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Abstract. Using the Fenchel-Eggleston theorem for convex hulls (an extension of the
Caratheodory theorem), we prove that any likelihood can be maximized by either a dark
matter 1- speed distribution F (v) in Earth’s frame or 2- Galactic velocity distribution fgal(~u),
consisting of a sum of delta functions. The former case applies only to time-averaged rate
measurements and the maximum number of delta functions is (N − 1), where N is the total
number of data entries. The second case applies to any harmonic expansion coefficient of the
time-dependent rate and the maximum number of terms is N . Using time-averaged rates,
the aforementioned form of F (v) results in a piecewise constant unmodulated halo function
η̃0BF (vmin) (which is an integral of the speed distribution) with at most (N − 1) downward
steps. The authors had previously proven this result for likelihoods comprised of at least
one extended likelihood, and found the best-fit halo function to be unique. This uniqueness,
however, cannot be guaranteed in the more general analysis applied to arbitrary likelihoods.
Thus we introduce a method for determining whether there exists a unique best-fit halo
function, and provide a procedure for constructing either a pointwise confidence band, if
the best-fit halo function is unique, or a degeneracy band, if it is not. Using measurements
of modulation amplitudes, the aforementioned form of fgal(~u), which is a sum of Galactic
streams, yields a periodic time-dependent halo function η̃BF (vmin, t) which at any fixed time
is a piecewise constant function of vmin with at most N downward steps. In this case, we
explain how to construct pointwise confidence and degeneracy bands from the time-averaged
halo function. Finally, we show that requiring an isotropic Galactic velocity distribution
leads to a Galactic speed distribution F (u) that is once again a sum of delta functions,
and produces a time-dependent η̃BF (vmin, t) function (and a time-averaged η̃0BF (vmin)) that
is piecewise linear, differing significantly from best-fit halo functions obtained without the
assumption of isotropy.
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1 Introduction

The non-gravitational interactions of the most dominant form of matter in the Universe, the
dark matter (DM), remain elusive to-date. Weakly interacting massive particles (WIMP’s)
are among the most studied DM particle candidates, in part because they commonly appear
in extensions of the Standard Model.

WIMPs are being searched for in different ways. Direct DM detection experiments
attempt to measure the recoil energy of nuclei after they collide with WIMPs in the Galactic
dark halo. The current status of DM direct detection experiments remains ambiguous, with
a few experiments having claimed a potential DM signal [1–7] and all others reporting upper
bounds, some of which appear to be in irreconcilable conflict with the putative detection
claims for nearly all particle candidates [8–31]

There are three main elements of the predicted rate in any direct DM experiment: the
detector response, the DM particle model, and the local characteristics of the dark halo
model. The uncertainties associated with these inputs can significantly affect the expected
recoil spectrum (both in shape and magnitude) for a particular experiment, as well as the
observed compatibility between different experimental data.

There are two different methods for comparing the results of different direct DM exper-
iments. In the halo-dependent method, used since the inception of direct detection in the
1980’s, it is necessary to model the local DM density and velocity distribution. But there
are large uncertainties in the local characteristics of the Galactic halo, and in trying to cir-
cumvent them, a halo-independent data comparison method has recently been developed in
which no model for the dark halo is assumed. These methods infer properties of the local halo
from different direct detection data sets for a fixed DM particle model, and then compare
these inferred halo characteristics to determine the compatibility of the data sets. Finding
that different putative signals are compatible under the assumption of some particular DM
particle models and not others, in a halo-independent manner that avoids all astrophysical
uncertainties, would constitute a clear indication of the characteristics of the DM that could
produce the signals 1.

In the halo-independent data analysis, putative measurements and bounds on the nu-
clear recoil rate are translated into measurements and bounds on a function common to all
direct detection experiments that we call the halo function η̃(vmin, t). This function, up to a
multiplicative constant, is the average of the inverse speed over all DM particle speeds larger
than some minimum value vmin. It is a periodic function of time due to Earth’s rotation
around the Sun. This periodic function contains all of the dependence of the predicted rate
on the halo model (see e.g. [32–59]).

Early halo-independent analyses were limited in the way they handled putative sig-
nals. Only weighted averages on vmin intervals of the unmodulated component of η̃(vmin, t),
η̃0(vmin), and of the amplitude of the annually modulated component, η̃1(vmin), (see Eq. (2.19)
below) were plotted against upper bounds in vmin − η̃ plane (see e.g. [32, 34, 35, 40]). Com-

1Our halo-independent approach differs from others, sometimes called (halo) model-independent, which
try to mitigate the impact of astrophysical uncertainties on the reconstruction of particle physics properties
by assuming a particular parameterization of the DM velocity or speed distribution (e.g. taking the log of
the speed distribution to be an expansion in Legendre or Chebyshev polynomails), see e.g. [60–62]. In these
methods the halo and the particle model parameters are fit together using the data. We instead do not assume
any functional parameterization of the DM speed or velocity distribution (its form is imposed by the theorems
we use), and we do not fit DM particle parameters (we assume a particular DM model for each data analysis
we perform).
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paring weighted averages with upper limits at a particular confidence level (CL) does not
allow for a statistically meaningful assessment of compatibility or incompatibility of different
data sets. It requires a by-eye interpretation of the compatibility of putative signals and
with null searches (an in principle comparisons between different putative signals), and thus
only qualitative and statistically ambiguous statements can be made regarding the viability
of potential detections.

Recently, halo-independent analyses have been developed that provide a clear statistical
meaning to time-averaged measurements of the rate. Using extended likelihoods Refs. [44, 63]
(or using global likelihoods containing at most an extended likelihood Ref. [64]) have shown
how to determine the unique best-fit η̃0BF (vmin) function and construct a two-sided pointwise
confidence band in the vmin− η̃0 plane, at any chosen CL [63, 64]. In this way, upper bounds
at a particular CL can be compared to a confidence band at a particular CL to assess if they
are compatible (see [63] for a discussion). However, until now, this procedure was strongly
limited by the fact that it could not be applied to exclusively binned data or to measurements
of modulation amplitudes. In this paper we address these limitations.

In this paper we use theorems that apply to convex hulls to generalize to arbitrary
likelihoods the formalism for identifying the best-fit halo function and constructing two-
sided pointwise confidence bands. This work thus presents a clear formalism that allows for
unambiguous statistical statements regarding the compatibility of putative and null signals
at any chosen confidence level, removing all caveats that limited the methods presented
in [44, 63, 64].

The mathematical background we use is also the basis of the formalism in [58], and also
similar to a lesser degree to that of [65], although the language, methods and purposes of
these papers are quite different (see Sec. 4).

In Sec. 2 we review the halo-independent formalism previously developed in [63, 64], in
which the predicted rate is written as the convolution of a (DM particle model and detector
dependent) response function and the speed distribution (readers familiar with [63, 64] may
wish to skip this section).

In Sec. 3 we explicitly write the likelihoods, and show that they depend on the halo
model only through the predicted rates. In Sec. 4, we show that the predicted rates form the
convex hull of the response functions, we make use of the Fenchel-Eggleston [66, 67] theorem
(an extension of the Caratheodory theorem [68]) to write the time-averages rates in terms of
a DM speed distribution function in Earth’s frame F (v) that consists of a sum of at most
(N −1) delta functions in speed, where N is the total number of data entries (see Eq. (4.4)).
Since the likelihoods can always be maximized for a particular set of predicted rates, the
maximum of any likelihood can be always found with a speed distribution of this form. This
implies that the time-averaged best-fit halo function η̃0BF (vmin), which is an integral over
the speed distribution, is piecewise constant with at most (N − 1) downward steps. This
procedure reproduces the results previously obtained in [63, 64] for analyses that contain
at least one extended likelihood, and extends the result to any other likelihood depending
only on unmodulated rates. There is, however, one caveat: using extended likelihoods the
best-fit η̃ is guaranteed to be unique, while for likelihoods depending only on binned data,
e.g. Poisson or Gaussian, the best-fit function may or may not be unique. The method for
identifying the best-fit halo function η̃0BF and determining if it is unique is the subject of
Sec. 5.

Sec. 6 contains a procedure for deriving pointwise confidence bands, if η̃0BF is unique,
and a method for identifying the parameter space spanned by all degenerate best-fit halo
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functions (which we refer to as degeneracy band), if η̃0BF is not unique. In Sec. 7 we provide
examples of the aforementioned methods using mock data. In Sec. 8 we show how to extend
the formalism presented in the previous sections, based on the use of the Fenchel-Eggleston
theorem, to all coefficients of a harmonic expansion of the time-dependent rate. We finish
with a brief summary in Sec. 9.

2 Our Halo-independent formalism

In this section we introduce the necessary formalism that will be used in the following sections.
The primary purpose is to write the expected rate in a direct detection experiment as the
convolution of a DM particle model and detector dependent response function and the DM
velocity or speed distribution.

We begin with the calculation of the scattering rate for a generic DM candidate and a
generic direct detection experiment. The differential recoil rate per unit of detector mass as
a function of nuclear recoil energy ER for WIMPs of mass m scattering off a target nuclide
T of mass mT , in a particular experiment is given by

dRT

dER
=

ρ

m

CT

mT

∫

v>vmin(ER)
d3 v f(v, t) v

dσT
dER

(ER,v) , (2.1)

where CT is the mass fraction of the nuclide T in a detector, thus CT /mT is the number
a target nuclides T unit of detector mass, ρ and f(v, t) are the local DM density velocity
distribution in Earth’s frame and dσT /dER is the WIMP-nuclide differential cross section in
the lab frame. f(v, t) is a function of time t due to the rotation of the Earth around the Sun.
When the detector includes multiple target elements or nuclides T , the differential rate is a
sum over all of them

dR

dER
=
∑

T

dRT

dER
. (2.2)

In some particle models the DM particle scatters to a different particle of mass m′ =
m + δ, so that the DM-nucleus scattering is inelastic. If δ > 0 the scattering is endothermic
and if δ < 0 it is exothermic. In elastic scattering δ = 0. With |δ| ≪ m and µT |δ|/m2 ≪ 1,
vmin(ER) is given by

vmin(ER) =
1√

2mTER

∣

∣

∣

∣

mTER

µT
+ δ

∣

∣

∣

∣

. (2.3)

Here µT is the reduced mass of the WIMP-nucleus system. From Eq. (2.3) one obtains the
range of possible recoil energies that can be imparted to a target nucleus by a DM particle
traveling at speed v in Earth’s frame, ET,−

R (v) < ER < ET,+
R (v), where

ET,±
R (v) =

µ2
T v

2

2mT

(

1 ±
√

1 − 2δ

µT v2

)2

. (2.4)

Eq. (2.4) shows that for endothermic scattering, δ > 0, there exists a nontrivial kinematic
endpoint in DM speed

vTδ =
√

2δ/µT , (2.5)

such a DM particle interacting with initial v < vTδ cannot induce a nuclear recoil (because
there is not enough energy in the collision to produce the final DM particle with larger mass).
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When multiple target nuclides are present in a detector, we use vδ to denote the smallest of
all vTδ for all T in the detector. For exothermic and elastic scattering vδ = 0 and WIMPs
reaching the detector with any speed can always produce a nuclear recoil when they interact
within the detector.

Only for elastic scattering off a single target nuclide is the relation between vmin and
the recoil energy ER unique. In all other scenarios, one needs to choose wether to treat
one or the other as the independent variable. If ER is considered the independent variable,
then vmin is the minimum speed necessary for the incoming DM particle to impart a nuclear
recoil ER to the target nucleus and, thus it depends on the target nuclide T through its
mass mT , vTmin = vmin(ER,mT ,m). This has been the more common approach in early halo-
independent analysis papers (see e.g. [32, 34, 37]). Alternatively, one can choose to treat vmin

as the independent variable, in which case ET
R is understood to be the extremum recoil energy

(the maximum for elastic scattering, and either the maximum or the minimum for inelastic
scattering) that can be imparted to a target nuclide T by an incoming WIMP traveling with
speed v = vmin. In this case the recoil energy depends on the target nuclide. Here, we treat
vmin as an independent variable, because this choice allows us to account for any isotopic
target composition by summing terms dependent on ET

R(vmin) over target nuclides T , for any
fixed detected energy E′.

Experiments do not actually measure the recoil energy of a target nucleus, but rather
a proxy for the recoil energy that we call E′ (e.g. the number of photoelectrons detected in
a photomultiplier tube or some amount of ionization). The predicted measured differential
rate as a function of the detected energy E′ involves a convolution of the differential recoil
rate with the efficiency function ǫ(ER, E

′) and the energy resolution function GT (ER, E
′) of

the experiment, which together give the probability that a detected recoil energy E′ resulted
from a true recoil energy ER, namely

dR

dE′
=
∑

T

∫ ∞

0
dER ǫ(ER, E

′)GT (ER, E
′)

dRT

dER
. (2.6)

We will now show that the predicted measured scattering rate can be expressed in terms
of a convolution of two functions, one containing the astrophysical dependence and the other,
which we call “response function”, containing the information on the DM particle physics
and the detector response. Changing the order of integration in Eq. (2.6), the differential
rate in detected energy can be written as

dR

dE′
=

σrefρ

m

∫

d3v
f(v, t)

v

dH
dE′

(E′,v) , (2.7)

where we used a DM particle candidate and experiment dependent differential response
function defined as

dH
dE′

≡
∑

T

dHT

dE′
,

dHT

dE′
(E′,v) ≡











CT

mT

∫ E
T,+
R

E
T,−
R

dERǫ(ER, E
′)GT (ER, E

′)
v2

σref

dσT
dER

(ER,v) if v > vTδ ,

0 if v < vTδ .

(2.8)

Restricting ourselves to differential cross sections that only depend on the speed v = |v| of
the incoming WIMP, the response function in Eq. (2.8) is only a function of the speed v.

– 5 –



This occurs when the detector is isotropic and when the incoming WIMPs and target nuclei
are unpolarized, as is most common. The parameter σref in Eq. (2.7) and Eq. (2.8), is a
factor extracted from the cross section to parametrize the overall strength of the interaction.
For example, in the differential cross section for the usual spin independent (SI) interaction,

dσSI
T

dER
(ER, v) = σp

µ2
T

µ2
p

[ZT + (AT − ZT )(fn/fp)]
2 F 2

T (ER)

2µ2
T v

2/mT

, (2.9)

the usual choice is σref = σp, where σp is the WIMP-proton cross section. In Eq. (2.9) the
factors AT and ZT are the atomic and charge numbers of nuclide T , fn and fp are the neutron
and proton couplings, and FT (ER) is the form factor normalized to FT (0) = 1 (in this case
the Helm form factor).

Notice that writing the expected rate in Eq. (2.7) the halo model dependent quantities ρ
and f(v, t) are separated from the particle physics and detector-dependent response function
H. Using the speed distribution F (v, t) ≡ v2

∫

dΩvf(v, t), which is normalized to 1, i.e.

∫ ∞

0
dv F (v, t) = 1, (2.10)

the rate in Eq. (2.7) can also be written as

dR

dE′
=

σrefρ

m

∫ ∞

0
dv

F (v, t)

v

dH
dE′

(v). (2.11)

Integrating over a particular detected energy range (E′
1, E

′
2) we obtain the integrated rate

R[E′
1,E

′
2]

=
σrefρ

m

∫ ∞

0
dv

F (v, t)

v
H[E′

1,E
′
2]

(v) (2.12)

where

H[E′
1,E

′
2]

(v) =

∫ E′
2

E′
1

dE′ dH
dE′

(v). (2.13)

We can also use the halo function η̃(vmin, t) defined as

η̃(vmin, t) ≡
ρσref
m

∫ ∞

vmin

dv
F (v, t)

v
, (2.14)

to express the differential observed rate as

dR

dE′
=

∫ ∞

0
dvmin η̃(vmin, t)

dR
dE′

(E′, vmin) , (2.15)

using a different differential response function dR/dE′ which we introduce here to make
contact with the formalism we used in previous papers, e.g. [35, 63, 64]. This DM particle
model and detector dependent differential response function for η̃(vmin, t) is related to the
previously defined differential response function for f(v, t)/v defined in Eq. (2.8) by

dR
dE′

(E′, vmin) ≡ ∂

∂vmin

[

dH
dE′

(E′, vmin)

]

. (2.16)
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Now the energy integrated rate in Eq. (2.12) can alternatively be written as

R[E′
1,E

′
2]

=

∫ ∞

0
dvmin η̃(vmin, t)R[E′

1,E
′
2]

(vmin) , (2.17)

using the energy-integrated R[E′
1,E

′
2]

(vmin) response function for η̃(vmin, t)

R[E′
1,E

′
2]

(vmin) =

∫ E′
2

E′
1

dE′ dR
dE′

(E′, vmin) . (2.18)

We can now make a harmonic expansion of the halo function η̃(vmin, t), which is a
function of time due to the rotation of Earth around the Sun

η̃(vmin, t) ≃ η̃0(vmin) + η̃1(vmin) cos(2π(t− t0)/year) + . . . . (2.19)

Note that using Eq. (2.14) this is equivalent to an expansion of the speed distribution, i.e.

F (v, t) ≃ F 0(v) + F 1(v) cos(2π(t− t0)/year) + . . . , (2.20)

which subsequently results in a harmonic expansion of the integrated rate, with expansion
coefficients Ra (a = 0, 1, 2 . . . ) given by

Ra
[E′

1,E
′
2]

=

∫ ∞

0
dvmin η̃

a(vmin)R[E′
1,E

′
2]

(vmin) . (2.21)

or

Ra
[E′

1,E
′
2]

=
σrefρ

m

∫ ∞

0
dv

F a(v)

v
H[E′

1,E
′
2]

(v) . (2.22)

Eq. (2.22) will be used extensively in the discussion that follows.
The halo-independent anlaysis is carried out for a fixed dark matter particle model,

including a fixed dark matter mass. This dependence enters into both the response functions
and the relation between vmin and the recoil energy depend on the dark matter particle model
(including the dark matter particle mass).

In the following Secs. 3 to 7 we consider only unmodulated a = 0 components of the
rates, F (v) and η̃(v) functions although we drop the a = 0 upper index everywhere for
convenience

3 The Likelihood

We will generalize here the formalism for the construction of halo-independent confidence
bands using an extended likelihood function, developed in [44, 63, 64] to any likelihood
function. Namely we will be able to work with any type of unmodulated rate datasets
(i.e. removing the necessity for unbinned data).

Let us start by clarifying why the formalism of [44, 63, 64] required an extended like-
lihood. The condition of having a non-increasing halo function was implemented using the
Karush-Kuhn-Tucker (KKT) conditions. As shown in [63], one of these conditions implies
that the halo function that maximized the likelihood must be constant except where the KKT
multiplier is zero. With an extended likelihood, the KKT multiplier has only a finite number
of isolated zeros [63], thus the halo function is piecewise constant with a finite number of
downward steps. The maximum number of isolated zeroes of the KKT multiplier (and thus
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the number of downward steps of the halo function) is the number of observed events. For
a Poisson or Gaussian likelihood (which instead use binned data), one can easily show that
the KKT multiplier can have extended zeroes, in which case the shape of the best-fit halo
function is not determined by the KKT conditions. Without knowing the functional form of
the best-fit halo function, one can only rely on purely numerical methods in which η̃(vmin)
is approximated by a discretization with a very large number of bins to find the best fit
function (see e.g. [49]), however constructing the confidence band, which has not been done
for binned, with this procedure quickly becomes numerically taxing. In Sec. 4 we will prove
that it is always possible to maximize any likelihood with a piecewise constant halo function
with a maximum number of steps related to the total number of data entries, although this
function may or may not be unique.

We begin by emphasizing that any likelihood depends on the halo model only through
the predicted rates. For experiments with binned data, denoted with the index α, α =
1, . . . , nbinned, one usually uses either a Poisson likelihood

Lα[η̃] =

Nbin−α
∏

j=1

(ναj [η̃] + bαj)
nαj

nαj !
exp[−(ναj [η̃] + bαj)], (3.1)

or a Gaussian likelihood

Lα[η̃] =

Nbin−α
∏

j=1

1

σαj
√

2π
exp[−(ναj [η̃] + bαj − nαj)

2/σ2
αj ], (3.2)

where ναj [η̃] is the number of events predicted in the bin j of experiment α, i.e.

ναj [η̃] = (MT )αRαj [η̃] , (3.3)

Rαj is the integrated predicted rate in the same bin, and (MT )α is the exposure of the
experiment α.

For experiments with unbinned data, denoted here with the index β, β = 1, 2, . . . , nunbinned,
one can use an extended likelihood,

Lβ [η̃] = e−νβ [η̃]

NOβ
∏

j=1

(MT )β

(

dRβ

dE′
[η̃] +

dRβb

dE′

)
∣

∣

∣

∣

E′=E′
j

, (3.4)

where dRβ/dE′ is the predicted differential rate, dRβb/dE′ is the background differential
rate, NOβ is the total number of observed events, and νβ is the total number of expected
events, i.e.

νβ [η̃] = (MT )β(Rβ [η̃])total , (3.5)

which depends on the exposure (MT )β of the experiment β and the total energy integrated
rate (Rβ)total predicted for experiment β.

It is clear from the previous equations of this section that the likelihoods depend on the
halo model only through the differential or integrated expected rates.

We will prove in the next section that all predicted unmodulated rates can be written
in terms of a speed distribution F (v) consisting of a sum of a finite number of delta functions
in speed v. Thus we will always be able to maximize any likelihood using this functional
form for F (v).
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For convenience, let us define a different functional of η̃ (and thus a functional also of
F (v)), the −2 log-likelihood functional

L[η̃] = −2 lnL[η̃]. (3.6)

With this definition, maximizing the likelihood is equivalent to minimizing L.

4 F (v) given as a sum of delta functions in speed

We will work in a vector space of dimension N in which each vector ~R has as components a
complete set of possible predicted rates {Rk}; these could be: (i) energy integrated rates in
bins i = 1, 2, . . . , Nbin−α of experiments α = 1, 2, . . . , nbinned, i.e.

Rk ≡ Rαi =
(ρσref

m

)

∫ ∞

0
dv Hαi(v)

F (v)

v
, (4.1)

(ii) a differential rate for the event with observed energy E′
j , j = 1, 2, . . . , NOβ of experiments

β = 1, 2, . . . , nunbinned, i.e.

Rk ≡ Rαi = ∆E′ dRβ

dE′

∣

∣

∣

∣

E′=E′
j

= ∆E′
(ρσref

m

)

∫ ∞

0
dv

dHαi(v)

dE′

∣

∣

∣

∣

E′=E′
j

F (v)

v
, (4.2)

or (iii) the total predicted rate over the whole energy interval of an experiment with unbinned
data, i.e.

Rk ≡ (Rβ)total =
(ρσref

m

)

∫ ∞

0
dv Hβ(v)

F (v)

v
. (4.3)

Here we multiply the differential rate by a fixed energy, e.g. ∆E′ = 1 keV, so that all
components Rk have the same dimension and can thus be summed (as we will do later in
this section).

Therefore, each rate vector ~R = (R1, R2, . . . , RN ) has N components, where N is total
number of rate data points

N =

nbinned
∑

α=1

Nbin−α +

nunbinned
∑

β=1

(NOβ + 1). (4.4)

The factor (ρσref/m) = C is a constant factor common to all components of a rate vector.
Notice that CF (v) incorporates all the rate dependence on the halo model. Let us define also
the vector ~H whose components are either (see Eq. (4.1))

Hk(v) = Hαi(v) (4.5)

(see Eq. (4.1)), or

Hk(v) = ∆E′ dHαi(v)

dE′

∣

∣

∣

∣

E′=E′
j

(4.6)

(see Eq. (4.2)), or
Hk(v) = Hβ(v) (4.7)
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(see Eq. (4.3)). Thus we can write

~R = C
∫ ∞

0
dv

~H(v)

v
F (v). (4.8)

Let us now define a convex hull of the rate vectors. Within the vector space of rate
vectors ~R we can define the convex hull of any finite set of K vectors, which are called
generating vectors (i.e. those vectors that generate the hull) denoted here with a superscript
(j), ~R(j), j = 1, 2, . . . ,K. The convex hull of this set of generating vectors is the set of all
vectors ~R which are a convex combination of the generating vectors, i.e. a linear combination
with non-negative real coefficients λj which sum to 1. In other words, the convex hull contains

all vectors ~R =
∑K

j=1 λj
~R(j) with λj real and λj ≥ 0, and with

∑K
j=1 λj = 1. The dimension

d of the convex hull is d ≤ N . For example, the hull of 3-dimensional generating vectors
contained on a plane is a surface, i.e. has dimension d = 2 (see Fig. 6 for examples).

Instead of choosing a discrete set of K vectors ~R(j) to define the hull, we start with a
continuous line of vectors C ~H(v)/v with a continuous non-negative label v (the speed). All
vectors ~R in the hull are given in Eq. (4.8) as a convex combination, which is an integration
in this case, i.e. a linear combination of C ~H(v)/v with real non-negative coefficients F (v)
normalized to 1 (

∫∞
0 F (v)dv = 1, as it corresponds to the speed distribution). Passing from

a discrete to a continuous set of generating vectors, and thus using an integral representation
of the vectors in a convex hull, as in Eq. (4.8), is justified by the Choquet theorem [69].

By identifying the rate vectors as elements of a convex hull, we can now use well-
established mathematical theorems. The Caratheodory theorem (see Appendix A.1) says
that any vector ~R in the convex hull of dimension d of a generating set of vectors belongs to
the convex hull of at most (d + 1) of the generating vectors, i.e. any ~R can be written as the
convex combination of at most (d + 1) generating vectors.

The Caratheodory theorem applies to the convex hull of any set of generating vec-
tors. However, when the generating vectors are a connected set, as is our case, the Fenchel-
Eggleston theorem (see Appendix A.2) reduces the maximum number of required generating
vectors. Thus, any vector ~R defined by Eq. (4.8) can be written as a linear combination of
only at most d of the generating vectors, namely C ~H(vh)/vh with h = 1, 2, . . . , d where d is
the dimension of the convex hull. Thus

~R =

d
∑

h=1

C ~H(vh)

vh
Fh (4.9)

with real non-negative coefficients Fh such that

d
∑

h=1

Fh = 1. (4.10)

Notice that this is equivalent to saying that for a particular DM particle candidate and
detector, any rate can be written in terms of a speed distribution consisting of a sum of at
most d delta functions in speed

F (v) =
d
∑

h=1

Fhδ(v − vh). (4.11)
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Notice that the normalization condition Eq. (2.10) on the speed distribution F (v) coincides
with the condition given in Eq. (4.10).

So far we have worked with rate vectors ~R of dimension N , and thus the dimension of
the convex hull we define is d ≤ N . However, because all physically meaningful rates are
non-negative, we can use the fact that the sum of all vector components Rk of any rate vector
~R is positive, and define the vectors

R̂ =
~R

∑N
k=1Rk

, (4.12)

which are the projections of the rate vectors ~R on to the plane

N
∑

k=1

R̂k = 1 (4.13)

with dimension (N − 1). As shown in the appendix, using the R̂ vectors the results shown
above still hold, i.e. Eq. (4.9) and Eq. (4.11) are still valid, except now d ≤ N − 1.

Thus for the purpose of finding the rates ~R that maximize the likelihood we can always
take the speed distribution F (v) as a sum of at most d = N − 1 delta function in speed
Eq. (4.11). If the likelihood includes at least one extended likelihood this result coincides
with previous findings in [64] that we expressed in terms of η̃,

η̃(vmin) = C
∫ ∞

vmin

F (v)

v
dv. (4.14)

We find again that using Eq. (4.11) η̃(vmin) is a piecewise constant non-increasing func-
tions of vmin with at most d ≤ N − 1 downward steps. It is important to note the value of
d, i.e. the maximum possible number of downward steps of the best-fit halo function, cannot
be known a priori, it is only possible to bound this number from above by N − 1. The
actual number of downward steps must be determined on a case-by-case basis by numerically
minimizing the log-likelihood starting with a piecewise constant halo function with N − 1
downward steps. This maximum step-counting agrees with our previous results of [63, 64],
where it was found that when the likelihood contains at least one extended likelihood the
best-fit η̃BF (vmin) function is of this form with the same number of maximum steps (and
we further proved that it is unique [64]), although our previous counting [64] applied to
likelihoods with exactly one extended likelihood.

An equation similar to Eq. (4.11) is also found in a recent paper using linear program-
ming techniques for halo-independent comparisons of direct and indirect DM searches [65].
The Eq.(14) of [65] is similar to our Eq. (4.11). Although it is written in terms of delta
functions in velocity, it is clear that when treating rate (not modulation) data it is the speed
distribution that is taken in [65] to be a sum of delta functions in speed, as in Eq. (4.11).
The maximum number of terms in the summation in [65] may appear to be different at a
first glance, because it is given in terms of the number of experiments (instead of data entries
as in our equation), but in [65] only one bin is used per experiment, thus the number of
experiments and the number of bins coincide. It seems clear that if more than one bin would
be used per experiment the maximum number of terms in Eq.(14) would become the total
number of bins, but it is much less clear to us how the formalism in [65] could be extended
to consider unbinned data (i.e. how to write Eqs. 11 or 12 of [65] for each single event).
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However, the major difference in the approach of [65] and ours, is that the functions to be
minimized or maximized with constraints in [65] are rates, and not the likelihood as we do.
In our language of convex hulls, [65] looks for restricted regions in the hull of all possible
rates and examines their boundaries. The purpose of both approaches is also clearly different:
in [65] the purpose if to obtain limits on the parameters defining the DM particle model. The
formalism of [65] does not attempt to produce regions of halo models compatible with data,
as we do. Thus, in spite of the connections of linear programming with the geometrical prop-
erties of convex hulls, the intent and application of the methods presented in [65] and those
of this work to analyze time-averaged rates differ significantly. Another clear difference is the
way in which the method of [65] is applied to modulation amplitude data, which will be the
subject of our Sec. 8. In this case it is the velocity distribution in the Galactic rest frame that
is written in terms of a sum of delta functions (i.e. a sum of ‘streams’ with negligible velocity
dispersion). The method in [65] is applied to account for the modulation data of DAMA,
combined with other data sets. In [65] the annual modulation amplitude of each stream is
defined as half the difference between the rate at December 1st and June 1st, however this
is not the correct definition of the annual modulation amplitude as it implicitly assumes a
sinusoidal modulation with a particular phase (namely the modulation that would be found
from the Standard Halo Model). Streams, however, very rarely produce such a modulation.
The authors of [65] are aware of this problem but do not address how to correctly analyze
measurements of the rate modulation within such an analysis. In this respect, the approach
we introduce in Sec. 8 is very different.

5 How to find η̃BF and determine if it is unique

We have proven that any likelihood can be maximized (or, equivalently, the corresponding
L functional defined in Eq. (3.6) can be minimized) using a piecewise constant η̃ function

with at most (N − 1) downward steps. Thus, we can define a function f
(N−1)
L of 2(N − 1)

variables specifying the positions and heights of the N − 1 steps, ~v = (v1, v2, . . . , vN−1)
and ~̃η = (η̃1, η̃2, . . . , η̃N−1), as a restriction of the functional L[η̃], namely replacing η̃ by a
piecewise constant function in the likelihood:

f
(N−1)
L (~v, ~̃η) ≡ L[η̃(N−1)(vmin;~v, ~̃η)]. (5.1)

The piecewise constant function η̃(N−1) is defined as

η̃(N−1)(vmin;~v, ~̃η) ≡
{

η̃a if va−1 ≤ vmin < va,

0 if vN−1 ≤ vmin,
(5.2)

where a = 1, . . . ,N − 1 and we define v0 = 0 (note that Eq. (5.2) requires the definition of
v0). Here we assume vmin and all the va’s are larger than vδ (defined here as the smallest of
all vTδ scattering thresholds for all nuclides T in all experiments included in the likelihood)
and the constraints η̃a ≤ η̃b for a > b are satisfied. Since the function η̃ cannot change after
the last step and it must reach zero for large vmin, it must be zero for vmin > vN−1. We do
not specify the value of η̃(N−1) below the minimum vδ since the event rate is independent of
it.

From these definitions, we can easily obtain η̃BF and Lmin, the minimum value of the
functional L[η̃], by finding the positions and hights of the steps ~vBF and ~̃ηBF that minimize

f
(N−1)
L , so that

η̃BF(vmin) = η̃(N−1)(vmin;~vBF, ~̃ηBF) (5.3)
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and

Lmin ≡ L[η̃BF(vmin)] = L[η̃(N−1)(vmin;~vBF, ~̃ηBF)]. (5.4)

The minimization of the function f
(N−1)
L of 2(N−1) parameters v1, . . . , vN−1, η̃1, . . . , η̃N−1,

subject to the constraints

v1 > vδ, (5.5)

vb −va ≥ 0 and η̃a − η̃b ≥ 0 for a < b, (5.6)

can be done numerically using a global minimization algorithm. In the implementation,

we express f
(N−1)
L in terms of ln η̃a, and use ln η̃a instead of η̃a as variables, since η̃a span

many orders of magnitude. This also accounts for the η̃a ≥ 0 constraints, leaving only the
constraints in Eq. (5.5) and Eq. (5.6) to be enforced in the minimization.

The authors have previously proven, in Appendix B of [64] 2, that if the likelihood
contains at least one extended likelihood the η̃BF function is unique. This proof relies on
analyzing the behavior of the function

q(vmin) =

∫ ∞

0
dv

δ(−2 lnL)

δη̃(v)
=
∑

α

qα(vmin), (5.7)

defined in Eq. (3.7) and (3.8) of [64] as

qα(vmin) ≡ 2

Nbin−α
∑

j=1

[

ναj [η̃] + bαj − nαj

ναj [η̃] + bαj

]

(MT )αHαj(vmin) (5.8)

for an experiment α using a Poisson likelihood, and

qα(vmin) ≡ 2

Nbin−α
∑

j=1

[

ναj [η̃] + bαj − nαj
j

σ2
j

]

(MT )αHαj(vmin) , (5.9)

for an experiment α using a Gaussian likelihood. Specifically, if one can show that this
function q(vmin) in Eq. (5.7) is not zero over an extended vmin interval, then the proof of [64]
still applies and the best-fit halo function is unique. Furthermore, it is argued in [64] that
solutions with exact cancellations between different bins are unphysical, and since Hαj are
strictly positive functions above some vmin value v∗αj , obtaining an extended zero over some
interval [v1, v2] requires ναj = nαj − bαj for all αj with v∗αj < v2. Note that v∗αj roughly
corresponds to the smallest value of vmin to which a particular bin αj has sensitivity. If the
above condition is not satisfied, i.e. ναj 6= nαj − bαj for all αj with v∗αj < v2, the proofs in
[64] guarantee that η̃BF is unique. We describe in the next section how one can in practice
determine if the aforementioned conditions are met.

We will show that for a likelihood exclusively comprised of Poisson or Gaussian likeli-
hoods the η̃BF function is not guaranteed to be unique.

2Notice that the proof in Appendix A.3 of [64] is not correct, because it does not take into account higher
order derivatives of the likelihood. However this was a redundant proof with another in Appendix A.1, which
is correct.
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6 Confidence and degeneracy bands

In [63, 64], we defined two-sided pointwise confidence band with the following procedure.
The halo-independent confidence band can be defined as the region filled by all possible

η̃ functions satisfying
∆L[η̃] ≡ L[η̃] − Lmin ≤ ∆L∗ , (6.1)

where Lmin is the minimum of L[η̃], and ∆L∗ corresponds to a desired confidence level (we
show below that the relevant probability distribution approaches the chi-square distribution
with one degree of freedom in the limit of large data samples). In practice, finding all η̃
functions satisfying Eq. (6.1) is not possible. Instead, let us consider the subset of η̃ functions
which minimize L[η̃] subject to the constraint of passing by a particular point (v∗, η̃∗),

η̃(v∗) = η̃∗ . (6.2)

Now let us define Lc
min(v∗, η̃∗) to be the minimum of L[η̃] subject to the constraint in Eq. (6.2),

and

∆Lc
min(v∗, η̃∗) = Lc

min(v∗, η̃∗) − Lmin = −2 ln





max
η̃(v∗)=η̃∗

L[η̃]

maxL[η̃]



 , (6.3)

where in the square bracket is the ratio of the constrained maximum value of the likelihood
and the unconstrained maximum value of the likelihood, which is always smaller or equal to
1. If the point (v∗, η̃∗) lies within the confidence band, then there should exist at least one
η̃ function passing through this point which satisfies ∆L[η̃] ≤ ∆L∗. Should this be the case,
it follows that ∆Lc

min(v∗, η̃∗) ≤ ∆L∗. Alternatively, if ∆Lc
min(v∗, η̃∗) ≥ ∆L∗, one can state

that there does not exist a single η̃ which satisfies ∆L[η̃] ≤ ∆L∗. Thus the confidence band
can be constructed by finding the values of (v∗, η̃∗) which satisfy ∆Lc

min(v∗, η̃∗) ≤ ∆L∗. This
condition defines a two-sided interval around η̃BF for each vmin value (with vmin = v∗), and
the collection of those intervals forms a pointwise confidence band in vmin–η̃ space, which we
simply call the confidence band.

One can also use this procedure to identify what we refer to as a degeneracy band by
taking ∆L∗ to zero. This band contains degenerate best-fit halo functions and there are no
such functions outside the band. Namely, if ∆Lc

min(v∗, η̃∗) > 0, one can state that there does
not exist a single η̃ passing through the (v∗, η̃∗) point that satisfies ∆L[η̃] = 0.

We will prove now that the η̃ functions which minimize L[η̃] subject to the constraint
in Eq. (6.2), have at most N + 1 steps instead of at most N steps. Let us implement the
constraint by introducing a fictitious extra component RN+1 of the rate vectors ~R in Eq. (4.8),
so that the dimensionality of the rate vector space becomes N + 1 instead of N . Using the
unit of rate (kg · day)−1 and day−1 as the unit of η̃, the additional component HN+1 of the
~H(v) vector is defined by

HN+1(v) ≡ (kg)−1Θ(v − v∗) . (6.4)

Thus using Eq. (4.8), we get

RN+1 = C
∫ ∞

0
dv

F (v)

v
HN+1(v) = C(kg)−1

∫ ∞

v∗
dv

F (v)

v
= (kg)−1η̃(v∗) . (6.5)

Now the constraint in Eq. (6.2) becomes

RN+1 = (kg)−1η̃∗ . (6.6)
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Notice that now any rate vector in the convex hull of C ~H(v)/v can be rewritten as in Eq. (4.9),
as a sum of at most N terms (instead of N − 1). Therefore, we can find the constrained
minimum Lc

min(v∗, η̃∗) with the same procedure we specify in Sec. 5 to find unconstrained
minimum Lmin, but with the maximum number of steps in η̃ increased by one. Notice that,
differently from what we found in [63] and [64], the potential extra step of η̃ is not necessarily
located at vmin = v∗. We will address this point shortly.

If the η̃BF is unique, i.e. if there is no degeneracy band, Wilks theorem can be applied
as in [63] and [64]. In order to understand the meaning of ∆Lc

min, we can discretize the
continuous variable vmin into a collection of K discrete values ~vmin = (v0min, . . . , v

K−1
min ). The

functional L[η̃] in Eq. (3.6) then becomes a function of the K−dimensional vector ~̃η =
(η̃0, η̃1, . . . , η̃K−1) which defines the piecewise constant function η̃(vmin; ~̃η) given by

η̃(vmin; ~̃η) ≡ η̃i if vimin ≤ vmin < vi+1
min . (6.7)

With this discretization, the constraint on (v∗, η̃∗) in Eq. (6.2) corresponds to vkmin ≤ v∗ <
vk+1
min and η̃∗ = η̃k for some integer 0 ≤ k ≤ K − 1. ∆Lc

min(v∗, η̃∗) is then replaced by the

function ∆Lk,c
min(η̃∗) with the index k corresponding to v∗, defined by

∆Lk,c
min(η̃∗) = −2 ln

[

L(
ˆ̂
η̃0, . . . ,

ˆ̂
η̃k−1, η̃k = η̃∗,

ˆ̂
η̃k+1, . . . ,

ˆ̂
η̃K−1)

L(ˆ̃η0, . . . , ˆ̃ηk, . . . , ˆ̃ηK−1)

]

, (6.8)

where
ˆ̂
η̃i are the η̃i values which maximize the likelihood function

L(η̃0, . . . , η̃K−1) ≡ L[η̃(vmin; ~̃η)] (6.9)

subject to the constraint η̃k = η̃∗, and ˆ̃ηi maximize L without the constraint. ∆Lk,c
min(η̃∗)

now defines the −2 ln of the profile likelihood ratio with one parameter (η̃k), and thus by

Wilks’ theorem the distribution of ∆Lk,c
min(η̃∗) approaches the chi-square distribution with

one degree of freedom in the limit where the data sample is very large. If we now recover the
continuum limit by taking K → ∞, we see that ∆Lk,c

min(η̃∗) approaches ∆Lc
min(v∗, η̃∗). Thus

the construction of the confidence band is equivalent to finding the collection of confidence
intervals in η̃∗ for each v∗ at a given CL for which ∆Lc

min < ∆L∗. Assuming that ∆Lc
min is

chi-square distributed, the choices ∆L∗ = 1.0 and ∆L∗ = 2.7 correspond to the confidence
intervals of η̃ at 68% and 90% CL, respectively, for each vmin value (see Fig. 3).

If the vertical width of the degeneracy band is non-zero, there are multiple η̃ functions
which give the same maximum value of the likelihood. In this case Wilks theorem does not
apply, thus we do not know the probability distribution of ∆Lc

min. In Fig. 2 we still show
the bands corresponding to ∆L∗ = 1.0 and ∆L∗ = 2.7, but they do not correspond to a
particular CL.

7 Examples of data analysis

In this section, we are going to present examples of the methods developed above to mock
data. While it is preferable to demonstrate these methods using real experimental re-
sults, currently the only binned experiment with putative signal is DAMA/LIBRA. However,
DAMA/LIBRA observed the modulation while the methods presented above apply to un-
modulated rates. For this reason, we illustrate these techniques using two mock xenon-based
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Figure 1. Binning scheme and mock data used in the analysis presented in Sec. 7. Three bins are
used for both ‘Xe-D’ (shown in pink) and ’Xe-I’ (shown in grey). The predicted background number
of background events for both experiments and each bin is taken to be one (depicted with horizontal
dashed green line). The number of events observed, in order of increasing energy bins, is 6 (1), 4 (4),
an 1 (6) for Xe-D (Xe-I).

experiments that have been crafted so as to demonstrate both the ‘unique best-fit’ and ‘not-
unique best-fit’ cases presented above. We hereby refer to these mock experiments as ‘Xe-D’
and ‘Xe-I’, where the ‘D’ and ‘I’ are used to differentiate whether the number of observed
events decreases or increases as bin energies increase.

Xe-D is a xenon-based experiment with a one ton-year exposure. It contains three
adjacent bins spanning observed event energies [0.5, 1.5] keV, [1.5, 3] keV, and [3, 4.5] keV.
These bins are assumed to have observed 6 events, 4 events, and 1 event (in increasing order
of ER), while the expected background for each bin is 1 event. This experiment is assumed
to have a Gaussian energy resolution with σ = 0.15 keV3. Xe-D is assumed to have perfect
detection efficiency at all energies. The binning and data described for Xe-D are depicted in
the form of a histogram in Fig. 1 (shown in pink).

Xe-I is also a xenon-based experiment with a one ton-year exposure. It contains three
adjacent bins spanning observed event energies [1, 2.5] keV, [2.5, 4] keV, and [4, 5.5] keV.
These bins are assumed to have observed 1 event, 4 events, and 6 events (in increasing order
of ER), while the expected background for each bin is again 1 event. As with Xe-D, perfect
efficiency is assumed at all recoil energies, and the energy resolution is taken to be a Gaussian
with σ = 0.15 keV. The binning and data described for Xe-I are also depicted in Fig. 1 (shown
in gray).

Assuming a piecewise constant best-fit halo function with at most N − 1 = 2 steps,
we maximize a Poisson likelihood assuming a 9 GeV DM particle and an elastic isospin
conserving spin-independent interaction. The determined best-fit piecewise constant halo is
depicted with a thick green line in Fig. 2. As expected, this best-fit halo function produces

3This number is taken to be large enough that information on the derivative of η̃(vmin) can be used in the
numerical minimization procedure and small enough to not introduce excessive overlap between bins.
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Figure 2. Halo-independent analysis for Xe-D, assuming an elastic spin-independent contact in-
teraction with isospin conserving couplings, and a 9 GeV DM particle. The best-fit halo function
derived using a piecewise constant halo function is shown with a thick green line; this best-fit halo
function for Xe-D is determined not to be unique, and thus the degeneracy band (green region) is
found using the technique outlined in Sec. 7. Two-sided pointwise confidence bands are depicted
for ∆L = 1.0 (darker yellow) and ∆L = 2.7 (lighter yellow), which however do not correspond to
defined CL. The horizontal red lines indicate the vmin ranges where each bin’s response function
R ≡ ∂vmin

H is significantly non-zero are. For a detected energy bin [E1, E2] they show the range
[min (vmin(E1 − σ)) ,max (vmin(E2 + σ))] where min and max refer to the minimum and maximum
vmin values for the respective recoil energy among all xenon isotopes.

5, 3, and 0 events in first, second and third bin, respectively. The predicted number of events
are exactly the measured minus the background in each bin, thus the function qα(vmin) in
Eq. (5.8) is zero, the arguments of Sect. 5 lead us to suspect that the best-fit is not unique.
Thus we proceed by calculating at each (v∗, η̃∗) the constrained best-fit halo function. As
expected, there exist large regions of parameter space for which the value of the constrained
likelihood equals the value of the best-fit likelihood. In Fig. 2, we identify the region (green
band) of parameter space for which the maximum constrained likelihood is within 10−3 of
the maximum likelihood. In principle this value of ∆L should be 0, however numerical errors
that arise from the minimization procedure limit the precision of the calculation of ∆L to
approximately this level. Finally, we use the previously calculated constrained likelihood to
identify confidence bands corresponding to ∆L = 1.0 (darker yellow) and ∆L = 2.7 (lighter
yellow). Had the best-fit halo function been unique, Wilks theorem would have applied
and one would expect these confidence bands to approach the 68% and 90% CL, respectively.
Notice that in the figures we lose information below the lowest energy bin, and the confidence
band is progressively unbounded from above. In Fig. 2, this happens below vmin = 150 km/s.
Since the purpose of plotting these bands is usually to compare the compatibility of putative
and null signals, we extend η̃BF in our plots to this region, in the most conservative way
(i.e. constant) although η̃BF is actually undetermined. The same happens in Fig. 3 and
Fig. 4 below 250 km/s and 150 km/s, respectively.

In Fig. 3, the aforementioned procedure is applied to the Xe-I data. Here, the global

– 17 –



mχ = 9 GeV

fn/fp = 1

0 100 200 300 400 500 600 700
10

-33

10
-32

10
-31

10
-30

10
-29

10
-28

10
-27

10
-26

vmin [km/s]

η˜ [da
y
s
-
1
]

Figure 3. Halo-independent analysis for Xe-I, assuming an elastic spin-independent contact interac-
tion with isospin conserving couplings, and a 9 GeV DM particle. The best-fit halo function derived
using a piecewise constant halo function is shown with a thick blue line; this best-fit halo function for
Xe-I is determined to be unique, and the 68%CL (darker blue) and 90%CL (lighter blue) two-sided
pointwise confidence bands are shown (see Sec. 7). The horizontal black lines indicate the vmin ranges
where each bin’s response function R ≡ ∂vmin

H is significantly non-zero. For a detected energy bin
[E1, E2] they show the range [min (vmin(E1 − σ)) ,max (vmin(E2 + σ))] where min and max refer to
the minimum and maximum vmin values for the respective recoil energy among all xenon isotopes.

maximum of the likelihood, assuming each bin is described by a Poisson likelihood, occurs
when 0, 3, and 5 DM events are predicted in the first, second, and third bin, respectively. It
is clearly not possible to realize this global maximum of the likelihood using a monotonically
decreasing halo function (assuming again an elastic SI contact interaction), and thus the
function qα(vmin) in Eq. (5.8) does not have extended zeroes, and may have at most isolated
zeroes (where the steps of the η̃BF functions will be located). In this case the arguments of
Sect. 5 tell us that the best-fit halo function is unique. Indeed, maximizing this likelihood
using a piecewise constant halo function with 2 steps, and assuming once again a 9 GeV
elastic spin-independent interaction, confirms that this best-fit halo function is unique. This
result is illustrated in Fig. 3. Since the best-fit halo function is unique, the methods of
Refs. [63, 64] can be applied, and a two-sided pointwise confidence band can be constructed.
The 68%CL (darker blue) and 90%CL (lighter blue) confidence bands are shown for this
model in Fig. 3.

It should be clear that as the total number of bins in the likelihood increases, the relative
ease with which a monotonically decreasing halo function can simultaneously maximize all
individual binned likelihoods decreases; this additional strain on the likelihood increases the
chance of obtaining a unique best-fit halo function. To illustrate this point, we consider in
Fig. 4 a joint likelihood analysis of Xe-D and Xe-I, again assuming an elastic spin-independent
interaction and a 9 GeV DM particle. Here, the best-fit halo function is found to be unique.
As before, the constrained likelihood is then used to construct 68% and 90% CL confidence
bands.
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Figure 4. Same as Fig. 3, but for the joint analysis of Xe-D and Xe-I. The best-fit halo function in
this case is found to be unique.

8 Halo-independent analysis of modulation amplitudes

In this section, we show how to extend the formalism presented so far, based on the use of the
Fenchel-Eggleston theorem, to the analysis of all the coefficients of the harmonic expansion
of the time-dependent rate. The main idea is to shift the time dependence of the velocity
distribution function to the detector response functions, by making a change of reference
frame from Earth’s frame to the Galactic frame. This can always be done, but it can be
complicated when gravitational focusing of DM by the Sun (see e.g. [70]), or other Earth
position-dependent effects, are important. We are going to neglect these effects, and assume
here that the change of frame can be done with a Galilean velocity transformation. Then,
using the normalization to 1 of the velocity distributions, we can express the rates as vectors
in the convex hull of time-dependent response function vectors.

The time-dependent rate Rαi(t) in bin i of experiment α can be expressed as

Rαi(t) =

∫

d3v Hαi(~v)f(~v, t) . (8.1)

Here the definition of the Hαi(~v) function differs from our H function by a factor of C/v, i.e.

Hαi(~v) =
CHαi(~v)

v
. (8.2)

(recall that C ≡ ρσref/m). If we were to take the time-average of Rαi and f(~v, t) in Eq. (8.1),
we would recover Eq. (4.1) and our previous analysis. Here, instead we will assume a Galactic
DM velocity distribution fgal(~u). Ref. [58] shows that Rαi(t) can also be written as

Rαi(t) =

∫

d3u H
gal
αi (~u, t) fgal(~u) , (8.3)

where ~u = ~v⊙ + ~v⊕(t) + ~v is the WIMP velocity with respect to the Galaxy, ~v is the usual
WIMP velocity with respect to the Earth, ~v⊙ is the velocity of the Sun with respect to
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the Galaxy and ~v⊕(t) is Earth’s velocity with respect to the Sun. The laboratory velocity
distribution f(~v, t) is related to the Galactic velocity distribution by

f(~v, t) = fgal(~v⊙ + ~v⊕(t) + ~v) . (8.4)

Notice that here fgal(~u) does not depend on time, so the time dependence of the rate Rαi(t)

comes from the experiment and particle candidate dependent response function H
gal
αi (~u, t).

Eq. (8.3) makes it clear that the time dependence of the rate is due to the periodic change
in the motion of the detector in the Galaxy.

Now we can generate the (halo-dependent) convex hull of the connected set of the vectors−→
H gal(~u, t), defined as in Eq. (4.5) to Eq. (4.7) but using the vector ~u as the continuous label
instead of v. The rate vectors ~R(t) in the hull are defined as in Eq. (4.1) to Eq. (4.3) but
using Eq. (8.3), namely

~R(t) =

∫

d3u
−→
H

gal(~u, t) fgal(~u) , (8.5)

where fgal(~u) is normalized to 1, i.e.

∫

d3u fgal(~u) = 1 . (8.6)

Writing ~R(t) and
−→
H gal(~u, t) as a harmonic series in time

~R(t) = ~R0 + ~R1 cos(ω(t− t0)) + · · · , (8.7)

and −→
H

gal(~u, t) =
−→
H

gal−0(~u) +
−→
H

gal−1(~u) cos(ω(t− t0)) + · · · , (8.8)

we can express Eq. (8.5) in terms of the expansion coefficients for a = 0, 1, . . . ,

~Ra =

∫

d3u
−→
H

gal−a(~u) fgal(~u) . (8.9)

The vectors ~Ra form the convex hull of the connected set of generating vectors
−→
H gal−a(~u).

We can now apply the Fenchel-Eggleston theorem to this hull, so any vector ~Ra can be
written as

~Ra =
d
∑

h=1

−→
H

gal−a(~uh) fgal−a
h , (8.10)

with the non-negative real coefficients fgal−a
h satisfying

∑d
h=1 f

gal−a
h = 1. Here d is the

dimension of the hull. Equivalently, the Galactic velocity distribution can be written as a
sum of at most d delta functions in Galactic velocity ~u, namely streams with zero velocity
dispersion,

fgal(~u) =
d
∑

h=1

fgal−a
h δ(3)(~u− ~uah) . (8.11)

Depending on the symmetries of
−→
H gal−a(~u) as function of ~u the dimension of the connected

generating set could be 3 or less (it is parameterized by a 3-dimensional vector ~u). In any
event, the dimension d of the hull is d ≤ N , where N is the number of components of the

vectors
−→
H gal(~u, t). For the

−→
H gal−a vectors whose components are not positive definite, we
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cannot use the projection explained in Appendix B, which reduces the maximum necessary
number of terms from d to d − 1. This reduction can only be done for a = 0. Eq. (8.9),
Eq. (8.10), and Eq. (8.11) for a = 1 correspond to Eq. (3.10), (3.13) and (3.12) of [58] except
that the maximum number of terms in the latter equations is N + 1 (our N is the same as N

in [58]). In our case we could replace d by N assuming that some of the fgal−a
h coefficients

are zero.
In order to find the best-fit velocity distribution fgal

BF (~u), we proceed as in Sec. 5, but
using the expression in Eq. (8.11). We find the set of 4N parameters, ~ua1, ~u

a
2, . . . , ~u

a
N and

fgal−a
1 , fgal−a

2 , . . . , fgal−a
N , that minimizes the function fL defined by using Eq. (8.11) in the

likelihood functional, namely

fL

(

~ua1, . . . , ~u
a
N ; fgal−a

1 , . . . , fgal−a
N

)

≡ L
[

fgal
]∣

∣

∣

fgal=
∑N

h=1 f
gal−a
h

δ(3)(~u−~ua
h
)
. (8.12)

For a 6= 0, we define the Gaussian likelihood as in Eq. (3.2) but for modulation amplitudes.
Notice that the likelihood functional L[η̃] is also a functional L[fgal] of the Galactic velocity
distribution fgal(~u), and thus so is the functional L = −2 lnL.

With the function fgal
BF (~u) in the form of set of streams as in Eq. (8.11), the resulting

η̃BF (vmin, t) function

η̃BF (vmin, t) ≡ C
∫

|~v|≥vmin

d3v
fgal(~v⊙ + ~v⊕(t) + ~v)

v

=
N
∑

h=1

C fgal−a
h

|~uah − ~v⊙ − ~v⊕(t)|Θ(|~uah − ~v⊙ − ~v⊕(t)| − vmin) , (8.13)

for any fixed time t is a piecewise constant function with at most N downward steps (see
dashed blue lines in the left panel of Fig. 5). We could now proceed to define a piecewise
degeneracy or confidence band at any given time. However, we prefer to use the time-average
η̃0BF (vmin)

η̃0BF (vmin) ≡ 1

T

∫

dt η̃BF (vmin, t) = C
N
∑

h=1

fgal−a
h

vh(vmin)
, (8.14)

where vh(vmin) is defined by

1

vh(vmin)
≡ 1

T

∫

dt
Θ(|~uah − ~v⊙ − ~v⊕(t)| − vmin)

|~u1h − ~v⊙ − ~v⊕(t)| , (8.15)

with the time period T of 1 year, and construct the bands around it to make contact with
our previous results in which we use only time-averaged rate data. An example of η̃0BF is
shown by the black line in Fig. 5.a.

To construct the confidence band and degeneracy band from the modulation amplitude
data, it is necessary to impose the constraint Eq. (6.2), i.e. η̃0(v∗) = η̃∗, in the minimization
of the functional L. As in Sec. 6, this can be implemented by introducing an additional
fictitious component RN+1 to the rate vector, but now we write it as an integral over the
Galactic 3-dimensional velocity ~u instead of the speed v in the Earth’s frame as done in
Eq. (6.5), as

RN+1 ≡
∫

d3u
−→
H

gal−0(~u) fgal(~u) = (kg)−1η̃(v∗) , (8.16)
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where
−→
H

gal−0(~u) ≡ C · kg−1

T

∫

dt
Θ(|~u− ~v⊙ − ~v⊕(t)| − v∗)

|~u− ~v⊙ − ~v⊕(t)| . (8.17)

Introducing this fictitious rate simply allows for the correct counting of the maximum number
of delta functions in Eq. (8.11), which becomes (N + 1).

Therefore, the constrained minimum Lc
min(v∗, η̃∗) of the functional L[fgal] can be ob-

tained by minimizing the function fL of 4(N + 1) parameters,

fL

(

{~ua1, . . . , ~uaN+1}; {fgal−a
1 , . . . , fgal−a

N+1 }
)

≡ L
[

fgal
]∣

∣

∣

fgal=
∑N+1

h=1 f
gal−a
h

δ(3)(~u−~ua
h
)
, (8.18)

subject to the constraint

η̃∗ = C
N+1
∑

h=1

fgal−a
h

1

T

∫

dt
Θ(|~uah − ~v⊙ − ~v⊕(t)| − v∗)

|~uah − ~v⊙ − ~v⊕(t)| . (8.19)

With the constrained minimum Lc
min(v∗, η̃∗), we can define ∆Lc

min(v∗, η̃∗) as in Eq. (6.3),
and find a region in vmin − η̃ space satisfying ∆L(v∗, η̃∗) ≤ ∆L∗, which we identify as either
a degeneracy band by setting ∆L∗ = 0, or a confidence band for a certain CL, for which we
can find the corresponding ∆L∗ value if the best-fit η̃BF function is unique.

Since the procedure just outlined using up to 4(N + 1) parameters can be numerically
challenging, we could consider simplifying the problem by restricting the type of velocity
distributions included in the analysis. If the velocity distribution is isotropic in the Galactic
frame, namely if it only depends on the speed u = |~u|,

fgal(~u) = fgal(u) , (8.20)

Ref. [58] finds (see Eq. A.2 of [58]) that time-dependent rates can be written in terms of just
u,

Rαi(t) =

∫ ∞

0
du H

gal
αi (u, t) F gal(u) , (8.21)

where H
gal
αi (u, t) is the angle averaged Galactic response function

H
gal
αi (u, t) ≡ 1

4π

∫

dΩu H
gal
αi (~u, t) , (8.22)

and F gal(u) is the Galactic speed distribution, F gal(u) = 4πu2fgal(u). In this case the

generating connected set of vector
−→
H gal(~u, t) depends again, as in Sec. 4, on one continuous

real parameter, which is here u instead of v. Then all the time-dependent rate vectors

~R(t) =

∫ ∞

0
du

−→
H

gal(u, t) F gal(u) , (8.23)

constitute the convex hull of
−→
H gal(u, t), since the non-negative coefficients F gal(u) sum to 1,

due to the normalization of the speed distribution, i.e.
∫∞
0 du F gal(u) = 1.

Using a harmonic expansion of the time-dependent rate vector ~R(t) as in Eq. (8.7), and

the vector
−−−→
H

gal
(u, t),

−→
H

gal(u, t) =
−→
H

gal−0(u) +
−→
H

gal−1(u) cos(ω(t− t0)) + · · · , (8.24)
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we can express Eq. (8.23) in terms of the expansion coefficients for a = 0, 1, . . . ,

~Ra =

∫

du
−→
H

gal−a(u) F gal(u) . (8.25)

The vectors ~Ra form the convex hull of the connected set of generating vectors
−→
H gal−a(u).

We can now apply the Fenchel-Eggleston theorem to this hull, so any vector ~Ra can be
written as

~Ra =

N
∑

h=1

−→
H

gal−a(uh) F gal−a
h , (8.26)

with the non-negative real coefficients fgal−a
h satisfying

∑d
h=1 f

gal−a
h = 1. Equivalently, the

Galactic speed and velocity distribution can be written as a sum of at most d delta functions
in Galactic speed u,

F gal(u) =

N
∑

h=1

F gal−a
h δ(u− uah) , (8.27)

and

fgal(~u) =
N
∑

h=1

F gal−a
h

4πu2h
δ(u− uah). (8.28)

Therefore, the time-dependent best-fit halo function η̃BF (vmin, t) is now

η̃BF (vmin, t) ≡
∫

|~v|≥vmin

d3v C fgal(~v⊙ + ~v⊕(t) + ~v)

|~v|

= C
N
∑

h=1

Fh

4πu2h

∫

|~v|≥vmin

d3v
δ(3)(~v⊙ + ~v⊕(t) + ~v)

|~v| . (8.29)

Thus

η̃BF (vmin, t) =

N
∑

h=1

C Fh ×



























1

uh
vmin ≤ uh − u⊕(t)

u⊕(t) + uh − vmin

2u⊕(t)uh
uh − u⊕(t) < vmin < uh + u⊕(t)

0 uh + u⊕(t) ≤ vmin ,

(8.30)

with u⊕(t) defined as the time-dependent speed of the Earth in the Galactic frame u⊕(t) =
|~v⊙ + ~v⊕(t)|. This is a piecewise non-increasing linear function, an example of which, using
a single delta function at u1 = 300 km/s, can be found in Fig. 5.b. We could with this
expression continue our analysis by defining an average η̃0BF function (an example of which
is also found in Fig. 5.b) and constructing either a degeneracy or confidence band using
2(N + 1) parameters.

Thus, the formulation presented in this section, based on the Fenchel-Eggleston theorem
and assuming a static Galactic DM velocity distribution, can be used in the halo-independent
analysis of modulation amplitudes or in a combined analysis of average rates and modulation
amplitudes, by combining ~Ra with a = 0, 1, 2, . . . in a single vector (with dimension given
by the sum of the dimension of ~R0, ~R1, ~R2, etc). With proper modification of some of the
equations the same procedures can be used when the transformation from Galactic to Earth’s
frame is not as simple as the Galilean transformation assumed here.
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Figure 5. 5.a (left) Example of η̃BF (vmin, t), Eq. (8.13), for several times (blue dashed lines) for
a velocity distribution in Eq. (8.11) consisting of two Galactic streams, parameter space spanned in
one year by the periodic η̃BF (vmin, t) function (blue band), and its time-average η̃0

BF
(vmin),Eq. (8.14)

(black line). 5.b (right) The same as in 5.a, but for Eq. (8.30) (isotropic velocity distribution) assuming
only one term with u1 = 300 km/s.

9 Summary

Halo-independent analyses compare direct detection data without the need for astrophysical
assumptions. It has been proven in [44, 63, 64] using only unmodulated rate data that if the
likelihood being analyzed contains at least one extended likelihood, then the best-fit time-
averaged halo function η̃0BF (vmin) can always be expressed as a piecewise constant function
with a small predetermined number of downward steps. Furthermore, it was shown that this
best-fit halo function is unique (see [64]), and could be used to construct two-sided pointwise
confidence band in the halo-independent parameter space (see [63, 64]). There are two strong
limitations to these results: they could not be applied exclusively to binned data and they
could not be applied to the analysis of modulation amplitudes. Here we eliminate these two
limitations and extend the methods to the analysis of any type of direct detection data.

In Secs. 3–7 we extend our halo-independent method to deal with only binned unmod-
ulated rate data. Using theorems on convex hulls we find that the DM speed distribution
in Earth’s frame F (v) that maximizes any likelihood can always be expressed as the sum
at most (N − 1) delta functions in speed, where N is the total number of data entries (see
Eq. (4.4)). Note that this type of best-fit speed distribution yields a piecewise constant best-
fit η̃ function η̃0BF , exactly as we had found before in [64]. However, when using exclusively
binned data, this function is not guaranteed to be unique. We thus show how to test the
uniqueness of η̃0BF . If it is unique, we show how to produce halo-independent confidence
bands at any desired confidence level; if it is not unique, a procedure is given for identifying
the degeneracy band, i.e. the region of parameter space in which degenerate halo functions
which maximize the likelihood reside.

Finally, in Sec. 8 we extend our halo-independent method to the measurements of any
coefficient of a harmonic expansion of the time-dependent rate. We work in Galactic coordi-
nates, in which the DM velocity distribution is time-independent and the particle candidate
and experiment dependent response functions are time-dependent. We show that the Galac-
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tic velocity distribution fgal(~u) that maximizes any likelihood consists of a sum of at most N
delta functions in Galactic velocity (i.e. a sum of Galactic streams with zero velocity disper-
sion). This type of velocity distribution yields a periodic η̃BF (vmin, t) which at any fixed time
is a piecewise constant function of vmin with at most N downward steps. In order to compare
data in the usual way, we show how to produce a band in η̃0BF (vmin). At this point there are
a number of different ways in which one could compare data. As a possible choice, we show
how taking appropriate time-averages we can construct pointwise confidence and degeneracy
bands in η̃0BF (vmin). In the last part of Sec. 8 we briefly discuss the consequences of assuming
an isotropic Galactic velocity distribution. We show that this choice leads to a Galactic
speed distribution F (u) that is once again a sum of delta functions in galactic speed, which
produces a time-dependent η̃BF (vmin, t), and consequently a time-averaged piecewise linear
η̃0BF (vmin), that may differ significantly from those derived without the isotropic assumption.

We believe that the present work is a significant step towards the development of statisti-
cally meaningful comparisons of all types of direct detection data, modulated or unmodulated,
binned or unbinned, in a halo-independent manner.
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A Appendix A

A.1 Caratheodory Theorem

If y is a vector in the convex hull of a subset X of a vectors space, then there is a set of n
vectors xi, i = 1, 2, . . . , n all belonging to X, with n ≤ d+ 1, where d is the dimension of the
convex hull, such that y is a convex combination of the xi vector [68] (see also [66, 67]). A
convex combination is a linear combination with real non-negative coefficients λi which sum
to 1, i.e.

y =
n
∑

i=1

λixi (A.1)

and
∑n

i=1 λi = 1.
In other words, any vector which is a convex combination of a set of vector X can be

expressed as a convex combination of just n of those vectors in X, with n ≤ d + 1 (where
d is the dimension of the hull). Fig. 6 provides two examples of convex hulls (blue regions)
formed from a set of vectors xi (black dots) in two dimensions.

A.2 Fenchel-Eggleston Theorem

The Fenchel-Eggleston theorem [66, 67] strengthens the Caratheodory theorem by taking
into account the connectivity of the set of vectors in X.

Consider as in the Caratheodory theorem the convex hull of dimension d of a set X of
vectors. If X is made of at most d connected components, the upper bound of the number n
of vectors in the Caratheodory theorem is tightened to d (instead of d + 1). Fig. 7 provides
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Figure 6. 6.a (left) The light blue region is the convex hull of the five points indicated with black
dots. Its dimension is d = 2. The Caratheodory theorem says that any point in the hull can be
written as a convex combination of at most d+ 1 = 3 of the generating points (which is obvious from
the figure). 6.b (right) The convex hull is now the line joining the five generating points in the figure.
Its dimension is d = 1. The Caratheodory theorem says that any one of the points in the line can be
written as the convex combination of at most d + 1 = 2 points (which is obvious from the figure).

illustrations of convex hulls (blue regions) formed from either one (Fig. 7.a) or two (Fig. 7.b)
connected sets of vectors (black lines).

B Appendix B

Assuming the components of any rate vector ~R sum to a positive number (they are all real
non-negative for physically meaningful rates),

N
∑

k=1

Rk > 0 (B.1)

we can define the projection of each vector ~R,

R̂ =
~R

∑N
k=1Rk

(B.2)

on to the plane
N
∑

k=1

R̂k = 1 (B.3)

which reduces the number of linearly independent components of the R̂ vectors N − 1.
We need to define also the projection of the generating vectors ~H(v)

Ĥ(v) =
~H(v)

∑N
k=1Hk(v)

, (B.4)
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Figure 7. In 7.a (left) there is one line of generating points and in 7.b(right) there are two lines of
generating points. In both cases the hulls (light blue regions) have dimension d = 2 and any point in
each of them can be given as the convex combination of at most d = 2 points of the generating lines.
Notice that the theorem applies to a maximum of d = 2 connected generating set of points (i.e. a
maximum of two generating lines in this example).

onto the same plane
N
∑

k=1

Ĥk(v) = 1, (B.5)

which requires
N
∑

k=1

Ĥk(v) > 0. (B.6)

This condition Eq. (B.6) is fulfilled for all v > 0 for elastic and inelastic exothermic
collisions. However, for inelastic endothermic collisions there may be a minimum speed
(vδ)min (the smallest of all vTδ speeds defined in Eq. (2.5) for all components of ~H) below

which all components of ~H could be zero, as shown in Eq. (2.8). In this case we can define
Ĥ(v) only for v > vδ−min (and vδ−min = 0 for elastic or inelastic exothermic scattering).

Thus, using the definitions of R̂ (Eq. (B.2)) and ~R (Eq. (4.8)) we get

R̂ =

∫∞
vδ−min

dv(C ~H(v)/v)F (v)
∑N

k=1

∫∞
vδ−min

du(C ~H(u)/u)F (u)
. (B.7)

Notice that C drops out of the definition of R̂. This easily leads to the definition of all R̂ as
the convex hull of Ĥ(v) (defined in Eq. (B.4))

R̂ =

∫ ∞

vδ−min

dvĤ(v)F̂ (v) (B.8)
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where the coefficients F̂ (v) are defined as

F̂ (v) =
F (v)

∑N
j=1Hj(v)/v

∫∞
vδ−min

du F (u)
∑N

k=1Hk(u)/u
. (B.9)

They are real non-negative and it is immediate to verify that,
∫ ∞

vδ−min

dv F̂ (v) = 1 (B.10)

as required by the Fenchel-Eggleston theorem. Thus using the theorem we can write any
vector R̂ as the convex combination of at most N − 1 generating vectors Ĥ(vh)

R̂ =
N−1
∑

h=1

Ĥ(vh)F̂h (B.11)

with
∑N−1

h=1 F̂h = 1, which is equivalent to having

F̂ (v) =
N−1
∑

h=1

F̂hδ(v − vh). (B.12)

We can now prove starting from Eq. (B.11) that we get to Eq. (4.9), but with d ≤ N −1
(instead of d ≤ N ). Using Eq. (B.2) and Eq. (B.11) we have

~R = R̂

(

N
∑

k=1

Rk

)

=

(

N−1
∑

h=1

Ĥ(vh)F̂h

)(

N
∑

k=1

Rk

)

(B.13)

Using Eq. (B.4) we can write

~R =
N−1
∑

h=1

(

~H(vh)
∑N

j=1Hj(vh)

)(

N
∑

k=1

Rk

)

F̂h, (B.14)

which coincides with Eq. (4.9) but with d ≤ N − 1 (instead of d ≤ N) with the identification

CFh = F̂h
vh
∑N

k=1Rk
∑N

j=1Hj(vh)
, (B.15)

and, from the normalization condition
∑N−1

h=1 Fh = 1, we have

C =

N
∑

k=1

Rk

N−1
∑

h=1

vhF̂h
∑N

j=1Hj(vh)
. (B.16)

For example, in the case of N = 2, which corresponds to Fig. 7 with the particular
choice of C in Eq. (B.16), the rate vector coincides with one of the generating vector, namely

~R =
C ~H(vh)

vh
, (B.17)

for a particular value of vh. Notice that in this case Fh = 1.
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