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Unified Framework for the Joint Super-Resolution

and Registration of Multiangle Multi/Hyperspectral

Remote Sensing Images
Hang Chen, Hongyan Zhang , Senior Member, IEEE, Juan Du , and Bin Luo

Abstract—In this article, a unified framework based on rank
minimization (UFRM) is proposed for use with multiangle
multi/hyperspectral remote sensing images, which simultaneously
integrates image super-resolution reconstruction (SRR) and image
registration. With the complementary information of different
angle images and the high correlation between each band of the
multi/hyperspectral images, a new image observation model is
established to describe the mathematical degradation process of
the observed low-resolution multiangle multi/hyperspectral images
from the desired high-resolution (HR) multi/hyperspectral image.
Based on the rank-one structure of the multiangle images, each
observed image is decomposed into a foreground image for each
angle image, and a background image, which is shared among all
the multiangle images. A multichannel total variation constraint is
applied to the target HR background image, with the consideration
of the high correlation of different bands. Finally, an alternating
minimization optimization strategy is utilized to resolve the joint
cost function, which consists of the unknown image registration
transformation parameters and the desired reconstruction image.
As a result, the UFRM method can simultaneously achieve im-
age registration and SRR. A number of experiments were con-
ducted, which confirmed the superior performance of the proposed
method.

Index Terms—Multiangle, multi/hyperspectral, registration,
super-resolution, rank-one.

I. INTRODUCTION

M
ANY imaging systems are now equipped with mul-

tiangle multi/hyperspectral abilities, which opens up

new possibilities for remote sensing applications such as 3-

D reconstruction [1], [2], image classification [3]–[6], object

detection [7]–[9], change detection [10], and so on. Due to
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the tradeoff between the spectral and spatial perspectives of

multi/hyperspectral images, the spatial resolution of multiangle

multi/hyperspectral images is often coarse. This phenomenon

limits the further development of the remote sensing applications

to a large extent. In order to improve the spatial resolution of

the observed images, one effective solution is to develop more

advanced optical imaging devices, which is referred to as the

“hardware approach” [11]. However, there is always a technical

limitation with regard to the hardware approach. In addition, the

huge economic cost is another obstacle. Thus, it is necessary to

develop data postprocessing techniques to improve the spatial

resolution of remote sensing images.

Super-resolution reconstruction (SRR) is a technique that can

be used to reconstruct a higher resolution image from several

observed low-resolution (LR) images. Generally speaking, SRR

can be categorized as multiframe or single-frame, based on the

input LR images. Considering that our attention is focused on

multiangle multi/hyperspectral images, only multiframe SRR

methods are discussed in this article. The idea of multiframe

SRR was first proposed by Tsai and Huang [12] to improve the

spatial resolution of Landsat Thematic Mapper (TM) images.

Since then, superresolution has attracted a lot of interest from

researchers, and there have been various classical reconstruction

frameworks proposed, such as maximum a posteriori (MAP)

image reconstruction [13], [14], projection onto convex sets

(POCS) [15], non-uniform interpolation [16], maximum likeli-

hood reconstruction [17], the iterative back-projection approach

(IBP) [18], mixed maximum MAP/POCS [19], and so on. Gener-

ally speaking, the key problem of multiframe SRR is how to seek

the complementary information, which comes from the subpixel

displacements among the multiple observed LR images. That is

to say, the precondition for the SRR of remote sensing images is

that there is similar but not totally identical information existing

between the observed images over the same imaging scene. In

the following, we discuss three cases of LR remote sensing

images for SRR.

1) Shift-controlled case. The most successful remote sensing

SRR case is the SPOT-5 imaging system. This system

shifts half a sampling interval in the horizontal and

vertical directions by a double charge-coupled device

(CCD) linear array, which obtains two 5-m resolution

images, and then produces an approximately 2.5-m

resolution high-resolution (HR) image through SRR
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processing [20], [21]. However, this imaging system

requires precise design of the hardware system.

2) Multitemporal case. With its high temporal resolution

observation capability, the Moderate Resolution Imag-

ing Spectroradiometer (MODIS), which is carried on the

TERRA/Aqua satellites, can acquire imagery of the same

scene every 1 or 2 d. It can therefore quickly provide a

sequence of observed LR images with a short time span.

An operational SRR algorithm was first proposed by Shen

et al. [22] for MODIS images. In addition, an SRR method

based on a universal hidden Markov tree model for remote

sensing data was proposed by Li et al. [23] and tested

with Landsat 7 panchromatic images captured on different

dates. It is clear that the multitemporal remote sensing

imaging case can provide the subpixel-displaced image

sequence for the SRR task. However, there may be a gap of

several days, or even a much longer time interval, between

multitemporal satellite images. Therefore, the imaging

scene or weather conditions can change a lot in this period,

which poses great difficulties for the image registration

and SRR of multitemporal remote sensing images.

3) Multiangle case. A multiangle remote sensing imaging

system can obtain multiple images at different angles,

within a short time span, such that the imaging scene

and weather conditions hardly change at all [24]. Subpixel

displacement also exists in the multiangle images of the

same scene. Therefore, multiangle images are more suit-

able for SRR than multitemporal images. In recent years,

the SRR of remote sensing images has mainly focused on

multiangle image sequences [24]–[27].

Conventionally, the multiframe SRR procedure usually con-

sists of two steps: image registration and image reconstruction.

The precise image registration is a prerequisite and plays an

important role in the generation of the final super-resolved image

[28], [29]. To date, several image registration algorithms have

been proposed to estimate the subpixel displacements between

multiangle images. In [25], an effective multiangle image reg-

istration method was proposed using a physical sensor model.

However, supplementary data such as a digital elevation model

(DEM) are required for this method, which cannot always be

obtained, especially for certain imaging systems. Ma et al. [26]

proposed an automatic subpixel image registration method for

CHRIS/PROBA multiangle images. However, high-precision

SIFT control points are a precondition in the first step, which

are often difficult to obtain because of the resolution change

and blurring between the multiangle images. In addition, Hu et

al. [27] proposed a multiangle image registration method that

exploits the low-rank structure of multiangle remote sensing

images. In [30], an affine SIFT-based local registration method

was proposed by Wang et al. for remote sensing images, where

a framework for localization in the image registration was de-

veloped and the local registration accuracy was strengthened.

Furthermore, Laghrib et al. [31] proposed a spatially weighted

second-order super-resolution method, where all the LR images

are registered by a hyperelastic registration method, which is

used to handle the subpixel errors between the unregistered

images.

As for HR image reconstruction from the available multiangle

remote sensing images, a number of algorithms have also been

developed. For example, Chan et al. [32] conducted SRR exper-

iments with Delaunay triangulation based nonuniform interpo-

lation. In [33], ZY-3 multiangle images were used to implement

SRR, where a Fourier transformation method is utilized to

register the ZY-3 images. Ma et al. [34] proposed an opera-

tional super-resolution algorithm for multiangle WorldView-2

remote sensing images, where the local geometric distortion and

photometric disparity are considered in the image registration

stage, and an L1-norm data fidelity item and total variation

regularization are utilized in the SRR model. In [35], Ma et al.

proposed an SRR method for multiangle remote sensing images,

which considers the concept of kernel-based regression. In this

method, the local image patch is approximated by an N-term

Taylor series, and a robust fitting procedure is also adopted.

However, one shortcoming of all these methods is that they do

not consider the resolution variations of the multiangle images.

Galbraith et al. [36] noted that the spatial resolution of different

angle images shows a slight difference, and the spatial resolution

of an off-nadir image is lower than that of the nadir image.

Hence, the contributions of the different angle images to the

reconstructed image should be considered. Zhang et al. [21]

proposed an adaptive-weighted super-resolution method, which

considers the resolution variations of the multiangle images,

where the different contributions of the multiangle LR images

are reflected by different weights.

However, due to the presence of aliasing in the observed

multiangle LR images, serious subpixel errors will still exist for

most of the existing registration algorithms for aliased images

[37]. Several attempts have been made to reduce the effect of

registration errors. Among them, one important strategy is to

build a unified framework for simultaneous image registration

and image reconstruction. This approach involves conducting

the image registration on the basis of the super-resolved images,

and can lead to a better registration performance [37]. In [38],

Gilles et al. proposed a joint image alignment and reconstruction

method for multiangle panchromatic images. This method joins

the processes of image registration and image reconstruction

together, which avoids the error propagation in the image regis-

tration procedure and improves the quality of the reconstruction

result. Gilles et al. [38] also noted that each observed image can

be modeled as the sum of a background image and a foreground

image. The background image is common to all the observed im-

ages, but undergoes geometric transformation. The foreground

images differ from one angle image to another, and they are

used to model the possible occlusions between the different

angle images. Thus, this method takes the mutual dependency

of the image registration and image reconstruction stages into

account, and can achieve a state-of-the-art SRR performance for

multiangle panchromatic images. However, directly applying

the joint image registration and SRR reconstruction method

to the multiangle multi/hyperspectral images is problematic

due to the high correlation between the different bands of the

multi/hyperspectral images. Dealing with these bands separately

does not fully exploit the correlation between them, and results in

spectral artifacts in the final super-resolved hyperspectral image.
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In view of this, we propose a unified framework based on rank

minimization (UFRM) for the joint super-resolution and regis-

tration of multiangle multi/hyperspectral remote sensing images,

which considers the rank-one structure of the multiangle images

and the spectral information of the multi/hyperspectral images at

the same time. Firstly, the observation model for the multiangle

multispectral images is constructed, and the rank-one structure

of the multiangle multi/hyperspectral images is explored by lex-

icographically ordering the 3-D data cube as a 2-D matrix. Sec-

ondly, a unified MAP framework is established, which integrates

the image super-resolution and registration procedures. Thirdly,

considering the high correlation between the different bands of

the images, a multichannel total variation (MTV) [39] constraint

is applied. In this model, all the band information is treated

as an entirety, rather than band-by-band, which can exploit the

spectral characteristics between bands more deeply. With the

established framework, the image registration parameters are

iteratively updated, along with the progressively estimated HR

images, in a cyclic optimization procedure, which can reduce

the negative effect of image registration errors. The UFRM

algorithm is aimed at reinforcing the interdependence of the

image registration parameters and the HR multi/hyperspectral

images in a mutually beneficial manner, and is an extension of

our previous conference work [24].

The rest of this article is organized as follows. In Sec-

tion II, we explain the observation model for multiangle

multi/hyperspectral images. The unified super-resolution frame-

work is then explained in detail, as well as the optimization algo-

rithm. The flowchart of the unified super-resolution framework

is also summarized. In Section III, we describe the experiments

conducted with WorldView-2 and CHRIS/PROBA images, and

an experimental analysis is provided. Finally, Section IV con-

cludes the article and discusses our future work.

II. METHODS

A. Observation Model

The image observation model is used to simulate the imaging

degradation process of the remote sensing imaging system, and

to describe the mathematical relationship between the ideal HR

image and the observed LR images. The SRR procedure is

the inverse process of the observation process, and is aimed

at reconstructing the desired HR images from the available

observations. Therefore, constructing the observation model

is a prerequisite for the SRR reconstruction process. We first

study the image observation model in the traditional multiangle

panchromatic case, and then extend this model to the multiangle

multi/hyperspectral case. The image acquisition process is in-

evitably confronted with degradation issues, including motion

effects, blurring, noise, and downsampling. We let the under-

lying HR image be denoted as x, and yk denotes the kth LR

angle image. If we assume that each observed LR image is

contaminated by additive noise, then the observation model can

be represented as

yk = DkBkMkx+ nk k = 1, 2, 3, . . . , p (1)

where the size ofx isL1N1L2N2 × 1. LettingL1 andL2 denote

the downsampling factors in the horizontal and vertical di-

rections, respectively, each observed LR image yk has the

size N1N2 × 1. nk represents the N1N2 × 1 noise vector. p

is the total number of multiangle images. Mk is the warp

matrix and Bk is the blur matrix, which have the same size

of L1N1L2N2 × L1N1L2N2. Dk is an N1N2 × L1N1L2N2

downsampling matrix.

In this article, an improved observation model for multi-

angle multi/hyperspectral remote sensing images is proposed.

Firstly, we study the new observation model in the single-band

panchromatic case [38]. Each observed image is modeled as

the sum of a background image and a foreground image. The

background image of the different angle images undergoes ge-

ometric transformation. The foreground images differ from one

observed image to another, and are used to model the possible

occlusions of the scene. Therefore, the observed LR images can

be represented as

Y = YF +YB +N (2)

where Y = [y1,y2, . . . ,yp]
T is the observed multiangle im-

ages. YF = [y1F ,y2F , . . . ,ypF ]
T is the foreground image of

the observed images and YB = [y1B ,y2B , . . . ,ypB ]
T is the

background image of the observed images. N is the Gaussian

noise. This procedure is shown in Fig. 1. It is known that all

the different angle images share the same land surface objects.

With the background and foreground decomposition, it is as-

sumed that the background images of the different angle images

correspond to similar but not identical components, and can

thus be utilized for super-resolution. As for the foreground,

each foreground component is unique for each angle image,

and the foreground components usually represent the occlusions.

Therefore, interpolation is conducted for the foreground images

to match the size of the super-resolved background images.

According to (1), the expansion of (2) is written as

⎡
⎢⎢⎢⎣

y1

y2

...

yp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

D1B1 0 · · · 0

0 D2B2

...
...

... · · ·
. . .

...

0 · · · · · · DpBp

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...

xp

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

D1B1M1 0 · · · 0

0 D2B2M2

...
...

... · · ·
. . .

...

0 · · · · · · DpBpMp

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

x01

x02

...

x0p

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

n1

n2

...

np

⎤
⎥⎥⎥⎦ (3)

where x01,x02, . . . ,x0p represent the super-resolved HR back-

ground image with dewarping, deblurring, and upsampling for

each angle, respectively. x1,x2, . . . ,xp denote the interpolated
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Fig. 1. Degradation procedure for multiangle multi/hyperspectral images.

HR foreground images by only taking deblurring and upsam-

pling into consideration. All the background images and fore-

ground images have the same size of L1N1L2N2 × 1. If we

stack all the HR background images as columns of a matrix,

i.e., [x01 x02 . . . x0p], it is clear that this matrix will have a

low-rank structure. That is to say, the HR background image

is common to all the angles and, in ideal circumstances, the p

background images x01,x02, . . . ,x0p should be all the same,

so that the matrix [x01 x02 . . . x0p] is approximately rank-one.

According to this assumption, YB can be expressed as

YB =

⎡
⎢⎢⎢⎣

D1B1M1

D2B2M2

...

DpBpMp

⎤
⎥⎥⎥⎦x0 (4)

where x0 represents the common HR background image. We

can then simplify (3) as

⎡
⎢⎢⎢⎣

y1

y2

...

yp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

D1B1M1 D1B1 0 · · · 0

D2B2M2 0 D2B2

...
...

...
... · · ·

. . .
...

DpBpMp 0 · · · · · · DpBp

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

x0

x1

...

xp

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

n1

n2

...

np

⎤
⎥⎥⎥⎦ (5)

By extending this single-band multiangle observation model

to the multiangle multi/hyperspectral case, we can obtain the

following model, with the assumption that the warping and

blurring for each band are the same:

⎡
⎢⎢⎢⎣

y11 · · · y1q

y21 · · · y2q

...
...

...

yp1 · · · ypq

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

D1B1M1 D1B1 0 · · · 0

D2B2M2 0 D2B2

...
...

...
... · · ·

. . .
...

DpBpMp 0 · · · · · · DpBp

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

x01 · · · x0q

x11 · · · x1q

...
...

...

xp1 · · · xpq

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

n11 · · · n1q

n21 · · · n2q

...
...

...

np1 · · · npq

⎤
⎥⎥⎥⎦ (6)

where q is the number of spectral bands of each angle image.

Assuming that the downsampling matrix Dk and the blurring

matrix Bk are the same for all the multiangle LR images, then

the matrices Dk and Bk are substituted by D and B. We can

thus denote (6) as

Y = A (θ)X+N (7)

where A(θ) denotes the degradation matrix for the background

and foreground images, and θ represents the image registration

transformation parameters of matrix M = [M1 M2 . . .Mp]
T.

Homography transformation is used to describe the multiangle

image registration transformation.
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B. Image Registration and Reconstruction Cost Function

Based on the observation model described above, our ob-

jective is to find a set of image registration transformation

parameters θ∗ and the super-resolved HR images X∗. The pro-

cedure of finding the HR images is always an ill-posed inverse

problem. Based on MAP theory, the problem we need to solve

can be transformed into a minimization problem as follows

[13], [40]:

X̂, θ̂ = argmin ρ (A (θ)X−Y) + λ1U (X) + λ2U (θ) (8)

where ρ(A(θ)X−Y) and λ1U(X) + λ2U(θ) are referred to

as the data fidelity term and the regularization term about X

and θ, respectively. λ1 and λ2 are the regularization parameters

which balance these two terms.

The data fidelity term ρ(A(θ)X−Y) represents the simi-

larity between the observed LR multiangle multi/hyperspectral

images and the desired HR multi/hyperspectral images. This

term is determined by the noise matrix in (6). If we assume that

the noise present in the images is additive white Gaussian noise,

then the Frobenius norm can be used to constrain the data fidelity

term. The data fidelity term can then be represented by

ρ (A (θ)X−Y) = ‖A (θ)X−Y‖F (9)

The prior information of the image registration transformation

parameters is ignored here because of the very limited num-

ber of image registration transformation parameters. Therefore,

only U(X) is discussed here. In the traditional super-resolution

MAP model, the TV regularization model is always utilized

to regularize the ill-posed problem. The traditional way to

extend the TV model to multi/hyperspectral images is by a

band-by-band manner. This means that the TV model for each

band is defined as a gray-level image TV model, and then the

TV models of each band are added together, which indicates

that the spectral correlation of the multi/hyperspectral remote

sensing images is not considered. To consider the spectral

correlation of the multi/hyperspectral remote sensing images,

the MTV regularization model proposed by Blomgren and

Chan [41] is utilized here to regularize the ill-posed prob-

lem. In addition, Yuan et al. [42] demonstrated that the MTV

model has a powerful spectrally adaptive ability in remote sens-

ing image processing. The MTV regularization model can be

expressed as

U (X) =

N1N2∑

i=1

√√√√
q∑

j=1

|∇ijX|

∇ijX =

√
(∇h

ijX)
2
+ (∇v

ijX)2 (10)

where ∇h
ijX and ∇v

ijX are linear operators corresponding to

the horizontal and vertical first-order differences at the ith pixel

and jth band, respectively. In this model, it is clear that all the

bands are treated as an entirety, rather than as individual bands,

which can exploit the spectral characteristics between bands

more deeply. Substituting (9) and (10) into (8), we can obtain

the following minimization cost function:

X̂, θ̂ = argmin [‖A (θ)X−Y‖F

+λ

N1N2∑

i=1

√√√√
q∑

j=1

|∇ijX|

⎤
⎦ (11)

According to the above-mentioned observation model (7), the

UFRM for the joint super-resolution and registration of mul-

tiangle multi/hyperspectral images is established here, which

includes two unknown parameters X and θ. The detailed opti-

mization solution is given in the next subsection.

C. Optimization

The optimization problem shown in (11) is nonconvex. The

alternating algorithm for the minimization of a nonconvex func-

tion proposed by Attouch et al. [43] is utilized here. This algo-

rithm iteratively estimates both the HR image X and the image

registration transformation parameters θ in a two-step optimiza-

tion procedure. The main steps of this optimization algorithm

can be stated as follows. The image registration parameters and

the HR images are resolved in an alternating manner. A is the

degradation matrix which contains D, B, and M (M is unknown),

and Y is the LR observation images. The desired HR image X

and image registration parameters θ, which are the parameters

of M, can be updated by minimizing the following cost function:

L (X,θ) = ‖A (θ)X−Y‖F + λU (X) (12)

1) Updating the HR Images: We let (Xk,θk) be the esti-

mates obtained after k iterations of the algorithm. Given the

estimate of registration parameters θ
k, the HR images can be

updated by minimizing the following equation:

E1

(
Xk+1

)
=

∥∥A
(
θ
k
)
Xk+1 −Y

∥∥
F
+ λU

(
Xk+1

)
+

λx

2
g
(
Xk+1 −Xk

)

(13)

where g acts as a proximal term and λx > 0 as the step size.

g is a proper lower-semicontinuous convex function, such that

g(x) ≥ 0 for all of x, and g(0) = 0. It is clear that this implies

that

L
(
Xk+1,θk

)
+

λx

2
g
(
Xk+1 −Xk

)
≤ L

(
Xk,θk

)
(14)

Hence L(Xk+1,θk) ≤ L(Xk,θk) with a decrease of

λxg(X
k+1 −Xk)/2, at least.

2) Updating the Registration Parameters: We let (Xk,θk)
be the estimates obtained after k iterations of the algorithm, and

Xk+1 is the solution of (13). A projected Newton-like method

[44] is used to update the transformation parameters. Given the

estimate of HR image Xk+1, the cost function to update the

registration parameter can be given as

E2

(
θ
k+1

)
=

∥∥A
(
θ
k+1

)
Xk+1 −Y

∥∥
F

+ λU
(
Xk+1

)
+

λλθ

2

∥∥θk+1 − θ
k
∥∥2
2

(15)
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Fig. 2. Flowchart of the proposed UFRM algorithm.

Algorithm 1: Multiangle Multi/Hyperspectral Image Super-

Resolution

Input: A data set of multiangle multi/hyperspectral LR

images

Step 1: Initialization:

Vectorize all the multiangle multi/hyperspectral LR images

and combine them to form multiangle multi/hyperspectral

data set Y.

Step 2: Construct the cost function:

Perform X,θ estimation with the Y matrix in (11) to

construct the cost function:

L(X,θ) = ‖A(θ)X−Y‖F + λU(X).
Step 3: Solve the cost function

The alternating minimization strategy is utilized to solve

the cost function.

1) Set k = 0, X0 = 0, and θ
0 = 0; kmax and λ, λx, λθ

2) While not convergence and k ≤ kmax:

a. Optimize Xk+1 while fixing θ
k

E1(X
k+1) = ‖A(θk)Xk+1 −Y‖F + λU(Xk+1) +

λx

2
g(Xk+1 −Xk),

b. Optimize θ
k+1, keeping Xk+1 fixed from

E2(θ
k+1) = ‖A(θk+1)Xk+1 −Y‖F + λU(Xk+1) +

λλθ

2
‖θk+1 − θ

k‖22,
c. k ← k + 1

Simultaneously obtain the transformation parameters θ∗

and matrix X∗.

Step 4: Reconstruct the HR images

Obtain all the reconstructed images for every angle

according to θ
∗ and X∗:

xnm = Mnx
∗

0m + x∗

nm,
Output: Super-resolved image X.

According to the algorithm in [31], the inequalities of θ can

be obtained as

L
(
Xk+1,θk+1

)
+

λλθ

2

∥∥θk+1 − θ
k
∥∥2
2
≤ L

(
Xk+1,θk

)

(16)

where λθ is the step size. Therefore, L(Xk+1,θk+1) ≤

L(Xk+1,θk)with a decrease of λλθθ
k+1 − θ

k2

2/2, at least. Dif-

fering from the traditional two-stage SRR methods that perform

the image registration on the LR images in the first stage, the

image registration is performed iteratively. It is believed that this

cyclic optimization procedure can prevent the effect of image

registration errors to some extent.

3) Reconstructing the HR Images: After we obtain the esti-

mated images X∗ and transformation parameters θ∗, the recon-

structed images can be obtained by

xnm = Mnx
∗

0m + x∗

nm (17)

where x∗
0m and x∗

nm are the estimated background image and

foreground image in the mth band and nth angle.

4) Procedure Flow: The overall procedure flow of SRR for

multiangle multi/hyperspectral images can be summarized as

shown in Algorithm 1. The flowchart of the proposed UFRM

algorithm is also presented in Fig. 2. The Angle 1 to An-

gle p means the input multi/hyperspectral images at different

angles. These images are vectorized and stacked to form a

2-D data set Y. The cost function is then constructed, and

an alternating optimization strategy is utilized to obtain the

transformation parameters θ∗ and matrix X∗. X∗ is composed

of the common background image and different foreground

images. Finally, the super-resolved image X is reconstructed

by (17).

III. EXPERIMENTS

A. Experimental Setting

Two sources of data were used in the experiments.

WorldView-2 and CHRIS/PROBA images were chosen to rep-

resent multiangle multispectral and hyperspectral images, re-

spectively. The WorldView-2 images, which were provided by

DigitalGlobe, cover Santos Dumont Airport of Rio de Janeiro,

Brazil. The latitude of the WorldView-2 images ranges from

22°54′07.7′′S to 22°55′11.9′′S, and the longitude ranges from

43°10′38.8′′W to 43°09′27.8′′W. The CHRIS/PROBA images

cover the urban area of London, Ontario, Canada. The lati-

tude of the CHRIS/PROBA images is between 42°54′44.1′′N

and 43°04′04.3′′N, and the longitude is between 81°05′31.4′′W

and 81°21′43.0′′W. WorldView-2 provides five angular images

(+45.3°, +34°, +8.6°, −30.2°, and −45.4°, where the smaller

the angle, the closer the image is to the nadir image), each of

which contains an eight-band multispectral image with a spatial

resolution of 1.8 m [45]. The five different angle multispectral

images are shown in Fig. 3. The CHRIS/PROBA system also

provides multiple observations of the same scene at five different

angles (+55°, +36°, 0°, −36°, and −55°, where the smaller the

angle, the closer the image is to the nadir image) [46]. Each

angle image contains an 18-band hyperspectral image with a

spatial resolution of 17 m. According to Galbraith et al. [36],

symmetric view angle images and images closer to the nadir
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Fig. 3. Five WorldView-2 different angle images. (a)–(e) Fly-by zenith angles are +45.3°, +34°, +8.6° (which is the most nadir one), −30.2°, and −45.4°,
respectively.

Fig. 4. Five CHRIS/PROBA different angle images. (a)–(e) Fly-by zenith angles are +55°, +36°, 0°(which is the most nadir one), −36°, and −55°, respectively.

image are more suitable for resolution enhancement. However,

using views of more than 48° off-nadir is counterproductive

for resolution enhancement. Therefore, two symmetric images

and the nadir image were used in the CHRIS/PROBA data set.

In addition, the two CHRIS/PROBA images of 55° and −55°

with serious distortion were removed from the data set. The five

different angle hyperspectral images are shown in Fig. 4. Three

simulation data sets were used in the experiments. Data set 1 and

Data set 2 are subregion images of the WorldView 2 images, and

Data set 3 is a subregion of the CHRIS/PROBA images. Detailed
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descriptions of the three simulation data sets are provided in the

following.

In the simulation experiments, the peak signal-to-noise ratio

(PSNR) and the structural similarity index (SSIM) were used

to evaluate the quality of the reconstruction image. The mean

PSNR (MPSNR) and mean SSIM (MSSIM) were also used to

measure the quality of the reconstruction image for all the bands.

Furthermore, the spectral angle mapper (SAM) index was also

applied to measure the spectral distortion.

The PSNR is widely used in the quality assessment of image

super-resolution, and is based on the mean-square error between

the reference image and reconstruction image, which is related

to the logarithm of (2n − 1)2, where n is the number of bits for

each pixel value. We generally use eight bits to represent each

pixel, so the formulation can be represented as

PSNR = 10log10
2552 ×MN

∑MN
i=1

(
X̂i −Xi

)2
(18)

where Xi stands for the gray value of the reference image,

and X̂i represents the gray value of the SRR image in the

corresponding location to the reference image.MN is the image

size. A better result will have a higher PSNR value. The PSNR

value can assess the quality of the reconstruction result to a

certain degree. The MPSNR is the mean value of all the image

bands, and is defined as

MPSNR
(
X, X̂

)
=

1

M

M∑

j=1

PSNR
(
Xj , X̂j

)
(19)

where X and X̂ stand for all the bands of the reference images

and the reconstruction images. M is the total number of bands,

and j represents the band that is calculated.

The SSIM, which was proposed by Wang et al. [47], has been

widely used for the evaluation of the quality of reconstructed

images. The SSIM represents the image contrast, image bright-

ness, and structural similarity. A larger SSIM value means a

better image reconstruction quality. The SSIM formulation can

be described as

SSIM =

(
2µXµ

X̂
+ C1

) (
2σ

XX̂
+ C2

)
(
µ2
X
+ µ2

X̂
+ C1

)(
σ2
X
+ σ2

X̂
+ C2

) (20)

where µX and µ
X̂

stand for the average value of the reference

image and reconstruction image. σX and σ
X̂

represent their

variance. σ
XX̂

is the covariance of the reference image and

reconstruction image. C1 and C2 are both constant values to

prevent the equation from being meaningless. In the simulation

experiments, we set the constants C1 and C2 to 0.01 and 0.03,

respectively. We used the MSSIM index to evaluate the overall

image quality, which can be described as

MSSIM
(
X, X̂

)
=

1

M

M∑

j=1

SSIM
(
Xj , X̂j

)
(21)

where the meanings of X, X̂, M, and j are the same as those in

MPSNR.

The SAM [48] is an index that measures the spectral similarity

between the reconstruction image spectra and the reference

spectra. A small angle between the two spectra means a high

similarity between target image and reference image. The for-

mulation can be described as

SAM
(
X, X̂

)
= arccos

⎛
⎝ X, X̂

‖X‖2 ·
∥∥∥X̂

∥∥∥
2

⎞
⎠ (22)

where X and X̂ are the two spectral vectors. X is the original

spectral pixel vector, and X̂ is the distorted vector obtained by

applying super-resolution to the coarser remote sensing data.

In the real-data experiments, the cumulative probability of

blur detection (CPBD) was used to measure the reconstruction

results. The CPBD, which was proposed by Narvekar et al. [49],

is mainly used to measure image sharpness. The main principle

of CPBD is expressed as

PBLUR = P (ei) = 1− exp

(
−

∣∣∣∣
w (ei)

wJNB (ei)

∣∣∣∣
β
)

(23)

CPBD = P (PBLUR ≤ PJNB) =

PBLUR≤PJNB∑

PBLUR=0

P (PBLUR)

(24)

where PBLUR represents the probability of blur detection.

wJNB(ei) is “just noticeable” blur (JNB). w(ei) denotes the

measured width of edge ei.P(PBLUR) represents the probability

distribution function (PDF) value when PBLUR is known. The

CPBD value is between 0 to 1, and a high CPBD value means a

better result.

To show the effectiveness of the proposed UFRM method, we

used the angular difference weighted super-resolution (AWSR)

method [21] and the multiangle super-resolution method tested

on ZY-3 three line camera (TLC) images proposed in [33]

as comparative methods. The procedures of image registration

and SRR in the AWSR and TLC methods are separate. The

method proposed by Gilles Puy (GP) [38] was also used in the

comparison. The GP method can simultaneously achieve image

registration and SRR, but it does not consider the high correlation

between the different bands of each angle image. The traditional

bilinear method was also used as a comparative method.

B. Simulation Experiments

1) Multiangle Multispectral Image Data Sets: Data set 1 and

Data set 2 are subregion images of WorldView-2 images, made

up of airport areas sized 128 × 128 and 64 × 64, respectively.

The images of both Data sets 1 and 2 were downsampled to

half size in the vertical and horizontal directions. The down-

sampled images were then super-resolved and the SRR results

were compared with the original HR images. The reconstruction

factor in both the vertical and horizontal directions was set

as 2. The regularization parameter λ was chosen through a

sequence of experiments. The nadir or close-nadir images are the

most widely used in remote sensing applications, so the nadir

or close-nadir images of the original HR multi/hyperspectral
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Fig. 5. Super-resolution results obtained with the Data set 1 and Data set 2 images. (a) and (g) Reference images for Data set 1 and Data set 2, respectively. (b)
Bilinear. (c) AWSR. (d)TLC. (e) GP. (f) UFRM. (h) to (l) Results of methods (b)–(l) utilized on Data set 2.

TABLE I
QUANTITATIVE EVALUATION OF THE DIFFERENT SUPER-RESOLUTION METHODS WITH THE SIMULATION DATA SETS

images were chosen as the reference for the qualitative and

quantitative analyses. For the bilinear method, an interpolation

operation was applied to the images. For the AWSR and TLC

methods, the images were first registered, and SRR was then

applied to the registered images. The GP method does not require

image registration before SRR. The SRR results obtained with

Data set 1 and Data set 2 are shown in Fig. 5. To enhance the

contrast between the different methods, the eighth, third, and

second band images were combined as the false-color images.

From Fig. 5(b)–(f), it can be clearly observed that the GP

method and the proposed UFRM method can achieve better

results than the other methods. The details of the images are well

reconstructed by the UFRM method and GP method, especially

in the boundary area of the road and the lawn in Fig. 5(f). In

Fig. 5(l), the fine details of the circular part are well reconstructed

by the proposed UFRM method. The reconstruction result of

the AWSR method is not as sharp as the result of the UFRM

method. It can also be observed that there are some artifacts in

the reconstruction result of the AWSR method, which are caused

by the poor transformation estimation. As the TLC method does

not have spatial and spectral constraints in the super-resolution

model, the super-resolution result of the TLC method is poor.

The quantitative evaluation results are shown in Fig. 6 and

listed in Table I. From Fig. 6, it can be seen that the PSNR

and SSIM values of the proposed UFRM method are the best

in almost all the bands, and the GP method achieves the best

results in one or two bands of the multi/hyperspectral images.

As the UFRM method considers the high correlation between the

different bands, the reconstruction result of the UFRM method

is more stable. Table I presents the MPSNR, MSSIM, and SAM

values of the five SRR approaches. The best evaluation result

for the whole image is marked in bold, and the second-best

result is underlined. For the other four super-resolution methods,

as the spectral information constraint is not considered in the

super-resolution process, they all show more serious spectral

distortion than the UFRM method (from the SAM values). In

terms of all three quantitative evaluation indices, the proposed

UFRM method obtains better results than the other methods.

Overall, it can be concluded that the proposed UFRM method

achieves the best SRR performance.
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Fig. 6. PSNR and SSIM values of the different bands of Data set 1 and Data set 2. (a) PSNR of Data set 1. (b) SSIM of Data set 1. (c) PSNR of Data set 2. (d)
SSIM of Data set 2.

Fig. 7. Super-resolution results obtained with Data set 3. (a) Reference image. (b) Bilinear. (c) AWSR. (d)TLC. (e) GP. (f) UFRM.

2) Multiangle Hyperspectral Image Data Set: Data Set 3

sized 64 × 64 is a subregion of a farm area cropped from

the CHRIS/PROBA images shown in Fig. 4. The method of

operation for Data set 3 was the same as the method for Data set

1 and Data set 2. The SRR results of the five different methods

are shown in Fig. 7. The 18th, 5th, and 1st band images were

combined as the false-color images for visualization. A visual

inspection of the reconstruction results of the proposed UFRM

method and GP method suggests that these methods perform

better than the other methods. In the reconstruction results of the

AWSR and TLC methods, the images are blurred to some extent.

It can be observed that the reconstruction results of the AWSR

and TLC methods show blurring in Fig. 7(c)–(d), whereas the

proposed UFRM method can reconstruct the detailed informa-

tion well. The quantitative evaluation is provided in Fig. 8 and

Table I. The SAM values of Data set 3 listed in Table I confirm
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Fig. 8. PSNR and SSIM values of the different bands of Data set 3. (a) PSNR. (b) SSIM.

Fig. 9. Spectra of the reconstruction results obtained using the different methods on the simulation data. (a) WorldView-2 Data set 1. (b) WorldView-2 Data set
2. (c) CHRIS/PROBA Data set 3.
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Fig. 10. MPSNR and MSSIM values for different regularization parameters in Data sets 1–3. (a) and (d) Data set 1. (b) and (e) Data set 2. (c) and (f) Data set 3.

that the UFRM method can maintain the spectral information

well. The MPSNR and MSSIM values illustrate the effectiveness

of the proposed UFRM method. From both the qualitative and

quantitative evaluations, the proposed UFRM method obtains

the best results. The proposed UFRM method also shows a stable

reconstruction performance in both the multispectral case and

hyperspectral case.

3) Analysis of the Algorithm Performance in the Spectral

Domain: To further compare the performances of the different

algorithms in the spectral domain, spectral signatures are shown

in Fig. 9. Fig. 9(a) shows the spectral signatures for pixel (50,50)

in Data set 1; Fig. 9(b) shows the spectral signatures of pixel

(28,40) in Data set 2; and Fig. 9(c) shows the spectral signatures

of pixel (60,70) in Data set 3. From Fig. 9, it can be observed that

the proposed UFRM method produces better spectral signatures

than the other methods when compared with the HR spectrum.

The proposed UFRM method, which is represented by the black

solid lines, is always the closest to the HR spectrum, which

is represented by the black dotted lines. From both the SAM

values listed in Table I and the spectral curves shown in Fig. 9,

the proposed UFRM method shows the best performance in

maintaining spectral information.

4) Sensitivity Analysis of Parameter λ: In the UFRM model,

λ is the parameter used to trade off the regularization term. To

acquire the optimal value of the regularization parameter, we

conducted a series of experiments on the different data sets used

in the simulation experiments. Fig. 10 shows the sensitivity of

the MPSNR and MSSIM to the regularization parameter λ. As

shown in Fig. 10, the horizontal axis represents the value of

the regularization parameter, and the vertical axis shows the

quantitative evaluation factor. According to this analysis, the

value of λ should be selected when λ tends to be stable and

obtains relatively high MPSNR and MSSIM values. Generally

speaking, the super-resolution result of the proposed UFRM

method is quite stable and robust to the variation of regular-

ization parameter λ.

5) Analysis of the Reconstruction Error Map: In order to

show the performance of the proposed UFRM method compared

with the GP method, the reconstruction error maps for the GP

method and the proposed method are presented in Fig. 11. The

error maps were obtained by ǫ = (Ireconstucted − Iref)
2/Iref .

Fig. 11(a)–(c) shows the error maps obtained using the GP

method for the three simulation data sets, and Fig. 11(d)–(f)

shows the error maps obtained with the proposed method. It

is clear that the proposed method shows a good performance,

especially on Data set 2 and Data set 3. The reconstruction

performance on flat areas is more uniform when using the UFRM

method, which can be seen in Fig. 11(e)–(f). In addition, the

boundaries in Data set 2 and Data set 3 can be reconstructed

well using the proposed method.

6) Analysis of the Time Consumption and Computational

Complexity: The time consumption of the five methods in the

simulation experiments is presented in Table II. All the exper-

iments were carried out on a Mac OS system, with the main
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Fig. 11. Error maps for the three simulation datasets using the GP method and the proposed UFRM method.

TABLE II
TIME CONSUMPTION OF THE DIFFERENT METHODS WITH THE DIFFERENT SIMULATION DATA SETS

frequency of the CPU being 3.1 GHz. It can be observed that

the time consumption of the bilinear method, AWSR method,

and TLC method is low, but the reconstruction results of these

methods are relatively poor. Compared with the GP method,

the proposed method still shows superiority in time efficiency.

Although the proposed method is relatively slow, it does obtain

the best results. In addition, with the ongoing development of

computer technology, we believe that the time consumption will

not be a major problem for much longer.

The computational complexity analysis for the proposed

algorithm is as follows. Suppose that the angle number of the

multi/hyperspectral images is p and the band number is q,

the size of a single-band image of the input data is H × L,

and w is the number of registration parameters. According to

the algorithm proposed in [38], a t1 times iterative descent

optimization procedure is utilized, which occupies most

of the computational load when updating the HR image

section. The computational complexity of this procedure is

O(pq(H × L×H)) in each iteration step. In the updating of

the registration parameter procedure, a t2 times iterative descent

optimization procedure is utilized, for which the computational

complexity is O(wpq(H × L×H)) in each iteration step.

The whole computational complexity in each iteration step

is then t1O(pq(H × L×H)) + t2O(wpq(H × L×H)). If

H is equal to L, then the computational complexity becomes

t1O(pqH3) + t2O(wpqH3) in each iteration step.

C. Real-Data Experiments

The effectiveness of the proposed method was also tested

in real-data experiments. The WorldView-2 images and

CHRIS/PROBA images were again used in the real-data ex-

periments. Real data set 1 is a subregion of the WorldView-2

images, which contains an airport area sized 64 × 64. Real data

set 2 is an airport subregion of the CHRIS/PROBA images sized

64 × 64.

The reconstruction factor in both the vertical and horizontal

directions was set to 2. The bilinear method, AWSR method,

TLC method, and GP method were used as benchmark methods.

The reconstruction procedure was directly conducted for the

multiangle multi/hyperspectral images in the same way as in the

simulation experiments, without the downsampling. To enhance
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Fig. 12. Different super-resolution results obtained with Real data set 1. (a) Bilinear. (b) AWSR. (c) TLC. (d) GP. (e) Proposed UFRM method. (f)–(j) Zoomed
images corresponding to (a)–(e).

Fig. 13. Different super-resolution results obtained with Real data set 2: (a) Bilinear. (b) AWSR. (c) TLC. (d) GP. (e) proposed UFRM method. (f)–(j) zoomed
images corresponding to (a)–(e).

TABLE III
CPBD EVALUATION OF THE DIFFERENT SUPER-RESOLUTION METHODS WITH THE REAL DATA

the difference for the visual inspection, false-color images are

used to illustrate the SRR results. The reconstruction results

for Real data set 1 are shown in Fig. 12. Zoomed images are

shown in Fig. 12(f)–(j). From these figures, it can be seen that

the resolution of the image is clearly increased after the use

of the SRR technique, especially the outline of the airplane

in Fig. 12(i)–(j). The reconstruction results for Real data set

2 are shown in Fig. 13. Blurring is apparent in Fig. 13(b) and

Fig. 13(g), whereas the UFRM method shows a good ability to

reconstruct the detailed information. The good performance of

the proposed UFRM method can also be observed in the CPBD

values presented in Table III. From the quantitative evaluation

provided in Table III, it can be seen that the UFRM method can

obtain a stable reconstruction result, on both the multispectral

images and hyperspectral images.

IV. CONCLUSION

In this article, we have proposed a unified framework based

on rank minimization (UFRM) for the joint super-resolution and

registration of multiangle multi/hyperspectral remote sensing

images. A multiangle multi/hyperspectral observation model is

established, and each observed image is decomposed into a back-

ground image and a foreground image. A MTV regularization
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term is further added to improve the image quality, consid-

ering the high correlation between the different bands of the

multi/hyperspectral images. An alternating minimization strat-

egy is utilized to resolve the joint cost function, which integrates

the unknown image registration transformation parameters and

the desired reconstruction image at the same time. The advantage

of this algorithm is that the image registration parameters and the

desired reconstruction image can be iteratively updated in a mu-

tually beneficial manner. The main contribution of the proposed

method is that it exploits the spectral information of multiangle

remote sensing images for SRR, where the spectral information

of the multi/hyperspectral remote sensing images is treated as

an entirety, rather than band-by-band. The experimental results

showed that the proposed UFRM method performs better than

the traditional SRR methods, from both visual inspections and

quantitative assessments. However, there is room for further

improvement. For example, how to adaptively determine the

regularization parameters will be investigated in our future work.
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