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Abstract—The outage capacity (OC) is among the most impor-
tant performance metrics of communication systems operating
over fading channels. Of interest in the present paper is the
evaluation of the OC at the output of the Equal Gain Combining
(EGC) and the Maximum Ratio Combining (MRC) receivers. In
this case, it can be seen that this problem turns out to be that of
computing the Cumulative Distribution Function (CDF) for the
sum of independent random variables. Since finding a closed-
form expression for the CDF of the sum distribution is out of
reach for a wide class of commonly used distributions, methods
based on Monte Carlo (MC) simulations take pride of price. In
order to allow for the estimation of the operating range of small
outage probabilities, it is of paramount importance to develop
fast and efficient estimation methods as naive Monte Carlo (MC)
simulations would require high computational complexity. In this
line, we propose in this work two unified, yet efficient, hazard
rate twisting Importance Sampling (IS) based approaches that
efficiently estimate the OC of MRC or EGC diversity techniques
over generalized independent fading channels. The first estimator
is shown to possess the asymptotic optimality criterion and
applies for arbitrary fading models, whereas the second one
achieves the well-desired bounded relative error property for the
majority of the well-known fading variates. Moreover, the second
estimator is shown to achieve the asymptotic optimality property
under the particular Log-normal environment. Some selected
simulation results are finally provided in order to illustrate
the substantial computational gain achieved by the proposed IS
schemes over naive MC simulations.

Index Terms—Outage capacity, naive Monte Carlo, hazard rate
twisting, Importance Sampling, asymptotic optimality, bounded
relative error.

I. INTRODUCTION

Signal processing have for a long time had an important role

to play in wireless communication systems. The nature of the

wireless fading on the one hand and the ever-growing demands

for higher data rates on the other have pushed together for the

development of sophisticated signal processing algorithms. In

order to mitigate the impact of severe fading, several algo-

rithms, known as diversity techniques, have found the way into

wireless communication systems. Among them, we distinguish

the Maximum Ratio Combining (MRC) and the Equal Gain

Combining (EGC), which are well-recognized for their ability
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to combat fading and hence improve system performances [2].

A question of major practical interest that has been extensively

studied over the last decades concerns the assessment of these

techniques’ performances when operating over realistic fading

channels. Amongst the various performance metrics that can

be used for that purpose, an important practical one is the

Outage Capacity (OC), which measures the probability that

the capacity falls below a certain threshold.

Interestingly, when MRC or EGC techniques are employed,

the computation of the OC is equivalent to the evaluation of the

Cumulative Distribution Function (CDF) of a sum of positive

Random Variables (RVs) corresponding to either the sum of

the fading envelopes (EGC) or the channel gains (MRC). For

instance, under the Nakagami fading model, the OC is given

by the CDF of the sum of Nakagami variates for the EGC

technique and that of the sum of Gamma variates for the MRC

technique.

In general, for the wide majority of the commonly used

distributions, the CDF of the sum is unknown in closed-form.

This is for instance the case of Log-normal distributions, which

are widely used to model the shadowing effect in cellular

communication systems [3] and the weak-to-moderate turbu-

lence channel in free space optical communication systems

[4]. This is also the case of Gamma-Gamma distributions,

considered as the dominant fading model for free space

optical links [5], and that of Weibull distributions known for

their good fits to experimental fading channel measurements

for both indoor and outdoor environment [6], [7]. All these

practical contexts have stirred a great deal of interest in the

development of approximation methods of the CDF of the

sum distribution. Given the large amount of works in this

context, it is difficult to provide an exhaustive survey of the

existing techniques. However, we can mainly classify these

approaches into two categories. The first category includes

approaches where closed-form expressions are provided to

approximate the CDF of the sum [8]–[14]. For instance, we

can cite the works in [8] and [9] that approximate the sum

of Log-normal RVs by a Log-normal and a Pearson type IV

variates, respectively. Along the same line, the α − µ PDF

envelope was used to approximate the sum of Weibull [10],

Nakagami [11], and Gamma-Gamma [12] variates. Although

the previously cited works [8]–[14] were shown to exhibit

a good level of accuracy, there is no guarantee that they

maintain the same level of accuracy, whatever are the range

of probabilities, the set of parameters distribution, and the

number of summands [8]. A second class of techniques have
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been then proposed that are rather based on efficient numerical

integration methods [15], [16]. In the same framework, a

general numerical approach has been developed in [17] given

the knowledge of the Moment Generating Function (MGF). It

is worth mentioning that such a requirement is not ensured for

many well-challenging distributions such as the Log-normal,

the Nakagami, and the Weibull ones. Despite their popularity,

the previously cited approximation techniques share the com-

mon drawback of being non generic, that is, specific to a given

distribution (or a narrow class of distributions). This princi-

pally constitutes the major motivation behind the present work.

In particular, in a completely different approach, we build upon

the framework of rare event simulation algorithms in order

to estimate the CDF of sums of arbitrary RVs (equivalently

the OC of MRC/EGC diversity techniques operating over

generalized fading channels). Despite the continuous advances

in the development of these algorithms, their popularity among

researchers in wireless communication systems has thus far

remained limited. To the best of our knowledge, our work

is the first one to bridge the gap between the framework of

rare event algorithms and the OC evaluation of EGC/MRC

diversity techniques.

As the quantity of interest corresponds to operating outage

probabilities, the focus will be put on the left-tail of the sum

distribution, i.e. the probability that the sum is below a given

small threshold. It is worth mentioning that in the context

of rare event algorithms, most of the existing approaches

have thus far been focused on the right tail of the sum

distribution (probability of the sum greater than a sufficiently

large threshold) instead of the left-tail region (which is the

region of interest of the present work). It is only recently

that the authors in [18] and [19] have considered the left tail

but their works concerned the specific setting of the sum of

Log-normal RVs. More precisely, the approach in [18] was

based on the well-known exponential twisting technique [20],

[21] and was shown to achieve the asymptotic optimality

property under the i.i.d assumption. However, as a derivative

of the exponential twisting technique, the proposed approach

presents the drawback of requiring the existence of a closed-

form expression for the MGF. Such a requirement cannot be

met in the case of a Log-normal RV, and hence an estimator

for the MGF was used instead [22].

An alternative approach that avoids the need for the MGF

is represented by the hazard rate twisting technique [23]–

[26]. This technique cannot be directly applied to our setting,

since it was originally developed to deal with the right-

tail of the sum distribution. Based on an adjustment of this

technique, we propose in this paper two unified Importance

Sampling (IS) based approaches [27] that efficiently estimate

the CDF of a sum of independent RVs (the left-tail of a

sum distribution) with arbitrary distributions. The connection

of this problem with that of the evaluation of the OC at

the output of MRC/EGC techniques make the results of our

work interesting to both fields of wireless communication and

rare event simulation. While outperforming naive Monte Carlo

(MC) simulations, the two proposed schemes exhibit different

properties. As a matter of fact, the first proposed IS scheme

applies to arbitrary independent positive distributions and was

shown to enjoy the asymptotic optimality criterion. On the

other hand, the second one satisfies the asymptotic optimality

for the Log-normal setting. It also holds the sought-after

stronger bounded relative error criterion for the majority of

the well-known distributions but is only applicable to the case

of i.i.d positive RVs. These two properties represent a relevant

novelty in the context of rare event algorithms since, to the

best of the authors knowledge, a unified IS scheme with the

asymptotic optimality property for arbitrary sum distribution

has not been proposed before when the left-tail of the sum

distribution is considered. Moreover, and to the best of the

authors knowledge, the second proposed IS approach is the

first estimator to achieve the bounded relative error criterion

when estimating the left tail region of the sum distribution, a

property that represents one of the most valuable sought-after

requirements of rare event simulation algorithms.

The rest of the paper is organized as follows. In Section II,

we describe the problem setting and introduce the concept of

IS. The methodologies adopted in our work are developed in

Section III where two efficient IS schemes are proposed. In the

same section, theorems showing their efficiency are also stated

and proved. Some selected simulation results are provided in

Section IV in order to illustrate the substantial computational

gain achieved by the proposed IS approaches over naive MC

simulations.

II. PROBLEM SETTING

A. Motivation

The instantaneous Signal-to-Noise Ratio (SNR) at the

diversity receiver can be written as [28]

γend =
Es

N0

√
N1−p+q

(

N
∑

i=1

Rp
i

)q

, (1)

where N is the number of diversity branches, Es/N0 is the

SNR per symbol at the transmitter, and Ri, i = 1, 2, ..., N , is

the fading envelope, i.e. the fading channel amplitude or the

modulus of the fading channel. The parameter p and q are in

{1, 2} as follows

(p, q) =

{

(1, 2), EGC

(2, 1), MRC
(2)

The instantaneous capacity with MRC or EGC diversity tech-

niques over fading channels has the following expression

Cγend
= W log2 (1 + γend) , (3)

where W is the bandwidth. Among the most important per-

formance metrics of communication systems operating over

fading channels is the OC. This metric is defined as the

probability that the instantaneous capacity Cγend
falls below

a certain threshold Cth, that is

Cout = P (0 ≤ Cγend
< Cth) . (4)

This metric measures the probability that the communication

system undergoes an outage and thus fails to operate. From
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(1) and (3), the OC can be rewritten as follows

Cout = P





N
∑

i=1

Rp
i < γth =

(

N0

√
N1−p+q

Es
(2

Cth
W − 1)

)
1
q



 .

(5)

Hence, the computation of the OC with MRC or EGC diversity

techniques boils down to the problem of determining the CDF

of the sum of the fading envelopes (EGC), i.e. the CDF of
∑N

i=1 Ri, or the sum of the channel gains (MRC), i.e. the

CDF of
∑N

i=1 R
2
i .

Many fading models are used in practice. A non exhaustive

list includes for instance the Rayleigh, the Nakagami, the

Weibull, the Rice, and the Log-normal fading models. The

readers are referred to [29] for a more comprehensive list of

the well practical fading models.

At a higher level of abstraction, our goal is then to develop

efficient algorithms to estimate the quantity

α = P

(

SN =
N
∑

i=1

Xi ≤ γth

)

, (6)

for a given threshold γth, where X1, X2, ..., XN is a sequence

of independent and not necessarily identically distributed

positive RVs with Probability Density Function (PDF) fXi
(·),

i = 1, 2, ..., N .

B. Importance Sampling

In typical wireless communication systems, the quantity α,

which measures the OC, is relatively small. Thus, the focus

will be put on estimating the probability of the rare event

{
∑N

i=1 Xi ≤ γth} when γth is relatively small. The naive

Monte Carlo (MC) estimator of α is given by:

α̂MC =
1

M

M
∑

i=1

1(SN (ωi)≤γth), (7)

where M is the number of simulation runs, 1(·) defines the

indicator function, and {SN (ωi)}Mi=1 represent independent

and identically distributed (i.i.d) realizations of the RV SN =
∑N

j=1 Xj where for each realization, i = 1, 2, ...,M , the

sequence X1(ωi), X2(ωi), ..., XN (ωi) are sampled indepen-

dently according to the PDF fXi
(·), i = 1, 2, ..., N . In the

setting of rare events simulations, i.e. events with very small

probabilities, naive MC simulations are known to be compu-

tationally expensive. In fact, for an accuracy requirement of

90%, it can be shown from the Central Limit Theorem that

we need more than 100/α samples to estimate the quantity of

interest α.

Importance Sampling (IS) is a variance reduction technique

that can overcome the failure of naive MC simulations and

considerably reduce the computational work [27]. The basic

idea of IS techniques is to construct an unbiased estimator of

α with much smaller variance than the variance given by the

naive MC estimator. IS techniques are based on performing

a change of the probability measure, that is sampling is

performed according to a new distribution instead of the

original one. In fact, the quantity α can be rewritten as follows:

α = Ep

[

1(SN≤γth)

]

=

∫

RN

1(SN≤γth)

N
∏

i=1

fXi
(xi)dx1dx2...dxN

=

∫

RN

1(SN≤γth)L(x1, x2, ..., xN )
N
∏

i=1

gXi
(xi)dx1dx2...dxN

= Ep∗

[

1(SN≤γth)L(X1, X2, ..., XN )
]

, (8)

where Ep [·] and Ep∗ [·] are the expectations with respect to

the probability measures p and p∗ under which the PDFs of

Xi are fXi
(·) and gXi

(·), i = 1, 2, ..., N , respectively. The

likelihood ratio L is defined as

L(X1, X2, ..., XN ) =
N
∏

i=1

fXi
(xi)

gXi
(xi)

. (9)

The idea behind performing this change of the sampling

distribution is to emphasize the sampling of important values,

i.e. values which have more impact on the parameter of interest

α than others. More precisely, the change of the sampling

distribution is performed in a way to increase the frequency

of realizations belonging to the rare event {SN ≤ γth}. Thus,

by encouraging these important realizations, it is possible to

achieve an interesting amount of variance reduction by using

the IS estimator defined as:

α̂IS =
1

M

M
∑

i=1

1(SN (ωi)≤γth)L(X1(ωi), X2(ωi), ..., XN (ωi)),

(10)

where for each realization i = 1, 2, ...,M , the sequence

X1(ωi), X2(ωi), ..., XN (ωi) is now sampled according to the

new PDFs gXi
(·), i = 1, 2, ..., N . Many criteria have been

used in the literature of rare event algorithms in order to

measure their efficiencies [30]. We call an IS estimator to

possess the bounded relative error criterion if

lim sup
γth→0

Ep∗

[

1(SN≤γth)L
2(X1, X2, ..., XN )

]

α2
< ∞. (11)

An interesting feature of this property is that the number

of simulation runs to achieve a fixed accuracy requirement

remains bounded independently of how small is the probability

of interest α. This is the reason why the criterion of bounded

relative error is considered as one of the most sought-after

requirements of variance reduction algorithms. Generally, es-

timators with bounded relative error are difficult to construct.

This often leads researchers to settle for estimators that satisfy

weaker properties such as the asymptotic optimality (or the

logarithmic efficiency) criterion [25] [23]. We say that α is

asymptotically optimally estimated if

lim
γth→0

log(Ep∗

[

1(SN≤γth)L
2(X1, X2, ..., XN )

]

)

log(α)
= 2. (12)

Note that this limit cannot be made larger, since,

from the non-negativity of the variance of the RV

1(SN≤γth)L(X1, X2, ..., XN ), we have

Ep∗

[

1(SN≤γth)L
2(X1, X2, ..., XN )

]

≥
(

Ep∗

[

1(SN≤γth)L(X1, X2, ..., XN )
])2

= α2, (13)
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and thus, applying the logarithm function on both sides and

dividing by log(α) < 0, we obtain

log(Ep∗

[

1(SN≤γth)L
2(X1, X2, ..., XN )

]

)

log(α)
≤ 2. (14)

Equation (12) reveals an interesting interplay between α
and the second moment Ep∗

[

1(SN≤γth)L
2(X1, X2, ..., XN )

]

.
Indeed, one can see that when α2 → 0 at an exponential

rate, the second moment Ep∗

[

1(SN≤γth)L
2(X1, X2, ..., XN )

]

converges to zero at the same exponential rate. This is the best

possible rate of convergence, i.e. the second moment cannot

converge faster due to the non-negativity of the variance of

1(SN≤γth)L(X1, X2, ..., XN ) in (14). Moreover, the asymp-

totic optimality property means that the number of samples

to meet a fixed accuracy requirement satisfies log(M) =
o
(

log(α−1)
)

(or equivalently M = O (α−ǫ) for all ǫ > 0).

This must be compared to the naive MC simulations which

require a number of runs of order α−1 in order to achieve the

same accuracy requirement.

It is worth noticing that the naive MC simulation fails to

estimate α asymptotically optimally since the limit in (12) is

equal to 1.

III. METHODOLOGY

The methodology that will be adopted in the present work

is based on the hazard rate twisting technique [23]. This ap-

proach was originally developed to deal with the right tail, that

is, to estimate the probability of the rare event {SN > γth},

where γth is sufficiently large and the components of SN are

independent and identically distributed (i.i.d) subexponential

RVs (such as the Log-normal distribution and the Weibull

distribution with shape parameter less than 1). It was then

generalized in [25] to deal with the right tail of sums of

independent but not necessarily identically arbitrary RVs prior

to being further improved in [26]. Interestingly, the hazard rate

twisting approach has never been applied to the left tail. This

constitutes the major motivation behind our work. In particular,

building upon the hazard rate twisting approach, we propose in

this work two unified IS algorithms for the quick, yet accurate,

estimation of the left-tail of a sum distribution. The first

estimator applies to arbitrary independent and not identically

distributed positive RVs and will be shown to achieve the

asymptotic optimality criterion, whereas the second one is

only valid for the case of i.i.d RVs but will be proven to

satisfy the well-desired bounded relative error property under a

mild assumption which is satisfied by most of the well-known

fading variates. This makes it, to the best of our knowledge,

the first estimator possessing this criterion when the left tail of

the sum distribution is considered. Moreover, for the particular

Log-normal fading model, the second estimator will be shown

also to achieve the asymptotic optimality property under the

i.i.d setting.

To facilitate the understanding of the proposed methods,

we shall first recall the principle underlying the hazard rate

twisting technique [25]. This is an important step that will

help the reader understand how we adapt the technique of

[25] to the considered problem. Let us define the hazard rate

of Xi, i = 1, 2, ..., N , as

λXi
(x) =

fXi
(x)

1− FXi
(x)

, x > 0 (15)

where FXi
(·) is the CDF of Xi, i = 1, 2, ..., N . We define

also the hazard function as

ΛXi
(x) =

∫ x

0

λXi
(t)dt

= − log(1− FXi
(x)), x > 0 (16)

From (15) and (16), the PDF of the RV Xi, i = 1, 2, ..., N , is

related to the hazard rate and the hazard function as follows:

fXi
(x) = λXi

(x) exp (−ΛXi
(x)) , x > 0 (17)

The hazard rate twisting change of measure [25] consists in

twisting the hazard rate of each component Xi, i = 1, 2, ..., N ,

by a quantity 0 ≤ θ < 1

gXi
(x) , fXi,θ(x) = (1− θ)λXi

(x) exp (− (1− θ) ΛXi
(x)) .
(18)

Prior to presenting our proposed approaches, we shall

provide some insights on the role of the hazard rate twisting

change of measure in efficiently dealing with the estimation of

the right tail of the sum distribution, i.e, the probability of the

event {SN ≥ γth} where γth is sufficiently large. Note that

the change of measure (18) by an amount of 0 ≤ θ < 1 shifts

the value of the hazard rate from λXi
(x) to (1 − θ)λXi

(x),
i = 1, 2, ..., N . This is equivalent according to (16) to a change

of the complementary CDF expression from exp (−ΛXi
(x)) to

exp (−(1− θ)λXi
(x)), i = 1, 2, ..., N . As a consequence, the

tail of the resulting distribution becomes much heavier to the

right than the original one. This constitutes the key feature that

underlies the efficiency of the twisted distribution in generating

more samples in the set {SN > γth} for sufficiently large

values of γth. To illustrate this point, we consider the case in

which a RV X follows a Weibull distribution with shape and

scale parameters denoted by k and β. One can easily prove

that the twisted PDF is again a Weibull distribution with the

same shape parameter but with a higher scale parameter given

by β/(1− θ)1/k. It is thus more heavier to the right than the

original distribution. However, the feature of having a more

heavier tail to the right is not suitable for the present setting,

wherein the focus is on the evaluation of the probability of the

set {SN ≤ γth} where γth taking small values. In order to

provide more insights on the failure of the technique in [25],

we plot in Fig. 1.a the twisted and the untwisted distribution

of SN . From this figure, it is clearly obvious that the hazard

rate twisting technique [25] accords much more emphasis

to samples belonging to the rare set {SN > γth}, for a

sufficiently large γth, to the detriment of samples belonging

to the rare set {SN ≤ γth} for small values of γth. In

consequence, a crude application of the approach of [25] will

probably worsen the computational efficiency compared to the

naive MC simulations.

Remark 1. In the rest of the paper, all expectations under

the IS change of measure will be denote by Eθ [·] instead of

Ep∗ [·].
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Fig. 1. Twisted and original PDFs: (a) PDF of S2 with X1 and X2 are i.i.d
Log-normal RVs with µ = 0 dB, σ = 6 dB and θ = 0.6, (b) PDF of −S2

with θ = 0.6.

A. First IS Approach

For the hazard rate twisting technique to achieve a sub-

stantial computational gain, an adjustment is thus required.

Our first IS estimator is based on the observation that the

probability of interest corresponds in reality to the right tail

of the distribution of
∑N

i=1 −Xi. As a matter of fact,

α = P

(

SN =
N
∑

i=1

Xi ≤ γth

)

= P

(

N
∑

i=1

Yi ≥ −γth

)

,

(19)

where Yi = −Xi, i = 1, 2, ..., N . It suffices thus to

apply the hazard rate twisting technique to Yi instead of

Xi, i = 1, 2, ..., N . The intuition behind this idea stems

from the aforementioned feature of the hazard rate twisting

technique of leading to a more heavier right-tail distribution

than the underlying one. Thus, applying this technique to

Yi, i = 1, 2, ..., N will certainly encourage the sampling of

realizations in a neighborhood of 0 (since Yi, i = 1, 2, ..., N ,

are non-negative), that is realizations belonging to the set

{SN ≤ γth} for a sufficiently small γth. This statement is

clearly validated in Fig. 1.b showing the twisted and untwisted

PDFs of −SN . In this figure, we easily observe that the

twisted PDF accords higher probability to samples belonging

to the event of interest {∑N
i=1 Yi ≥ −γth} (or equivalently

{SN =
∑N

i=1 Xi ≤ γth} ) for a sufficiently small γth. Thus,

we conclude that sampling with respect to the twisted PDF

is more efficient than sampling with respect to the original

one. Following the proposed adjustment, that is we apply the

hazard rate twisting technique to the sequence Y1, Y2, ..., YN ,

the quantity of interest α is expressed following (8) as

α = Ep

[

1(SN≤γth)

]

=

∫

RN

1(SN≤γth)

N
∏

i=1

fYi
(yi)dy1dy2...dyN

= Eθ

[

1(SN≤γth)L1(Y1, Y2, ..., YN )
]

, (20)

where Eθ [·] is now taken under the PDFs gYi
(·) obtained by

twisting the hazard rate of the RV Yi, i = 1, 2, ..., N , by

0 ≤ θ < 1. Similarly to (18), these twisted PDFs are defined

as

gYi
(y) , fYi,θ(y) = (1− θ)λYi

(y) exp (− (1− θ) ΛYi
(y)) ,

(21)

where λYi
(y) =

fXi
(−y)

FXi
(−y) and ΛYi

(y) = − log(FXi
(−y)). The

corresponding likelihood ratio is then expressed as:

L1(Y1, Y2, ..., YN ) =
N
∏

i=1

fYi
(Yi)

gYi
(Yi)

=
N
∏

i=1

fXi
(−Yi)

gYi
(Yi)

=
1

(1− θ)N
exp

(

−θ
N
∑

i=1

ΛYi
(Yi)

)

.

(22)

Finally, the IS estimator is then given by:

α̂IS,1 =
1

M

M
∑

i=1

Tγth,1(ωi), (23)

where Tγth,1 is defined as:

Tγth,1 = 1(SN≤γth)L1(Y1, Y2, ..., YN ). (24)

1) Optimal Minmax Twisting Parameter: The selection of

θ follows the same steps of the minmax approach proposed

in [25]. It requires first to construct an upper bound of the

likelihood ratio and thus of the second moment of Tγth,1. The

twisting parameter θ is then selected so that this upper bound

is minimized. An upper bound of the likelihood ratio can be

obtained by solving the following maximization problem (P ):

(P ) : max
Y1,...,YN

L1(Y1, Y2, ..., YN ) (25)

Subject to

N
∑

i=1

Yi ≥ −γth, Yi < 0, i = 1, ..., N.

From (22), it can be seen that the maximization problem (P )
is equivalent to the following minimization problem (P ′)

(P ′) : min
Y1,...,YN

N
∑

i=1

ΛYi
(Yi) (26)

Subject to

N
∑

i=1

Yi ≥ −γth, Yi < 0, i = 1, ..., N.
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Let us denote by Y ∗
1 , Y

∗
2 , ..., Y

∗
N the solution of (P ′). The

second moment of Tγth,1 can be bounded by:

Eθ

[

T 2
γth,1

]

≤ 1

(1− θ)2N
exp

(

−2θ
N
∑

i=1

ΛYi
(Y ∗

i )

)

. (27)

A natural selection of the twisting parameter θ is thus given

by the one that minimizes the above upper bound. Through a

simple computation, the optimal minmax twisting parameter

is:

θ∗1 = 1− N
∑N

i=1 ΛYi
(Y ∗

i )
. (28)

Remark 2. Note that since ΛYi
(·) are increasing functions,

i = 1, 2, ..., N , the inequality constraint in the minimization

problem (P ′) turns out to be satisfied with equality, that is:

N
∑

i=1

Y ∗
i = −γth. (29)

Remark 3. In general, solving the global solution of (P ′)
might require the need of complex optimization methods.

However, for distributions with log-concave CDF, (P ′) boils

down to solving a convex problem and thus convex optimiza-

tion algorithms can be employed. This property is actually

satisfied for many challenging variates such as Log-normal,

Weibull, and Gamma distributions [31].

2) Asymptotic Optimality: We prove in the next theorem

that the IS estimator Tγth,1 satisfies the asymptotic optimality

property:

Theorem 1. For any sum of independent positive RVs, the

probability of interest α is asymptotically optimally estimated

using the proposed hazard rate twisting IS approach with the

twisting parameter θ∗1 given by (28). That is:

lim
γth→0

Eθ∗

1

[

T 2
γth,1

]

log(α)
= 2. (30)

Proof: By replacing the minmax optimal twisting param-

eter (28) into (27), it follows that

Eθ∗

1

[

T 2
γth,1

]

≤
(

A(γth)

N

)2N

exp (−2A(γth) + 2N) , (31)

where A(γth) =
∑N

i=1 ΛYi
(Y ∗

i ). Upon applying the logarithm

function on both sides, we get

log
(

Eθ∗

1

[

T 2
γth,1

])

≤ 2N

(

1 + log

(

A(γth)

N

))

− 2A(γth).

(32)

On the other hand, using the inequality constraint of the

minimization problem (P ′), we obtain that

∩N
i=1{Yi ≥ Y ∗

i } ⊂ {
N
∑

i=1

Yi ≥ −γth}. (33)

Since Y1, · · · , YN are independent, it follows that:

N
∏

i=1

P (Yi > Y ∗
i ) ≤ α, (34)

or equivalently,

−A(γth) ≤ log(α). (35)

Since log(α) → −∞ as γth → 0, the quantity A(γth) → +∞
as γth → 0. Now, we combine (32) and (35) to get, for a

sufficiently small γth, that

log
(

Eθ∗

1

[

T 2
γth,1

])

log(α)
≥

2N
(

1 + log
(

A(γth)
N

))

− 2A(γth)

−A(γth)
.

(36)

By taking the limit as γth → 0 in the previous inequality and

using the fact that A(γth) → +∞ as γth → 0, it follows that

lim
γth→0

log
(

Eθ∗

1

[

T 2
γth,1

])

log(α)
≥ 2. (37)

Finally, by combining the previous inequality with (14), we

deduce that the asymptotic optimality (12) is satisfied and

hence the proof is concluded.

It is worth recalling that the left tail of the sum distribu-

tion has rarely been considered in the literature. The unique

existing work of which we are aware deals with the specific

setting of Log-normal sums [18]. To the best of our knowledge,

the proposed estimator Tγth,1 is the first one that satisfies the

asymptotic optimality criterion and, at the same time, applies

to arbitrary positive distributions.

B. Second IS approach

In this section, we develop a second IS algorithm that,

while being based again on the hazard rate twisting technique,

satisfies the well-desired criterion of bounded relative error.

Instead of twisting the RVs Y1, Y2, ..., YN with a twisting pa-

rameter θ between 0 and 1, we propose to use a negative θ and

apply the hazard rate twisting approach to the original variates

X1, X2, ..., XN . Following this methodology, the quantity α
is rewritten as (8)

α = Ep

[

1(SN≤γth)

]

=

∫

RN

1(SN≤γth)

N
∏

i=1

fXi
(xi)dx1dx2...dxN

= Eθ

[

1(SN≤γth)L2(X1, X2, ..., XN )
]

, (38)

where Eθ [·] denotes now the expectation taken under gXi
(·),

i = 1, 2, ..., N , in (18) with a negative twisting parameter, i.e.

θ < 0. The corresponding likelihood ratio is

L2(X1, X2, ..., XN ) =
N
∏

i=1

fXi
(Xi)

gXi
(Xi)

=
1

(1− θ)N
exp

(

−θ
N
∑

i=1

ΛXi
(Xi)

)

.

(39)

Finally, the IS estimator is defined as:

α̂IS,2 =
1

M

M
∑

i=1

Tγth,2(ωi), (40)

where

Tγth,2 = 1(SN≤γth)L2(X1, X2, ..., XN ). (41)
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The intuition behind this methodology lies in that the use

of a negative twisting parameter reverses the behavior of the

hazard rate twisting method by making the distribution of the

sum more concentrated on the left tail, thus generating more

samples in the set {SN ≤ γth}. To validate this intuition, we

plot in Fig. 2 the twisted and the untwisted PDF of SN where

the components are i.i.d Log-normal RVs. As expected, this

figure shows that the twisted PDF accords higher probability

to small values than the underlying PDF. Hence, compared to

sampling according to the original PDF, it will increase the

number of occurrences of samples belonging to the desired

region, i.e. samples belonging to the set {SN ≤ γth} for a

sufficiently small γth.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

x

P
D

F

Twisted PDF

Untiwsted PDF

Fig. 2. Twisted and original PDFs of S2 with X1 and X2 i.i.d Log-normal
RVs with µ = 0 dB, σ = 6 dB and θ = −2.

1) Minmax Optimal Parameter: The twisting parameter is

determined through the minmax approach described in Section

III-A. Since a negative θ is used, the minmax approach in the

present setting involves the maximization of
∑N

i=1 ΛXi
(Xi)

but over the different set
{

∑N
i=1 Xi ≤ γth, Xi > 0

}

:

(P1) : max
X1,...,XN

N
∑

i=1

ΛXi
(Xi) (42)

Subject to

N
∑

i=1

Xi ≤ γth, Xi > 0, i = 1, ..., N.

This is obviously in contrast to the case of our first proposed IS

method requiring to solve the minimization of
∑N

i=1 ΛYi
(Yi).

Let X∗
1 , X

∗
2 , ..., X

∗
N be the solution of (P1), hence we obtain:

Eθ

[

T 2
γth,2

]

≤ 1

(1− θ)2N
exp

(

−2θ
N
∑

i=1

ΛXi
(X∗

i )

)

. (43)

Then, the value of θ is determined by minimizing the right

hand side of the previous inequality which leads to

θ∗2 = 1− N
∑N

i=1 ΛXi
(X∗

i )
. (44)

2) Bounded Relative Error Property: We prove in the

following theorem that the proposed IS scheme possesses the

bounded relative error property. To the best of our knowledge,

this is the first estimator of the left tail of the sum distribution

(estimation of the probability of {SN ≤ γth}) to achieve this

criterion.

Theorem 2. Let X1, X2, ..., XN be a sequence of positive

i.i.d RVs with a common hazard function Λ(·). Assume that

Λ(γth) = O(Λ(γth/N)). Then, the bounded relative error

property is achieved, that is,

lim sup
γth→0

Eθ∗

2

[

T 2
γth,2

]

α2
< ∞. (45)

Proof: Plugging the minmax value of θ (44) into (43),

we obtain:

Eθ∗

2

[

T 2
γth,2

]

≤
(

1

N
B(γth))

)2N

exp (−2B(γth) + 2N) ,

(46)

where B(γth) =
∑N

i=1 Λ(X
∗
i ). Given that Λ(·) is an increas-

ing function and X∗
i ≤ γth (this follows from the inequality

constraint of the maximization problem (P1)), we have that

B(γth) ≤ NΛ(γth) and thus

Eθ∗

2

[

T 2
γth,2

]

≤ (Λ(γth))
2N

exp (2N) . (47)

On the other hand, we have

∩N
i=1{Xi ≤ γth/N} ⊂ {

N
∑

i=1

Xi ≤ γth}, (48)

which leads, via the i.i.d assumption, to

P (X1 ≤ γth/N)
N

= (1− exp (−Λ(γth/N)))
N ≤ α. (49)

Now, we combine the previous inequality with (47) to get

Eθ∗

2

[

T 2
γth,2

]

α2
≤ (Λ(γth))

2N
exp (2N)

(1− exp (−Λ(γth/N)))
2N

. (50)

Using the fact that Λ(γth) → 0 as γth → 0, it follows that

1− exp (−Λ(γth/N)) ∼
γth→0

Λ(γth/N), and thus we get

lim sup
γth→0

Eθ∗

2

[

T 2
γth,2

]

α2
≤ exp (2N) lim sup

γth→0

(

Λ(γth)

Λ(γth/N)

)2N

.

(51)

Finally, using the assumption Λ(γth) = O(Λ(γth/N)), we

deduce that

lim sup
γth→0

Eθ∗

2

[

T 2
γth,2

]

α2
< ∞, (52)

which concludes the proof.

It is worth mentioning that the assumption Λ(γth) =
O(Λ(γth/N)) does not cause a serious limitation, being

satisfied by most of the well-known fading models. In practice,

this assumption can be substituted by a more handy sufficient

condition:

Λ(γth) ∼
γth→0

aγb
th, (53)
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where a is a constant and b > 0. Moreover, since Λ(γth) =
− log (1− F (γth)) ∼

γth→0
F (γth), the previous condition is

equivalent to showing that:

F (γth) ∼
γth→0

aγb
th. (54)

In Table I, we show that condition (54) holds for many well-

known challenging distributions. The results presented in the

fourth column follows from the asymptotic behavior of the

lower incomplete gamma function γ(·, ·) [32], the Marcum Q

function Qξ(·, ·) [33], and the Meijer G function Gm,n
p,q [·] [34].

It is worth mentioning that these distributions correspond to

the most used fading variates in practice, thereby showing the

wide range of applicability of Theorem 2.

3) The Log-normal fading: Among the most commonly

used distributions in the field of wireless communications,

the Log-normal distribution is perhaps the sole one that we

have found to not achieve the assumption of Theorem 2.

This does not imply however the unsuitability of our second

IS to estimate the left tail of Log-normal sums. Indeed,

our estimator, while we think it to not probably achieve

the bounded relative error property, satisfies the asymptotic

optimality criterion, as will be stated in the next theorem.

Prior to stating the corresponding result, we shall recall that

the Log-normal PDF is given by:

fXi
(x) =

1√
2πxσi

exp

(

− (log(x)− µi)
2

2σ2
i

)

, x > 0 (55)

where µi and σi ,i = 1, 2, ..., N , are respectively the mean

and the standard deviation of the associated Gaussian RVs.

Theorem 3. The asymptotic optimality property is achieved

when X1, X2, ..., XN is a sequence of i.i.d Log-normal RVs

with a common hazard function Λ(·), that is we have

lim
γth→0

log(Eθ∗

2

[

T 2
γth,2

]

)

log(α)
= 2. (56)

Proof: In this proof, we will establish that our second IS

holds the following equivalent characterization of the asymp-

totic optimality property [30]:

lim sup
γth→0

Eθ∗

2

[

T 2
γth,2

]

/α2−ǫ = 0, ∀ǫ > 0. (57)

In order to prove (57), we note that using (47) and (49), we

get for all ǫ > 0:

Eθ∗

2

[

T 2
γth,2

]

α2−ǫ
= O

(

Λ(γth)
2N

Λ(γth/N)N(2−ǫ)

)

= O
(

F (γth)
2N

F (γth/N)N(2−ǫ)

)

. (58)

Now, we use an asymptotic equivalent for the CDF of the

Log-normal distribution [35]

F (γth) ∼
γth→0

σ√
2π(log(1/γth) + µ)

× exp

(

− (log(1/γth) + µ)2

2σ2

)

. (59)

Using this result, we obtain:

Eθ∗

2

[

T 2
γth,2

]

α2−ǫ

= O



log(1/γth)
−Nǫ

exp
(

−N(log(1/γth)+µ)2

σ2

)

exp
(

−N(2−ǫ)(log(N/γth)+µ)2

2σ2

)





→ 0 as γth → 0, for all ǫ > 0. (60)

which ends up the proof.

Remark 4. We have shown that choosing the minmax

parameter θ∗2 in (44) as the solution of the maximization

problem (P1) guarantees the asymptotic properties proven in

Theorem 2 and Theorem 3. However, a close look at the

proof suggests another choice of the twisting parameter that

not only avoids solving optimization problems but also keeps

Theorem 2 and Theorem 3 satisfied. In fact, an upper bound

of the second moment of Tγth,2, which is looser than the one

obtained by solving the maximization problem (P1), is given

by:

Eθ

[

T 2
γth,2

]

≤ Eθ

[

1(∩N
i=1

{Xi≤γth})L(X1, X2, ..., XN )
]

≤ 1

(1− θ)2N
exp

(

−2θ
N
∑

i=1

ΛXi
(γth)

)

. (61)

By setting the twisting parameter to be equal to:

θ∗2 = 1− N

Λ(γth)
, (62)

and by plugging this value into the (61), it follows, using the

i.i.d assumption of Theorem 2 and 3, that

Eθ∗

2

[

T 2
γth,2

]

≤
(

Λ(γth)

N

)2N

exp
(

2N2
)

. (63)

Hence, following the same steps as the original proofs of

Theorem 2 and Theorem 3, we easily deduce that these two

theorems holds with the choice of θ∗2 in (62). Based on

extensive simulations, we have observed that the θ in (62)

achieves approximately the same computational performances

as those provided by the θ in (44), which makes it a good

practical alternative that avoids the burden of optimization

algorithms. The simulation results that will be presented in

the next section correspond thus to the choice of θ in (62).

C. Algorithm

For the reader convenience, we provide hereafter a pseudo

code describing the steps used by our first IS algorithm.
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Table I: Asymptotic Properties for Different Fading Channels a

Fading Type PDF CDF Asymptotic

Weibull k
β

(

x
β

)k−1

exp
(

−( xβ )
k
)

1− exp
(

−( xβ )
k
)

( xβ )
k

k, β > 0

Gamma, k, β > 0 1
βkΓ(k)

xk−1 exp
(

− x
β

)

1
Γ(k)γ

(

k, x
β

)

1
Γ(k+1)

(

x
β

)k

k, β > 0

Nakagami, m,Ω > 0 2mm

Γ(m)Ωmx2m−1 exp
(

−m
Ω x2

)

1
Γ(m)γ

(

m, m
Ω x2

)

1
Γ(m+1)

(

m
Ω x2

)m

m,Ω > 0

Rice, σ > 0, ν ≥ 0 x
σ2 exp

(

−x2+ν2

2σ2

)

I0
(

xν
σ2

)

1−Q1

(

ν
σ ,

x
σ

) exp
(

− ν2

2σ2

)

2σ2 x2

σ > 0, ν ≥ 0

Non-Centered Chi Squared
exp(− x+β

2 )
2

(

x
β

)
k
4
− 1

2

I k
2
−1

(√
βx
)

1−Q k
2

(√
β,

√
x
) exp(− β

2 )
Γ( k

2
+1)

(

x
2

)
k
2

k, β > 0

Gamma-Gamma
2(km)

k+m
2

Γ(k)Γ(m)Ω

(

x
Ω

)
k+m

2
−1

Kk−m

(

2
√

km
Ω x

)

1
Γ(m)Γ(k)G

2,1
1,3

[

km
Ω x
∣

∣

∣

1

k,m,0

]

Γ(m−k)Γ(k)
Γ(1+k) xk

m, k,Ω > 0 m > k, m− k /∈ N

aFunctions Γ(·), Iξ(·), Kξ(·) are respectively the Gamma function, the modified Bessel function of the first kind and order ξ, and the modified Bessel
function of the second kind and order ξ [32].

Algorithm 1 First IS scheme

Inputs: M , γth.

Outputs: α̂IS,1.

Find the minmax value θ∗1 as in (28) by solving the

minimization problem (P ′).
for i = 1, ...,M do

Generate independent realizations of {Yj(ωi)}Nj=1 under

the twisted PDF {fYj ,θ∗

1
(·)}Nj=1 given in (21).

Evaluate Tγth,1(ωi) as in (24).

end for

Compute the IS estimator as α̂IS,1 = 1
M

∑M
i=1 Tγth,1(ωi).

It is worth mentioning that these steps remain the same

for the second IS scheme, the only differences being in the

replacement of θ∗1 by θ∗2 given in (62), {fYj ,θ∗

1
(·)}Nj=1 by

{fXj ,θ∗

2
(·)}Nj=1 in (18), and Tγth,1 by Tγth,2 in (41).

Note that the implementation of Algorithm 1 requires gen-

erating new RVs according to the twisted PDFs {fYi,θ(·)}Ni=1.

For that, several methods can be used, such as the inverse

CDF method [36] which we elaborate on for the sake of

completeness. Denoting the CDFs of {Yi}Ni=1 under the PDFs

{fYi,θ(·)}Ni=1 by {FYi,θ(·)}Ni=1, the inverse CDF method is

based on the observation that the RV F−1
Yi,θ

(U), where U is

uniformly distributed over [0, 1], has the same distribution as

Yi under the twisted PDF fYi,θ(·), i = 1, 2, ..., N . Using the

expression of fYi,θ(·), i = 1, 2, ..., N , given in (21) and after

simple computations, we get a closed-form expression of the

CDF inverse F−1
Yi,θ

(·), i = 1, 2, ..., N , which is given by:

F−1
Yi,θ

(u) = −F−1
Xi

(

(1− u)
− 1

θ−1

)

. (64)

In the second IS approach, where we need to sample from

{fXi,θ∗

2
(·)}Ni=1 in (18), the CDF inverse is given as follows:

F−1
Xi,θ

(u) = F−1
Xi

(

1− (1− u)
− 1

θ−1

)

. (65)

It is worth mentioning that the inverse CDF method is widely

applicable to most of the well-known distributions, for which

closed-form expressions of the CDF inverse exist. We can for

instance cite the Log-normal, the Weibull, the Nakagami, and

the Gamma distributions. Note also that, in case the inverse

CDF is not easy to handle, one can use instead other sampling

algorithms such as the acceptance-rejection technique and the

Markov Chain Monte Carlo algorithm [37].

IV. SIMULATION RESULTS

In this section, we present the results of two simulation

experiments illustrating the computational efficiency achieved

by both of the proposed IS schemes. In the first experiment,

we consider the evaluation of the OC at the output of the

MRC receiver when operating over the Log-normal fading.

The use of the Log-normal setting will allow us to compare

with the simulation method in [18] which represents the sole

simulation technique of which we are aware that deals with

the left tail of the sum distribution. As a further application,

we consider in the second experiment the evaluation of the

OC at the output of the EGC receiver when operating over

the Nakagami fading.

In both experiments, the gain in computational efficiency

will be evaluated based on the amount of variance reduction

over naive MC simulations that they achieve. For the consid-
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ered schemes, the amount of variance reduction writes as:

ki =
α(1− α)

varθ∗

i
[Tγth,i]

, i = 1, 2. (66)

The relevance of this metric lies in that it unveils the

gain in simulations runs (over naive MC techniques) that can

be achieved while maintaining a fixed accuracy requirement.

More specifically, the naive MC simulations would require

k1 ×M (respectively k2 ×M ) simulation runs to achieve the

same accuracy as the first proposed IS technique (respectively

the second IS technique ) when using M simulation runs.

A. Log-normal Fading with MRC Diversity Technique

In this experiment, we evaluate the OC at the output of the

MRC receiver when operating over the Log-normal fading.

The PDF of the Log-normal envelope Ri, i = 1, 2, ..., N ,

is given in (55). It can be shown that the OC is given in

this case by the CDF of the sum distribution of Log-normal

RVs with parameters 2µi and 2σi, i = 1, 2, ..., N where µi

and σi are the parameters corresponding to the distribution

of the fading envelope Ri. The use of the log-normal setting

allows us to compare our method with the IS estimator of [18],

which we denote by α̂IS,3 = 1/M
∑M

i=1 Tγth,3(ωi) where

Tγth,3 is given by [18, eq. 4.3]. This forces us to consider the

i.i.d assumption, being required in [18]. Similarly to (66), we

introduce for this approach the amount of variance reduction

given by:

k3 =
α(1− α)

varθ∗

3
[Tγth,3]

, (67)

where θ∗3 is selected as in [18, eq. 2.5].

It is worth mentioning that the variances Tγth,i, i = 1, 2, 3
appearing in (66) and (67) are estimated using the empirical

sample variances of Tγth,i, i = 1, 2, 3. Note that the use of the

empirical sample variances makes sense for the proposed IS

approaches, since we do have enough realizations in the set

(SN ≤ γth) where SN represents the sum of the twisted RVs.

The same calculation method cannot obviously be applied to

estimate the variance introduced by the naive MC method, i.e.

the variance of 1(SN≤γth) under the underlying distribution.

However, since it is in theory equal to α(1−α), we proposed to

approximate it by α̂IS,i(1−α̂IS,i), where α̂IS,i, i = 1, 2, 3, are

the IS estimators produced respectively by the two proposed

IS schemes and the IS approach of [18].

It is also important to note that in this experiment, the

twisting parameters θ∗1 in (28) and θ∗2 in (62) used by our first

and second proposed IS schemes turn out to admit closed-

form expressions. As shown by (28), the value of θ∗1 requires

solving the minimization problem (P ′). Interestingly, using

the log-concavity of the CDF of the Log-normal distribution

[31] and under the i.i.d setting, a closed-form expression of

the solution of (P ′) can be easily obtained and corresponds

to Y ∗
i = −γth/N , i = 1, 2, ..., N . Hence, a closed-form

expression of θ∗1 is given by:

θ∗1 = 1− 1

ΛY1
(−γth/N)
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Fig. 3. (a) Outage capacity of N -branch MRC diversity receivers over i.i.d
Log-normal fading variates with Es/N0 = 10 dB, µ = 10 dB, and σ = 6 dB.
(b) Efficiency ki, i = 1, 2, 3, with same parameters. Number of simulation
runs: M = 106.

where ΛY1
(·) is the hazard function of Y1, Y2, ..., YN which is

equal to

ΛY1
(y) = − log

(

Φ

(

log(−y)− 2µ

2σ

))

, y < 0,

where Φ(·) is the CDF of the standard normal distribution.

For the second proposed IS scheme, the value of its twisting

parameter θ∗2 is given in closed-form by (62). For the par-

ticular Log-normal fading environment with MRC diversity

technique, it thus writes as:

θ∗2 = 1 +
N

log
(

Q
(

log(γth)−2µ
2σ

)) ,

where Q(·) is the complementary CDF of the standard normal

distribution.

In Fig. 3.a the outage capacity of N -branch MRC di-

versity receivers over independent Log-normal fading variates

is estimated using the naive MC simulations, as well as the

two proposed hazard rate twisting IS based approaches and

the IS scheme of [18]. The number of simulation runs is

M = 106. From this figure, the failure of the naive MC
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simulation is clearly obvious. In fact, for each value of N ,

a clear oscillatory behavior is first observed for small values

of the OC. Then, as we further decrease the threshold Cth, it

becomes unable to generate important samples, i.e. realizations

that falls below the given threshold, and hence produces

identically zero estimates. Such a failure can be avoided by

using much more number of simulation runs. In sharp contrast

to the behaviour of the naive MC estimator, both of the two

proposed IS approach and the approach in [18] provide a

smoother curve, thus revealing their higher accuracies while

using the same number of samples.

We further proceed investigating the gain in terms of

simulation runs that is achieved by both of the proposed IS

methods and that of [18]. To this end, we plot in Fig. 3.b the

amounts of variance reduction ki, i = 1, 2, 3 as a function

of the capacity threshold Cth. This figure clearly shows the

high gain achieved by the three IS methods over naive MC

simulations. This gain becomes all the more important as

the threshold Cth decreases (small values of the OC). For

instance, it can be seen from Fig. 3.b that for a fixed accuracy

requirement, the naive MC simulations requires approximately

108 times as many simulation runs as needed by the second

IS approach to estimate the OC at the output of a 4 branch

MRC receiver for Cth = 2 Bit/Sec/Hz. Furthermore, Fig. 3.b

shows that out of the three IS schemes and for the considered

range of probabilities, it is the second IS scheme that exhibits

the highest performance, requiring for N = 4 and Cth = 2
Bit/Sec/Hz, approximately 103 and 10 times less simulation

runs than our first proposed IS and the estimator in [18],

respectively. Nevertheless, it is worth mentioning that the good

performances of the second IS estimator and that of [18] must

be balanced with their narrower scope of applicability. This

is to be compared to the first IS estimator which applies to

the general case of arbitrary independent and not necessarily

identically distributed RVs.

In Fig. 4, we consider the evaluation of the OC at the

output of N = 4 branch MRC diversity receiver operating

over independent Log-normal fading. Two scenarios are in-

vestigated that correspond to different choices of the values of

the standard deviation σ: σ = 4 dB for the first scenario and

σ = 5 dB for the second scenario. Fig. 4.a represents the OCs

estimated for both scenarios by the naive MC simulations as

well as the two proposed IS schemes and that of [18] when

M = 106. For both scenarios, we note that the three IS exhibit

again a good level of accuracy, whereas the naive MC fails

to be accurate using the same number of simulation runs. We

further our analysis in Fig. 4.b by studying the computational

gain that is achieved by the three IS approaches over MC

simulations as a function of Cth. This gain is expressed in

terms of number of simulation runs and corresponds to the

amount of variance reduction ki, i = 1, 2, 3. Fig. 4.b confirms

the same conclusion as the previous experiment, in that for

both choices of the standard deviation, all the considered IS

schemes outperform naive MC simulations. The gain is all the

more high as the threshold Cth take small values. For instance,

for σ = 5 dB and Cth = 3 Bit/Sec/Hz, the naive MC method

requires above 108 times more simulation runs than those used

by our second IS technique in order to ensure the same level of

accuracy. Moreover, the same figure confirms that our second

IS approach achieves again better performances than the first

proposed IS scheme and the one of [18]. We also note that the

gain of the second IS scheme is less important for σ = 4 dB

than that of σ = 6 dB shown in Fig. 3.b. We conclude thus

that the second IS scheme is likely to achieve higher gains as

σ increases.
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Fig. 4. (a) Outage capacity of N = 4-branch MRC diversity receivers over
i.i.d Log-normal fading variates with Es/N0 = 10 dB, and µ = 10 dB. (b)
Efficiency ki, i = 1, 2, 3, with same parameters. Number of simulation runs:
M = 106.

B. Nakagami Fading with EGC Diversity Technique

In a second experiment, we consider the evaluation of the

OC at the output of the EGC receiver when operating over the

Nakagami fading for different number of combiners. We recall

that the PDF of the Nakagami envelope Ri, i = 1, 2, ..., N , is

given by

fRi
(r) =

2mmi

i

Γ(mi)Ω
mi

i

r2mi−1 exp

(

−mi

Ωi
r2
)

, r > 0, (68)

where mi and Ωi i = 1, 2, ..., N , denote respectively the

shape and the spread parameters, whereas Γ(·) is the Gamma

function. Interestingly, provided that m > 1/2, the CDF

of a Nakagami distribution is log-concave [31]. Hence under
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the i.i.d setting, Y ∗
i = −γth/N is the solution of (P ′).

Consequently, a closed-form expression for θ∗1 in (28) is

obtained by:

θ∗1 = 1− 1

ΛY1
(−γth/N)

,

ΛY1
(·) being the hazard function of Y1, Y2, ..., YN given by:

ΛY1
(y) = − log

(

γ
(

m,my2/Ω
)

Γ (m)

)

,

where Γ(·, ·) and γ(·) denote respectively the lower incomplete

gamma function and the Gamma function [32]. As for the

twisting parameter θ∗2 used in the second IS approach, its value

is given in (62) and is equal for this particular case to:

θ∗2 = 1 +
N

log

(

1− γ(m,mγ2
th

/Ω)
Γ(m)

)

In Table II, we investigate the ability of the two proposed

IS schemes in generating important samples, i.e, samples that

belong to the desired set {Cγend
< Cth}. To this end, we

compute the percentage of such samples when using naive

MC simulations and the two proposed IS schemes (we refer

them to IS1 and IS2 in the table) as a function of the

probability of interest and for a number of simulation runs

M = 106. We easily observe from this table that, contrary to

the naive MC method which fails to generate important values

as we decrease the probability of interest, the two proposed IS

approaches continue to generate samples in the desired region

even for very small probabilities.

TABLE II
PERCENTAGE OF IMPORTANT SAMPLES FOR N = 4-BRANCH EGC

DIVERSITY RECEIVERS OVER I.I.D NAKAGAMI FADING VARIATES WITH

Es/N0 = 10 DB, m = 0.8, Ω = 8, AND M = 106 .

Cth
Naive
MC

α̂IS,1 IS1 α̂IS,2 IS2

4 0.058% 5.97× 10−4 10.415% 5.96× 10−4 11.254%
3 0.005% 5.68× 10−5 8.789% 5.69× 10−5 12.216%
2 0.0006% 3.86× 10−6 7.438% 3.96× 10−6 13.051%
1 0% 1.19× 10−7 6.263% 1.20× 10−7 13.608%
0.5 0% 7.32× 10−9 5.610% 7.20× 10−9 13.933%

Next, we plot in Fig. 5.a the OC evaluated by the naive

MC and the two proposed IS schemes. We notice again the

failure of naive MC simulations in estimating small OC. In

fig. 5.b, we plot the amounts of variance reductions achieved

by the two proposed IS schemes. We observe that the use

of the second IS scheme for instance can indeed save up to

107 times the number of simulation runs needed by naive

MC simulations while keeping the same accuracy requirement.

Furthermore, it is worth pointing out that it is the second IS

estimator that achieves the highest performance, with a gain

that becomes higher as the threshold decreases. For instance,

at a threshold value of Cth = 0.5 Bit/Sec/Hz and when N = 4,

the second IS estimator requires 102 times less simulation runs

than the first one. Such a result is expected and likely owes

to the bounded relative error property that enjoys the second

IS estimator, the first IS estimator satisfying only a weaker

property, that is the asymptotic optimality criterion.
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Fig. 5. (a) Outage capacity of N -branch EGC diversity receivers over i.i.d
Nakagami fading variates with Es/N0 = 10 dB, Ω = 8, and m = 0.8. (b)
Efficiency ki, i = 1, 2, with same parameters. Number of simulation runs:
M = 106.

V. CONCLUSION

We consider in this paper the estimation of the CDF for

the sum of independent RVs. Such a question is driven by

the problem of evaluating the OC of MRC/EGC diversity

techniques over generalized fading channels. It is now stirring

an increasing interest in the field of rare event simulation algo-

rithms, the focus of which is shifting away from the estimation

of the right tail of the sum distribution to consideration of the

left tail region.

Building upon the framework of rare event simulation tech-

niques, we propose two unified, yet efficient, hazard rate twist-

ing IS-based simulation approaches that efficiently estimate

the CDF of the sum of independent RVs. The two proposed

schemes achieve higher gain over the naive MC simulations

but present different characteristics. More specifically, the first

IS approach applies to arbitrary distributions and was shown

to achieve the asymptotic optimality criterion for arbitrary

independent fading models. On the other hand, the second

one applies only to the i.i.d. case but achieves the asymptotic

optimality criterion for the Log-normal setting and the well-

desired bounded relative criterion for the majority of the
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well-known distributions. Simulations results supporting our

theoretical findings were provided. They have in particular

illustrated the substantial computational efficiency achieved by

these IS schemes over naive MC simulations.
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[3] G. L. Stüber, Principles of Mobile Communication, 2nd Edition. Nor-

well, MA, USA: Kluwer Academic Publishers, 2001.
[4] S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of

free-space optical transmission with spatial diversity.” IEEE Transac-

tions on Wireless Communications, vol. 6, no. 8, pp. 2813–2819, Aug.
2007.

[5] H. Sandalidis, T. Tsiftsis, G. Karagiannidis, and M. Uysal, “Ber perfor-
mance of FSO links over strong atmospheric turbulence channels with
pointing errors,” IEEE Communications Letters, vol. 12, no. 1, pp. 44–
46, Jan. 2008.

[6] F. Babich and G. Lombardi, “Statistical analysis and characterization
of the indoor propagation channel,” IEEE Transactions on Communica-

tions, vol. 48, no. 3, pp. 455–464, Mar. 2000.
[7] N. Sagias and G. Karagiannidis, “Gaussian class multivariate Weibull

distributions: Theory and applications in fading channels,” IEEE Trans-

actions on Information Theory, vol. 51, no. 10, pp. 3608–3619, Oct.
2005.

[8] N. Beaulieu and Q. Xie, “An optimal Lognormal approximation to Log-
normal sum distributions,” IEEE Transactions on Vehicular Technology,
vol. 53, no. 2, pp. 479–489, Mar. 2004.

[9] M. Di Renzo, F. Graziosi, and F. Santucci, “Further results on the ap-
proximation of Log-normal power sum via Pearson type IV distribution:
a general formula for log-moments computation,” IEEE Transactions on

Communications, vol. 57, no. 4, pp. 893–898, Apr. 2009.
[10] J. Filho and M. Yacoub, “Simple precise approximations to Weibull

sums,” IEEE Communications Letters, vol. 10, no. 8, pp. 614–616, Aug.
2006.

[11] D. da Costa, M. Yacoub, and J. Filho, “An improved closed-form
approximation to the sum of arbitrary Nakagami- m variates,” IEEE

Transactions on Vehicular Technology, vol. 57, no. 6, pp. 3854–3858,
Nov. 2008.

[12] K. Peppas, “A simple, accurate approximation to the sum of Gamma-
Gamma variates and applications in MIMO free-space optical systems,”
IEEE Photonics Technology Letters, vol. 23, no. 13, pp. 839–841, Jul.
2011.

[13] J. Hu and N. Beaulieu, “Accurate simple closed-form approximations
to Rayleigh sum distributions and densities,” IEEE Communications

Letters, vol. 9, no. 2, pp. 109–111, Feb. 2005.
[14] N. Beaulieu and F. Rajwani, “Highly accurate simple closed-form

approximations to Lognormal sum distributions and densities,” IEEE

Communications Letters, vol. 8, no. 12, pp. 709–711, Dec. 2004.
[15] M. Di Renzo, L. Imbriglio, F. Graziosi, and F. Santucci, “Smolyak’s

algorithm: A simple and accurate framework for the analysis of corre-
lated Log-normal power-sums,” IEEE Communications Letters, vol. 13,
no. 9, pp. 673 – 675, Sep. 2009.

[16] D. Senaratne and C. Tellambura, “Numerical computation of the Lognor-
mal sum distribution,” in Proc. of the IEEE Global Telecommunications

Conference (GLOBECOM’2009), Honolulu, Hawaii, US, Nov. 2009, pp.
1–6.

[17] ——, “A general numerical method for computing the probability of
outage,” in Proc. of the IEEE Wireless Communications and Networking

Conference (WCNC’09), Apr. 2009, pp. 1–6.
[18] S. Asmussen, J. L. Jensen, and L. Rojas-Nandayapa, “Exponential family

techniques for the Lognormal left tail,” arXiv preprint arXiv:1403.4689,
2014.

[19] A. Gulisashvili and P. Tankov, “Tail behavior of sums and differences of
Log-normal random variables,” arXiv preprint arXiv:1309.3057, 2013.

[20] J. Sadowsky, “On the optimality and stability of exponential twisting
in Monte Carlo estimation,” IEEE Transactions on Information Theory,
vol. 39, no. 1, pp. 119–128, Jan. 1993.

[21] J. Sadowsky and J. Bucklew, “On large deviations theory and asymp-
totically efficient Monte Carlo estimation,” IEEE Transactions on Infor-

mation Theory, vol. 36, no. 3, pp. 579–588, May. 1990.

[22] S. Asmussen, J. Jensen, and L. Rojas-Nandayapa, “On the Laplace
transform of the Lognormal distribution,” Methodology and Computing

in Applied Probability, pp. 1–18, 2014.
[23] S. Juneja and P. Shahabuddin, “Simulating heavy tailed processes using

delayed hazard rate twisting,” ACM Trans. Model. Comput. Simul.,
vol. 12, no. 2, pp. 94–118, Apr. 2002.

[24] N. Ben Rached, F. Benkhelifa, M.-S. Alouini, and R. Tempone, “A fast
simulation method for the Log-normal sum distribution using a hazard
rate twisting technique,” in Proc. of the IEEE International Conference

on Communications (ICC’2015), Jun. 2015, pp. 4259–4264.
[25] N. Ben Rached, F. Benkhelifa, A. Kammoun, M.-S. Alouini, and R. Tem-

pone, “Additional results on the hazard rate twisting-based simulation
approach,” 2014. [Online]. Available: http://sri-uq.kaust.edu.sa/Pages/
Page BenRached Benkhelifa Kammoun Alouini Tempone 1.aspx

[26] N. Ben Rached, A. Kammoun, M.-S. Alouini, and R. Tempone, “An
improved hazard rate twisting approach for the statistic of the sum of
subexponential variates,” IEEE Communications Letters, vol. 19, no. 1,
pp. 14–17, Jan 2015.

[27] J. A. Bucklew, Introduction to Rare Event Simulation, ser. Springer series
in statistics. New York: Springer, 2004.

[28] F. Yilmaz and M.-S. Alouini, “A unified MGF-based capacity analysis
of diversity combiners over generalized fading channels,” IEEE Trans-

actions on Communications, vol. 60, no. 3, pp. 862–875, Mar. 2012.
[29] P.M. Shankar, Fading and Shadowing in Wireless Systems. Springer

New York, 2012.
[30] S. Asmussen and P. W. Glynn, Stochastic simulation : algorithms and

analysis, ser. Stochastic modelling and applied probability. New York:
Springer, 2007.

[31] M. Bagnoli and T. Bergstrom, “Log-concave probability and its appli-
cations,” Economic Theory, vol. 26, no. 2, pp. 445–469, 2005.

[32] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and

products, 7th ed. Elsevier/Academic Press, Amsterdam, 2007.
[33] S. András, A. Baricz, and Y. Sun, “The generalized Marcum Q- func-

tion: an orthogonal polynomial approach,” Acta Universitatis Sapientiae

Mathematica, vol. 3, no. 1, pp. 60–76, 2011.
[34] A. Kilbas and M. Saigo, H-Transforms : Theory and Applications

(Analytical Method and Special Function), 1st ed. CRC Press, 2004.
[35] S. Asmussen, J. H. Blanchet, S. Juneja, and L. Rojas-Nandayapa, “Effi-

cient simulation of tail probabilities of sums of correlated Lognormals,”
Annals OR, vol. 189, no. 1, pp. 5–23, 2011.

[36] L. Devroye, Non-Uniform Random Variate Generation. New York:
Springer-Verlag, 1986.

[37] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo

methods. Hoboken, N.J. Wiley, 2011.

Nadhir Ben Rached was born in Nabeul, Tunisia.
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