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1 Introduction

The process of selecting alternatives in an MCDM problem 

assumes that the psychology and behaviour of the decision 

makers (DM) will be completely rational (Fan et al. 2013). 

However, in reality, experts with different backgrounds 

and levels (granules) of knowledge use linguistic terms to 

represent their evaluation and also their preferences while 

solving qualitative group decision-making problems (Xu 

and Wang 2016). In general, data and information found in 

the judgment of the experts are subjective as well as inher-

ently non-numeric, and this gives rise to uncertainty and 

impreciseness with non-probabilistic characteristics (Mar-

tinez et al. 2007).

For mitigating these imprecision, fuzzy set-based deci-

sion-making algorithms are developed (Chen and Chang 

2016). However, in reality, the boundary and membership 

functions of fuzzy sets are difficult to determine due to 

their dependency on quantitative information (Zhu et al. 

2015a). Considering this deficiency of fuzzy sets, the 

concept of interval numbers is introduced in the context 

of decision-making problems. Formation of interval num-

bers requires only a minimum amount of information. 

Nevertheless, both fuzzy sets and interval numbers need 

auxiliary information, such as a predetermined member-

ship function and the interval boundary, with rough sets 

addressing only a part of them. Rough numbers, having 

lower and upper limits with rough boundary intervals, 

depend only on original data avoiding any auxiliary infor-

mation (Guo and Zhang 2008). Hence, rough numbers 
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have a better chance at capturing the real perception and 

objectivity of the experts (Zhu et al. 2015b). Multi-crite-

ria decision-making (MCDM) methods have been widely 

applied to support decision makers in selecting the best 

among multiple alternatives, given various different types 

of applicable criteria. For example, transformation tech-

niques and operators are defined in the case of the use of 

a fuzzy set in multi-criteria group decision-making prob-

lems (Chen and Tsai 2016; Chen et al. 2016).

The above-mentioned approaches measure uncer-

tain situations, utilizing the decision maker’s knowledge 

and experience that represent cognitions of homogenous 

information (Martinez et al. 2007). In real life, the deci-

sion matrices are filled with information from various 

domains, and due to their inability to deal adequately 

with heterogeneous data, existing MCDM methods 

are often applied to data of the same type (Peng et  al. 

2013). In this scenario, granular computing, a structured 

problem-solving method, can be used in those decision-

making problems, so that experts can express their deci-

sions more flexibly in accordance with their domain 

knowledge, while at the same time keeping an eye on the 

problem at hand. Fuzzy sets, rough sets, grey sets, and 

intervals all fall under the category of Inexact Granular 

Computing (Pedrycz 2005). Recently, many useful deci-

sion-making methods have been developed to deal with 

multiple attribute decision making within the context of 

granular computing (Pedrycz and Song 2011; Cabrerizo 

et al. 2013, 2014; Xu and Wang 2016).

The simple homogeneous pairwise comparison, in an 

MCDM framework using an individual decision-making 

approach, is unable to capture the true perception of a deci-

sion maker with proper effect and precision. To handle this 

heterogeneous and inexact group of numbers in the prefer-

ence representation domain, studies are conducted to create 

the necessary transformation for each uncertain granular 

number (Alsawy and Hefny 2013b). Experts tend to assign 

their preferences in the form of intervals, fuzzy numbers, 

rough numbers, or any other type of uncertain numbers 

within the preference relation matrix in the same deci-

sion-making problem. Consequently, (Alsawy and Hefny 

2013b) developed a new version of Analytic Hierarchy Pro-

cess (AHP) to deal with such types of uncertain numbers 

in their specifications. Many researchers have since dis-

cussed different versions of AHP with uncertain compari-

sons individually, viz. crisp AHP (Saaty 1980), AHP with 

fuzzy ratios in TFN (Van Laarhoven and Pedrycz 1983), 

AHP with TrFN (Buckley 1985), AHP with extent analysis 

approach in TFN (Chang 1996), granular AHP (G-AHP) 

(Alsawy and Hefny 2013b), rough AHP (Zhu et al. 2015b) 

and D-AHP (Deng et  al. 2014), intuitionistic Fuzzy AHP 

(Xu 2014), Hesitant AHP (Zhu et  al. 2016), and general-

ized analytic network process (Zhu et al. 2015a).

Putting the decision maker’s behaviour into light, classi-

cal VIKOR also solves decision-making problems in which 

the weights assigned to a particular criterion are expressed 

in crisp mode; nonetheless, this approach fails to handle the 

situation when their values are in multiple formats (Opri-

covic and Tzeng 2004). Recently, some researchers have 

extended the VIKOR method to process information in var-

ious uncertain environments. For example, Crisp VIKOR 

(Opricovic and Tzeng 2007), Interval VIKOR (Sayadi 

et  al. 2009), Trapezoidal fuzzy number VIKOR (Shem-

shadi et al. 2011), Intuitionistic fuzzy VIKOR (Chatterjee 

et al. 2013b), Hesitant fuzzy VIKOR (Liao and Xu 2013; 

Liao et al. 2015), Triangular fuzzy number VIKOR (Ros-

tamzadeh et al. 2015), fuzzy Rasch-VIKOR (Chatterjee and 

Kar 2013a), D-VIKOR (Han and Chen 2014), rough AHP-

VIKOR (Zhu et al. 2015a), and Type-2 fuzzy VIKOR (Qin 

et al. 2015). So far, little attention has been paid to VIKOR 

dealing with heterogeneous granular information. Owing to 

the complexity and uncertainty that characterize real-life 

problems, the granular-number-based VIKOR (G-VIKOR) 

is proposed, which is able to handle heterogeneous data and 

various forms of criteria weights taken separately.

In this paper, our objective is as follows:

•	 To develop a new method based on granular comput-

ing to solve group decision-making (GDM) problems, 

where linguistic information is given in heterogeneous 

contexts. In particular, we focus on group decision-mak-

ing (GDM) situations defined in multi-granular con-

texts, that is, situations, where the experts have differ-

ent backgrounds and levels of knowledge in the problem 

domain and where degrees of importance are provided 

or associated with these situations to reflect their impor-

tance in solving the problem.

The major contributions of this paper are as follows:

•	 We propose a flexible hierarchical granular-based AHP-

VIKOR MCDM methodology that works well with 

multiple formats (real values, interval values, and lin-

guistic labels) allowing the decision makers to assess 

freely and according to their preferences.

•	 These multiple formats used to weigh different criteria 

are first expressed in unified granular numbers (UGNs) 

or simply G-numbers and then calculated in keeping 

with the operations defined on them.

•	 The main advantage of this approach is to tackle the 

uncertainty in the performances of both the criteria and 

the alternatives, putting to use the diverse knowledge of 

the expert without any loss of information.

•	 In addition, the method has an ability to represent and 

manipulate all types of uncertain numbers in a uniform 

manner, thereby simplifying the arithmetic operations.
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The above methodology is applied in the selection and 

the prioritization of risk response in a plastic manufactur-

ing company’s green supply chain, and we have included a 

sensitivity analysis for checking the robustness of the pro-

posed method.

To do that, the rest of the paper is organized as follows: 

Sect. 2 outlines the preliminary concepts involved in granu-

lar computing, granular number, and its relevance to deci-

sion making, along with the arithmetic operations appli-

cable to granular numbers. Section 3 deals with uncertain 

numbers and their transformation to granular numbers and 

vice versa. Comparison of granular numbers is discussed 

in Sect.  4. Section  5 deals with a proposed Granulation 

function for managing multi-granular linguistic informa-

tion. Algorithmic procedures along with brief overviews of 

a granular-number-based AHP (G-AHP) approach and an 

extended granular-number-based VIKOR (G-VIKOR) are 

detailed in Sects. 6 and 7, respectively. Section 8 deals with 

the application of our proposed methodology in the selec-

tion and ranking of green supply chain (GSC) risk crite-

ria along with its risk responses. Results are discussed in 

Sect. 9, along with a conclusion and future direction drawn 

in Sect. 10.

2  Granular number (G-number) and its 

operations

2.1  Granular computing (GrC)

In a decision-making framework, linguistic information can 

be made operational by expressing it in terms of informa-

tion granules that are designed, processed, and interpreted 

using Granular Computing (GrC) (Cabrerizo et  al. 2013). 

It is an emerging field of study on human-centered knowl-

edge-intensive problem solving using multiple levels of 

granularity (Yao 2004).

A few important facts on GrC are as follows:

•	 Granules are composed of objects combined together 

by indiscernibility relationships. These granules act as 

the ‘pillars of granular computing’ (Pedrycz and Chen 

2015b).

•	 Granular computing processes entities that encapsulate 

complex information in the form of information gran-

ules, which in their turn are formed by the process of 

the abstraction of data and the derivation of knowledge 

from available information (Pedrycz and Song 2011; 

Bargiela and Pedrycz 2003).

•	 Classical decision-making approaches have tradition-

ally considered the use of an exact and precise algo-

rithm that manipulates only confident data, while GrC 

processes basic chunks of similar information granules 

originating at a numeric level (Pedrycz and Gomide 

2007).

•	 In general, the GrC process can be divided into two sub-

processes: granulation and computation. While the for-

mer transforms the information available in the problem 

domain into granules, the latter processes these granules 

to solve the problem (Pedrycz and Chen 2011, 2015a).

In practice, when a group of experts settles down to 

solve a particular problem, these experts are seen to have 

come from different research areas (representing their 

experiential backgrounds) and different levels of knowl-

edge (representing granules). Granularity may come from 

uncertainties of different sources (experts and criteria) (Xu 

and Wang 2016). Granular computing can be advocated for 

a formal framework, such as interval analysis, rough sets, 

and probabilistic environment besides fuzzy sets for pro-

cessing information granules (Pedrycz 2005).

2.2  Granular number (G-number)

2.2.1  Background

Granulation of information is inherent in human thinking 

and reasoning processes. When problem involves incom-

plete, uncertain, and vague information, it may be difficult 

to detect distinct objects, and one may find it convenient 

to consider granules for tackling the problem under con-

sideration (Skowron et  al. 2016). Unified Granular Num-

ber (UGN) or simply Granular Number or G-number is an 

extension of an ordinary (single-valued) number in such 

a way that it does not refer to one single value any more, 

but a connected set of possible values (Alsawy and Hefny 

2013b).

•	 G-Numbers not only representing a higher level of 

abstraction that holds the common properties of all 

uncertain granular numbers (although some details are 

not worth considering) but also offer the benefit of rep-

resenting all types of inexact granular numbers using 

the same form (Alsawy and Hefny 2013c).

•	 In GrC, computations are performed on granules of dif-

ferent structures, where the granularity of information 

plays an important role (Dubois and Prade 2016).

•	 According to Alsawy and Hefny (2013a), a G-num-

ber can represent all types of multi-granular numbers 

(rough numbers, vague numbers, grey numbers, and 

interval numbers) due to its ability to convert them into 

a homogenous representation, as expressed in Eq.  (1). 

This process of representation also makes the calcula-

tions on these numbers easy to perform:
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where c
X
 is the center value and r

X
 is the radius of 

G-number X, respectively (Alsawy and Hefny 2013a). 

Equation  (1) of G-numbers as mentioned above guar-

antees representing the most common properties of 

uncertainty having both lower and upper bounds and 

known boundaries.

•	 A modification is made to Eq.  (1) by considering the 

area A(X) of granule X, which subtends between the 

number graphs and the x-axis to represent the weight of 

the granular number (Alsawy and Hefny 2013b). Since 

A(X) represent the covered space (area) or the weight of 

number X on its domain, a new and improved version of 

Eq. (1) is presented in this paper through Eq. (2):

•	

•	 This formulation represents the most common proper-

ties of different types of uncertainties in a G-number, 

with both the lower and upper boundaries being present.

2.2.2  Relevance of G-number in group decision making

While communicating with one another using a natural lan-

guage, human beings use words (linguistic terms) instead 

of numerical values to exchange information. However, 

while linguistic information is readily available, it is not 

operational in the sense that we cannot process it in the 

form of information granules (Pedrycz and Song 2011). 

In group decision-making (GDM) problems, one attempts 

to resolve differences of opinions (judgment) expressed by 

multiple experts. Uncertainty is a pivotal concept in granu-

lar computing and related aspects. In fact, one of the main 

goals of information granules is to express the uncertainty 

of aggregated data in a synthetic and yet effective way (Livi 

and Sadeghian 2016).

•	 The admitted level of granularity in decision matrix 

gives rise to a granular matrix of pairwise comparison 

and granular entries by heterogeneous information gran-

ules (for most suitable numeric representative) giving 

required flexibility to experts. This is the main advan-

tage of Granular number.

•	 The main disadvantage of using G-number is the 

checking procedure. In comparison for weight crite-

ria prioritization, we have to evaluate the expected 

value of information granules expressed in multi-

ple formats, and check for its consistency and experts 

have to change their opinions for the inconsistency of 

the decision matrix. While prioritization of G-num-

(1)X = G
(

c
X

, r
X

)

,

(2)X = G

(
c

X
, r

X

)

A(X)
; 0 ≤ |A(X)| ≤ 2||rX

||.

bers X
i
(i = 1, 2, ..., n), we have to follow the rule, 

given in Eq.  (9) (of Sect.  4), along with checking the 

range of weight A(X
i
) that should always lie in range 

0 ≤ |A(X)| ≤ 2||rX
|
|.

Briefly, the proposed group decision-making (GDM) 

method, based on G-number, classified into three steps.

•	 In the first step, multiple experts will provide their pref-

erences using information granules expressed in hetero-

geneous context, using a proper granulation function.

•	 In the second step, multi-granular information is con-

verted to homogeneous G-number using transformation 

functions and aggregate into a collective piece of infor-

mation.

•	 In the third step, using granular-based AHP-VIKOR 

MCDM methodology, weights of criteria are evaluated 

along with prioritizing the proposed alternatives.

2.3  Operations on Granular numbers

For any two arbitrary G-numbers 

X = G
(cX

, r
X)

A(X)
and Y = G

(cY
, r

Y)
A(Y)

, the arithmetic operations 

are defined in the following (Alsawy and Hefny 2013a; 

Mohamad and Rofai 2015). The validity of the operations 

is checked here for interval number [a, b], b > a. Simi-

larly, the operations are valid for other G-numbers:

1. Addition operation on G-numbers 

X = G
(cX

, r
X)

A(X)
and Y = G

(cY
, r

Y)
A(Y)

 

Example 1 In case of interval numbers

(3)X + Y = G

(

c
X+Y

, r
X+Y

)

A(X + Y)
= G

(

c
X
+ c

Y
, r

X
+ r

Y

)

A(X) + A(Y)
.

X = [a, b] = G

(

cX , rX

)

A(X)
; cX =

a + b

2
, rX =

b − a

2
, A(X) = b − a

Y = [c, d] = G

(

cY , rY

)

A(Y)
; cY =

c + d

2
, rY =

d − c

2
, A(Y) = d − c

X + Y = [a, b] + [c, d] = [a + c, b + d] = G

(

c
X+Y

, r
X+Y

)

A(X + Y)
, where

c
X+Y

=
1

2
(a + c + b + d) =

1

2
(a + b) +

1

2
(c + d) = c

X
+ c

Y

r
X+Y

=
1

2
((b + d) − (a − c)) =

1

2
(b − a) +

1

2
(d − c) = r

X
+ r

Y

A(X + Y) = (b + d) − (a − c) = (b − a) + (d − c) = A(X) + A(Y).
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2. Multiplication operation on G-numbers 

X = G
(cX

, r
X)

A(X)
and Y = G

(cY
, r

Y)
A(Y)

Example 1 (Contd.): 

X. Y = [a, b].[c, d] = [ac, bd] = G
(cXY , rXY)

A(XY)
, where

3. Negation of G-number X = G
(cX

, r
X)

A(X)

Example 1 (Contd.) 

Let X = [a, b], then − X = [−b, −a] = G
(c−X , r−X)

A(−X)

4. Reciprocal of G-number G
X
= G

(cX
, r

X)
A(X)

Example 1 (Contd.) 

Let − X = [−b, −a] then
1

X
=

[

1

b
,

1

a

]

= G

(

c 1
X

, r 1
X

)

A

(

1

X

)

(4)X.Y = G

(

c
X

c
Y
+ r

X
r

Y
, c

X
r

Y
+ c

Y
r

X

)

c
X

A(Y) + c
Y
A(X)

.

cXY =
1

2
(ac + bd) =

[

1

4
(ac + ad + bc + bd) +

1

4
(bd − bc − ad + ac)

]

=

[

1

2
(a + b).

1

2
(c + d) +

1

2
(b − a).(d − c)

]

= cX . cY + rX . rY

r
XY

=
1

2
(bd − ac) =

[

1

4
(bd + ad − bc − ac) +

1

4
(bd + bc − ad − ac)

]

=

[

1

2
(a + b).

1

2
(d − c) +

1

2
(c + d).

1

2
(b − a)

]

= c
X

. r
Y
+ c

Y
. r

X

A
XY

= (bd − ac) =

[

1

2
(bd − bc + ad − ac) +

1

2
(bc − ac + bd − ad)

]

=

[

1

2
(a + b). (d − c) +

1

2
(c + d). (b − a)

]

= c
X

. A(Y) + c
Y

. A(X)

(5)−X = G

(

−c
X

, r
X

)

A(X)
.

c−X
=

(−a − b)

2
=

−(a + b)

2
= −c

X

r−X
=

(−a − (−b))

2
=

(b − a)

2
= r

X

A(−X)) = (−a − (−b)) = (b − a) = A(X).

(6)
1

X
= G

(

c
X

c
2

X
−r

2

X

,
r

X

c
2

X
−r

2

X

)

A(X)

c
2

X
−r

2

X

.

5. Subtraction operation on G-numbers 

X = G
(cX

, r
X)

A(X)
and Y = G

(cY
, r

Y)
A(Y)

Example 1 (Contd.)

6. Division operation on G-numbers 

X = G
(cX

, r
X)

A(X)
and Y = G

(cY
, r

Y)
A(Y)

c 1

X

=

(

1

a
+

1

b

)

2
=

(a + b)

2ab
=

(a+b)

2

(

a+b

2

)2

−

(

b−a

2

)2
=

c
X

(

c
X

)2

−
(

r
X

)2

r 1

X

=

(

1

a
−

1

b

)

2
=

(b − a)

2ab
=

(b−a)

2

(

a+b

2

)2

−

(

b−a

2

)2
=

r
X

(

c
X

)2

−
(

r
X

)2

A

(

1

X

)

=

(

1

a
−

1

b

)

=
(b − a)

ab
=

(b − a)
(

a+b

2

)2

−

(

b−a

2

)2
=

A(X)
(

cX

)2
−
(

rX

)2
.

(7)X − Y = X + (−Y) = G
(c

X
− c

Y
, r

X
+ r

Y
)

A(Y) + A(Y)
.

X = [a, b] = G

(

c
X

, r
X

)

A(X)
;

c
X
=

a + b

2
, r

X
=

b − a

2
, A(X) = b − a

−Y = −[c, d] = [−d, −c] = G

(

c−Y
, r−Y

)

A(−Y)
;

c−Y
=

−d + (−c)

2
, r

X
=

−c − (−d)

2
,

A(Y) = −c − (−d)

X − Y = X + (−Y) = [a, b] + [−d, −c] = [a − d, b − c]

= G

(

c
X−Y

, r
X−Y

)

A(X − Y)
, where

c
X−Y

=
1

2
(a − d + b − c) =

1

2
(a + b) −

1

2
(c + d) = c

X
− c

Y

r
X+Y

=
1

2
((b − c) − (a − d)) =

1

2
(b − a) +

1

2
(d − c) = r

X
+ r

Y

A(X + Y) = (b − c) − (a − d) = (b − a) + (d − c) = A(X) + A(Y).

(8)
X

Y
= X .

1

Y
= G

(

c
X

c
Y
+r

X
r

Y

c
2

Y
−r

2

Y

,
c

X
r

Y
+r

X
c

Y

c
2

Y
−r

2

Y

)

c
X

A(Y)+c
Y

A(X)

c
2

Y
−r

2

Y

.
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Example 1 (Contd.) 

X

Y
= X.

1

Y
= [a, b].

[

1

d
,

1

c

]

=

[

a

d
,

b

c

]

= G

(

c X

Y

, r X

Y

)

A

(

X

Y

) , where

3  Granular transformation functions for dealing 

with heterogeneous information

In decision-making problem, experts prefer to express 

their opinions in predefined numerical and linguistic 

domain due to quantitative and qualitative aspects of 

the criteria. This section shows transformation function 

to unify linguistic, numerical, and interval-valued infor-

mation’s into a common homogenous function (Herrera 

and Martinez 2000) without loss of information and vice 

versa. It improves the comprehension and evaluation of 

the results, and simplifies the unification procedures 

involving a small number of transformation steps. As per 

Alsawy and Hefny (2013b), the details are given in the 

following:

c X

Y

=
1

2

(

a

d
+

b

c

)

=
1

2

(

ac + bd

cd

)

=

(

2ac + 2bd

4cd

)

=
(ac + bc + ad + bd) + (bd − bc − ad + ac)

(

c2 + d2 + 2cd
)

−
(

c2 + d2 − 2cd
)

=

(a+b)(c+d)

4
+

(b−a)(d−c)

4

(

c+d

2

)2

−

(

d−c

2

)2

=
c

X
. c

Y
+ r

X
. r

Y

c
2

Y
− r

2

Y

r X

Y

=
1

2

(

b

c
−

a

d

)

=
1

2

(

bd − ac

cd

)

=

(

2bd − 2ac

4cd

)

=
(ad − ac + bd − bc) + (bc + bd − ac − ad)

(

c2 + d2 + 2cd
)

−
(

c2 + d2 − 2cd
)

=

(a+b)(d−c)

4
+

(b−a)(c+d)

4

(

c+d

2

)2

−

(

d−c

2

)2

=
c

X
. r

Y
+ r

X
. c

Y

c
2

Y
− r

2

Y

A

(

X

Y

)

=

(

b

c
−

a

d

)

=

(

bd − ac

cd

)

=

(

2bd − 2ac

2cd

)

=

(ad−ac+bd−bc)

2
+

(bc+bd−ac−ad)

2

(c2+d2+2cd)
4

−
(c2+d2−2cd)

4

=

(a+b)

2
.(d − c) +

(c+d)

4
.(b − a)

(

c+d

2

)2

−

(

d−c

2

)2

=
c

X
. A(Y) + c

Y
.A(Y)

c
2

Y
− r

2

Y

.

3.1  Transforming interval number into G-number 

and vice versa

Any interval number X = [a, b] can be transformed into 

its equivalent G-number form: X = G
(cX

, r
X)

A(X)
, where 

c
X
=

(a+b)

2
 is the center value of X, r

X
=

(b−a)

2
 is the radius 

of X, and A(X) = (b − a) is the area of X. As shown in 

Fig. 1, the G-number X = G
(cX

, r
X)

A(X)
 can be transformed to 

Interval number X = I[a, b], where 

a =

(

c
X
− r

X

)

, b =

(

c
X
+ r

X

)

.

3.2  Transforming triangular fuzzy number (TFN) 

into G-number and vice versa

The TFN X = Tri(a, b, c) with membership function 

�
X
(x) = max

(

min

(

x−a

b−a
,

c−x

c−b

)

, 0

)

 can be transformed to 

equivalent G-number form: X = G
(cX

, r
X)

A(X)
, where c

X
=

(a+c)

2
 

is the center value of X,r
X
=

(c−a)

2
 is the radius of X, and 

A(X) =
(c−a)

2
 is the area of X. As shown in Fig.  2, the 

granular number X = G
(cX

, r
X)

A(X)
 can be transformed to TFN 

X = Tri(a, b, c), where 

a =

(

c
X
− r

X

)

, b = b1, c =

(

c
X
+ r

X

)

.

3.3  Transforming trapezoidal fuzzy number (TrFN) 

into G-number and vice versa

Any TrFN X = Trap(a, b, c, d) with membership func-

tion �
X
(x) = max

(

min

(

x−a

b−a
, 1,

c−x

c−b

)

, 0

)

 can be trans-

formed to its equivalent unified G-number form: 

X = G
(cX

, r
X)

A(X)
, where c

X
=

(d+a)

2
 is the center value of X, 

r
X
=

(d−a)

2
 is the radius of X, and A(X) =

(

(d−a)+(c−b)

2

)

 is 

the area of X.

As shown in Fig. 3, the G-number X = G
(cX

, r
X)

A(X)
 can be 

transformed to TrFNs X = Tr(a, b, c, d), where 

a =

(

c
X
− r

X

)

, b = b2, c = c2, d =

(

c
X
+ r

X

)

.

3.4  Transforming rough number into G-number 

and vice versa

Any rough number X =

(

X
−
, X̄

)

= ([a, b], [c, d]) can be 

transformed into G-number as X = G
(cX

, r
X)

A(X)
, where 

c
x
=

(c+d)

2
 and r

X
=

[(

d − c
X

)

or
(

c
X
− c

)]

 represent the 

center value and the radius of upper approximate X̄. In 

the case of rough number, there are lower approximation 

length L(X
−
) and upper approximation length L(X̄). Since 
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A(X)represents weight of number X, it is represented in 

G-number as average of these two lengths:

From Fig.  4, the transformation from G-number to the 

rough number can be shown clearly.

3.5  Transforming crisp number into G-number 

and vice versa

For any crisp number X, its equivalent G-number is: 

X = G
(X, 0)

0
, where c

X
= X is the center value of X, r

X
= 0 is 

the radius of X, and A(X) = 0 is the area of X.

The same formula X = G
(X, 0)

0
 could be deducted from 

equivalent G-number for various uncertain numbers, 

described in the following (Alsawy and Hefny 2013b):

1. For Interval number Setting upper limit ‘a’ and lower 

limit ‘b’ for the interval by the same number X.

A(X) =
1

2

(

L

(

X
−

)

+ L
(

X̄
)

)

=

(

(b − a) + (c − d)

2

)

.

2. For fuzzy number Setting its support by zero.

3. For rough number Setting upper and lower approxima-

tions by the same exact number.

4  Comparison of G-number

As per Alsawy and Hefny (2013a), in representing various 

types of uncertain granular numbers, unified granular num-

ber (UGN) or simply granular number (G) does not neglect 

the membership function, which is the main idea of the 

fuzzy set. Even G-number represents the fuzzy number 

using two parameters of G
(

c
X

, r
X

)

 one being the center c
X
 

and another radius r
X
 of that domain (granular), respec-

tively. In addition, weightA(X)
(
0 < |A(X)| ≤ 2||rX

||
)
 repre-

senting weight in the improved version of unified granular 

number (UGN) X = G
(cX

, r
X)

A(X)
 distinguishes among different 

numbers within the same boundaries.

The following steps are detailed in comparison between 

two G-numbers, say X = G
(cX

, r
X)

A(X)
and Y = G

(cY
, r

Y)
A(Y)

.

Step 1 First, we have to check whether the cor-

responding weight A(X)and A(Y) lies in that domain (
0 ≤ |A(X)| ≤ 2||rX

||
)
 and 

(
0 ≤ |A(Y)| ≤ 2||rY

||
)
, respec-

tively, or not. If yes, then we proceed to the next step; oth-

erwise, the experts will make modification in the decision 

matrix.

1

0
X

a c b

XX
r r

Fig. 1  X = I
(

c
X
− r

X
, c

X
+ r

X

)

1

0        
1X X X X X

c r b c c r− +

XX
rr

Fig. 2  X = Tri
(

c
X
− r

X
, b1, c

X
+ r

X

)

0       

22X X X X X
c r b c c c r− +

XX
rr

Fig. 3  X = Tr
(

c
X
− r

X
, b2, c2, c

X
+ r

X

)

X
c a c b d

XX
rr

Fig. 4  X = R
(

[a, b],
[

c
X
− r

X
, c

X
+ r

X

])
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Step 2 Next, we will check which of the rule described 

in Eq.  (9), and it is satisfied for comparing the above 

G-numbers X = G
(cX

, r
X)

A(X)
and Y = G

(cY
, r

Y)
A(Y)

. If any of the 

rules are not applicable, experts will make modification in 

the decision matrix, until both Steps 1 and 2 are satisfied:

For example, let 

X = G
(0.2073, 0.2020)

0.1814
and Y = G

(0.2079, 0.2022)

0.2212
.

Here, |A(X)| = 0.1814 and 2||rX
|
| = 0.4040 and 

|A(Y)| = 0.2212 and 2||rY
|
| = 0.4044. Hence, the validity 

of Step 1 is checked.

Next, we take the center value, radius value, and weight 

of granular (domain) numbers, and check which rules (Rule 

1–5) proposed in Step 2 are applicable, for this problem.

Here, Rule 5 is applicable, and since A(X) < A(Y), then 

X < Y .

5  Proposed Granulation function for managing 

non-homogeneous linguistic information

Consider a group decision-making (GDM) problem, for a 

group of two or more decision makers, characterized by 

their own preferences, who use a granular preference rela-

tion to express their opinions about a set of criteria and 

alternatives in classifying them from best to worst (Pedrycz 

and Chen 2015a). Here, information granularity is an 

important modeling assent, which brings forward an abil-

ity of the decision maker to exercise some flexibility to be 

used in modifying his/her positions when becoming aware 

of preferences of other members of the group (Pedrycz 

and Song 2011). An important issue in decision making 

corresponding to the level of discrimination among dis-

tinct degree of uncertainties is to analyze the granularity 

of uncertainty (Dubois and Prade 2016). In this paper, we 

are discussing information granules in the heterogeneous 

mode to be used as inputs in decision-making matrix, and 

to emphasize this, we proposed the following granulation 

function in Eq. (10) to elevate the preference relation to its 

multi-granular format in complex systems working in open-

world environment:

where Z stands for a specific heterogeneous(multi-gran-

ular) information granule used here (for instance, intervals, 

(9)

Rule:1 If cX > cY and rX > rY then X > Y

Rule :2 If cX < cY and rX < rY then X < Y

Rule:3 If cX ≈ cY , rX ≈ rY and A(X) > A(Y) then X > Y

Rule:4 If cX ≈ cY , rX ≈ rY and A(X) = A(Y) then X = Y

Rule:5 If cX ≈ cY , rX ≈ rY and A(X) < A(Y) then X < Y

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

.

(10)Δ = (Z, ã),

fuzzy sets, rough sets, and alike), and ã stands for its corre-

sponding scaling, defined in Table 1, for inputs to be given 

by multiple experts.

•	 We use the following set of nine scaling 
(

1̃ − 9̃
)

 to pro-

vide the expert preferences, which can take linguistic 

preferences as per the problem set (Table 1).

•	 The proposed granulation function Δ = (Z, ã) helps 

translate linguistic terms into meaningful non-homoge-

neous information granules, so that the highest perfor-

mance index is achieved.

In this paper, for criteria weights, we have taken linguis-

tic terms defined in Table 2, and for selecting alternatives, 

the linguistic terms are in Table 3. The flexibility offered by 

the level of granularity can be proven effective in modeling 

problem involving several experts with different knowledge 

levels, since to describe each item with different precision, 

they need more than one linguistic term set.

6  Granular analytic hierarchy process (G-AHP) 

for criteria weighting

6.1  An overview

Our study concerns an extension of AHP to the group deci-

sion making (GDM) with the admitted level of granular-

ity giving rise to a granular reciprocal matrix. The much-

needed flexibility is brought into the AHP structure by 

allowing entries in reciprocal matrices to be information 

granules (intervals, fuzzy numbers, and rough numbers) 

rather than numeric entities (Pedrycz and Song 2011). The 

multi-granular entries (Intervals, fuzzy numbers, or rough 

numbers) supply a required flexibility in selecting the most 

appropriate numeric representative of the reciprocal matrix 

with a focus on forming an aggregate of the reciprocal 

matrices. Pedrycz and Song (2014) were concerned with 

information granulation (present in the problem of AHP) in 

the characterization of pairwise assessment of alternatives 

for decision-making problems minimizing inconsistency 

index by suitable mapping of linguistic scale.

6.2  Algorithmic procedure of the method

Let for a group decision-making (GDM) problem, 

A
i
(i = 1, 2, ..., m) be the finite set of alternatives, to evalu-

ate with respect to the set of criteria Cj(j = 1, 2, ..., n) by 

a group of k decision makers Ep(p = 1, 2, ..., k), using 

a collection of multi-granular linguistic information. 

The above calculation process involves two phases. The 

first phase evaluates and prioritizes the criteria weight 

through granular AHP involving pairwise decision matrix 
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having a heterogeneous data set. Second, assuming for 

the problem assigned, the comparison ratios determined 

by experts with different uncertainty levels in the same 

problem. This algorithmic procedure suggests convert-

ing all uncertain values into homogenous granular num-

ber form, so that the arithmetic operations can be prop-

erly utilized. Let wj(j = 1, 2, ..., n) be a set of the weight 

vectors for criteria set Cj(j = 1, 2, ..., n) evaluated through 

granular AHP, satisfying wj ≥ 0 and
∑n

j=1
wj = 1 The 

steps of the proposed method involve the following steps:

Step 1 Formation of a heterogeneous granular recipro-

cal matrix and allocation of information granules.

An expert group Ep(p = 1, 2, ..., k) is created from a pool 

of k experts to form linguistic preference data and two ses-

sions of data collection are conducted. In the first session, 

experts Ep(p = 1, 2, ..., k) rate the identified criteria pairwise 

in comparison matrices, using a nine-point linguistic scale 

(Table  2). In the second session, the linguistic comparison 

variables are converted to multi-granular information (Z, ã)
p
, 

defined in Table 1, to represent different types of uncertain-

ties and forming heterogeneous granular decision matrices R̂p 

for respective expert group Ep(p = 1, 2, ..., k):

Here, t̂
p

ji
 being the reciprocal of t̂

p

ij
( i, j = 1, 2, ..., n). Here, 

expected values of all heterogeneous granular numbers are 

calculated (for checking consistency of the granular recipro-

cal matrix). If CR (consistency ratio) is less than 0.1 (Thresh-

old value), then the granular reciprocal matrices are consist-

ent; otherwise, the experts will make an adjustment in their 

decision-making.

Step 2 Making the multi-granular information uniform.

All multi-granular linguistic performances t̂
p

ij
= (Z, ã)

p in-

group decision matrices (GDM) R̂p for different experts 

Ep(p = 1, 2, ..., k) are transformed to its homogeneous lin-

guistic domain viz. Granular-number, using operations 

defined in sub-Sects. (3.1–3.5). Thus, uniform granular recip-

rocal matrices Mp
=

[

g
p

ij

]

n×n
 for criteria pairwise comparison 

are formed corresponding to the values g
p

ij
(p = 1, 2, ..., k). 

Details are given in Eqs. (12–13):

For example:

(11)
C1 C2 ⋯ Cn R̂p =

�
t̂
p

ij

�
n×n

=

C1

C2

⋮

Cn

⎡
⎢⎢⎢⎣

1 t̂
p

12
⋯ t̂

p

1n

t̂
p

21
1 ⋯ t̂

p

2n

⋯ ⋯ ⋱ ⋯

t̂
p

n1
t̂
p

n2
⋯ 1

⎤
⎥⎥⎥⎦

whereeach t̂
p

ij
= (Z, ã)p.

(12)

C1 C2 ⋯ Cn

Mp
=

�
g

p

ij

�
n×n

=

C1

C2

⋮

Cn

⎡
⎢⎢⎢⎣

1 g
p

12
⋯ g

p

1n

g
p

21
1 ⋯ g

p

2n

⋯ ⋯ ⋱ ⋯

g
p

n1
g

p

n2
⋯ 1

⎤
⎥⎥⎥⎦

p = 1, 2, ..., k ,

(13)where g
p

ij
= G

(

ct̂
p

ij
, rt̂

p

ij

)

A(t̂
p

ij
)

.

Table 1  Scaling of corresponding G-numbers

2̃, 4̃, 6̃, and 8̃ are intermediate values
1

ã

  represents the corresponding reciprocal values of ã
(

1̃ − 9̃
)

C crisp number, T triangular fuzzy number (TFN ), I interval number, 

R rough number, Tr Trapezoidal fuzzy number (TrFN)

Scaling C(a) T(a,b,c) I[a,b] Tr(a,b,c,d) R(b,[a,c])

1̃ 1 (0,1,2) [0,2] (0,0,2,3) (1,[0,2])

3̃ 3 (2,3,4) [2,4] (1,2,4,5) (3,[2,4])

5̃ 5 (4,5,6) [4,6] (3,4,6,7) (5,[4,6])

7̃ 7 (6,7,9) [6,8] (5,6,8,9) (7,[6,8])

9̃ 9 (8,9,10) [8,10] (7,8,10,10) (9,[8,10])

Table 2  Measurement scale for pairwise comparisons in criteria

*2̃, 4̃, 6̃, 8̃ are intermediate value

Linguistic preference Abbreviation Numeri-

cal 

rating

Equally preferred EP 1̃

Moderately preferred MO 3̃

Strongly preferred SP 5̃

Very strongly preferred VP 7̃

Extremely preferred XP 9̃

Table 3  Linguistic terms and corresponding ratings for each alterna-

tive

Linguistic terms Abbreviation Numeri-

cal 

rating

Very poor VP 1̃

Medium poor MP 3̃

Fair F 5̃

Medium good MG 7̃

Very good VG 9̃
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Step 3 Aggregation phase.

Here, the focus is on aggregating the information granules 

g
p

ij
 of the reciprocal matrices Mp (Eq. 12). All the homogene-

ous granular number (G-number) entries g
p

ij
(p = 1, 2, ..., k) 

are fused, and a collective linguistic performance ĝij is 

obtained by aggregation of the above-mentioned values, as 

shown in Eqs. (15–16). Based on which the above aggregated 

granular matrix Ĥ =

[

ĝij

]

n×n
 is formed, as shown in Eq. (14):

For the diagonal element in the reciprocal matrix Ĥ, its 

equivalent G-number is obtained from a transformation 

operator, which is defined in sub-Sect. 3.5. To get the rank-

ing of criteria, we apply summation (Step 4) and normaliza-

tion (Step 5) of the criterion respectively, described in the 

following.

Step 4 Compute sum of each row 
∑

j ĝij in the comparison 

matrix Ĥ, to get a n × 1 matrix H̄, as shown in Eq. (17). Here, 

center value cgi
, radius value rgi

, and the weight value A(gi) 

of each granular elements gi(i = 1, 2, ..., n) in matrix H̄ are 

calculated, as per operations detailed in Eqs. (18, 19):

t̂1

11
=
(

T , 8̃
)

= (7, 8, 9) g1

11
= G

(

ct̂1

11

, rt̂1

11

)

A
(

t̂1

11

)

= G

(

9+7

2
,

9−7

2

)

9−7

2

= G
(8, 1)

1

t̂1

11
=
(

I, 3̃
)

= [2, 4] g1

12
= G

(

ct̂1

11

, rt̂1

11

)

A
(

t̂1

11

)

= G

(

2+4

2
,

4−2

2

)

4 − 2
= G

(3, 1)

1
.

(14)

C1 C2 ⋯ Cn

Ĥ =

�
ĝij

�
n×n

=

C1

C2

⋮

Cn

⎡
⎢⎢⎢⎣

1 ĝ12 ⋯ ĝ1n

ĝ21 1 ⋯ ĝ2n

⋯ ⋯ ⋱ ⋯

ĝn1 ĝn2 ⋯ 1

⎤⎥⎥⎥⎦
,

(15)where ĝij

(

=
1

k

∑

p

g
p

ij

)

= G

(

cĝij
, rĝij

)

A(ĝij)
,

(16)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c ĝij
=

1

k

k�
p=1

ct̂
p

ij

r ĝij
=

1

k

k�
p=1

rt̂
p

ij

A
�

ĝij

�
=

1

k

k�
p=1

A
�

t̂
p

ij

�
.

Step 5 Normalize the criteria values in matrix H̄.

First, take the summations of center value cgi
, radius 

value rgi
, and the weight value A(gi) of value gi for each 

criterion C
i
(i = 1, 2, ..., n) in matrix H̄. Details are given in 

Eqs. (20, 21):

where

As per Eq. (22), the normalized values w
i
(i = 1, 2, ..., n) 

in matrix H̃ for each criteria C
i
(i = 1, 2, ..., n) are calcu-

lated by dividing center value cgi
, radius value rgi

, and the 

weight value A(gi) of granular number gi (i = 1, 2, ..., n) by 

its respective summation values g
p̂
. The computations are 

shown in Eqs. (23, 24):

where each

(17)H̄ =

�
gi

�
n×1

=

C1

C2

⋮

Cn

⎡
⎢⎢⎢⎣

g1

g2

⋮

gn

⎤⎥⎥⎥⎦
n×1

,

(18)where gi

(

=
∑

j

ĝij

)

= G

(

cgi
, rgi

)

A(gi)
,

(19)

cgi
=

�
j

cgij

rgi
=

�
j

rgij

A
�
gi

�
=

�
j

A
�
gij

�

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

(20)
∑

i

gi = gp̂ = G

(

cgp̂
, rgp̂

)

A
(

gp̂

) ,

(21)

cgp̂
=

�
i

cgi

rgp̂
=

�
i

rgi

A
�
gp̂

�
=

�
i

A
�
gi

�

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

(22)H̃ =

�
w

i

�
n×1

=

C1

C2

⋮

C
n

⎡
⎢⎢⎢⎣

w1

w2

⋮

w
n

⎤⎥⎥⎥⎦
,

(23)w
i
= G

(

c
w

i
, r

w
i

)

A
(

w
i

) and,
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Step 6 Ranking of the criteria.

Then, depending on the problem scenario, the criteria 

C
i
(i = 1, 2, ..., n) are prioritized accordingly as per its nor-

malized granular weights w
i
(i = 1, 2, ..., n).

7  Granular VIKOR (G-VIKOR) for alternative 

evaluation

7.1  Brief description

VIKOR is one of the classical MCDM techniques and 

regarded as an efficient tool in finding a compromise solu-

tion emerging out of a set of conflicting criteria (Qin et al. 

2015). In this section, we develop an extended VIKOR for 

solving multi-attribute decision-making (MADM) prob-

lems under heterogeneous information granules. When 

determining the exact values of the criteria is difficult, 

G-numbers can prove to be very useful tools to deal with 

uncertainty of a heterogeneous nature, in which each cri-

terion can be described in terms of a G-number in keep-

ing with the opinions of decision makers. In this study, 

we assume that for a given collection of linguistic terms 

(Table 3), all the decision makers (DMs) select the linguis-

tic terms to give linguistic values, so that they can express 

their decision preferences in the form of G-numbers. 

Table 3, shows a collection of linguistic terms from “very 

poor (VP)” to “very good (VG)” and their corresponding 

granular information.

7.2  Algorithmic framework of the proposed method

In general, the MCDM problem involves a process of 

selecting the best alternative from a set of feasible alter-

natives with respect to multiple attributes based on a set 

of conflicting attributes. Let for a group decision-making 

(GDM) problem, A
i
(i = 1, 2, ..., m) be the finite set of m

alternatives, to be evaluated with respect to the set of cri-

teria Cj(j = 1, 2, ..., n) by a group of k decision makers 

Ep(p = 1, 2, ..., k), using a collection of multi-granular lin-

guistic information. Let wj(j = 1, 2, ..., n) be a set of the 

weight vectors for criteria set Cj(j = 1, 2, ..., n) evaluated 

through granular AHP, satisfying wj ≥ 0 and
∑n

j=1
wj = 1. 

(24)

cwi
=
�

cgi
∕cgp̂

�

rwi
=
�

rgi
∕rgp̂

�

A
�
wi

�
=
�
A
�
gi

�
∕A

�
gp̂

� �

⎫
⎪⎪⎬⎪⎪⎭

.

The extended VIKOR approach based on heterogeneous 

information granules involves the following steps:

Step 1 Determine the initial group decision matrices.

Similar to Step 1 of sub-sect. 6.2, two sessions of data 

collection are done by the same group of experts 

Ep(p = 1, 2, ..., k). First, the experts rate the alternatives 

A
i
(i = 1, 2, ..., m) with respect to Cj(j = 1, 2, ..., n) in the 

pairwise comparison matrices in linguistic mode, as 

defined in Table 3. In the second session, the linguistic data 

are converted to its multi-granular counterparts (Z, ã)
p as 

per choice of experts group Ep(p = 1, 2, ..., k), thus form-

ing a group of initial decision matrices Dp
=

[

d
p

ij

]

m× n
. The 

details are shown in Eqs. (25, 26):

For example: 

{

d
1

11
=
(

T , 8̃
)1

= (7, 8, 9)

d
1

12
=
(

I, 3̃
)1

= (2, 4)

•	 d
p

ij
 in Eq. (26) represents rating of the A

i
 with respect to 

Cj(j = 1, 2, ..., n), for pth expert, while

•	 Zstands for heterogeneous information granule and ã its 

corresponding scaling (Table 1).

Step 2 Making the information granules uniform.

The heterogeneous linguistic granules 
(

d
p

ij

)

 in Eq. (26) are 

first transformed into unified granular numbers 
(

e
p

ij

)

, shown in 

Eq. (28), to be used as inputs in uniform group decision matri-

ces (Jp) in Eq.  (27). The values cd
p

ij
, rd

p

ij
and A

(

d
p

ij

)

, respec-

tively, in respect to e
p

ij
 [in Eq. (28)] are calculated based on gran-

ular transformation functions, as defined in sub-sects. 3.1–3.5.

(25)

C1 C2 ⋯ Cn

Dp
=

�
d

p

ij

�
m × n

=

A1

A2

⋮

Am

⎡
⎢⎢⎢⎣

d
p

11
d

p

12
⋯ d

p

1n

d
p

21
d

p

22
⋯ d

p

2n

⋯ ⋯ ⋱ ⋯

d
p

m1
d

p

m2
⋯ d

p
mn

⎤
⎥⎥⎥⎦
;

(26)where d
p

ij
= (Z, ã)p.

(27)

C1 C2 ⋯ Cn

Jp
=

�
e

p

ij

�
m × n

==

A1

A2

⋮

Am

⎡
⎢⎢⎢⎣

e
p

11
e

p

12
⋯ e

p

1n

e
p

21
e

p

22
⋯ e

p

2n

⋯ ⋯ ⋱ ⋯

e
p

m1
e

p

m2
⋯ e

p
mn

⎤
⎥⎥⎥⎦
; p = 1, 2, ..., k

(28)where e
p

ij
= G

(

cd
p

ij
, rd

p

ij

)

A

(

d
p

ij

) .
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Step 3 Aggregation phase.

Using Eq.  (23), experts’ individual uniform preferences 

e
p

ij
(p = 1, 2, ..., k), in Eq.  (28), are further transform to its 

aggregated form 
(

lij
)

, shown in Eqs. (30–31), that are used as 

inputs in a collective performance matrix 
(

L̂
)

 in Eq. (29).

Step 4 Determine the best value f ∗
j
 and the worst value f −

j
 

of each criterion function in matrix 
(

L̂
)

.

For the benefit criterion which belongs to the “larger-the-

better” category: f ∗
j
= max

i
lij, f −

j
= min

i
lij; For the cost cri-

terion which belongs to the “smaller-the-better” category: 

f ∗
j
= min

i
lij, f −

j
= max

i
lij. Details are given in Eqs. (32–33):

where B is associated with the benefit criterion, while C is 

associated with the cost criterion and

(29)

C1 C2 ⋯ C
n

L̂ =

A1

A2

⋮

A
m

⎡
⎢
⎢
⎢
⎣

l11 l12 ⋯ l1n

l21 l22 ⋯ l2n

⋯ ⋯ ⋱ ⋯

l
m1 l

n2 ⋯ l
mn

⎤
⎥
⎥
⎥
⎦

,

(30)where lij =

(

1

k

∑

p

e
p

ij

)

= G

(

c lij
, r lij

)

A( lij)
,

(31)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c lij
=

1

k

k�
p=1

cd
p

ij

r lij
=

1

k

k�
p=1

rd
p

ij

A
�

lij
�
=

1

k

k�
p=1

A
�

d
p

ij

�

.

(32)

f ∗
j
=

⎧⎪⎨⎪⎩

⎛⎜⎜⎜⎝
max

i
lij = G

�
cf ∗

j
, rf ∗

j

�

A(f ∗
j
)

�j ∈ B

⎞
⎟⎟⎟⎠

or

⎛⎜⎜⎜⎝
min

i
lij = G

�
cf−

j
, rf−

j

�

A(f −
j
)

�������
j ∈ C

⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭

f −
j
=

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎜⎝
min

i
lij = G

�
cf−

j
, rf−

j

�

A(f −
j
)

�j ∈ B

⎞
⎟⎟⎟⎠

or

⎛
⎜⎜⎜⎝
max

i
lij = G

�
cf ∗

j
, rf ∗

j

�

A(f ∗
j
)

�j ∈ C

⎞
⎟⎟⎟⎠

⎫
⎪⎬⎪⎭

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

Step 5 Calculate the values S
i

and R
i
(i = 1, 2, ......m) 

expressed by the following relations:

(33)

cf ∗
j
= max

i
c lij

; cf−
j
= min

i
c lij

rf ∗
j
= max

i
r lij

; rf−
j
= min

i
r lij

A(f ∗
j
) = max

i
A(lij); A

(

f −
j

)

= min
i

A(lij)

(34)

Si =
∑

j∈B

[

wj

(

f ∗
j
− lij

)

∕
(

f ∗
j
− f −

j

) ]

+
∑

j∈C

[

wj

(

lij − f ∗
j

)

∕
(

f −
j
− f ∗

j

) ]

,

(35)Ri =

⎧⎪⎨⎪⎩

max
j∈B

wj

�
f ∗
j
− lij

�
∕
�

f ∗
j
− f −

j

�

max
j∈C

wj

�
lij − f ∗

j

�
∕
�

f −
j
− f ∗

j

� ,

(36)For
∑

j∈B

[

wj

(

f ∗
j
− lij

)

∕
(

f ∗
j
− f −

j

) ]

,

(37)

�
f ∗
j
− lij

�
= G

�
cf ∗

j
− clij

, rf ∗
j
+ rlij

�

A
�

f ∗
j

�
+ A

�
lij
� ;

�
f ∗
j
− f −

j

�
= G

�
cf ∗

j
− cf−

j
, rf ∗

j
+ rf ∗

j

�

A
�

f ∗
j

�
+ A

�
f −
j

�

⎫⎪⎪⎪⎬⎪⎪⎪⎭

,

(38)∴

(

f ∗
j
− lij

)

(

f ∗
j
− f −

j

) = aij = G

(

caij
, raij

)

A
(

aij

) ,
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Similarly, the calculation of 
∑

j∈C

�

wj

�

lij − f ∗
j

�

∕
�

f −
j
− f ∗

j

� �

 is done by interchanging 

the position 

lij and f ∗
j

in

(

f ∗
j
− lij

)

and f ∗
j

and f −
j

in

(

f ∗
j
− f −

j

)

 of 

Eqs. (36–37).

Where cbij
, rbij

, and A
(

bij

)

 are calculated by inter-

changing the position of cf ∗
j

and clij
in

(

cf ∗
j
− clij

)

 and 

cf ∗
j

and cf−
j

in

(

cf ∗
j
− cf−

j

)

, respectively, in Eq. (39):

(39)

caij
=

��
cf ∗

j
− clij

�
×

�
cf ∗

j
− cf−

j

��
+

��
rf ∗

j
+ rlij

�
×

�
rf ∗

j
+ rf−

j

��

�
cf ∗

j
− cf−

j

�2

−

�
rf ∗

j
+ rf−

j

�2

raij
=

��
cf ∗

j
− clij

�
×

�
rf ∗

j
+ rf−

j

��
+

��
cf ∗

j
− cf−

j

�
×

�
rf ∗

j
+ rlij

��

�
cf ∗

j
− cf−

j

�2

−

�
rf ∗

j
+ rf−

j

�2

A
�
aij

�
=

��
cf ∗

j
− clij

�
×

�
A
�

f ∗
j

�
+ A

�
f −
j

���
+

��
cf ∗

j
− cf−

j

�
×

�
A
�

f ∗
j

�
+ A

�
lij
���

�
cf ∗

j
− cf−

j

�2

−

�
rf ∗

j
+ rf−

j

�2

⎫
⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

,

(40)

∴ wj ×

(

f ∗
j
− lij

)

(

f ∗
j
− f −

j

) = G
(cwj

, rwj
)

A
(

wj

) × G

(

caij
, raij

)

A
(

aij

) = G
(câij

, râij
)

A
(

âij

) ,

i = 1, 2, ..., m; j = 1, 2, ..., n

(41)

where

⎧⎪⎨⎪⎩

câij
= cwj

caij
+ rwj

raij

râij
= cwj

raij
+ caij

rwj

A
�
âij

�
= cwj

A
�
aij

�
+ caij

A
�
wj

� .

(42)∴

(

lij − f ∗
j

)

(

f −
j
− f ∗

j

) = bij = G

(

cbij
, rbij

)

A
(

bij

) .

(43)

∴

⎛
⎜⎜⎜⎝

wj ×

�
lij − f ∗

j

�
�

f −
j
− f ∗

j

�
⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝
G
(cwj

, rwj
)

A
�
wj

� × G

�
cbij

, rbij

�

A
�
bij

�
⎞⎟⎟⎟⎠

= G

�
cb̂ij

, rb̂ij

�

A
�
b̂ij

� ,

where

(44)

where

⎧
⎪⎨⎪⎩

cb̂ij
= cwj

cbij
+ rwj

rbij

rb̂ij
= cwj

rbij
+ cbij

rwj

A
�
b̂ij

�
= cwj

A
�
bij

�
+ cbij

A
�
wj

�
,

(45)

∴ Si =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

=
�
j∈B

�
wj

�
f ∗
j
− lij

�
∕
�

f ∗
j
− f −

j

� �
+
�
j∈C

�
wj

�
lij − f ∗

j

�
∕
�

f −
j
− f ∗

j

� �

=
�
j∈B

G

�
câij

, râij

�

A
�
âij

� +
�
j∈C

G

�
cb̂ij

, rb̂ij

�

A
�
b̂ij

�

= G

�
cãi

, rãi

�

A
�
ãi

� + G

�
cb̃i

, rb̃i

�

A
�
b̃i

�

= G

�
cāi

, rāi

�

A
�
āi

� ,

,

(46)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

For Benefit criterion(j ∈ B)

cãi
=
�

j

câij
, rãi

=
�

j

râij
, A

�
ãi

�
=

�
j

A
�
âij

�

For Cost criterion(j ∈ C)

cb̃i
=
�

j

cb̂ij
, rb̃i

=
�

j

rb̂ij
, A

�
b̃i

�
=

�
j

A
�
b̂ij

�

and

cāi
=
�
cãi

+ cb̃i

�
, rāi

=
�
rãi

+ rb̃i

�
, A

�
āi

�
= A

�
ãi

�
+ A

�
b̃i

�

,
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where

Step 6 Compute the values Qi (i = 1, 2, ..., m) by these 

relations

where v ≈ 0.5 is introduced as weight of the strategy of 

the ‘maximum group utility’ v.

Now, for the first part of Eq. (49), we have

(47)

∴Ri =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

=

⎧⎪⎨⎪⎩

max
j∈B

wj

�
f ∗
j
− lij

�
∕
�

f ∗
j
− f −

j

�

max
j∈C

wj

�
lij − f ∗

j

�
∕
�

f −
j
− f ∗

j

�

=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
j∈B

G

�
câij

, râij

�

A
�
âij

� = G

�
max
j∈B

câij
, max

j∈B
râij

�

max
j∈B

A
�
âij

�

max
j∈C

G

�
cb̂ij

, rb̂ij

�

A
�
b̂ij

� = G

�
max
j∈C

cb̂ij
, max

j∈C
rb̂ij

�

max
j∈C

A
�
b̂ij

�

= G

�
c ̄̄ai

, r ̄̄ai

�

A
�
̄̄ai

� ,

,

(48)

c ̄̄ai
= max

�
max
j∈B

câij
, max

j∈C
cb̂ij

�

r ̄̄ai
= max

�
max
j∈B

râij
, max

j∈C
rb̂ij

�

A
�
̄̄ai

�
= max

�
max
j∈B

A
�
âij

�
, max

j∈C
A
�
b̂ij

��

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

(49)

Qi = v
(

Si − S∗
)

∕(S− − S∗) + (1 − v)
(

Ri − R∗
)

∕(R− − R∗) ,

(50)

Si = G

�
cāi

, rāi

�

A
�
āi

�

S∗ = min
i

Si = G

�
min

i
cāi

, min
i

rāi

�

min
i

A
�
āi

� = G

�
cāy

, rāy

�

A
�
āy

� , (1 ≤ y ≤ m)

S− = max
i

Si = G

�
max

i
cāi

, max
i

rāi

�

max
i

A
�
āi

� = G

�
cāu

, rāu

�

A
�
āu

� , (1 ≤ u ≤ m; u > y)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

(51)

�
Si − S∗

�
= G

�
cāi

− cāy
, rāi

+ rāy

�

A
�
āi

�
+ A

�
āy

� ;

(S− − S∗) = G

�
cāu

− cāy
, rāu

+ rāy

�

A
�
āu

�
+ A

�
āy

�

⎫⎪⎪⎪⎬⎪⎪⎪⎭

,

where

In addition, for the second part of Eq. (49), we have

Replacing 

{

Si → Ri, S∗
→ R∗

, S−
→ R−

āi →
̄̄ai , āy →

̄̄ar , āu → ̄̄as , gi → qi

 in 

Eqs. (50) and (51), we get,

(52)∴

(

Si − S∗
)

(S− − S∗)
= gi = G

(

cgi
, rgi

)

A
(

gi

) ,

(53)

cgi
=

��
cāi

− cāy

�
×

�
cāu

− cāy

��
+

��
rāi

+ rāy

�
×

�
rāu

+ rāy

��

�
cāu

− cāy

�2

−

�
rāu

+ rāy

�2

rgi
=

��
cāi

− cāy

�
×

�
rāu

+ rāy

��
+

��
cāu

− cāy

�
×

�
rāi

+ rāy

��

�
cāu

− cāy

�2

−

�
rāu

+ rāy

�2

A
�
gi

�
=

��
cāi

− cāy

�
×

�
A
�
āu

�
+ A

�
āy

���
+

��
cāu

− cāy

�
×

�
A
�
āi

�
+ A

�
āy

�� �

�
cāu

− cāy

�2

−

�
rāu

+ rāy

�2

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

(54)

∴ v

(

Si − S∗
)

(S− − S∗)
= G

(

cv, rv

)

A(v)
× G

(

cgi
, rgi

)

A
(

gi

)

= G

(

cv cgi
+ rvrgi

, cvrgi
+ rvcgi

)

cvA
(

gi

)

+ cgi
A(v)

.

(55)

R
i
= G

�
c ̄̄a

i
, r ̄̄a

i

�

A
�
̄̄a

i

�

R
∗ = min

i

R
i
= G

�
min

i

c ̄̄a
i
, min

i

r ̄̄a
i

�

min
i

A
�
̄̄a

i

� = G

�
c ̄̄a

r
, r ̄̄a

r

�

A
�
̄̄a

r

� , (1 ≤ r ≤ m)

R
− = max

i

R
i
= G

�
max

i

c ̄̄a
i
, max

i

r ̄̄a
i

�

max
i

A
�
̄̄a

i

� = G

�
c ̄̄a

s
, r ̄̄a

s

�

A
�
̄̄a

s

� , (1 ≤ s ≤ m; s > r)

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

(56)

(

Ri − R∗
)

(R− − R∗)
= qi = G

(

cqi
, rqi

)

A
(

qi

) ,

(57)

∴ (1 − v)

(

Ri − R∗
)

(R− − R∗)
= G

(

cv̂, rv̂

)

A(v̂)
× G

(

cqi
, rqi

)

A
(

qi

)

= G

(

cv̂ cqi
+ rv̂rqi

, cv̂rqi
+ rv̂cqi

)

cv̂A
(

qi

)

+ cqi
A(v̂)

,
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where

Applying c
v
= v, r

v
= 0, A(v) = 0 in Eq.  (54) and 

c
v̂
= (1 − v), r

v̂
= 0, A(v̂) = 0 in Eq.  (57), and put in 

Eq. (58).

Step 7 Rank the alternatives A
i
(i = 1, 2, ..., m), sorting 

by the values Si (Eq. (45)), Ri(Eq. (47)) and Qi(Eq. (58)) in 

decreasing order. The results are three ranking lists that sat-

isfies Steps 1 and 2 of Sect. 4.

Step 8 We propose as a compromise solution, the alter-

native Ap̄

(

= min
i

Ai

)

i = 1, 2, ..., m ranked best by the 

measure Q (minimum) if the following two conditions 

(a)–(b) are satisfied:

(a) Acceptable advantage:

where Ap̄+1
 is the alternative with a second position on the 

ranking list by Q and m is the number of alternatives.

(b) Acceptable stability in decision making:

Alternative Ap̄ must also be the best ranked by 

S
i

or/and R
i
. This compromise solution is stable within a 

decision-making process, which could be strategy of “maxi-

mum group utility” (when v > 0.5 is needed) or “by consen-

sus” (v ≈ 0.5), or “with veto” (v < 0.5). Here, v is the weight 

(58)Qi =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

= v
�
Si − S∗

�
∕(S− − S∗) + (1 − v)

�
Ri − R∗

�
∕(R− − R∗)

= G

�
cv cgi

+ rvrgi
, cvrgi

+ rvcgi

�

cvA
�
gi

�
+ cgi

A(v)
+ G

�
cv̂ cqi

+ rv̂rqi
, cv̂rqi

+ rv̂cqi

�

cv̂A
�
qi

�
+ cqi

A(v̂)

= G

��
cv cgi

+ rvrgi

�
+
�
cv̂ cqi

+ rv̂rqi

��
,
��

cvrgi
+ rvcgi

�
+
�
cv̂rqi

+ rv̂cqi

��
�
cvA

�
gi

�
+ cgi

A(v)
�
+
�
cv̂A

�
qi

�
+ cqi

A(v̂)
�

= G

�
cti

, rti

�

A
�
ti
�

,

(59)

cti
=
�
cv cgi

+ rvrgi

�
+
�
cv̂ cqi

+ rv̂rqi

�

rti
=
�
cvrgi

+ rvcgi

�
+
�
cv̂rqi

+ rv̂cqi

�

A
�
ti
�
=
�
cvA

�
gi

�
+ cgi

A(v)
�
+
�
cv̂A

�
qi

�
+ cqi

A(v̂)
�

⎫⎪⎬⎪⎭
.

(60)

���Q
�
Ap̄+1

�
− Q

�
Ap̄

���� ≥ �DQ� where DQ =
1

(m − 1)

Q
�
Ap̄+1

�
− Q

�
Ap̄

�
= G

�
ctp̄+1

, rtp̄+1

�

A
�
tp̄+1

� − G

�
ctp̄

, rtp̄

�

A
�
tp̄
�

DQ =
1

(m − 1)
= G

(1, 0)

0
÷ G

(m − 1, 0)

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

,

of the decision-making strategy of the majority of criteria (or 

“the maximum group utility”).

If one of the conditions is not satisfied, then a set of com-

promise solutions with advantage rate is proposed, instead of 

only best alternative which consists of:

1. Alternative Ap̄ and Ap̄+1
 if only condition (b) is not sat-

isfied, or

2. Alternatives Ap̄, Ap̄+1, ..., AM if condition (a) is not sat-

isfied, and A
M

 is determined by the relation

 

for maximum M (the positions of these alternatives are “in 

closeness”).

The best alternative, ranked by Q, is one with the mini-

mum value of Q. The main ranking result is the compromise-

ranking list of alternatives and the compromise solution with 

“advantage rate”.

8  Numerical illustration: green supplier chain 

risk management practices

8.1  Background scenario

Considering the huge business opportunities of the plas-

tic sector in India, the case of an instance of green supply 

chain management (GSCM) adopted from Mangla et  al. 

(2015a, b), of a poly-plastic manufacturing company 

XYZ (name not disclosed) from northern India is singled 

out in this research.

•	 Green and sustainable supply chain management 

ensures that the industrial establishments are adopt-

ing clean and eco-friendly environmental practices 

in industrial areas, and are adopting reverse logis-

tics thereby ensuring a low consumption of virgin 

resources, as well as stepping up the use of recyclable 

items (Govindan et al. 2014).

(61)
|
|
|
Q(AM) − Q(Ap̄)

|
|
|
< |DQ |,
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•	 A growing environmental awareness amongst cus-

tomers pushes the industrial houses for maintaining 

a green image, while strict governmental regulations 

alongside customers’ demand force companies to 

ensure that their suppliers also enhance their environ-

mental performance as they consider GSCM practices 

to be vital for organizations (Mangla et al. 2015a).

However, on the successful accomplishment of a 

GSCM, production and business activities are relatively 

difficult due to the involvement of different risks. In this 

research, an effort has been made to prioritize the risks 

and the responses to manage them while implement-

ing the GSCM. The prioritization of responses to risks 

in GSCM is a multi-criteria decision-making (MCDM) 

problem involving various risk criteria and correspond-

ing response alternatives that analyze AHP-VIKOR 

method in information granules. Granular-number-based 

AHP proposed by Alsawy and Hefny (2013b) is utilized 

in determining the important weights of the risks of the 

related supply chain, while the proposed extended granu-

lar-VIKOR method analyzes the appropriate responses to 

risks which are singled out to obtain their performance 

rating using a system of Granular numbers. The proposed 

method helps researchers and practitioners in understand-

ing and prioritizing the appropriate risk responses when 

adopting GSCM.

In this study, the most frequently used green risk driver 

criteria are selected from Mangla et  al. (2015a) and are 

identified from a prior procurement and green purchasing 

strategy assessment. The risk criteria chosen are Opera-

tional risks 
(

C
1

)

, Supply risks 
(

C
2

)

, Product recovery risks 
(

C
3

)

, Financial risks 
(

C
4

)

, and Demand risks 
(

C
5

)

, the 

details of which is given in Table 4.

To manage these risks, four responses viz. Improved 

forecasting 
(

A
1

)

, multiple supplier policy 
(

A
2

)

, flexibility in 

operational level 
(

A
3

)

, and well-designed reverse logistics 

system 
(

A
4

)

 selected from Mangla et  al. (2015b) are vali-

dated through an interactive discussion with the profession-

als of the decision-making team and is detailed in Table 5.

8.2  Selection and ranking green supply chain risk 

criterion using granular AHP (G-AHP)

In the following, we use the granular-AHP decision method 

to determine the weights wj(j = 1, 2, ..., 5) of the green 

supply risk criteria Cj(j = 1, 2, ..., 5) by a group of deci-

sion makers Ep(p = 1, 2, 3), using a collection of multi-

granular linguistic information. The computational proce-

dure is given in the following as per steps, as described in 

Sect. 6.2.

Step 1 For multiple experts Ep(p = 1, 2, 3), pairwise 

comparisons of the criteria Cj(j = 1, 2, ..., 5) in the lin-

guistic mode (Table 2) are first formed and then converted 

to multi-granular information’s (Z, ã)
p using Table  1 

and Eq.  (10) of Sect.  5. The reciprocal decision matrices 

R̂p(p = 1, 2, 3) constructed as per Eq. (11) show the multi-

granular comparison along with its consistency ratio in 

Table 6.

Step 2 Using Eqs. (12, 13) of sub-sect. 6.2 and granular 

transformation functions defined in sub-sects.  (3.1)–(3.5), 

the multi-granular reciprocal matrices R̂p(p = 1, 2, 3) are 

first transformed to its homogenous granular counterparts, 

and further aggregated using Eqs. (14–16) of Step 3 in sub-

sect. 6.2. The details are shown in Table 7.

Step 3 Finally, the summation and normalization of 

the GSC risk-based criteria weights are computed using 

Eqs. (17–19) in Step 4 and Eqs. (20–24) in Step 5 of sub-

sect. 6.2, respectively. The result is shown in Table 8. Each 

weight of the risk criteria wj(j = 1, 2, ..., 5) is expressed 

in the form of granular number is evaluated and ranked 

accordingly, using Eq. (2) in sub-sect. 2.2 and Steps 1–2 of 

Sect. 4.

Table 4  Defining GSCM specific risks with respective categories (Mangla et al. 2015a)

GSCM specific risks Key factors in the mentioned risks

Operational risks

(

C
1

)

Interruption due to the failure of the industrial machine, flaws in designing of green process methodology, and lack 

of knowledge of green operations among workforce lower GSCM performance

Supply risks

(

C
2

)

Procurement cost of green raw material, failure of any key supplier, and product quality issue can affect GSCM 

efficiency at industrial perspective

Product recovery risk

(

C
3

)

Risks relevant to reverse logistics network design, and gate keeping design (inspection and screening defective return 

product) failure can disturb adoption of effective GSCM business practices

Financial risks

(

C
4

)

Problems related to fund sourcing, Inflation and variations in currency exchange rate affect the financial concerns of 

GSCM

Demand risks

(

C
5

)

Green demand information distortion, Market dynamics, and key customer failure have a significant effect on effi-

cient GSCM adoption
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8.3  Evaluation of responses of risks in adoption 

of green initiative in GSC

The next step is the prioritization of green supply risk 

responses with the proposed granular-based VIKOR pro-

cedure. In this stage, the experts Ep(p = 1, 2, 3) in the 

decision team are asked to evaluate and rank the four green 

risk response alternatives A
i
(i = 1, 2, ..., 4) against the risk-

based criteria set Cj(j = 1, 2, ..., 5), as described in Tables 4 

and 5, respectively. The stepwise computations are shown 

in the following.

Step 1 Similar to Step 1 in sub-sect. 8.2, the ratings of 

the alternatives A
i
(i = 1, 2, ..., 4) with respect to criteria 

Cj(j = 1, 2, ..., 5) are also done in two phases, based on the 

decision of three different experts Ep(p = 1, 2, 3). Using 

Eqs.  (25, 26) in step 1 of sub-sect.  7.2, the initial group 

decision-making matrices Dp(p = 1, 2, 3) are evaluated, 

first based on linguistic ratings (Tables 1, 3) and, second, 

based on multi-granular linguistic data sets (Table 1). The 

details are shown in Table 9.

Step 2 Using Eqs. (27, 28) in Step 2 of sub-sect. 7.2, the 

heterogeneous linguistic decision matrices Dp(p = 1, 2, 3) 

are changed to homogeneous granular matrices 

Table 5  Responses to risks in implementation of green supply chain (Mangla et al. 2015b)

Alternative responses Description

Improved forecasting

(

A
1

)

Accurate forecast through improved forecasting method and techniques are significant to stabilize 

the demand risk in GSCM in business

Multiple supplier policy

(

A
2

)

The policy of multiple suppliers helps in resolving the supplier risks and certainly improves the 

economic–ecological gains in GSCM at industrial perspective

Flexibility in operational level

(

A
3

)

The strategy of flexibility in design at process and operational level is significant in managing the 

GSCM operations and will be useful in improving the overall performance

Well-designed reverse logistics system

(

A
4

)

Reverse logistics has been recognized as a significant operation in GSCM perspective in recovering 

the resources via closing the forward supply loop

Table 6  Multi-granular 

decision-making matrices R̂p for 

each expert Ep(p = 1, 2, ..., k)

R̂1 =

�
t̂1

ij

�
5×5

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
�
T , 5̃

� �
Tr, 4̃

�
(C, 2) (Tr, 3)�

T ,
1

5̃

�
1

�
I,

1

3̃

� �
T ,

1

5̃

� �
I,

1

4̃

�
�

Tr,
1

4̃

� �
I, 3̃

�
1

�
T ,

1

6̃

� �
T ,

1

3̃

�
�

C,
1

2̃

� �
R, 5̃

� �
T , 6̃

�
1 (Tr, 3)�

T ,
1

3̃

� �
I, 4̃

� �
R, 3̃

� �
Tr,

1

3̃

�
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

CR = 0.084 < 0.1

R̂2 =

�
t̂2

ij

�
5×5

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

�
I,

1

2̃

� �
R,

1

7̃

� �
T ,

1

3̃

�
(Tr, 3)

�
I, 3̃

�
1

�
T ,

1

5̃

� �
C,

1

2̃

� �
R, 3̃

�
�
R, 7̃

� �
T , 5̃

�
1

�
T , 2̃

� �
Tr, 4̃

�
�
T , 3̃

� �
C, 2̃

� �
T ,

1

2̃

�
1

�
C, 3̃

�
�
Tr, 3̃

� �
R,

1

3̃

� �
Tr,

1

4̃

� �
C,

1

3̃

�
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

CR = 0.058 < 0.1

R̂3
=

�
t̂3

ij

�
5×5

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

�
Tr,

1

5̃

� �
R,

1

2̃

� �
T , 3̃

� �
T , 7̃

�
�
Tr, 5̃

�
1

�
T , 2̃

� �
R, 4̃

� �
I, 9̃

�
�
R, 2̃

� �
T ,

1

2̃

�
1

�
I, 3̃

� �
C, 7̃

�
�

T ,
1

3̃

� �
R,

1

4̃

� �
I,

1

3̃

�
1

�
Tr, 3̃

�
�

T ,
1

7̃

� �
I,

1

9̃

� �
C,

1

7̃

� �
Tr,

1

3̃

�
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

CR = 0.046 < 0.1

Table 7  Aggregated pairwise 

decision matrix

Ĥ =
�
ĝij

�
5×5

=

⎡⎢⎢⎢⎢⎢⎢⎣

G
(1.00, 0.00)

0.00
G

(1.97, 0.48)

0.60
G

(1.60, 0.78)

1.06
G

(1.79, 0.38)

0.36
G

(3.53, 0.80)

0.84

G
(2.40, 1.01)

1.68
G

(1.00, 0.00)

0.00
G

(0.86, 0.39)

0.43
G

(1.57, 0.35)

0.35
G

(4.09, 0.69)

1.04

G
(3.11, 0.72)

0.74
G

(2.89, 0.78)

1.11
G

(1.00, 0.00)

0.00
G

(1.72, 0.68)

1.01
G

(3.79, 0.71)

1.04

G
(1.29, 0.38)

1.13
G

(2.42, 0.36)

0.36
G

(2.35, 0.49)

0.53
G

(1.00, 1.00)

1.00
G

(3.00, 1.33)

2.00

G
(1.17, 0.72)

1.05
G

(1.50, 0.38)

0.72
G

(1.16, 0.39)

0.41
G

(0.51, 0.27)

0.35
G

(1.00, 0.00)

0.00

⎤⎥⎥⎥⎥⎥⎥⎦
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Jp(p = 1, 2, 3). Moreover, the corresponding aggregated 

granular decision matrix L̂(p = 1, 2, 3) is formed using 

Eqs.  (29–31) of step 3 in sub-sect.  7.2, and shown in 

Table 10.

Step 3 Applying Eqs. (32, 33) in Step 4 of sub-sect. 7.2 

of the proposed methodology, the best value f ∗
j
 and the 

worst value f −

j
 of all criteria functions Cj(j = 1, 2, ..., 5) are 

determined and shown in Table 11. Here, we consider all 

the criteria to be risky, so we take j ∈ C(cost criteria) part 

in Eq. (32).

Step 4 For calculating values of S
i
(i = 1, 2, ..., 4) 

and R
i
(i = 1, 2, ..., 4), we take for the risk-based crite-

ria Cj(j = 1, 2, ..., 5), j ∈ C(cost criteria) in Eqs.  (34, 35), 

respectively, for our case study.

Using Eqs.  (42–46) and Eqs.  (47, 48) in Step 5 

of sub-sect.  7.2, the values of S
i
(i = 1, 2, ..., 4) and 

R
i
(i = 1, 2, ..., 4) are calculated, respectively, for all alter-

natives A
i
(i = 1, 2, ..., 4) and shown in Table 12.

Step 5 Taking Eqs.  (50–59) in step 6 of sub-

sect.  7.2, the values of Qi (i = 1, 2, ..., 4) are calculated 

applying c
v
= 0.5, r

v
= 0, A(v) = 0 in Eq.  (54) and 

c
v̂
= 0.5, r

v̂
= 0, A(v̂) = 0in Eq. (57), and putting the same 

in Eq. (58). The result is shown in Table 12.

Step 6 Following step 7 of sub-sect.  7.2 and following 

the above results in Step 4–5 in sub-sect.  8.3, the alter-

natives are sorted by the values of Qi(i = 1, 2, ..., 5) in 

decreasing order. The results are three ranking lists along 

with compromise solution, as depicted in Table 12.

Step 7 Following as per Step 8 of sub-sect. 7.2, the alter-

native 
(

A
1

)

 is the proposed compromise solution (as per 

ranking of Qi) ranking best, followed by alternative 
(

A
4

)

 

by in the second position by Q
min

, satisfying the two condi-

tions (a) and (b).

(c.) Acceptable advantage

|||Q
(
A

4

)
− Q

(
A

1

)||| ≥ |DQ| is satisfied as

|
|
|
Q
(
A4

)
− Q

(
A1

)|
|
|
=
|
|||
G
(0.526, −1.338)

0.348
− G

(−0.336, −1.988)

−1.192

|
|
|
|

= G
(0.862, 3.326)

0.845
.

Table 8  Overall priority of criteria

Criteria Normalized G– Number Rank-

ing of 

Criteria

C1 G
0.2073,0.2020

0.1814
4

C2 G
0.2079,0.2022

0.2211
3

C3 G
0.2622,0.2392

0.2472
1

C4 G
0.2108,0.2115

0.1904
2

C5 G
0.1119,0.1451

0.1599
5

Table 9  Decision matrix (Dp) as per heterogeneous data for experts 

Ep(p = 1, 2, 3)

Table 10  Aggregated 

G-number-based alternative 

decision matrix
L̂ =

�
lij
�

4×5
=

⎡⎢⎢⎢⎢⎣

G
(6.333, 1.333)

2.000
G

(4.667, 0.667)

1.000
G

(3.667, 1.333)

1.667
G

(4.333, 1.000)

1.333
G

(3.000, 0.667)

1.000

G
(5.000, 1.333)

2.000
G

(4.000, 0.667)

1.000
G

(6.667, 1.333)

1.667
G

(3.667, 1.000)

1.333
G

(7.000, 0.667)

1.000

G
(6.000, 1.333)

2.000
G

(5.667, 0.667)

1.000
G

(6.000, 1.333)

1.667
G

(5.333, 1.000)

1.333
G

(5.333, 0.667)

1.000

G
(5.000, 1.333)

2.000
G

(6.000, 0.667)

1.000
G

(5.333, 1.333)

1.667
G

(5.000, 1.000)

1.333
G

(3.667, 0.667)

1.000

⎤⎥⎥⎥⎥⎦

Table 11  Best and worst values 

of criteria Cj(j = 1, 2, ..., 5)
Cj f ∗

j
f −
j

C1 G
(5.000,1.333)

2.000
G

(6.333,1.333)

2.000

C2 G
(4.000,1.333)

1.000
G

(6.000,0.667)

1.000

C3 G
(3.667,1.333)

1.667
G

(6.667,1.333)

1.500

C4 G
(3.667,1.000)

1.333
G

(5.333,1.000)

1.333

C5 G
(3.000,0.667)

1.000
G

(7.000,0.667)

1.000
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(d.) Acceptable stability

Alternative A
1
 also best ranked by 

S
i

and R
i(i = 1, 2, ..., 4) (Table  12), thus condition (b) is 

also satisfied.

9  Result discussion

The proposed methodology is applied in prioritizing risk 

responses A
i
(i = 1, 2, ..., 4) to manage green supply chain 

risks Cj (j = 1, 2, ..., 5) taking an Indian plastic manufac-

turering company XYZ as a case study. The result of the 

MCDM analysis (Table  12) suggested the following with 

respect to risk response alternatives:

•	 Improved forecasting 
(

A
1

)

 and well-designed reverse 

logistics system 
(

A
4

)

 better respond to green supply 

chain risk (GSC) in view of other two risk response 

strategies.

Besides the selection problem, the result in Table  8 

also indicates the dominance of risks criteria, in order of 

importance.

•	 Product recovery risk 
(

C
3

)

 has the maximum criteria 

weight followed by financial risk 
(

C
4

)

 and supply risk 
(

C
2

)

. The criteria, namely, operational risk 
(

C
1

)

 and 

Taking m = 4 (no. of alternatives), we have

|DQ| =
|
|
|
|

1

(m − 1)

|
|
|
|
=
|
|
|
|
G
(1, 0)

0
÷ G

(3, 0)

0

|
|
|
|
= G

(0.333, 0)

0
.

demand risk 
(

C
5

)

, has a very low risk compared to oth-

ers.

•	 In the present decade, the carbon footprint in the total 

set of greenhouse gas emissions (caused directly and 

indirectly by individuals and organization) is mainly 

due to the transportation and design patterns of the 

products, the reflection of which shown in the weight of 

criteria (Table 8).

To measure the influence of experts’ to the final rank-

ing of risk response to green supply chain risks, a sensitiv-

ity analysis is conducted through altering the values of v, 

which is shown in Table 13.

•	 The results show that the risk response alternative, 

namely, Improved forecasting 
(

A
1

)

, has a maximum pri-

ority in all situations with ranks of other alternatives 

A
i
(i = 2, 3, 4) changing, as per change in values of v 

from (v = 0) to (v = 1) (Fig. 5).

•	 That is, the risk response alternatives multiple supplier 

policy (A2), flexibility in operational level (A3), and well-

designed reverse logistics system (A4) are dependent on 

the green supply risks preferences of decision makers.

The main attention is paid to check the stability and validity 

in ranking of the GSC risk-based criteria Cj (j = 1, 2, ..., 5) 

and risk response alternatives A
i
(i = 1, 2, ..., 4), established 

by Granular-AHP and Granular-VIKOR in Tables 8 and 12, 

respectively.

•	 First, the ranking of criteria weights by the granular AHP 

(G-AHP) (Alsawy and Hefny 2013b) is compared with 

that done by existing MCDM methods viz. crisp AHP 

Table 12  Values of 

Si , Ri, Qi for all alternatives 

A
i
(i = 1, 2, ..., 4)

(Ai) Si Rank Ri Rank Qi Rank

A1 G
(−0.249,−0.423)

0.300
1 G

(−0.026,−0.224)

0.277
1 G

(−0.336,−1.988)

−1.192
1

A2 G
(−0.090,−0.419)

−0.682
2 G

(0.210,0.398)

0.143
4 G

(0.576,−1.321)

−0.407
3

A3 G
(0.084,−0.233)

−0.220
4 G

(0.158,0.247)

0.477
3 G

(1.074,−0.846)

1.613
4

A4 G
(−0.045,−0.343)

−0.395
3 G

(0.105,0.227)

0.410
2 G

(0.526,−1.338)

0.348
2

Table 13  Sensitivity analysis 

of ranking in alternatives taking 

changing values of v

Alternative v = 0 v = 0.1 v = 0.2 v = 0.3 v = 0.4 v = 0.5 v = 0.6 v = 0.7 v = 0.8 v = 0.9 v = 1.0

A1 1 1 1 1 1 1 1 1 1 1 1

A2 4 4 4 3 3 3 3 3 2 2 2

A3 3 3 3 4 4 4 4 4 4 4 4

A4 2 2 2 2 2 2 2 2 3 3 3
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(Sokri et  al. 2013), Grey AHP (Sahoo et  al. 2016) and 

Rough AHP (Zhu et al. 2015a), detailed in Table 14.

•	 Based on the criteria weights in Table  14, the ranking 

of alternatives by proposed Granular-VIKOR method 

is compared with Crisp VIKOR (Sokri et  al. 2013), 

Grey VIKOR (Celikbilek and Tuysuz 2016), and Rough 

VIKOR (Zhu et al. 2015b), as shown in Table 15.

•	 The same uncertain numbers are taken for ranking crite-

ria weights and alternatives via. (G-AHP with G-VIKOR), 

(Crisp AHP with Crisp VIKOR), (Grey AHP with Grey 

VIKOR), and (Rough AHP with Rough VIKOR).

•	 Here, decision makers (DMs) take into account both 

group utility and individual regret and let parameter 

v = 0.5. When the DMs are more concerned about group 

utility, we let parameter 0.5 < v ≤ 1, and for individual 

regret, 0 ≤ v ≤ 1 is used. Here, we take v = 0.5.

•	 Based on the ranking results obtained in Tables 14 and 15, 

two comparative ranking analyses are performed in this 

section (Tables 16, 17) by calculating the Spearman’s cor-

relation coefficient 
(

r
s

)

 relations (Ghorabaee et al. 2016) 

among the ranking order of variables.

•	 The value of 
(

r
s

)

 is more when the ranking obtained from 

various methods are almost the same. Since the value of 

correlation coefficient 
(

r
s

)

 obtained is equal or greater 

than 0.8 (threshold value), the relationship between varia-

bles is very strong, which confirms the validity and stabil-

ity of the ranking results for both of G-AHP (in Table 14) 

and Grey VIKOR (in Table 15).

Thus, the proposed method can effectively reflect the 

decision makers’ true perception and enhance the objectiv-

ity of decision-making for GSC risk responses. The num-

ber of criteria and alternatives in the proposed model are 

flexible, and firms can select them at will to suit their own 

decision-making circumstances and demands.

10  Concluding remarks

The information in decision-making problems is often 

found in diverse types of attributes, the values of which also 

happen to be imprecise. We are of the view that it is more 

appropriate to deal with such attributes in multiple for-

mats. To this effect, we first developed an evaluation frame-

work for assessing heterogeneous information in different 

domains and scales using experts’ judgments. Next, differ-

ent granular number transformation functions are applied 

to transform the value stored in several attributes into a 

0

1

2

3

4

5

V=0 V=0 . 1 V=0 . 2 V=0 . 3 V=0 . 4 V=0 . 5 V=0 . 6 V=0 . 7 V=0 . 8 V=0 . 9 V=1 . 0

A1 A2 A3 A4

Fig. 5  Effect of changing of values of v on ranking of alternatives

Table 14  Ranking results of 

G-AHP with other uncertain-

based AHP methods

Risk criteria G-AHP Alwasy and 

Hefny (2013b)

Crisp AHP Sokri 

et al. (2013)

Grey AHP Sahoo 

et al. (2016)

Rough AHP 

Zhu et al. 

(2015b)

Operational risks (C1) 4 4 3 3

Supply risks (C2) 3 3 4 4

Product recovery risk (C2) 1 1 1 1

Fina t al ncial risk (C3) 2 2 2 2

Demand risks (C5) 5 3 5 5

Table 15  Ranking results of 

G-VIKOR with other existing 

MCDM methods

Alternative risk 

responses

G-VIKOR* (Pro-

posed method)

Crisp VIKOR Sokri 

et al. (2013)

Grey VIKOR Celikbilek 

and Tuysuz (2016)

Rough VIKOR 

Zhu et al. 

(2015b)

Ai Qi(v = 0.5) Qi(v = 0.5) Qi(v = 0.5) Qi(v = 0.5)

A1 1 1 1 1

A2 3 3 3 2

A3 4 4 4 4

A4 2 2 2 3
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common format. In this paper, we proposed a G-number-

based fusion method, combining the heterogeneous formats 

of subjective and numerical information, expressed on any 

scale and in any domain without any loss of information 

and under imprecise conditions.

In multi-criteria decision-making, we combine G-num-

ber with the AHP-VIKOR model in the heterogeneous 

formats of attribute values viz. crisp, fuzzy, interval and 

rough numbers, all the while assuming rational behaviour 

on part of the decision makers (DMs). The proposed model 

is effective and efficient for GSC risk prioritization and 

evaluation of the responses to risks. The main advantage 

of the proposed method is that it is capable of solving the 

MCDM problems in  situations, where the criteria values, 

represented by the granular numbers, and the behaviour 

factor of the DMs are taken into account at the same time. 

Furthermore, the proposed method can adjust the parame-

ter values according to the risk attitude of the DMs and the 

actual need, and this no doubt furthers the flexibility and 

reliability of decision processes. This green initiative in the 

supply chain due to clear logic and simple computational 

procedure gives the DM’s yet another choice of methodol-

ogy for solving the hybrid MADM problem.

In recent year’s problems, GSCM can be used to explore 

the methods that will determine carbon footprint amongst 

the total set of greenhouse gas emissions and water-related 

risks involved with green supplier selection that are caused 

directly and indirectly by individuals, organizations, or 

events. To solve the uncertainty of a human subjective 

judgment, other concepts, such as grey set theory (Deng 

1989), soft set theory (Molodtsov 1999), shadowed set 

theory (Pedrycz 1998), D number (Deng 2012), Z number 

(Zadeh 2011), and Hesitant set (Zhu et  al. 2016), can be 

transformed accordingly and used as such, with the opera-

tions being comparable with existing results. In addition, 

incomplete information models can be further explored in 

which weights are attached to alternatives, experts, criteria, 

and so on that change dynamically over the time.
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