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In multimedia systems we usually need to retrieve DB objects based on their similarity to a query
object, while the similarity assessment is provided by a measure which defines a (dis)similarity

score for every pair of DB objects. In most existing applications, the similarity measure is required
to be a metric, where the triangle inequality is utilized to speedup the search for relevant objects

by use of metric access methods (MAMs), e.g. the M-tree. A recent research has shown, however,
that non-metric measures are more appropriate for similarity modeling due to their robustness and
ease to model a made-to-measure similarity. Unfortunately, due to the lack of triangle inequality,
the non-metric measures cannot be directly utilized by MAMs. From another point of view, some
sophisticated similarity measures could be available in a black-box non-analytic form (e.g. as an
algorithm or even a hardware device), where no information about their topological properties is
provided, so we have to consider them as non-metric measures as well. From yet another point
of view, the concept of similarity measuring itself is inherently imprecise and we often prefer fast
but approximate retrieval over an exact but slower one.

To date, the mentioned aspects of similarity retrieval have been solved separately, i.e. exact
vs. approximate search or metric vs. non-metric search. In this paper we introduce a similarity

retrieval framework which incorporates both of the aspects into a single unified model. Based on
the framework, we show that for any dissimilarity measure (either a metric or non-metric) we are
able to change the ”amount” of triangle inequality, and so to obtain an approximate or full metric
which can be used for MAM-based retrieval. Due to the varying ”amount” of triangle inequality,
the measure is modified in a way suitable for either an exact but slower or an approximate but
faster retrieval. Additionally, we introduce the TriGen algorithm aimed to construct the desired
modification of any black-box distance automatically, using just a small fraction of the database.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content

Analysis and Indexing—indexing methods

General Terms: design, algorithms

Additional Key Words and Phrases: similarity retrieval, approximate and exact search

1. INTRODUCTION

Since recent years the volume of available multimedia data grows rapidly, so the
multimedia retrieval systems and multimedia databases are becoming more im-
portant than ever. As we see the progress in the fields of acquisition, storage,
and dissemination of various multimedia formats, the application of effective and
efficient multimedia management systems becomes indispensable in order to han-
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dle all these formats. The application domains for multimedia retrieval include
image/audio/video databases, CAD databases, but also molecular biology and
medicine databases, geographical information systems, biometric databases and
many others. In particular, more than 95% of web space is considered to store
multimedia content, other multimedia data is stored in corporate and scientific
databases, personal archives and digital libraries.

Due to the quick growth of multimedia data volumes, the text-based multimedia
systems become useless, since the requirements on manual annotation exceed human
possibilities and resources. The metadata-based search systems are of similar kind,
we need an additional explicit information to effectively describe multimedia objects
(e.g. structured semantic description, like class hierarchies or ontologies), which is
not available in most cases.1

The only practicable way how to process and retrieve the vast volumes of raw
multimedia data is the content-based similarity search, i.e. we consider the real
content of each particular DB object. Because the multimedia objects have no
universal syntactic and semantic structure (unlike traditional strong-typed rows in
relational database tables or XML with a schema), the most general and feasible
abstraction used in multimedia retrieval is the query-by-example concept, where the
database objects are ranked according to similarity to a query object (the example).
Only such database objects are retrieved, which have been ranked as sufficiently
similar to the query object. The similarity measure returns a real-valued similarity
score for any two multimedia objects on the input.

1.1 Preferences of Similarity Search

The retrieval effectiveness (i.e. the quality of the query result) is tightly bound
to the similarity measure employed. To obtain just the expected results from the
database, the similarity measure should follow the human perception (or judgment)
of similarity. The measure, therefore, should not be limited by some topological
properties (e.g. metric axioms) which restrict the richness of similarity modeling.
Following this presumption, the most general similarity measuring can be achieved
by a non-metric distance. However, despite the possibilities of non-metric mea-
suring, the measures are often restricted to metric distances, since then the DB
objects can be indexed by metric access methods, and then efficiently (i.e. quickly)
retrieved when a similarity query is issued. We could call the choice between metric
and non-metric measures as the topological preference.

From another point of view, unlike exact-match queries in traditional databases,
the similarity measuring and retrieval in multimedia databases is inherently im-
precise, subjective and changing over time. Thus, we might prefer faster but ap-
proximate methods which could retrieve some non-relevant objects (false hits) and
miss some relevant ones (false dismissals). In many cases, the efficiency gain can
be traded for an acceptable loss in effectiveness. Nevertheless, in some cases the
similarity is precisely defined and then we require the search to be as exact as pos-
sible (e.g. biometric identification tasks). We could call the choice between exact
and approximate search as the precision preference.

1The image search provided by Google is a successful example of text-based search engine, where
the text annotation is extracted from web pages wherein the images are encapsulated.
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Both the topological and precision preferences are orthogonal, we can distinguish
metric or non-metric and exact or approximate preferences.

1.2 Paper Contributions

So far, the four preference combinations of similarity search have been handled
separately. Most of the research has been carried out in the exact metric search,
resulting in a large class of metric access methods. Also the approximate metric
search has been extensively studied, while several proposals have been presented
also in the area of exact as well as approximate non-metric search. However, to the
best of our knowledge, there has not been proposed a unifying framework for all
four aspects of similarity search. In this paper we propose such a framework based
on modification of any dissimilarity measure (even a ”black-box” one) to become
applicable to any metric access method for either an exact or approximate retrieval.

1.2.1 Differences from Previous work. The framework is a generalization and
extension of our previous contributions proposed in [Skopal 2006] and [Skopal et al.
2004]. In particular, the concept of distance modification is generalized, so that
we not only consider so-called TG-modification of a semimetric distance (as in
[Skopal 2006]), but we also propose the so-called TV-modification (proposed in a
very restricted form in [Skopal et al. 2004]). The discussion on TG-/TV-modifiers
(see Section 4) includes some new theoretical observations. The TriGen algorithm
(proposed in [Skopal 2006]) has been generalized in order to support a new con-
cept of T-bases – generators of both TG- and TV-modifiers. Additionally, a new
algorithm for sampling anomalous distance triplets is proposed. Moreover, we in-
troduce the ball-overlap factor (employed in the TriGen), which is an alternative
to the intrinsic dimensionality. The content of experimental section is entirely new,
the experiments have been performed on new datasets and using some new distance
measures. The extended introduction to similarity search and related work sections
are illustrated by many figures.

1.2.2 Structure. The rest of the paper is structured as follows. The preliminaries
and dissimilarity measures are introduced in Section 2. In Section 3 we briefly
survey the state-of-the-art approaches to all the mentioned aspects of similarity
search. In Section 4 we present the key concept of our framework – similarity-
preserving distance modifications. The Section 5 describes how to employ the
modified distances in MAMs and in Section 6 we present the TriGen algorithm
for automatic modification determination. The 7th section analyzes experimental
results and in Section 8 we conclude the paper.

2. DISSIMILARITY SPACES

The similarity retrieval modeling is based on simplifying dissimilarity space ab-
straction. Let a multimedia object O be modeled by a model object O ∈ U, where
U is a model universe, which could be a cartesian product over attribute sets, a set
of various structures (polygons, graphs, other sets, etc.), string closure, sequence
closure, etc. A multimedia database S is then represented by a dataset S ⊂ U.

Definition 1. (similarity & dissimilarity measure)

Let s : U × U 7→ R be a similarity measure, where s(Oi, Oj) is considered as a
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similarity score of multimedia objects Oi and Oj . In many cases it is more suitable
to use a dissimilarity measure δ : U × U 7→ R equivalent to a similarity measure
s(·, ·) as s(Q,Oi) > s(Q,Oj) ⇔ δ(Q,Oi) < δ(Q,Oj). A dissimilarity measure (or
distance) assigns a higher score to less similar objects, and vice versa. The pair
D = (U, δ) is called a dissimilarity space – a kind of topological space. ✷

2.1 Metric distances

The distance measures often satisfy some of the metric properties (∀Oi, Oj , Ok ∈ U):

δ(Oi, Oj) = 0 ⇔ Oi = Oj reflexivity (1)

δ(Oi, Oj) > 0 ⇔ Oi 6= Oj non-negativity (2)

δ(Oi, Oj) = δ(Oj , Oi) symmetry (3)

δ(Oi, Oj) + δ(Oj , Ok) ≥ δ(Oi, Ok) triangle inequality (4)

The reflexivity (1) permits the zero distance just for identical objects. Both
reflexivity and non-negativity (2) guarantee every two distinct objects are somehow
positively dissimilar. If δ satisfies reflexivity, non-negativity and symmetry (3), we
call δ a semimetric. Finally, if a semimetric δ satisfies also the triangle inequality
(4), we call δ a metric (or metric distance). The triangle inequality is a kind of
transitivity property; it says if Oi, Oj and Oj , Ok are similar, then also Oi, Ok are
similar. If there is an upper bound d+ such that δ : U × U 7→ 〈0, d+〉, we call δ a
bounded metric. In such case M = (U, δ) is called a (bounded) metric space.

To complete the enumeration, we also distinguish pseudometrics (not satisfying
the reflexivity), quasimetrics (not satisfying symmetry) and ultrametrics (a stronger
type of metric, where the triangle inequality is restricted to ultrametric inequality
– max{δ(Oi, Oj), δ(Oj , Ok)} ≥ δ(Oi, Ok)).

We also define the important concept of triangular triplet, which will serve us in
the proposed framework in order to quantify the ”amount” of triangle inequality
fulfillment.

Definition 2. (triangular triplet)

A tuple of real numbers (a, b, c), a, b, c ≥ 0, a + b ≥ c, b + c ≥ a, a + c ≥ b, is called
a triangular triplet. Let (a, b, c) be ordered as a ≤ b ≤ c, then (a, b, c) is an ordered
triplet. If a ≤ b ≤ c and a + b ≥ c, then (a, b, c) is an ordered triangular triplet. ✷

A metric δ generates just the (ordered) triangular triplets, i.e. ∀Oi, Oj , Ok ∈ U,
(δ(Oi, Oj), δ(Oj , Ok), δ(Oi, Ok)) is triangular triplet. Conversely, if a measure
generates just the triangular triplets, then it satisfies the triangle inequality. A
triangular triplet can be perceived as a set of all L2-drawn triangles of side lengths
given by the triplet components (and vice versa). While some metrics generate
every possible triangle (e.g. the Euclidean distance), some generate only a subset
(e.g. an ultrametric distance generates just the isosceles triangles).

2.1.1 Examples of Metric distances. The most widely used metrics are the
Minkowski (Lp) distances, defined on D-dimensional vector spaces as

Lp (x, y) =





∑

1≤i≤D

|xi − yi|p




1/p

, p ≥ 1, x, y ∈ R
D
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Fig. 1. Region balls of various metric distances.

The special cases are the Manhattan distance (or L1 distance, see L1-ball in
Figure 1a – points at a fixed L1-distance from a center point Q), the Euclidean
distance (or L2 distance, see Figure 1b), the Chessboard distance (or Chebyshev
L∞, see Figure 1d). For p > 2 the Lp ball looks more like a square with rounded
corners (the higher p, the sharper corners, see L5-ball in Figure 1c) and for 1 < p < 2
the Lp ball looks like a diamond with knobbed edges.

A generalized case of the Euclidean distance is the quadratic-form distance (or
Mahalanobis), defined as δQF (x, y) =

√

(x − y)Σ(x − y)T , where the Σ is a square
positive-definite matrix, wherein some correlations between individual coordinates
are specified. The quadratic-form distance allows to model similarity in such vector
spaces where the features (dimensions) are supposed to be correlated (see Figure 1f).
For example, in red-green-blue color space we suppose the green component is more
correlated with the blue one than with the red. If Σ is just a diagonal matrix, we
talk about weighed Euclidean distance (some dimensions are just said to be more or
less important than the other ones, see Figure 1e), while unitary diagonal Σ turns
the quadratic-form distance into an ordinary Euclidean. The Minkowski distances
(especially L2) have been widely used to measure dissimilarity [Rubner et al. 2001;
Corboy et al. 2005]; some approaches prefer the L1 distance [Bustos et al. 2005],
some other the L∞ distance [Li et al. 2006].

The angle between vectors is also a metric which can be viewed as an L2-distance
along the surface of origin-centered unitary L2-ball (see Figure 1g). This angle
distance is widely used in Information Retrieval [Baeza-Yates and Ribeiro-Neto
1999], however, in a form of non-metric cosine measure (see next subsection).

Since any linear combination of metrics is a metric as well, we can combine simple
metrics into more complicated ones (see Figure 1h where the ball for L2 + angle
distances is depicted).

For non-vector data we can exploit a plenty of other distances. The Levenshtein
(or edit) distance counts the minimum number of basic operations (character inser-
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tion, deletion, replacement) in order to turn one string into another one. A similar
edit distance can be defined on trees (the tree edit distance), where the basic op-
erations are defined as node insertion, deletion and relabeling. The edit distance
has been used in various areas, e.g. DNA sequence matching [Sankoff and Kruskal
1983], the tree edit distance is useful for e.g. XML structural similarity search
[Nierman and Jagadish 2002].

For general finite sets we can use the Jaccard distance δJacc(A,B) = 1 − |A∩B|
|A∪B| ,

which measures the (inverse of) normed overlap between sets A and B. Another
set-based distance is the Hausdorff distance δHaus(A,B) = max{h(A,B), h(B,A)},
where h(A,B) = maxa∈A{minb∈B{d(A,B)}}. The function h measures the great-
est partial distance d (which must be a metric) over the elements in A to their
nearest neighbors in B. Since h is defined on general sets, the set elements can be
of any type which can be passed to the partial metric distance d.

Finally, we could mention the earth mover’s distance, defined as δEMD(A,B) =

minF

∑n−1
i=0

∑m−1
j=0 cijw

T fij , where F = {fij} is the flow matrix and each fij de-
notes mass to be moved from each region i of A to each region j of B (for details we
refer to [Rubner et al. 2000]). The object could be an image divided into regions,
e.g. a grid, but it can be generally anything divisible into (spatial) regions.

2.2 Non-metric distances

The metric properties have been argued against by some theories in psychology
and computer vision as restrictive in similarity modeling [Santini and Jain 1999;
Tversky 1977]. In particular, the reflexivity and non-negativity have been refuted
by claiming that different objects could be differently self-similar [Krumhansl 1978;
Tversky 1977]. For instance, in Figure 2a the image of a leaf on a trunk can be
viewed as positively self-dissimilar if we consider a distance which measures the less
similar parts of the objects (here the trunk and the leaf). Or alternatively, in Figure
2b the leaf-on-trunk and leaf could be treated as identical if we consider a distance
which measures the most similar parts of the objects (the leaves). Nevertheless,
the reflexivity and non-negativity are the less problematic properties.

The symmetry was questioned by showing that a prototypical object can be
less similar to an indistinct one than vice versa [Rosch 1975; Rothkopf 1957]. In
Figure 2c, the more prototypical ”Great Britain and Ireland” image is more distant
to the ”Ireland alone” image than vice versa.

The triangle inequality is the most attacked property. Some theories point out
the similarity has not to be transitive [Ashby and Perrin 1988; Tversky and Gati
1982]. Demonstrated by the well-known example, a man is similar to a centaur,
the centaur is similar to a horse, but the man is completely dissimilar to the horse
(see Figure 2d).

2.2.1 Examples of Non-Metric distances. The non-metric measures have been
used mainly in the areas of multimedia databases and information retrieval. A
common rationale for their usage is better robustness – a robust measure is resistant
to outliers, i.e. to anomalous or ”noisy” objects. In an ”intra-object” meaning, a
robust measure can neglect some portions of the measured objects which appear as
the most dissimilar.

To mention some vector distances, the fractional Lp distances [Aggarwal et al.

ACM Transactions on Database Systems, Vol. V, No. N, July 2007.



Unified Framework for Fast Exact and Approximate Search in Dissimilarity Spaces · 7

Fig. 2. Objections against metric properties in similarity measuring: (a) reflexivity (b) non-
negativity (c) symmetry (d) triangle inequality

2001] extend the Minkowski metrics (see Section 2.1.1) for 0 < p < 1, however,
such Lp distances are only semimetrics. Unlike classic Lp metrics, the fractional Lp

variants allow us to inhibit extreme differences in coordinate values – this can be
viewed as a robust behavior (see Figure 3a). The fractional Lp distances have been
suggested for robust image matching [Donahue et al. 1996] and retrieval [Howarth
and Ruger 2005].

The cosine measure, defined as scos(u, v) =
PD

i=1
uivi√

P

D
i=1

ui
2·PD

i=1
vi

2
, is widely used in

the vector model of text retrieval [Baeza-Yates and Ribeiro-Neto 1999]. Although
scos(u, v) is similarity measure, by δcos(u, v) = 1 − scos(u, v) we get an equivalent
semimetric distance. The triangle inequality can be enforced by arccos(scos), which,
actually, turns scos into the angle distance (see Section 2.1.1).

The vectorial structure can also be used to store a distribution histogram (where
each histogram bin is assigned to a vector coordinate), while distribution-based
distances (both metric and non-metric) are used in many areas, e.g. in image
retrieval [Rubner et al. 2001]. As an example, the non-metric Jeffrey-divergence is
defined as δJD(x, y) =

∑

i xilog
2xi

xi+yi
+ yilog

2yi

xi+yi
.

Generally, we can obtain a non-metric distance by linear combination of other
distances where at least one is a non-metric (see combination of L2 distance and
1−cosine measure in Figure 3b), or we can e.g. multiply (non)metric distances (see
L 1

3
· QF-ball in Figure 3c).
The robust behavior can be provided by various k-median distances; these mea-

sure the kth most similar portions of the compared objects. Generally, a k-median
distance is of form

δ(O1, O2) = k–med(d1(O1, O2), d2(O1, O2), . . . , dn(O1, O2))

where di(O1, O2) is a partial distance between O1 and O2, considering the ith por-
tions of the objects. Among the partial distance values di(·, ·), the k–med operator
returns the kth smallest value. In Figure 3d see a region ball of 2-median distance
consisting of quadratic-form distance, angle distance and weighed L2.

As a special k-median distance derived from the Hausdorff metric, the partial
Hausdorff distance (pHD) has been proposed for shape-based image retrieval [Hut-
tenlocher et al. 1993]. Given two sets S1,S2 of points (e.g. two polygons or clouds
of points), the partial Hausdorff distance uses di(S1,S2) = dNP(Si

1,S2), where dNP
is the Euclidean (L2) distance of the ith point in S1 to the nearest point in S2. To
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Fig. 3. (a-d) Region balls of some non-metric distances. (e) DTW distance. (f) COSIMIR model.

keep the distance symmetric, pHD is the maximum of δ in both directions, i.e.
pHD(S1,S2) = max(δ(S1,S2), δ(S2,S1)). Similar to pHD is another modification
of Hausdorff metric, used for face detection [Jesorsky et al. 2001], where the average
of dNP distances is considered, instead of k-median.

In the area of sequence and string matching, the idea of sequence (or string)
alignment is utilized in many distance measures. In principle, the elements of two
sequences are pair-wise aligned in a way that the sum of distances between aligned
elements is minimized. Unlike edit distance, the popular (dynamic) time warping
distance (DTW) is not a metric, while it has been used in time series retrieval [Yi
et al. 1998], and even in shape retrieval [Bartolini et al. 2005]. The DTW distance
is robust in sense that it is quite resistant to the sampling frequency or a time shift,
i.e. two sequences sampled at (locally) different rates are ranked as similar, see
Figure 3e. To eliminate some pathological alignments, there were also developed
various constraints on DTW, e.g. the Sakoe-Chiba’s band, Itakura’s parallelogram,
etc. [Keogh and Ratanamahatana 2005]. Another non-metric string measure is the
longest common subsequence (LCSS), however, LCSS is a similarity measure (two
strings with no common subsequence have LCSS = 0).

Besides distance measures based on simple description (like the Lp distances),
some measures are very complex and, therefore, for them a ”manual” enforcement of
metric properties is nearly impossible. The COSIMIR model [Mandl 1998] consists
of three-layer backpropagation network (see Figure 3f), which can be trained to
model an arbitrary user-defined similarity measure (but hardly a metric one).

2.3 Learning & Dynamic distances

In addition to the topological and precision preferences, we can identify also a kind
of dynamic preference declaring whether the similarity can or cannot evolve over
the time (and also during the process of retrieval) [Guo et al. 2002; Brambilla
et al. 1999]. The reason could be either learning (the similarity learns the human’s
cognition by e.g. relevance feedback) or just evolving due to the dynamic nature
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of similarity (some objects appear more or less similar in different time periods;
we can also consider user profiles which adjust the similarity for each user). By
the way, the topological preference is not likely to be orthogonal to the dynamic
preference, since learning measures hardly preserve metric properties.

When related to the process of retrieval, some approaches consider the query
object as one of the factors which modifies the actual semantic of similarity in
given query context [Ciaccia and Patella 2000]. In particular, in [Bustos et al.
2005] the authors suggest dynamic combinations of metrics for more effective 3D
retrieval. We can observe that such ”multi-metric” approach improves the flexibility
of similarity measuring, however, in a different way than the rich but static non-
metric measuring.

Unlike the ”static” similarity measures, the topological properties of learning and
dynamic distances can vary over the time. We suppose the (topological properties
of) measures are static, so the dynamic preference is out of scope of this paper.

2.4 Black-box & Hardware-supported distances

Besides the analytical descriptions of various measures (even the very complex ones
like the COSIMIR), we can design a similarity which can be described just by an
algorithm written in context-free language – as a black box returning a real-value
output from a two-object input. The topological properties (i.e. the metric axioms)
of an algorithmically described similarity measure are generally undecidable, so we
have to treat such a measure as a non-metric.

To improve the performance of similarity measuring, there were designed spe-
cialized hardware ASIC (Application-specific integrated circuit) co-processors, fol-
lowing the VLSI (Very-large-scale integration) paradigm. The ASICs offer high
performance for specialized tasks (e.g. a particular similarity measuring), however,
a disadvantage of such specialized devices is their limited usage when the similarity
measure is to be re-designed. In [Mukherjee 1989] the author proposes HW algo-
rithms for string matching (the LCSS, in particular). A recent trend in VLSI is
the reconfigurable computing, where a general-purpose FPGA (field-programmable
gate array) is physically configured to act as a specialized processor (instead of a
brand new ASIC design). Unlike CPUs where just the control flow is driven by soft-
ware, the FPGAs allow to change the ”native” data flow throughout the circuit –
in simple words, to configure a task-specific hardware design. Recently, the FPGA-
based implementation of Euclidean distance and cosine measure was proposed in
[Freeman 2006]. An unknown FPGA device implementing a similarity measure has
to be considered also as a non-metric black box.

2.5 Computational Complexity of Dissimilarity Measures

The time complexity of algorithms implementing the similarity measures can vary
from linear to exponential (when related to the object sizes n1, n2).

The Minkowski metrics are quite cheap – they are computed in O(n) time. The
Jaccard distance could be generally computed in O((n1 + n2)log(n1 + n2)) time,
where a sort operation must be performed in order to compute union/intersection
of the sets. The (k-median) Hausdorff distance is generally computable in O(n1n2) ·
O(d) time, where O(d) is time complexity of the partial distance function d. The
quadratic-form distance is of complexity O(n2) (due to the vector-and-matrix mul-
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10 · Tomáš Skopal

Fig. 4. Distance distribution histograms indicating (a) low and (b) high intrinsic dimensionality.

tiplication). The sequence alignment measures (like edit distance, DTW, LCSS,
etc.) are also of quadratic complexity (when computed by dynamic programming).
An example of a very expensive distance measure is the earth mover’s distance,
which is of exponential complexity (considering linear programming computation).

2.6 Indexability Indicators

To efficiently search in a multimedia database, the topological properties of em-
ployed dissimilarity measure are just a partial information needed for design of a
successful access method.

2.6.1 Intrinsic Dimensionality. The distance distribution inside the dataset S

is another important factor for similarity indexing. The distance distribution can
reveal a structure inside the dataset, i.e. a fact whether there exist clusters of
objects and how tight they might be. Given a dataset S and a distance2 δ, the
efficiency limits of any access method are indicated by the intrinsic dimensionality
(IDIM)3 of S, defined as

ρ(S, δ) =
µ2

2σ2

where µ and σ2 are the mean and the variance of the distance distribution in S

(proposed in [Chávez et al. 2001]). In Figure 4 see an example of distance distri-
bution histograms (DDHs) indicating low (ρ = 3.61) and high (ρ = 42.35) intrinsic
dimensionalities.

The intrinsic dimensionality is low if there exist tight clusters of objects – some
objects are close to each other and far from the other ones. If all the indexed objects
are almost equally distant, then intrinsic dimensionality is high, which means the
dataset is poorly intrinsically structured. A high ρ value says that many (even all)
of partitions created on S are likely to be overlapped by every possible query, so the
query processing deteriorates to sequential search in all the partitions. The problem
of high intrinsic dimensionality is, in fact, a generalization of the well-known curse
of dimensionality [Weber et al. 1998; Chávez et al. 2001] into metric spaces.

2The δ was originally assumed to be a metric distance, but we consider also the generalized

dissimilarity case.
3Actually, there exist other interpretations of intrinsic dimensionality, e.g. the fractal dimen-
sionality [Faloutsos and Kamel 1994] or mapping dimensionality [Kao et al. 1997], however, we
consider the one presented in this paper as the most appropriate to similarity search purposes.
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Fig. 5. Ball-overlap factor.

2.6.2 Ball-Overlap Factor. Given a dataset and a dissimilarity measure, the
intrinsic dimensionality gives us an indirect prediction (or cost model) about the
indexing efficiency. However, instead of simple statistical properties like mean and
variance of distances, we would like to capture rather an information about real
relationships between data clusters described by some regions in the dissimilarity
space. The regions should be of a shape/form used by metric access methods (see
next section).

In particular, the fat and bloat factors [Traina Jr. et al. 2000] have been proposed
to classify the likelihood of efficient search in a dataset indexed by M-tree. However,
these factors are related to an existing M-tree-based index, while we would like to
classify the dataset S itself, regardless of a specific access method and a particular
index built for the dataset. Therefore, we propose the ball-overlap factor (BOF),
which is defined as

BOFk(S, δ) =
2

|S∗| ∗ (|S∗| − 1)

∑

∀Oi,Oj∈S∗,i>j

sgn(|(Oi, δ(Oi, kNN(Oi)))∩̄

∩̄(Oj , δ(Oj , kNN(Oj)))|)
where δ(Oi, kNN(Oi)) is the distance to Oi’s k-th nearest neighbor in S

∗ and
(Oi, δ(Oi, kNN(Oi))) is thus the ball in metric space centered in Oi of radius
δ(Oi, kNN(Oi)). The statement sgn((·, ·)∩̄(·, ·)) returns 1 if the two balls over-
lap (in geometric-based, not data-based, meaning) and 0 if they do not. The ball
overlap condition is defined as δ(Oi, kNN(Oi)) + δ(Oj , kNN(Oj)) ≥ δ(Oi, Oj)).

4

In simple words, the BOFk calculates the ratio of overlaps between ball regions,
where each region is made of an object (from the dataset sample) and of such a
covering radius which guarantees (at least) k+1 data objects are located inside the
ball. In such a way the balls can be regarded as indexing regions. The overlap ratio
then predicts the likelihood that two arbitrary ball-shaped regions will overlap or
not. The BOF factor can thus serve us as a more appropriate MAM-independent

4This is actually correct just in metric spaces, however, we have no correct possibility to perform an
exact geometric-based overlap in non-metric spaces. Nevertheless, we suppose BOF will work also
in non-metric spaces when used to compare two non-metric distances (as proved in experiments).
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efficiency indicator for metric access methods based on ball partitioning, e.g. the
M-tree (see next section). In Figure 5a see the BOF1, BOF5 and BOF10 factors for
vector datasets of increasing dimensionality. The Figure 5b shows how the size of
data sample S

∗ affects the values of BOF.

3. SIMILARITY SEARCH – RELATED WORK

In this section we survey the main approaches to similarity search. In particular, we
summarize main access methods for metric search5 – we overview both exact and
approximate search methods. To the best of our knowledge, we offer for the first
time overview of the state-of-the-art non-metric approaches to similarity search.

3.1 Similarity Queries

First of all, in the following we consider the query-by-example concept; we look for
objects similar to a query object Q ∈ U (Q is derived from an example multimedia
object). Necessary to the query-by-example retrieval is a notion of similarity or-
dering, where the objects Oi ∈ S are ordered according to the distances to Q. For
a particular type of query, there is specified a portion of the ordering returned as
the query result. The range query and the k nearest neighbors (kNN) query are the
most popular ones6. A range query (Q, rQ) selects all objects from the similarity
ordering for which δ(Q,Oi) ≤ rQ, where rQ ≥ 0 is a distance threshold (or query
radius). A kNN query (Q, k) selects the k most similar objects (first k objects in
the ordering).

Each particular range query region is represented by a ball in the metric space,
centered in Q and of radius rQ. In a kNN query the rQ radius is not known in
advance, so it must be incrementally refined during the kNN query processing.
The simplest implementation of similarity query evaluation is the sequential search
over the entire dataset. The query object is compared against every object in the
dataset, resulting in a similarity ordering which is used for the query evaluation.
The sequential search often provides a baseline for other access methods.

3.2 Metric Access Methods And Exact Search

The metric access methods (MAMs) provide data structures and algorithms by
use of which the objects relevant to a similarity query can be retrieved efficiently
(i.e. quickly). The MAMs build a persistent auxiliary data structure, called metric
index, so we also talk about metric indexing. The main principle behind all MAMs
is a utilization of the triangle inequality property (satisfied by every metric), due
to which MAMs can organize/index the objects of S within distinct classes. When
a query is processed, only the candidate classes are searched (such classes which
overlap the query), so the searching becomes more efficient (see Figure 6).

The efficiency of a MAM depends not only on I/O costs (as in case of spatial
access methods, e.g. R-tree), the second important (and often the dominant) com-
ponent are the computation costs – the number of distance computations needed
to answer a query.

5For a comprehensive survey on metric access methods we refer to monograph [Zezula et al. 2005].
6There are more types of similarity queries – reverse kNN query, (k-)closest pairs, similarity join
– however, the range and kNN queries are primitives used to compose more complex query types.
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Fig. 6. Classes of similar objects indexed by a metric access method.

There were developed many MAMs for different scenarios (e.g. designed to ei-
ther secondary storage or main memory management). Besides others we name
the M-tree [Ciaccia et al. 1997], vp-tree [Yianilos 1993], (m)vp-tree [Bozkaya and
Özsoyoglu 1999], gh-tree [Uhlmann 1991], GNAT [Brin 1995], LAESA [Micó et al.
1992], or more recent ones, D-index [Dohnal et al. 2003] and PM-tree [Skopal et al.
2005].

The MAM-based similarity search is accomplished by applying metric properties
to quickly prune the search space. Basically, the MAM classes are represented by
data regions in the metric space which are described either by ball regions (or their
compositions, e.g. rings), which is the most used representation (M-tree family,
(m)vp-tree, D-index) or by hyper-plane partitioning (gh-tree, GNAT). During query
processing, a candidate data region is checked for an overlap by the query ball. In
case of overlap, the respective region has to be search – this means either filtering
of data objects (if the region contains already the data objects, e.g. tree leaf)
or filtering of nested regions (when considering hierarchical MAMs, e.g. trees or
D-index). In Figure 7 see several examples of MAMs, in particular M-tree (there
are many extensions of M-tree, e.g. the PM-tree), GNAT, mvp-tree, D-index.

3.2.1 Mapping Methods. An indirect way to accomplish metric search is map-
ping the dataset into a low-dimensional vector space. There have been proposed var-
ious mapping (or embedding) methods, e.g. MDS, FastMap, MetricMap, SparseMap,
to name a few [Faloutsos and Lin 1995; Hjaltason and Samet 2003]. The dataset
S is embedded into a vector space (Rk, δV ) by a mapping F : S 7→ R

k, where the
distance δ(·, ·) is (approximately) preserved by a cheap vector metric δV (often the
L2 distance).

In many cases the mapping F is contractive, i.e. δV (F (Oi), F (Oj)) ≤ δ(Oi, Oj),
which allows to filter out some non-relevant objects using δV , but some other non-
relevant objects, called false hits, must be re-filtered by δ (see e.g. [Filho et al.
2001]). The mapped vectors can be indexed/searched by any MAM, however, since
the data objects are mapped into a vector space, we can utilize also spatial/point
access methods, like R-tree, X-tree or VA-file [Böhm et al. 2001].

A particular method based on mapping is LAESA, where a contractive mapping
of the metric space to (Rk, L∞) is constructed using k pivots Pi ∈ S. The mapping
function F turns an object Oi to a vector (δ(P1, Oi), δ(P2, Oi), . . . , δ(Pk, Oi)). When
searching, a range query (Q, rQ) is mapped to the target space as (F (Q), rQ), see
Figure 8 (kNN queries are processed in a similar way). The retrieved candidate
objects (here O1, O4) have to be refiltered to eliminate possible false hits (here O4).
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Fig. 7. Several MAMs: (a) M-tree (b) PM-tree (c) GNAT (d) mvp-tree (e) D-index

Fig. 8. Mapping from (a) source metric space to (b) target vector space

To say the drawbacks, the mapping methods are expensive, while the distances
are preserved only approximately, which leads to false dismissals (relevant objects
being not retrieved). The contractive methods eliminate the false dismissals but
suffer from a great number of false hits (especially in case of a low k), which leads
to lower retrieval efficiency. In most cases the methods need to process the dataset
in batch, so they are suitable for static databases and MAMs only.

ACM Transactions on Database Systems, Vol. V, No. N, July 2007.



Unified Framework for Fast Exact and Approximate Search in Dissimilarity Spaces · 15

3.2.2 M-tree Family. The M-tree (and its variants) is a popular MAM designed
for database environments. The M-tree is based on B+-tree; it is a paged, dynamic
and balanced index structure (see Figure 7a). Its inner nodes contain routing entries
which describe ball-shaped metric regions which bound the underlying data objects
in leaves. The leaf nodes consist of ground entries – the indexed data objects
themselves.

In recent years, the M-tree has been modified or improved either to achieve bet-
ter performance, or to extend the query model. The former case modifications
are the Slim-tree [Traina Jr. et al. 2000] (cheaper splitting of nodes and redistri-
bution of ground entries resulting in more compact regions), the M+-tree [Zhou
et al. 2003] (employs twin-nodes to better partition the Euclidean space) and the
PM-tree [Skopal et al. 2005] (the region balls are further pruned by ring regions,
see Figure 7b). The latter case includes the QIC-M-tree [Ciaccia and Patella 2002]
(allowing to query by a user-defined distance metric), M2-tree [Ciaccia and Patella
2000] and M3-tree [Bustos and Skopal 2006] (allowing to query by a combination
of metrics where the weight of each particular metric is specified at query time).

3.3 Approximate Search in Metric Spaces

Nowadays, an efficient search in (intrinsically) high-dimensional datasets is feasible
solely by usage of approximate methods. Fortunately, since the similarity measuring
and search is inherently imprecise, a retrieval which is approximate to some extent
can be satisfactory in many cases. Among many approaches to the approximate
search, in this section we outline several representative methods.

3.3.1 Approximately Correct Search. In [Zezula et al. 1998] the authors propose
three techniques of approximate search in M-tree, varying in the way how to give up
the query result precision for the sake of improved search efficiency. The techniques
were applied to approximate kNN search.

The first technique7 considers a user-defined relative distance error ǫ ≥ 0. The
error ǫ states that the distance between Q and an approximation of k-th nearest
neighbor Ok

A must be no more than (1 + ǫ) times farther than the real k-th nearest
neighbor Ok

N , i.e. δ(Q,Ok
A) ≤ (1 + ǫ)δ(Q, Ok

N ). Then Ok
A is called the (1 + ǫ)

k-th nearest neighbor. In order to provide approximate search, the kNN query
algorithm of M-tree is adjusted in a way that query radius r′Q, used to discard
non-relevant regions, is 1 + ǫ times smaller than the proper dynamic query radius
rQ (i.e. r′Q = rQ/(1 + ǫ)), see Figure 9a.

The second technique proposed is a usage of distance distribution FQ(x) for
approximate kNN search. More specifically, FQ(x) represents the fraction of objects
in the dataset, for which the distance to Q is less than or equal to x. Provided there
are n objects in the dataset, n ·FQ(x) objects should have distance to Q not greater
than x. Given a kNN candidate Ok

A, FQ(δ(Q,Ok
A)) determines the fraction of the

best approximations of kNN, while a sufficiently small FQ(δ(Q, Ok
A)) has been used

for an early termination stop condition of approximate kNN search.
The third approximation heuristic proposed stops the kNN algorithm processing

as soon as the intermediate results change only slowly. In such cases, most of

7A similar approach, but oriented to BBD-trees, was proposed in [Arya et al. 1998].
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Fig. 9. (a) (1 + ǫ) kNN in M-tree (b) Probabilistic LAESA

the kNN algorithm runtime is spent on negligible changes in the result set, where
δ(Q,Ok

A) is changing steadily slower.

3.3.2 Space Transformations & Mapping Methods. The contractive mapping
methods (see Section 3.2.1) can be easily utilized for faster but approximate search.
The idea is to omit the second phase of refiltering candidate objects such that the
false hits are not filtered, so the result is only approximate. This approach is sim-
ple and can be implemented by various spatial access methods (e.g. the R-tree),
but there is a risk of very bad results if the number of false hits is too large –
they can, in fact, dominate the true hits and make them false dismissals. An-
other way to approximate search can be non-contractive mapping of the objects,
such that the distances in the target space are preserved only approximately. Both
means (contractive/non-contractive) are often accomplished by mapping to some
low-dimensional space.

3.3.3 Clustering Techniques. Several access methods are based on clustering
techniques, especially those designed for the vector space case, e.g. the Clindex
[Li et al. 2002] or VQ-file [Tuncel et al. 2002]. A variant for metric spaces is the
buoy indexing approach [Volmer 2002], where the dataset is partitioned into disjoint
clusters bounded by ball regions, where the cluster representative is called a buoy.
Clusters are built by assigning objects to the cluster with the closest buoy. The
buoys are iteratively refined so that the sum of radii of cluster balls in the result
set gets minimized. The approximate kNN search is provided by processing only a
limited number of the nearest clusters.

A similar approach is presented in [Goldstein and Ramakrishnan 2000], where
the P-sphere tree – a two-level structure – is used. The data in leaves (clusters)
are referenced by entries in the root node. Each root entry contains a covering
sphere consisting of a center object and a radius. The approximate NN algorithm
sequentially searches the leaf (cluster) which is nearest to the query object.

3.3.4 Probabilistic Search. Given a user-defined threshold θ ∈ 〈0, 1〉, the prob-
abilistic methods guarantee the probability of a false dismissal is at most θ. The
user can tune the θ parameter in order to achieve an optimal efficiency vs. accuracy
trade-off.
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A probabilistic approach to LAESA-like methods has been proposed in [Chávez
and Navarro 2001], where the triangle inequality is ”stretched” by a multiplier
β ≥ 1. Specifically, the filtering condition |δ(Oi, Pt) − δ(Q,Pt)| > rQ is stretched
by β, see Figure 9b. In order to preserve the user-defined probability θ of a false

drop, the upper-bound for β is computed as β ≤ rQ

q

1−(1−θ)
1
p

√
2σ

, where p is the

number of pivots, and σ2 is variance of the dataset’s distance distribution.
Recently, an approach [Amato et al. 2003] has been proposed, predicting the

probability that an intersection of a query region and a data region contains some
indexed objects. If the probability is lower than a user-defined threshold, the data
region (e.g. M-tree node) is not processed. The probability is predicted by means
of region proximity, computed using the dataset’s distance distribution.

A method of probabilistic metric search based on compact partitions has been
introduced in [Bustos and Navarro 2004]. The idea is to fix in advance the limit of
distance computations allowed to answer a query. Moreover, an advanced version
exploits a ranking of the regions to be searched, so that the most promising regions
are processed at first.

3.3.5 PAC Queries. When searching in a high-dimensional dataset, even the
approximately correct methods (see Section 3.3.1) work inefficiently. In [Ciaccia
and Patella 2000] the authors propose probably approximately correct (PAC) near-
est neighbor search, even more reducing the search costs at the expense of only
probabilistic search. The method extends the (1 + ǫ) nearest neighbor search by
a user-defined confidence parameter θ. The method searches so that the retrieved
object is a (1 + ǫ) nearest neighbor with probability at least θ. The NN algorithm
is enhanced by a stop condition which terminates the NN search if the distance to
the current (1 + ǫ) NN candidate falls below rθ

Q, where (Q, rθ
Q) is a region which

is guaranteed to be empty with probability at least θ. The PAC-NN algorithm has
been applied to M-tree as well as to sequential index.

3.4 Exact Search in Non-Metric Spaces

The existing approaches to exact non-metric search are designed for particular
access methods and also for a particular distance.

As a classic technique, the inverted index [Baeza-Yates and Ribeiro-Neto 1999]
is widely used in fulltext systems for vector query processing. Whenever a vector
query is to be processed, only such lists in the inverted index are scanned, the ids
of which correspond to ids of nonzero query weights. However, we must realize
the skipping of zero-weight lists is only possible due to the usage of cosine measure
or inner product as the similarity measure (where the multiplying by zero query
weight leads to zero). Thus, we cannot use translation-invariant distance (e.g. any
Lp distance), since there are no coordinate multiplications and so we cannot skip
the zero-weighted lists. To overcome this limitation, the IGrid [Aggarwal and Yu
2000] was proposed – a structure inspired by the inverted index – usable with a kind
of robust fractional Lp distances, where the values in each dimension are quantized
into equi-width buckets (a bucket stores a list, similarly like an inverted index
entry). The query processing then exploits a similar idea as the inverted index, the
substraction of particular query and vector coordinate values (used to compute the
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robust Lp) is considered as nonzero just in case the compared values fall into the
same bucket – otherwise the index bucket is skipped.

To support similarity search by a non-metric distance dQ, the QIC-M-tree [Ciac-
cia and Patella 2002] has been proposed as an extension of the M-tree (the key
idea is applicable also to other MAMs). The M-tree index is built by use of an
index distance dI , which is a metric lower-bounding the query distance dQ (up to
a scaling constant SI→Q), i.e. dI(Oi, Oj) ≤ SI→Q dQ(Oi, Oj),∀Oi, Oj ∈ U. As dI

lower-bounds dQ, a query can be partially processed by dI (which, moreover, could
be computationally much cheaper than dQ), such that many non-relevant classes of
objects (subtrees in M-tree) are filtered out. All objects in the non-filtered classes
are compared against Q using dQ. Actually, this approach is similar to the usage
of contractive mapping methods (dI is an analogy to δV ), but here the objects gen-
erally need not to be mapped into a vector space. However, this approach has two
major limitations. First, for a given non-metric distance dQ there is no general way
how to find the metric dI . Although dI could be found ”manually” for a particular
dQ (as in [Bartolini et al. 2005]), this is not easy for dQ given as a black box (an
algorithmically described one). Second, the lower-bounding metric should be as
tight approximation of dQ as possible, because this ”tightness” heavily affects the
intrinsic dimensionality, the number of MAMs’ filtered classes, and so the retrieval
efficiency.

3.5 Approximate Search in Non-Metric Spaces

To the best of our knowledge, there was not proposed a specialized access method
for approximate non-metric search. Nevertheless, this task can be indirectly carried
out by either mapping methods or classification.

3.5.1 Mapping Methods. As in the case of approximate metric search, the non-
metric case can be also accomplished by mapping methods. To better preserve the
”exotic” non-metric distances in Euclidean spaces, there were specialized techniques
proposed, we refer to [Athitsos et al. 2005; Kruskal 1964; Farago et al. 1993].

3.5.2 Classification. Quite many attempts to non-metric nearest neighbor (NN)
search have been tried out in the classification area. Let us recall the basic three
steps of classification. First, the dataset is organized in classes of similar objects
(by user annotation or clustering). Then, for each class a description consisting of
the most representative object(s) is created; this is achieved by condensing [Hart
1968] or editing [Wilson 1972] algorithms. Third, the NN search is accomplished
as a classification of the query object. Such a class is searched, to which the query
object is ”nearest” – there is an assumption the nearest neighbor is located in the
”nearest class”. For non-metric classification there have been proposed methods
enhancing the description of classes (step 2). In particular, condensing algorithms
producing atypical points [Goh et al. 2002] or correlated points [Jacobs et al. 2000]
have been successfully applied.

In [Roth et al. 2002], the authors transform a matrix of pair-wise non-metric
distances into a matrix of metric distances which is equivalent with respect to the
effectiveness of subsequent clustering/classification. The ”metrization” is accom-
plished by a simple distance shift such that the triangle inequality becomes sat-
isfied. However, although the modified matrix is suitable for clustering purposes,
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the constant shifting of distances is problematic for efficient indexing and search
(as discussed later in Section 5.2). Moreover, this approach is not much ”database-
friendly”, since it assumes a static database (matrix); an insertion/deletion requires
recomputation of the entire model.

The drawbacks of classification-based methods reside in static indexing and lim-
ited scalability, while the querying is restricted just to approximate (k-)NN.

4. DISTANCE MODIFICATIONS FOR SIMILARITY SEARCH

The proposed framework is based on a kind of dissimilarity transformation, however,
this one is based on dissimilarity-to-dissimilarity transformation (rather than a
dissimilarity-to-vector space one, mentioned in the previous sections).

4.1 Assumptions

We assume δ satisfies at least reflexivity and non-negativity but, as we have men-
tioned in Section 2.2, these are the less restrictive properties and can be handled
easily. The non-negativity is satisfied by a shift of the distances, while for the re-
flexivity property we require every two non-identical objects are at least d−-distant
(d− is some positive distance lower bound). The lower-bound distance (d−) and
upper-bound distance (d+) could be provided by the distance measure in case the
structure of input universe U is known. Or, if it is not, we can sample a number of
distances δ(Oi, Oj), Oi, Oj ∈ S and determine the approximate lower-/upper-bound
distances. The outlier distances (exceeding the upper-bound distance or falling be-
low the lower-bound distance) can be represented directly by d− or d+, and two
objects falling into the ”d−-bucket” are regarded as at most d−-distant. Similarly,
two objects falling into the ”d+-bucket” are regarded as at least d+-distant. When
searching, the possibly relevant objects involved in outlier distances δ(Q,Oi) (where
Q is a query object) are filtered sequentially in the original space.

Furthermore, searching by an asymmetric measure d could be partially provided
by a symmetric measure δ, e.g. δ(Oi, Oj) = min{d(Oi, Oj), d(Oj , Oi)}. Using the
symmetric measure some non-relevant objects can be filtered out, while the original
asymmetric measure δ is then used to rank the remaining non-filtered objects.

In the following we assume the measure δ is a bounded semimetric (which includes
also full metrics). The bounding assumption is introduced just for clarity of the
following presentation – the forthcoming principles can be extended to the general
case without restrictions. Finally, as δ is bounded by d+, we can further normalize
the semimetric such that it assigns distances from 〈0, 1〉. This can be achieved

simply by scaling the original value δ(Oi, Oj) to
δ(Oi,Oj)

d+ . The same way a range
query radius rQ must be scaled to

rQ

d+ , when searching.

4.2 Similarity-Preserving Modifiers

The cornerstone of the proposed transformation is an employment of so-called
similarity-preserving modifiers which, given a query object Q and the dataset S,
induce classes of equivalent similarity orderings (with respect to Q and S).

Definition 3. (similarity-preserving modification)

Given a dissimilarity measure δ, we call δf (Oi, Oj) = f(δ(Oi, Oj)) a similarity-
preserving modification of δ (or SP-modification), where f , called the similarity-
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preserving modifier (SP-modifier), is a strictly increasing function for which f(0) = 0.
Again, for clarity reasons we assume f is bounded, i.e. f : 〈0, 1〉 7→ 〈0, 1〉. ✷

Definition 4. (similarity ordering)

We define SimOrderδ : U 7→ 2U×U, ∀Oi, Oj , Q ∈ U as 〈Oi, Oj〉 ∈ SimOrderδ(Q) ⇔
δ(Q,Oi) < δ(Q,Oj), i.e. SimOrderδ orders objects by their distances to Q. ✷

Although an SP-modification δf is not topologically equivalent to δ (because
the distances induce different systems of open sets), we can observe that any
SP-modification of δ induces the same similarity ordering (i.e. all SP-modifications
of δ are SO-equivalent), as follows.

Lemma 1. (similarity ordering (SO-) equivalence)

Given a dissimilarity δ and any δf , SimOrderδ(Q) = SimOrderδf (Q),∀Q ∈ U.

Proof: As f is increasing, then ∀Q,Oi, Oj ∈ U it follows that
δ(Q,Oi) > δ(Q,Oj) ⇔ f(δ(Q,Oi)) > f(δ(Q,Oj)). �

The SO-equivalence can be seen as a weaker alternative to the topological equiva-
lence – it says two distances represent the same similarity retrieval model. In other
words, if a query is processed sequentially (by comparing all objects in S to the
query object Q), then it does not matter if we use either δ or any δf , because both
ways induce the same similarity ordering. Naturally, the radius rQ of a range query
must be modified to f(rQ), when searching by δf .

4.3 Triangle-Generating Modifiers

Among the infinite number of possible SP-modifiers, the class of triangle-generating
modifiers has an exceptional property – the ability of (partial) triangle inequality
enforcement. More specifically, the class of triangle-generating modifiers itself is a
special subclass of so-called metric-preserving functions, studied in metric spaces
theory [Corazza 1999]. Within the class of metric-preserving functions some are
simultaneously SP-modifiers, as follows.

Definition 5. (metric-preserving SP-modifier)

An SP-modifier f is metric-preserving if for every metric δ the SP-modification δf

preserves the triangle inequality, i.e. δf is also metric.8 ✷

The concave SP-modifiers are always metric-preserving.

Lemma 2. (concave SP-modifier)

(a) Every concave SP-modifier f is metric-preserving.
(b) Let (a, b, c) be a triangular triplet and f be a metric-preserving SP-modifier,
then (f(a), f(b), f(c)) is a triangular triplet as well.

Proof: For the proof and for more about general metric-preserving functions (not
only the continuous/monotonous ones) we refer to [Corazza 1999]. �

Definition 6. (triangle-generating modifier)

Let a strictly concave SP-modifier f be called a triangle-generating modifier (or
TG-modifier). Having a TG-modifier f , let a δf be called a TG-modification. ✷

ACM Transactions on Database Systems, Vol. V, No. N, July 2007.



Unified Framework for Fast Exact and Approximate Search in Dissimilarity Spaces · 21

Fig. 10. Several T-modifiers: (a) TG-modifiers (b) TV-modifiers

The concavity property of any TG-modifier (see examples in Figure 10a) not
only guarantees the preservation of the triangle inequality with respect to any
metric being modified, it does strengthen the ”triangle inequality fulfillment” of
any semimetric. Moreover, it can even fully enforce the triangle inequality for a
semimetric – turning it into a metric – as follows.

Theorem 1. (turning semimetric into metric)

Given a semimetric δ, then there always exists a TG-modifier f , such that the
SP-modification δf is a metric.

Proof: We show that every ordered triplet (a, b, c) generated by δ can be turned
by a single TG-modifier f into an ordered triangular triplet.

1. As every semimetric is reflexive and non-negative, it generates ordered triplets
just of forms (0, 0, 0), (0, c, c), and (a, b, c), where a, b, c > 0. Among these, just
the triplets (a, b, c), 0 < a ≤ b < c, can be non-triangular. Hence, it is sufficient to
show how to turn such triplets by a TG-modifier into triangular ones.

2. Suppose an arbitrary TG-modifier f1. From TG-modifiers’ properties it follows

that f1(a)
f1(c)

> a
c , f1(b)

f1(c)
> b

c , hence f1(a)+f1(b)
f1(c)

> a+b
c (theory of concave functions).

If (f1(a) + f1(b))/f1(c) ≥ 1, the triplet (f1(a), f1(b), f1(c)) becomes triangular
(i.e. f1(a) + f1(b) ≥ f1(c) is true). In case there still exist triplets which have
not become triangular after application of f1, we take another TG-modifier f2

and compose f1 and f2 into f∗(x) = f2(f1(x)). The compositions (or nestings)
f∗(x) = fi(. . . f2(f1(x)) . . .) are repeated until f∗ turns all triplets generated by δ
into triangular ones – then f∗ is the single TG-modifier f we are looking for. �

4.3.1 Notes to the proof of Theorem 1. The constructive nesting of TG-modifiers
in the second phase can be done in a finite number of steps if we assume the
distance a not tending to zero. Otherwise, the process of nesting could be (but
not necessarily) infinite. Nevertheless, in computer we model data types in discrete

8Note: Such an SP-modifier is additionally subadditive (f(x) + f(y) ≥ f(x + y), ∀x, y ∈ R
+
0 ).
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Fig. 11. (a,b) Triplet regions of a TG-modification (c,d) Triplet regions of a TV-modification

Fig. 12. (a) L2-DDH (b) Lf
2 -DDH, f(x) = x

1
2 (c) Lf

2 -DDH, f(x) = x
3
2

domains (i.e. also the distances are discrete approximations), so in practice the
nesting is always finite.

The proof shows the more concave TG-modifier we apply, the more triplets be-
come triangular. This effect can be visualized by 3D regions in the space 〈0, 1〉3
of all possible distance triplets, where the three dimensions represent the distance
values a,b,c, respectively. In Figures 11a,b see examples of region9 Ω of all trian-
gular triplets as the dotted-line-bounded area. The super-region Ωf (the solid-line-
bounded area) represents all the triplets which become (or remain) triangular after

the application of TG-modifier f(x) = x
3
4 and f(x) = sin(π

2 x), respectively.
The more concave TG-modifier, the more the objects forming a triplet become

equidistant, i.e. the more the respective triangles become equilateral. This obser-
vation also implies the mean of distances increases and the variance decreases thus,
the intrinsic dimensionality of TG-modified distance δf is always greater than that
of δ (with respect to S). In Figure 12b see an example of distance distribution re-
garding to TG-modified L2 distance (for the not modified L2 distance distribution
see Figure 12a). The classic curse of dimensionality problem [Böhm et al. 2001]
refers to the same behavior in vector spaces – the higher dimensionality, the more
the vectors become equidistant, so the relation between high intrinsic dimensional-
ity and high embedding dimensionality is obvious.

9The 2D representations of Ω and Ωf regions are c-cuts of the real 3D regions.
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4.4 Triangle-Violating Modifiers

As a counterpart to TG-modifiers, we can define the triangle-violating modifiers
and modifications.

Definition 7. (triangle-violating modifier)

Let a strictly convex SP-modifier f be called a triangle-violating modifier (or TV-
modifier). Having a TV-modifier f , let a δf be called a TV-modification. ✷

Unlike TG-modifiers, the TV-modifiers (see Figure 10b) cause the triangle in-
equality of a TV-modified metric could be no more satisfied, i.e. the metric could
be turned into a semimetric (or a semimetric is still kept semimetric). This can be
stated as the opposite to Theorem 1, as follows.

Theorem 2. (turning metric into semimetric)

Given a metric δ, then there always exists a TV-modifier f , such that the SP-modifi-
cation δf is a semimetric.

Proof: The proof is exactly the opposite to that of Theorem 1. By composing
TV-modifiers we increase the variance among distances within distance triplets, so
that some of them sooner or later become NOT triangular triplets (we omit the
exotic case where all the objects in U are equidistant). �

In consequence, the properties of TG-modifiers discussed in the previous section
hold inversely for TV-modifiers. In particular, the more convex TV-modifier we ap-
ply, the more triplets become non-triangular. Like for the TG-modifiers, in Figures
11c,d see examples of region Ω of all triangular triplets10. The region Ωf repre-
sents all the triplets which remain triangular after the application of TV-modifier

f(x) = x5 or f(x) = (1−cos(x)
2 )

7
10 (actually, this one is a partially convex and

partially concave SP-modifier – note the Ωf is neither super- nor sub-region of Ω).
Furthermore, every (strictly convex) TV-modification exhibits lower intrinsic di-

mensionality than the original (semi)metric δ (with respect to S), see the DDH in
Figure 12c (compare with Figure 12a).

In the following, we will call a TG-modifier or TV-modifier f simply a T-modifier .

5. EXACT AND APPROXIMATE INDEXING & SEARCH

The T-modifiers can be utilized to perform an exact or approximate, metric or
non-metric similarity search. As a T-modifier can either increase or decrease the
”amount” of triangle inequality of a particular dissimilarity measure, we can utilize
metric access methods as a general tool for similarity search. In other words, the
abilities of MAMs are no more limited to the metric search case but now include
also the non-metric fields.

In particular, we can use a TG-modifier to fully or partially enforce the triangle
inequality for a semimetric (at the cost of higher intrinsic dimensionality obtained),
or we can use a TV-modifier to ”de-metricate” a metric to achieve lower intrinsic

10Actually, the SP-modifier used in Figure 11d and the second one in Figure 10b are not strict
TV-modifiers since they are only partially convex.
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dimensionality and thus faster but approximate retrieval. We can also even worsen
the violation of triangle inequality of a semimetric measure, providing this will not
significantly affect the retrieval effectiveness.

Unlike all the approaches presented in Section 3, the ”modification approach”
proposed in this paper has three advantages:

—An employment of T-modifiers covers both preferences of similarity search, the
topological and precision preferences, and their combinations. We can perform
exact metric, exact non-metric, approximate metric and approximate non-metric
search.

—The modifications are not restricted to be used by a specific access method, they
are generally applicable to any MAM. After obtaining a suitable T-modification
(we will discuss how to do this in the next section), we can use any MAM for
the similarity search. We must just additionally modify the query radius rQ to
f(rQ) when issuing a range query (the kNN search needs no adjustment at all).

—The distance measure is always treated as a black box, i.e. we do not require
any analytical information on the distance semantics. The information used by
modification is obtained purely on statistical basis (by sampling a number of
distance triplets).

5.1 Retrieval Error Model

When given a TV-modifier f , we could determine the ”amount” of triangle in-
equality violation (however, just for case the modified distance is a metric) as the
triangle-violation error

Ef
TV = 1 − V (Ωf )

V (Ω)

where V (Ωf ) is the volume of region Ωf and V (Ω) is the volume of region Ω (defined
in the previous section). The volume of Ω can be determined as

V (Ω) =

∫ d+

c=0

2d+c − 3

2
c2 dc =

d+3

2

i.e. the volume is one half of the cube 〈0, d+〉3. Since f is increasing, there exists
the inverse function f−1, and the volume of Ωf can be determined as

V (Ωf ) = d+3−
∫ d+

c=0

∫ c

a=0

f−1(f(c)−f(a))da dc−2

∫ d+

c=0

∫ d+

a=c

f−1(f(a)−f(c))da dc

However, although the Ef
TV can be determined easily (because of its distance-

and data- independence, and due to analytical form of f), its utilization is limited

just to TV-modified metrics. Moreover, the Ef
TV error is very rough indicator of

how the triangle inequality of a TV-modified metric got deteriorated. For exam-
ple, considering f(x) = x2, the actual triangle inequality is highly violated in Lf

2

distance, however, in δf (δ = 3
√

L2) it is fully preserved. This is in contradiction

with Ef
TV error which reports violation (even of the same size) in both cases.

Hence, instead of triangle-violation error, we introduce the T-error, a distance-
and data- dependent measure providing a more appropriate estimation of how a
metric access method will behave when used with a T-modified distance.
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5.1.1 T-Error. An important question is how to measure the ”amount” of tri-
angle inequality preservation/violation. Since the triangle-violation error is not
appropriate, we propose the triangle error (T-error), defined as the fraction of dis-
tance triplets being non-triangular (the triplets are sampled from the dataset), i.e.

εδ,S =
mnt

m

where m is the total number of sampled distance triplets and mnt is the number of
triplets being non-triangular. Obviously, the total number of triplets m acquired
from a dataset sample S

∗ ⊆ S affects the precision of T-error. Ideally, we would
like to obtain εδ,S = εδ,U, where εδ,U is the T-error computed on the entire universe

U by incorporating all possible triplets, i.e. m =
(|U|

3

)

(which includes also all
possible query objects). Of course, evaluation of εδ,U is impracticable, so to keep
the T-error as precise as possible, we must incorporate suitable sampling techniques
which minimize the discrepancy between εδ,U and εδ,S, while retain the size of S

∗

and the triplet count m as low as possible (we will discuss the sampling techniques
later in Section 6.3).

We expect the T-error can generally predict the real retrieval error exhibited
by any metric access method when used with a non-metric T-modification (or
any other semimetric distance). The real retrieval error can be defined as relative
precision and recall, or more simply as a kind of Jaccard distance, the normed
overlap distance ENO between the query result QRMAM returned by a MAM and
the correct query result QRSEQ obtained by sequential search of the dataset, i.e.

ENO = 1 − |QRMAM ∩ QRSEQ|
max(|QRMAM |, |QRSEQ|)

Moreover, we can employ a user-defined T-error tolerance threshold θ, in order
to control the T-error of a T-modification we are choosing for our retrieval task,
i.e. we search for a modifier f such that εδf ,S ≤ θ.

5.2 Suitable T-modifiers

In addition to minimizing the T-error, we aim to use a T-modification which keeps
the indexability indicators (i.e. the intrinsic dimensionality and/or the ball-overlap
factor, see Section 2.6) as good as possible. For an example why this is important,
consider a TG-modifier

f(x) =

{

0 (for x = 0)
x+d+

2 (otherwise)

which turns every d+-bounded semimetric into a metric, keeping the T-error zero.
Unfortunately, such a metric is useless for searching, since all classes of objects
maintained by a MAM are overlapped by every query, so the retrieval always de-
teriorates to sequential search. This behavior is reflected by maximal ball-overlap
factor, i.e. BOFk(S, δf ) = 1. The intrinsic dimensionality ρ(S, δf ) is also high,
however, it is not appropriate here since it does not recognize whether f is totally
useless for indexing or the dataset is just bad-structured – this was actually the
reason why the BOF was introduced.

In fact, we look for an optimal T-modifier, i.e. a T-modifier which turns (or keeps)
only such non-triangular triplets into triangular ones, which are generated by δ. The
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Fig. 13. Structure of distance density inside data regions (balls).

non-triangular triplets which are not generated by δ should remain non-triangular
(the white areas in Figures 11a–d), since such triplets represent the ”decisions”
used by MAMs for filtering of non-relevant objects or classes. The more often such
decisions occur, the more efficient the search is (and the better the indexability
indicators are). As an example, given two vectors u, v of dimensionality n, the
optimal ”zero-error” TG-modifier (with respect to the entire universe U) for semi-
metric δ(u, v) =

∑n
i=1 |ui − vi|2 is f(x) =

√
x, turning δ into the Euclidean (L2)

distance (the f ’s ”optimality” follows from the definition of L2 distance).
From another point of view, the concavity/convexity of f determines how much

the object clusters (MAMs’ classes respectively) become loose/tight (overlapped by
other clusters/classes).

In Figure 13a see an L3-ball of radius r = 1, partitioned among 10 ”onion-ring”
regions. The k-th ring (counting from the center) represents the volume of points
in the space which are within L3 distance 〈(k − 1) ∗ 0.1, k ∗ 0.1〉 – we can call them
equi-distant rings. In Figure 13b see how the rings change11 if the L3 distance is
TV-modified by f(x) = x2. Much of the volume is now gathered in the central ring,
the respective points have distance to the center lower than 0.1. The remaining
rings cover less and less of the space. That is, the respective DDH would contain
tall low-distance bins and short high-distance bins, which leads to lower mean of
distances, higher variance, and thus lower intrinsic dimensionality.

On the other side, in Figure 13c see a L 1
2
-ball and in Figure 13d its modification

by TG-modifier f(x) =
√

x. The effect is exactly opposite to the TV-modifier case,
i.e. most of the volume gets distant (”inflated” to the ball surface12), so the mean
of distances increases, variance decreases and the intrinsic dimensionality is higher.

When considering MAMs using ball partitioning (e.g. M-tree), the above example
shows how the modifications impact the indexability and retrieval efficiency. The
TG-modified data regions (balls) represent indistinct clusters of data, hence the
indexing and searching will suffer from overlaps among them. Conversely, the TV-
modified regions will tend to be disjoint (keeping the data distributed among tight
separated clusters), hence the indexing becomes more efficient.

11By the way, we can observe the region shape does not change when modified by any SP-modifier.
Moreover, in this case also the unitary ball radius has not changed, so the ball covers the same
space volume as in the non-modified case.
12This corresponds to the effects of the ”classic” curse of dimensionality.
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Fig. 14. Two T-base: (a) Fractional-power T-base (b) Rational-Bézier-quadratic T-base

6. AUTOMATED DISTANCE TRANSFORMATIONS

The question is how to find the optimal T-modifier f for a given measure δ, a
dataset S, and a T-error tolerance θ. Since we suppose no analytical form of δ is
known, we have to obtain a guidance by sampling a number of distance triplets for
a dataset sample S

∗ ⊆ S, and by use of some predefined T-modifier generators.

6.1 T-bases

In order to easily find a T-modifier which fits the required properties, we make use of
so-called T-base – a T-modifier additionally parametrized by a concavity/convexity
weight w.

Definition 8. (T-base)

Let g : 〈0, 1〉×R 7→ R
+
0 such that g(x, 0) = x, g(x, w) is a TG-modifier for w > 0 and

it is a TV-modifier for w < 0, where w is called the concavity-convexity weight (CC-
weight). Furthermore, if w1, w2 > 0∧w1 > w2, then g(x, w1) > g(x, w2),∀x ∈ (0, 1).
Conversely, if w1, w2 < 0 ∧ w1 < w2, then g(x,w1) < g(x, w2),∀x ∈ (0, 1). We also
require g is continuous in sense limw1→w2

g(x,w1) = g(x, w2),∀x ∈ 〈0, 1〉. Then we
call g a base of T-modifiers (or T-base). ✷

The parameter w will serve us to smoothly adjust a particular T-modifier in or-
der to decrease/increase the concavity/convexity, so that the T-error will match the
user-defined T-error tolerance. Simultaneously, among the T-modifications match-
ing the T-error tolerance (the candidates), we pick the one which promises the best
indexing performance (i.e. exhibits minimal intrinsic dimensionality or ball-overlap
factor).

In Figure 14 see two T-bases – the Fractional-power T-base (FP-base), defined as

FP(x,w) =

{

x
1

1+w for w > 0
x1−w for w ≤ 0
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and the Rational-Bézier-Quadratic T-base (RBQ-base), defined as

RBQ(a,b)(x, w) =

{

rbq(x, w, a, b) for w > 0
rbq(x,−w, b, a) for w ≤ 0

rbq(x,w, a, b) =

−(Ψ − x + wx − aw) · (−2bwx + 2bw2x − 2abw2 + 2bw − x + wx − aw + Ψ(1 − 2bw))

(−1 + 2aw − 4awx − 4a2w2 + 2aw2 + 4aw2x + 2wx − 2w2x + 2Ψ(1 − w))

where Ψ =
√
−x2 + x2w2 − 2aw2x + a2w2 + x.

The simpler FP-base has the advantage there always exists a CC-weight w for
which either a modified semimetric becomes metric (w > 0) or a modified metric
becomes semimetric (w < 0). Furthermore, when using the FP-base, the dissimi-
larity δ needs not to be d+-bounded. A particular disadvantage of the FP-base is
that its concavity/convexity is controlled globally, just by the CC-weight w. Hence,
to fit a user-defined T-error tolerance, the FP-base has to be possibly ”inflated” by
a high CC-weight on the whole interval (0, d+), although a small highly ”inflated”
subinterval on the distance domain would suffice to fit the overall T-error toler-
ance, keeping the rest of the distance domain less inflated (and so achieving better
indexability).

The RBQ-bases are more sophisticated T-bases, allowing to control the concav-
ity/convexity locally, by the second Bézier point of the underlying rational Bézier
quadratic curve. To derive a proper T-base from the curve13, the three Bézier
points are specified as P1(0, 0), P2(a, b), P3(1, 1). The additional RBQ parameters
a, b (such that a < b) are treated as constants (the second Bézier point P2(a, b)),
i.e. for various a, b values we get multiple RBQ-bases (see the dots in Figure 14b),
which are all individual T-bases. To obtain a regular T-base for any pair of values
a < b, either a TG-modifier is used in case w > 0 (considering P2(a, b)), or a TV-
modifier is used in case w < 0 (considering P2(b, a)). The advantage of RBQ-bases
is the place of maximal concavity/convexity can be controlled locally by the choice
of P2(a, b), hence, for a given CC-weight w we can achieve lower value of either an
indexability indicator or the T-error just by choosing different P2(a, b).

As a particular limitation, for usage of RBQ-bases the distance δ must be d+-
bounded (due to the third Bézier point (1,1)). On the other side, the d+ bound can
be obtained when ensuring the reflexivity and non-negativity of δ, as mentioned
in Section 4.1. Furthermore, for an RBQ-base with P2(a, b) 6= (0, 1) the T-error
could be generally greater than the T-error tolerance θ, even in case w → ∞ (and
conversely, even in case w → −∞ the modified dissimilarity can still remain metric
or ”insufficiently spoiled” semimetric). Nevertheless, with FP-base or RBQ(0,1)-
base in our pool of T-bases, there can always be found a T-modifier which fits the
T-error tolerance. In addition to the properties required in Definition 8, the FP-
and RBQ- T-bases are also symmetric in sense a TG-modifier obtained for w1 > 0
is inverse to the TV-modifier obtained for w2 = −w1, i.e. g(x,w) = g−1(x,−w).

13To keep the rbq(x, w, a, b) evaluation correct, a possible division by zero or Ψ2 < 0 is prevented
by a slight shift of a or w.
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6.2 The TriGen Algorithm

Given a pool of T-bases F , searching for the optimal T-modifier can be automated
by sliding the CC-weight of each T-base in the pool and keeping the best found so
far.

Listing 1. (the generalized TriGen algorithm)

Input: (semi)metric δ, pool F of T-bases, sample S∗, T-error tolerance threshold θ,
iteration limit iterLimit, number of sampled triplets m

Output: optimal f , w

f = w = null; maxIndexability = −∞ 1

T = SampleTriplets(m, S
∗, δ) 2

for each f∗ in F 3
w∗ = 0; iter = 0 4
error = TriangleError(f∗, w∗, T ) // compute the initial error of non-modified δ, i.e. w∗ = 0 5
if error < θ then // TV-modifiers will be used 6

wLB = 0; wUB = −∞; wbest = 0 7
errbest = error; w∗ = -1 8

else // TG-modifiers will be used 9
wLB = 0; wUB = ∞; errbest = 0 10
wbest = -1; w∗ = 1 11

end if 12

while (iter < iterLimit) // the main algorithm – halving/doubling the weight w∗ 13
error = TriangleError(f∗, w∗, T ) 14
if wUB > 0 then 15

if error ≤ θ then 16
wUB = wbest = w∗ 17
errbest = error; 18
w∗ = (wLB + wUB) / 2 19

else 20
wLB = w∗ 21
if wUB 6= ∞ then 22

w∗ = (wLB + wUB) / 2 23
else 24

w∗ = 2 * w∗ 25
end if 26

end if 27
else 28

if error ≤ θ then 29
wLB = wbest = w∗ 30
errbest = error; 31
if wUB 6= −∞ then 32

w∗ = (wLB + wUB) / 2 33
else 34

w∗ = 2 * w∗ 35
end if 36

else 37
wUB = w∗ 38
w∗ = (wLB + wUB) / 2 39

end if 40
end if 41
iter++ 42

end while 43

if (wUB > 0 and wbest > -1) or (wUB < 0 and wbest < 1) then // store the best (f ,w) found 44
w∗ = wbest 45
indexability = ComputeIndexability(f∗, w∗, T ) 46
if indexability > maxIndexability then 47

f = f∗; w = wbest 48
maxIndexability = indexability 49

end if 50
end if 51

end for each 52
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Since we know the more concave (convex) T-modifier, the lower (higher) the
T-error, the search can be accelerated by halving a CC-weight interval (or doubling
one of the bounds). In such a way we can quickly (in O(log n) time) find the CC-
weight for each T-base such that the respective T-modifier fits the T-error tolerance.
Then, among the candidate T-modifiers, the one is picked which exhibits the best
indexability indicator.

In Listing 1, see the TriGen algorithm which seeks for the best T-modifier, as
outlined above. Initially, for each T-base the zero weight is checked whether the
non-modified dissimilarity’s T-error εδ,S already fits the T-error tolerance θ. If so,
the dissimilarity is being TV-modified until the T-error εδf ,S is about to exceed θ.
If not, the dissimilarity is being TG-modified until the εδf ,S gets below or equal
to θ. In such a way for each T-base we obtain (at most) one candidate for the best
T-modifier. Finally, we pick such T-modifier among the candidates, which has the
smallest intrinsic dimensionality (or ball-overlap factor).

To provide a scalability trade-off when searching for a candidate, the main loop is
bounded by a fixed number of iterations (the iterLimit constant). The TriangleError

method computes the T-error, having the actual T-modifier derived from a T-base
(the sampling of distance triplets needed for the T-error evaluation is described
in the next section). The ComputeIndexability method makes use of the previously
sampled distance triplets (computed in the TriangleError method) and computes
(negative value of) an indexability indicator on them (either intrinsic dimensionality
or BOF).

6.3 Sampling of Distance Triplets

The distance triplets used for the T-error computation can be sampled randomly;
this should suffice especially if θ > 0. However, the random sampling could miss
some ”anomalous” ordered triplets (a, b, c), where the ratio a+b

c is extremely low.
Such a not-sampled anomalous triplet remains non-triangular even if we force the
other ones (by the TriGen algorithm) to be triangular. Hence, if we require zero
T-error (i.e. θ = 0 for ”really” exact search), we should sample also some of the
anomalous triplets, in addition to the randomly sampled ones.

In Listing 2, a heuristic algorithm for sampling anomalous triplets is proposed.
First, all pair-wise distances δf in a dataset sample S

∗ are computed and the re-
spective object pairs are sorted according to their distances. Then, for each of the
last tripletCount pairs of objects (Ok, Ol) in Ordering, the algorithm searches for the
third object Om such that for the respective ordered triplet (a, b, c) the ratio a+b

c is
minimized. To keep the tracking of the best Om scalable, the number of performed
attempts is limited.

It is maybe worth noting, the searching for anomalous distance triplets is a kind
of analogy to searching for pivots when indexing by pivot-based methods (e.g.
LAESA) [Bustos et al. 2003]. As good pivots are outliers in the metric space, the
anomalous triples can be viewed as outliers in the ”triplet space”.

6.3.1 Implementation Issues. Initially, we have n objects in the dataset sample
S
∗. Then we create an n × n distance matrix for storage of pair-wise distances

δij = δ(Oi, Oj) between the sampled objects. In such a way we are able to obtain

up to
(

n
3

)

distance triplets for at most n(n−1)
2 distance computations. Thus, to
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obtain a sufficiently large number of distance triplets, the dataset sample S
∗ needs

to be quite small. Naturally, the values in the matrix could be computed ”on-
demand”, just in the moment a distance is requested. Since δ is symmetric, the
sub-diagonal half of the matrix can be used for storage of the T-modified distances
δg
ji = g(δij(·, ·), w), however, these are repeatedly recomputed for each particular

g(·, w). As in case of distances, also the modified distances can be computed ”on-
demand”.

Listing 2. (the SampleAnomalousTriplets algorithm)

Input: number of triplets to be sampled tripletCount, a dataset sample S∗, distance function δ

Output: set of triplets T

// step 1 - sort object pairs

allocate an array Ordering of pairs (i,j) such that i > j ∧ 1 ≤ i, j ≤ |S∗| 1
sort all pairs (i,j) in Ordering according to δ(Oi,Oj) in ascending order 2

// step 2 - fetch objects (Ok, Ol) and find Om such that the largest
// distance in (δ(Ok, Ol), δ(Ol, Om), δ(Ok, Om)) is maximized

for (i = |Ordering|; i > |Ordering| − tripletCount; i−−) 3
pair = Ordering[i] 4
k = pair.first 5
l = pair.second 6
m = l // start search of Om from index l 7

maxVariance = 0 8
candidateM = m 9
initialized = false 10

for (j = 0; j < attempts; j++) // attempts = number of attempts to find the best Om 11
if l < |S∗|/2 then m++ else m−− 12

triplet = order(δ(Ok, Ol), δ(Ol, Om), δ(Ok, Om)) 13

if triplet.isRegular() then // isRegular() is true if triplet.a > 0 14
variance = triplet.c / (triplet.a + triplet.b) 15

if not initialized 16
initialized = true 17
candidateM = m 18

end if 19

if variance > maxVariance then 20
candidateM = m 21
maxVariance = variance 22

end if 23
end if 24

end for 25

add triplet (δ(Ok, Ol), δ(Ol, OcandidateM), δ(OcandidateM, Ok)) to T 26
end for 27

6.4 Time Complexity Analysis

Let |S∗| be the number of objects in the sample S
∗, m be the number of sampled

triplets, F the pool of T-bases, and O(δ) be the complexity of single distance
computation. The complexity of a single g(x,w) computation is supposed O(1).
The overall complexity of TriGen algorithm is then

O(|S∗|2 ∗ O(δ) + iterLimit ∗ |F| ∗ m)
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i.e. the distance matrix computation plus the main algorithm.
The size of T-base pool |F| as well as the number of iterations (variable iterLimit)

are assumed as (small) constants, hence we get

O(|S∗|2 ∗ O(δ) + m)

The size of S
∗ and the number m affect the precision of T-error and indexability

indicator values, so we can trade off the TriGen’s complexity and the precision by
choosing |S∗| = O(1), O(log|S|), or O(|S|) and m = O(1), O(|S∗|), or e.g. O(|S∗|2).

7. EXPERIMENTAL RESULTS

To examine the proposed method, we have performed extensive testing of the Tri-
Gen algorithm as well as evaluation of the generated distance measures with respect
to the effectiveness and efficiency of retrieval by two MAMs (the M-tree and PM-
tree).

We would like to say this experimentation was not intended to compare the com-
petitiveness of various access methods against the TriGen-aided MAMs. Although
the specifically developed index structures will always perform better (e.g. the
IGrid), they are limited just to a single dissimilarity measure (or a class of highly
related measures). Instead, we would like to show the universality of the proposed
approach on a general MAM (here on the M-tree and PM-tree), resulting in a fact
the TriGen algorithm can be used as a common front end when implementing an
effective and efficient multimedia retrieval system which is richly customizable (in
sense of employment of any similarity measure provided by the user).

7.1 The TestBed

We have examined 26 dissimilarity measures (all described in Section 2) on four
datasets (images, polygons, protein sequences and time series), while the distances
were considered as black-box semimetrics. The dataset of images consisted of 65615
8-dimensional Corel features [Hettich and Bay 1999] (the color moments were used).
We have tested 5 semimetrics and 4 metrics on the images: three fractional Lp

distances (p = 0.25, 0.5, 0.75, denoted Lp), the 3-median L2 distance (3med L2), the
squared L2 distance (L2square), three Minkowski Lp distances (p = 1, 2, 5, denoted
Lp) and the angle distance (Angle).

As second we have sampled 50,000 strings of protein sequences (of lengths 50-
100) from the GenBank file rel147 [Benson et al. 2000]. The edit distance (denoted
Edit) and the longest common subsequence distance (LCSS) were used to index the
GenBank dataset. The LCSS similarity measure has been turned into a distance
as LCSS(·, ·) = 100−LCSSsim(·, ·).

Third, we created a synthetic dataset of 100,000 2D polygons, each consisting of
5 to 10 vertices. We have tested 2 semimetrics on the polygons: the 3-median and
5-median Hausdorff distances (denoted 3med Hausdorff L2, 5med Hausdorff L2, where the
partial d distance was the L2 metric on vertices), and the dynamic time warping
distance (DTW) with d chosen as L2 on vertices (denoted DTWpoly), and one metric:
the Hausdorff distance (denoted Hausdorff L2).

Finally, we used 10,000 154-dimensional time series created by Keogh et al
concatenating 10 diverse datasets from the UCR time series archive [Keogh and
Ratanamahatana 2005]. The 10 datasets are foetal ecg, steam generator, space
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shuttle, Photon Burst, Standard and Poor 500, ocean, power demand, leleccum,
Koski ECG, and infrasound beams. The subsequences we used for our experiments
were drawn at random from this pool, making sure that all 10 seed time series
contribute equally. As distance functions we employed band-constrained DTW (de-
noted DTW(b)), where b is the half-width of Sakoe-Chiba band, i.e. b = 0 stands for
L2 distance and b = 77 is unconstrained DTW (with respect to 154 dimensions),i.e.
for b > 0 the DTW is semimetric.

All the distances in all tests were normed to return values from 〈0, 1〉.
T-error tolerance θ = 0.00 T-error tolerance θ = 0.1

winning T-modifier winning T-modifier
T-base T-base

dissimilarity RGB(a,b)/FP idim(ρ) BOF TG/TV RGB(a,b)/FP idim(ρ) BOF TG/TV
3med L2 (0.005, 0.6) 58.8 0.96 TG (0.075, 0.2) 3.95 0.015 TG
L2square FP 3.47 0.057 TG (0.015, 0.1) 2.39 0.015 TG

L0.25 (0.015, 0.55) 10.7 0.38 TG (0.075, 0.1) 3.01 0.04 TG
L0.5 (0.075, 0.55) 6.84 0.17 TG FP 2.71 0.047 TG

L0.75 (0.075, 0.15) 4.3 0.08 TG (0, 0.05) 2.53 0.036 TV
L1 any 3.09 0.054 w = 0 any 3.09 0.054 w = 0
L2 (0, 0.05) 3.5 0.057 TV (0, 0.05) 2.36 0.02 TV
L5 (0, 0.05) 3.71 0.056 TV (0.015, 0.05) 2.77 0.024 TV

Angle (0, 0.05) 3.11 0.044 TV (0, 0.05) 2.21 0.018 TV
Edit any 22.2 0.71 w = 0 (0, 0.5) 2.85 0.103 TV

LCSS any 66.5 0.899 w = 0 (0, 0.65) 3.23 0.037 TV
3med Hausdorff L2 (0, 0.15) 4.26 0.054 TG (0.155, 0.2) 2.24 0.0083 TG
5med Hausdorff L2 (0.005, 1) 73.48 0.798 TG FP 2.26 0.0105 TG

DTWpoly (0.015, 0.6) 12.16 0.0794 TG (0.155, 0.3) 3.059 0.0143 TG
Hausdorff L2 any 2.347 0.015 w = 0 (0, 0.05) 2.23 0.0141 TV
DTW(0)=L2 (0, 0.5) 5.3 0.055 TV (0, 0.4) 3.6 0.0067 TV

DTW(2) (0.015, 0.1) 20.70 0.40 TG (0, 0.35) 3.976 0.004 TV
DTW(4) (0.015, 0.1) 18.92 0.32 TG (0, 0.35) 3.68 0.0037 TV
DTW(8) (0.035, 0.2) 21.37 0.42 TG (0, 0.3) 3.82 0.003 TV

DTW(20) (0.075, 0.3) 21.61 0.61 TG (0, 0.25) 3.50 0.0039 TV
DTW(40) (0.075, 0.3) 18.90 0.58 TG (0, 0.2) 3.47 0.0049 TV

Table 1. T-modifiers found by BOF-driven TriGen.

7.2 TriGen Setup

The TriGen algorithm was used to generate the optimal T-modifier for each dis-
similarity measure (considering the respective dataset and a T-error tolerance θ).
To examine the relation between the retrieval error of MAMs and the T-error, we
have constructed several T-modifiers for each distance measure, considering dif-
ferent values of T-error tolerance θ ≥ 0. The TriGen’s pool of T-bases F was
populated by the FP-base and 116 RBQ-bases parametrized by all such pairs (a, b)
that a ∈ {0, 0.005, 0.015, 0.035, 0.075, 0.155}, where for a value of a the values of b
were multiples of 0.05 limited by a < b ≤ 1. The dataset sample S

∗ used by TriGen
consisted of only n = 500 randomly selected objects, i.e. 0.76% of Corel dataset,
1% of the GenBank dataset, 0.5% of the Polygons dataset and 5% of the Time
series dataset. The distance matrix built on the respective dataset sample S

∗ was
used to form m = 105 distance triplets. Unless otherwise stated, 95% of the triplets
were sampled randomly and the remaining 5% were sampled by the ”anomalous
triplets” heuristics (see Section 6.3). The ball-overlap factor (BOF) was computed
as BOF1 (1-NN balls ratio) in all experiments.

In Table 1 see the optimal T-modifiers found for the dissimilarity measures by
BOF-driven TriGen (i.e. a TriGen configuration where the BOF was used to rank
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Fig. 15. (a,c) Ball-overlap factors of T-modifiers obtained by BOF- or IDIM-driven TriGen, re-
spectively (b,d) Intrinsic dimensionalities of T-modifiers obtained by BOF- or IDIM-driven TriGen

the T-modifier candidates), considering θ = 0 and θ = 0.1, respectively. The
winning T-modifier parameters for a particular T-error tolerance θ (the best in
sense of lowest BOF) are denoted as RBQ/FP (either the (a, b) parameters of
RBQ or just the FP label), idim (the intrinsic dimensionality), BOF (ball-overlap
factor), TG/TV (the ”direction” of the winning T-modifiers, i.e. either TG- or
TV-modifier). We can observe the L1 distance cannot be modified at all. Note
that metrics L2, L5, Angle and DTW(0) were TV-modified without ”harming” by the
T-error. Furthermore, we can observe the semimetric L0.75 is TG-modified to fit
θ = 0, but for θ = 0.1 the triangle inequality is satisfied more than enough, so it is
even TV-modified. As expected, the RBQ-bases are the most winning ones.

Considering the Corel dataset, in Figures 15a,b see the BOFs and intrinsic di-
mensionalities for BOF-driven TriGen with respect to the growing T-error toler-
ance θ, in Figures 15c,d see the opposite, i.e. BOFs and intrinsic dimensionalities
for IDIM-driven TriGen.

The Figure 16a shows BOFs for BOF-driven TriGen on the GenBank dataset,
while in Figure 16b see the same for Polygons dataset.
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Fig. 16. BOFs of T-modifiers obtained by BOF-driven TriGen on (a) GenBank (b) Polygons

7.3 Indexing & Querying

In order to evaluate the efficiency and effectiveness of search when using T-modified
dissimilarity measures, we have utilized the M-tree [Ciaccia et al. 1997] and the
PM-tree [Skopal et al. 2005]. For either of the datasets several M-tree and PM-tree
indices were built, which differentiate in the T-modification employed – for each
dissimilarity measure and each θ value a δf was found by TriGen, and an index
created. The setup of (P)M-tree indices is summarized in Table 2 (for technical
details see [Ciaccia et al. 1997; Skopal et al. 2003; Skopal et al. 2005]).

disk page (tree node) size: 2–8 kB avg. page utilization: approx. 68%
PM-tree pivots: 32 inner node pivots, 16 leaf pivots

Corel index sizes: 15 MB (M-tree) 20 MB (PM-tree)
Polygons index sizes: 14.5 MB (M-tree) 19 MB (PM-tree)
GenBank index sizes: 12.5 MB (M-tree) 15.2 MB (PM-tree)

Time series index sizes: 11.8 MB (M-tree) 12 MB (PM-tree)
Construction method: MinMax + SingleWay

Table 2. M-tree and PM-tree setup

All the (P)M-tree indices were used to process kNN queries. Since the TriGen-
generated modifications are generally approximations (especially when θ > 0), the
filtration of (P)M-tree branches was affected by a retrieval error ENO (see Sec-
tion 5.1).

To examine retrieval efficiency, the computation costs needed for query evaluation
were compared to the costs spent by sequential search. Every query was repeated
for 100 query objects (randomly selected from the dataset), and the results were
averaged.

In Figure 17 see the costs and the retrieval errors of 10NN queries processed
on Corel M-tree indices, depending on the growing θ and considering BOF-driven
TriGen. Since the BOFs/IDIMs decrease, the searching becomes more efficient (e.g.
down to 1% of costs spent by sequential search for θ = 0.2 and T-modifications
of metric Lp distances). On the other hand, for θ = 0 the T-modifications of
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Fig. 17. Computation costs and retrieval errors observed for 10NN queries on M-tree Corel indices,
considering BOF-driven TriGen generating of T-modifiers.

Fig. 18. Computation costs and retrieval errors observed for 10NN queries on PM-tree Corel
indices, considering BOF-driven TriGen generating of T-modifiers.

3med L2 and L0.25 imply high BOFs/IDIMs, so the retrieval deteriorates (to almost
sequential search in case of 3med L2). In Figure 18 the same results are presented
for PM-tree indices. The results show PM-tree is sometimes an order of magnitude
faster than the respective M-tree in the same situation.

For a comparison, in Figure 19 see the scenario from Figure 18 but now with
indices built using T-modifications created by IDIM-driven TriGen (the results for
L1 indices are the same in both cases so we can use them as a clue). The BOF-driven
TriGen produces T-modifications which perform better (up to θ = 0.2). On the
other hand, the T-modifications produced by BOF-TriGen lead to higher retrieval
errors.

The costs and the errors for kNN querying on Corel M-trees are presented in
Figures 20. The retrieval error is not considerably changing with increasing k, so
we could expect stable behavior under various query selectivities.
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Fig. 19. Computation costs and retrieval errors observed for 10NN queries on PM-tree Corel

indices, considering IDIM-driven TriGen generating of T-modifiers.

Fig. 20. Computation costs and retrieval errors for kNN queries on Corel M-tree indices.

To examine also the other datasets, in Figure 21 see the results for 10NN queries
on GenBank indices, with respect to the growing θ. The edit distance has proved
its bad exact indexability, more than 20% of PM-tree and almost 100% of M-tree
indices was fetched to answer a query. Simultaneously, the respective retrieval errors
are high for already small θ. Although a non-metric, the LCSS behaves similarly
like the edit distance.

In Figure 22 see the results for Polygons indices. The indexing by Hausdorff L2

distance is quite efficient, but also the respective retrieval errors for the growing θ
are very small (even zero up to θ = 0.1 when indexed by M-tree). The non-metric
distances are quite efficiently indexable as well, the 5med Hausdorff L2 is an exception.
On the other hand, the DTWpoly distance exhibits significant retrieval error even in
case θ = 0.

In Figure 23a,b see the computation costs (retrieval error, respectively) for 10-NN
queries on the high-dimensional Time series dataset, where the observed parameter
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Fig. 21. Computation costs and retrieval errors observed for 10NN queries on (P)M-tree GenBank
indices.

Fig. 22. Computation costs and retrieval errors observed for 10NN queries on (P)M-tree Polygons
indices.

w is the half-width of the Sakoe-Chiba’s band. The T-error tolerance was fixed to 0.
For w = 0 the DTW becomes an ordinary L2 metric, so the retrieval is fast, since
no TG-modification is needed. However, for w > 0 the costs are much higher, no
matter what actual value of w is. This observation is particularly interesting, since
one would expect the higher w the higher T-error, and also the higher computation
costs (enforced by a ”heavy” TG-modification). Considering the T-error tolerance
and DTW(5), the computation costs and retrieval error on Time series are presented
in Figure 24. Generally, the high-dimensional time series are hard to index for zero
retrieval error, nevertheless, for T-error tolerance ≤ 0.01 the performance improves
quite significantly, while the retrieval error is reasonably small.

7.3.1 Aggregate Results. To briefly summarize the overall indexability of all four
datasets, in Figure 25 see the computation costs of 10NN queries directly against
the real retrieval error (instead of just T-error tolerance). The four graph pairs in
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Fig. 23. Computation costs and retrieval errors for 10NN queries on (P)M-tree Time series indices,
according to the growing half-width of Sakoe-Chiba band used in DTW. T-error tolerance set to
zero.

Fig. 24. Computation costs and retrieval errors observed for 10NN queries on (P)M-tree Time
series indices.

Figures 18, 21, 22, 24 are re-plotted as four single graphs, showing the trade-off
between efficiency and error for each dataset. The best values are the bottom-left
ones, and vice versa.

7.3.2 Sample size & anomalous triplets. In the above results we can observe
several cases where the retrieval error is high even for small or zero T-error toler-
ance θ (see L0.25 in Figure 18, 3med L2 in Figure 20, LCSS in Figure 21, and DTWpoly

in Figure 22). Hence, in the last experiment we test the impact of the triangular
triplets’ structure used by determining the T-error. In Figure 26 see computation
costs and the retrieval errors according to the growing proportion of anomalous
triplets in the set of 100,000 triplets used for T-error evaluation. We can observe
the retrieval errors decrease, considering all the T-modified dissimilarity measures.
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Fig. 25. Aggregate results for all datasets: 10NN queries, efficiency/error trade-off.

The drop is visible especially for the L0.25. However, at some point (here at 8% of
anomalous triplets) the retrieval error gets stabilized, so we cannot further refine
the T-error evaluation. This is due to the size of the dataset sample S

∗ and the
distance triplet set, which are both relatively small. Thus, applications with re-
quirements on a strictly guaranteed level of retrieval error have to use larger sizes
of both.

To demonstrate the impact of the dataset size and the number of distance triplets,
see Figure 27 to observe the dependency of retrieval error on the size n = |S∗| of
the dataset sample (as proportion of the dataset size). The number of sampled

distance triplets m was increasing super-linearly, as m = n
7
4 . The error for L0.25 is

stable from approx. 2% (there is a nonzero T-error tolerance required). The error
for 3med L2 steadily decreases as the sample size gets larger (up to 7% wherefrom
the error is 0). We also observe the errors for DTWpoly and LCSS fall quickly, so the
increased dataset sample in this case is better than an increased ratio of anomalous
triplets (compare with the previous figure). Remarkably, for sample sizes above 2%
of the dataset size we can observe the computation costs do not increase (actually,
this is relevant for L0.25 and DTWpoly since the other two got almost 100%).
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Fig. 26. An impact of increasing ratio of anomalous distance triplets sampled for the T-error
evaluation.

Fig. 27. An impact of size of dataset sample S∗ as well the number of distance triplets on the
retrieval error.

8. CONCLUSIONS

In this paper we have proposed a unified framework for exact and approximate
search in general dissimilarity spaces by use of metric access methods (MAMs),
which can be utilized especially in the area of multimedia retrieval. We have shown
the triangle inequality property is not restrictive for similarity search and can be
enforced for every semimetric (modifying it to a metric) in order to achieve exact
search. Or, conversely, the triangle inequality can be intentionally violated for
the sake of better structuring of the indexed dataset, so we achieve faster, but
imprecise, retrieval. Furthermore, we have introduced the TriGen algorithm for
automatic turning of any black-box dissimilarity into an approximation of metric
just by use of distance distribution in a fraction of the database. Such a ”TriGen-
approximated metric” can be safely used to search the database by any MAM, while
the similarity orderings with respect to a query object (the retrieval effectiveness)
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are correctly preserved.

8.1 Future Work & Open Problems

We would like to carry out some research concerning further improvements of Tri-
Gen’s ”tracking abilities” for the optimal T-modifier. We consider two ways –
utilizing more complex combinations of the T-bases, or, alternatively, extending
the class of T-bases to all partially concave/convex SP-modifications.

Another of our efforts is aimed to a proposal of dynamic techniques for improve-
ment of a T-modification which was already used to build a (P)M-tree index. With
such a feature, the index could be repaired ”on-the-fly” to achieve more or less
approximate results for future queries, so full re-indexing of the dataset will not be
required (at least to some extent).
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vided by the Czech Science Foundation, and ”Information Society” grant number
1ET100300419.

REFERENCES

Aggarwal, C. C., Hinneburg, A., and Keim, D. A. 2001. On the surprising behavior of distance

metrics in high dimensional spaces. In ICDT. LNCS, Springer.

Aggarwal, C. C. and Yu, P. S. 2000. The IGrid index: reversing the dimensionality curse for
similarity indexing in high dimensional space. In KDD ’00: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM Press, New
York, NY, USA, 119–129.

Amato, G., Rabitti, F., Savino, P., and Zezula, P. 2003. Region proximity in metric spaces and
its use for approximate similarity search. ACM Transactions on Information Systems 21, 2,

192–227.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. 1998. An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of the ACM
(JACM) 45, 6, 891–923.

Ashby, F. and Perrin, N. 1988. Toward a unified theory of similarity and recognition. Psycho-
logical Review 95, 1, 124–150.

Athitsos, V., Hadjieleftheriou, M., Kollios, G., and Sclaroff, S. 2005. Query-sensitive
embeddings. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference
on Management of data. ACM Press, New York, NY, USA, 706–717.

Baeza-Yates, R. A. and Ribeiro-Neto, B. 1999. Modern Information Retrieval. Addison-
Wesley Longman Publishing.

Bartolini, I., Ciaccia, P., and Patella, M. 2005. WARP: Accurate Retrieval of Shapes Using
Phase of Fourier Descriptors and Time Warping Distance. IEEE Pattern Analysis and Machine
Intelligence 27, 1, 142–147.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., and Wheeler,

D. L. 2000. Genbank. Nucleic Acids Res 28, 1 (January), 15–18.
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