a free parameter of the modeling. It is supposed to be as high as 4. Elements based on higher­order beam

models as well as classical theories can be easily derived. Square, annular and airfoil shaped cross­sections have

been accounted for. Slender as well as short beams have been analyzed. Clamped and simply supported boundary

conditions have been considered. The dynamics behavior of the beam is described in terms of natural frequencies and

vibration modes. Convergency analysis due to the mesh quality has been presented in case of square cross­section

through the analysis of the first five natural frequencies. It has been found that it depends on the expansion orders
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Fig. 16. VIII vibration mode of the airfoil cross­section at z = 3L/4. Type of element: B4. 40 beam elements. L/b = 5.

especially in case of short beams and higher mode numbers. The analysis of the annular cross­section beam has
shown the role of refined models in properly detecting vibration modes characterized by 3­D features. The wing and

rotor blade models have highlighted the differences between different theories. In particular a comparison between
Timoshenko’s and linear models in predicting longitudinal and torsional vibration modes has been done. It has been

shown the capabilities of CUF of accounting for unconventional cross­sections. A refined beam model is necessary
to:

– improve the flexibility features of a finite element model;
– obtain accurate values of natural frequencies;

– evaluate 3­D effects on the vibration modes;
– predict shell­type vibration modes in case of thin walled beam sections;

and in particular when:

– unconventional cross­section geometries are adopted;
– short beams are considered;

– higher modes number are investigated;
– the aim of the structural dynamics analysis is the proper prediction of vibration modes such as the torsional or

the circumferential ones.

These aspects make the usage of higher­order beam models attractive for aeroeleatic problems where the effectiveness

in dealing with modes like the torsional ones is fundamental. The possibility of considering the approximation order
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as a free parameter offered by CUF, makes this formulation particularly suitable for these purposes. Future studies

will address the usage of Lagrangian polynomials as expansion functions, application to aeroelastic problems and

the implementation of non­linear analysis.
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