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Abstract
The aim of this work is to present a general homogenization framework with application to magnetorheological
elastomers under large deformation processes. The macroscale and microscale magnetomechanical responses of the
composite in the material and spatial description are presented and the conditions for a well-established homogenization
problem in Lagrangian description are identified. The connection between the macroscopic magnetomechanical field
variables and the volume averaging of the corresponding microscopic variables in the Eulerian description is examined
for several types of boundary conditions. It is shown that the use of kinematic and magnetic field potentials instead of
kinetic field and magnetic induction potentials provides a more appropriate homogenization process.
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1. Introduction
Magnetorheological elastomers (elastomers filled with magnetic particles) are magneto-sensitive composite
materials whose mechanical behavior changes with the application of magnetic fields. Recently they have
attracted significant research attention due to their interesting applications, which include adaptive engine
mounts, vibration absorbers, suspension systems and automotive bushing [1–6] .

The electromechanical and magnetomechanical response of solids has been thoroughly studied in the past.
Based on the classical laws of elasticity, electricity and magnetism, the general equations have been derived and
several boundary-value problems have been solved [7–13]. In particular, for magnetorheological elastomers,
modeling efforts have been presented recently [14–18]. In these efforts the magnetorheological elastomer is
examined in a macroscopic level and general magnetomechanical laws are presented.

During the last few decades there have been extensive studies on composite materials. The overall behavior
of these materials strongly depends on the properties of the material constituents and the microscopic geometry
(volume fraction, shape and orientation of constituents) and the determination of the macroscopic response is a
difficult task. The direct simulation of the composites including the microstructural characteristics is restricted
by the computational cost, thus alternative approaches, based on micromechanics and homogenization methods,
have been developed. A review of the different multi-scale approaches can be found in [19, 20]. The effective
mechanical behavior of composites has been studied thoroughly by various researchers for general and periodic
microstructure [21–26]. A computational scheme for homogenization of composites with nonlinear constituents
has been presented by [27]. Homogenization of composites at finite strains has been considered by many authors
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[28–34]. Very recently, homogenization approaches have been considered for the magnetomechanical response
of magnetorheological elastomers (see, e.g., [35–39]). In these efforts the effective behavior of the composite is
studied under certain assumptions on the constitutive behavior and the boundary conditions. The scope of this
work is to present a general homogenization framework for magnetorheological elastomers under finite strains.
We are investigating several types of boundary conditions that satisfy the Hill–Mandel conditions, as well as
the transition between the material and spatial description of the macroscopic mechanical and magnetic field
variables.

The structure of the paper is as follows. After introducing the notation and definitions that are used through-
out this work, we define the problem under study in Section 2 and describe the field variables, the balance
and the constitutive laws that govern the microstructure and the macrostructure. Sections 3 and 4 present the
boundary conditions under which the Hill–Mandel conditions are satisfied in material configuration, while in
Section 5 we study the transition of macroscopic variables from material to spatial description through volume
averaging over the representative volume element. The paper closes with the conclusions of this work.

Notation and definitions

Direct notation is adopted throughout. Occasional use is made of index notation, the summation convention for
repeated indices being implied. The scalar product of two vectors a and b, i.e. the single contraction, is denoted
a · b = [a]i[b]i. The scalar product of two second-order tensors A and B, i.e. the double contraction, is denoted
by A : B = [A]ij[B]ij. The action of a second-order tensor A on a vector a is understood as [A · a]i = [A]ij[a]j

and [a · A]i = [a]j[A]ji. The double contraction of a third-order tensor A and a second-order tensor B renders
a vector according to [A : B]i = [A]ijk[B]jk . The action of a third-order tensor A on a vector a, denoted
by A · a, is a second-order tensor with components [A · a]ij = [A]ijm[a]m. The composition of two second-
order tensors A and B, denoted by A · B, is a second-order tensor with components [A · B]ij = [A]im[B]mj. The
tensor product of two vectors a and b is a second-order tensor D = a ⊗ b with [D]ij = [a]i[b]j. The tensor
product of two second-order tensors A and B is a fourth-order tensor D = A ⊗ B with [D]ijkl = [A]ij[B]kl.
For a vector a and a second-order tensor B the tensor product is understood as [a ⊗ B]ijk = [a]i[B]jk and
[B ⊗ a]ijk = [a]k[B]ij. The two non-standard tensor products of two second-order tensors A and B are the
fourth-order tensors [A ⊗ B]ijkl = [A]ik[B]jl and [A ⊗ B]ijkl = [A]il[B]jk . The cross-product of two vectors a
and b is denoted by a×b with [a×b]k = [ε]ijk[a]i[b]j, where ε denotes the third-order permutation (Levi-Civita)
tensor. With the aid of previously introduced operators the cross-product can be expressed in direct notation as
a × b = [a ⊗ b] : ε. Analogously, cross-products of a vector a and a second-order tensor B are defined as
a × B = ε : [a ⊗ B] and B × a = [B ⊗ a] : ε or, alternatively, in index notation, [a × B]kl = [ε]ijk[a]i[B]jl and
[B × a]kl = [ε]ijl[a]j[B]ki.

Gradient, divergence and curl of an arbitrary quantity {•} with respect to the material configuration are
defined as

Grad {•} := {•} ⊗ ∂X , Div {•} := Grad {•} : I , Curl {•} := −Grad {•} : ε.

In near-identical fashion, the counterparts of these operators with respect to the spatial configuration can be
defined, i.e.

grad {•} := {•} ⊗ ∂x, div {•} := grad {•} : i, curl {•} = −grad {•} : ε.

Here I = i denotes the second-order identity tensor [I]ij = [i]ij = δij with δij being the Kronecker delta.
In the following, all quantities corresponding to the magnetic problem are distinguished from those of clas-

sical continuum mechanics by using the blackboard font, i.e. A, B. Mechanical and magnetic quantities that
present analogy in the unified homogenization framework are denoted with the same letter but different fonts.
For instance, Piola stress tensor and material magnetic induction vector are represented with the letters P and
P, respectively (see Table 1 for further details). Quantities defined on the macroscopic scale are differentiated
from those on the microscopic scale by an accent placed above the symbol. That is, {•} refers to a macroscopic
variable with its microscopic counterpart being {•}. Unless stated otherwise, capital and small letters denote
quantities in the material and spatial configurations respectively.
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Table 1. Unified notation for mechanical and magnetic quantities.

F Material deformation gradient F Material magnetic field
f Spatial deformation gradient � Spatial magnetic field
Y Material deformation map Y Material magnetic scalar potential
y Spatial deformation map � Spatial magnetic scalar potential
P Piola stress P Material magnetic induction
p Cauchy stress � Spatial magnetic induction
T Material traction vector T Material magnetic flux
t Spatial traction vector � Spatial magnetic flux
A Piola stress tensor potential A Material magnetic vector potential
a Cauchy stress tensor potential � Spatial magnetic vector potential
Z Material position fluctuation function Z Fluctuation function of F

z Spatial position fluctuation function � Fluctuation function of �
W Piola stress fluctuation function W Fluctuation function of P

s Kirchhoff stress � Alternative spatial form of P

0 Null mechanical quantity O Null magnetic quantity
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Figure 1. Macroscale and microscale variables.

2. Problem definition
Our intention is to study the behavior of a magnetorheological elastomer subjected to magnetomechanical load-
ing. Since our material is a composite, consisting of an elastomer matrix and magnetic particles, we can consider
two separate scales, the macroscale, which describes the continuum body, and the microscale, which describes
the representative volume element (RVE) of the microstucture. As depicted in Figure 1, both the macroscale and
microscale can be expressed in the material or in the spatial configuration. In the proceeding subsections of this
section we are going to present the field variables and the main equations that describe the overall body and its
microstructure.

The purpose of this preliminary section is to summarize certain key concepts in nonlinear continuum
mechanics coupled to electromagnetics and to introduce the notation adopted here. Detailed expositions on
nonlinear continuum mechanics can be found in [40–44], among others. For further details concerning the
coupling of continuum mechanics and electromagnetics, see [7, 9, 10].
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2.1. Microscopic problem

In the microscale we consider that the RVE in the undeformed (material) configuration (without any magnetic
field) occupies the space B0 with volume V0 and boundary surface ∂B0. The deformed (spatial) configuration is
denoted by Bt and the current volume by Vt and boundary surface ∂Bt. For static cases, the position vector x of
a point in the spatial configuration Bt is described in terms of the position vector X of the point in the material
configuration B0 by the nonlinear spatial motion map x = Y (X ) and the deformation is characterized by the
spatial motion deformation gradient F

F = GradY . (1)

In the absence of mechanical micro-body forces, the microscopic equilibrium equation in the material
configuration is written

DivP = 0, (2)

where P is the Piola stress. The equations of magnetostatics in terms of the Lagrangian magnetic induction P

and the Lagrangian magnetic field F are given by

DivP = O, (3)

and
CurlF = O, (4)

respectively. In analogy with (4), the deformation gradient, given by (1), satisfies the compatibility condition

CurlF = 0. (5)

The form of the coupled magnetomechanical equations, given by Equations (2), (5), (3) and (4), allow us to
express the field variables F, P, F and P as functions of appropriate potentials. The deformation gradient can be
expressed by the vector field Y , as Equation (1) suggests. The magnetic induction is usually expressed in terms
of the magnetic vector potential A through the relation

P = CurlA, (6)

which guarantees that Equation (3) is satisfied for every magnetic vector potential. In direct analogy, we can
define a magnetic scalar potential Y that satisfies Equation (4) if it is connected with the magnetic field through
the relation

F = GradY. (7)

The last field variable, the Piola stress, can be expressed in terms of a stress tensor potential A (second-order
tensor) through the relation

P = CurlA. (8)

Equation (2) is satisfied for any choice of A. Such a tensor potential is uncommon in the engineering literature,
since it is the same size as the Piola stress tensor. In the current context, though, it allows us to treat the
mechanical stress and the magnetic induction in a similar manner.

The constitutive relations that connect the stress with the deformation gradient and the magnetic field with
the magnetic induction in the material configuration are usually provided through the introduction of appropriate
energy density functions. We consider an energy density function W FP

0 (F, P), such that the total Piola stress
(including Maxwell stress and magnetization effect, see [10, 15, 16]) and the Lagrangian magnetic field are
given by

P(F, P) = ∂W FP

0

∂F
and F(F, P) = ∂W FP

0

∂P
. (9)

Assuming that the energy function is convex with respect to the deformation gradient and the magnetic
induction, we can identify the following energy density functions through Legendre transformations,

W FF

0 (F, F) = inf
P

{W FP

0 (F, P) − F · P},
W PP

0 (P, P) = inf
F

{W FP

0 (F, P) − P : F},
W PF

0 (P, F) = inf
F,P

{W FP

0 (F, P) − F · P − P : F}.
(10)
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The above energy density functions provide alternative forms of the constitutive relations through the Legendre
transformation that are given by

P(F, F) = ∂W FF

0

∂F
and P(F, F) = −∂W FF

0

∂F
for the function W FF

0 (F, F),

F(P, P) = −∂W PP

0

∂P
and F(P, P) = ∂W PP

0

∂P
for the function W PP

0 (P, P),

F(P, F) = −∂W PF

0

∂P
and P(P, F) = −∂W PF

0

∂F
for the function W PF

0 (P, F).

(11)

The increments of the four energy density functions are written

δW FP

0 = P : δF + F · δP, δW FF

0 = P : δF − P · δF,

δW PP

0 = −F : δP + F · δP, δW PF

0 = −F : δP − P · δF.
(12)

In the spatial configuration the material position X is described by the deformation map X = y(x) and the
deformation is characterized by the inverse of the deformation gradient f ,

f = grady. (13)

The spatial configuration field variables are the inverse of the deformation gradient f , the symmetric Cauchy
stress tensor p, the Eulerian magnetic induction � and the Eulerian magnetic field � . These are expressed in
terms of the deformation gradient F, the Piola stress P, the Lagrangian magnetic induction P and the Lagrangian
magnetic field F through the relations

f = I · F−1, p = J−1P · Ft, � = F · F−1, � = J−1
P · Ft, (14)

where J = DetF. The coupled magnetomechanical system of equations in the material configuration holds in
similar form in the spatial configuration. Namely,

curlf = 0, divp = 0, curl� = O, div� = O. (15)

In an analogous manner with the material description, we can identify appropriate potentials for the spatial
description field variables. Specifically, the potential for the inverse of deformation gradient is the vector field y
as (13) suggests, the potential for the Cauchy stress is the stress tensor potential a, expressed by the relation

p = curla with a = A · F−1, (16)

the potential for the Eulerian magnetic induction is the magnetic vector potential �, expressed by the relation

� = curl� with � = A · F−1, (17)

and the potential for the Eulerian magnetic field is the magnetic scalar potential �(x) ≡ Y(X), expressed by the
relation

� = grad�. (18)

2.2. Macroscopic problem

In the macroscale we consider a continuum body that in the material configuration (without any magnetic field)
occupies the space B0 with boundary surface ∂B0. In the spatial configuration the body occupies the space
Bt with boundary surface ∂Bt. For static cases, the position vector x of a point in the spatial configuration is
described in terms of the position vector X of the point in the material configuration by the nonlinear spatial
motion map x = Y (X ) and the deformation is characterized by the spatial motion macroscopic deformation
gradient F,

F = GradY . (19)
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In the absence of mechanical body forces, the macroscopic equilibrium equation in the material configuration
is written in terms of the macroscopic Piola stress P as

DivP = 0, (20)

The equations of magnetostatics in terms of the macroscopic Lagrangian magnetic induction P and the
Lagrangian magnetic field F are given by

DivP = O and CurlF = O, (21)

respectively. We identify the macroscopic energy density functions W FP

0 , W FF

0 , W PP

0 and W PF

0 , whose increments
are given by the relations

δW FP

0 = P : δF + F · δP, δW FF

0 = P : δF − P · δF,

δW PP

0 = −F : δP + F · δP, δW PF

0 = −F : δP − P · δF.
(22)

In order to connect the macroscopic with the microscopic variables we define the following volume and surface
integral symbols

〈{•}〉0 = 1

V0

∫
B0

{•} dV , 〈{•}〉t = 1

Vt

∫
Bt

{•} dv,

�{•}�0 = 1

V0

∫
∂B0

{•} dS, �{•}�t = 1

Vt

∫
∂Bt

{•} ds.
(23)

Based on classical micromechanics arguments, we define the macroscopic deformation gradient as the volume
average of the microscopic deformation gradient over the undeformed RVE,

F := 〈F〉0 = �Y ⊗ N�0 , (24)

with N being the normal to the boundary of the RVE in the material configuration. In a similar way we define the
macroscopic Piola stress as the volume average of the microscopic Piola stress over the undeformed RVE, given
by

P := 〈P〉0 = �T ⊗ X�0 with T := P · N , (25)

where T is the traction vector (mechanical flux). Similarly for the magnetic part, the macroscopic Lagrangian
magnetic field is identified as the average microscopic magnetic field over the undeformed RVE,

F := 〈F〉0 = �YN�0 , (26)

and the macroscopic Lagrangian magnetic induction is identified as the volume average of the microscopic
Lagrangian magnetic induction over the undeformed RVE,

P := 〈P〉0 = �TX�0 with T := P · N , (27)

where T is the magnetic flux vector.
In the spatial configuration the material position X can be described by the deformation map X = y(x) and

the deformation is characterized by the inverse of the deformation gradient f ,

f = grady. (28)

All four macroscopic field variables in the spatial configuration (the inverse of the deformation gradient f , the
symmetric Cauchy stress tensor p, the Eulerian magnetic field � and the Eulerian magnetic induction �) are
connected with the macroscopic material field variables through the relations

f = I · F−1, p = J−1P · Ft, � = F · F−1, � = J−1
P · Ft, (29)
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where J = DetF. The coupled magnetomechanical system of equations in the material configuration holds in a
similar form for the spatial configuration,

curlf = 0, divp = 0, curl� = O, div� = O. (30)

Using the divergence theorem, the volume averages over the deformed RVE of the spatial microscopic field
variables are 〈f 〉t = �y ⊗ n�t , 〈p〉t = �t ⊗ x�t , t := p · n,

〈�〉t = ��n�t , 〈�〉t = ��x�t , � := � · n,
(31)

with n being the normal to the boundary of the RVE in the spatial configuration. In [45] a large deformation
process has been defined with meaningful space averages for the mechanical problem. Here we extend their
definition for the coupled magnetomechanical problem.

Definition. A large deformation process with meaningful space averages for the magnetomechanical problem is
every process for which the following conditions hold:

Vt

V0
= J , 〈f 〉t = f , 〈p〉t = V0

Vt
P · Ft, 〈�〉t = � , 〈�〉t = V0

Vt
P · Ft. (32)

If all five conditions of Equation (32) are satisfied, then the volume-averaged field variables are identified
as macroscopic variables and behave qualitatively like their microscopic counterparts. In such a process the
macroscopic spatial field variables are equal to the volume average of the corresponding microscopic spatial
field variables over the deformed RVE,

f = 〈f 〉t , p = 〈p〉t , � = 〈�〉t , � = 〈�〉t . (33)

3. Boundary conditions on the RVE: Hill’s lemma
The solution of the microscopic problem requires appropriate boundary conditions that will satisfy Hill–Mandel
conditions. In the literature several types of boundary conditions have been proposed. In [35] small strain fields
were considered and prescribed displacements or tractions and an applied magnetic field at the boundary of
the body were used. A magnetic field as a loading condition has also been considered in other micromechanics
models in conjunction with boundary tractions [38] or far-field strains [36]. In [39] a prescribed deforma-
tion gradient tensor and a magnetic induction vector at the boundary were considered. The homogenization of
magnetostrictive particle-filled elastomers under periodic boundary conditions and constant magnetostrictive
eigen-deformation in the ferromagnetic particles has been studied by [37].

In this work we want to identify and investigate several cases of boundary conditions (uniform or periodic
fields) on the RVE under which the Hill–Mandel condition holds, i.e. the volume averages of the increments of
the magnetomechanical energy density functions (12) in the RVE are equal to the macroscopic increments of the
energy density functions. In order to achieve our goal, we first express Hill’s lemma in the material configuration
for both the mechanical and the magnetic problem.

3.1. Mechanical problem

In terms of the spatial coordinates and tractions, Hill’s lemma is derived using Equations (1), (2) and it takes its
classical form [29, 46]

〈P : F〉0 − P : F = ⌈
[Y − F · X ] · [P · N − P · N]

⌋
0

. (34)

We note that [46] uses a transposed version of Equation (34). In terms of the potential A and boundary
deformation tensor, Hill’s lemma is derived using Equations (5), (8) and it takes the form

〈P : F〉0 − P : F = ⌈[
A − 1

2 P × X
]

: [F × N − F × N]
⌋

0
. (35)

From these results we have the following possible types of boundary conditions that satisfy the Hill–Mandel
condition for the mechanical problem:

1) x = Y (X ) = F · X on ∂B0, 2) P · N = P · N on ∂B0,

3) A = 1
2 P × X on ∂B0, 4) F × N = F × N on ∂B0.
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As we will see later, another option is to apply periodicity conditions. Also, one could consider cases where the
fields are uniform inside the whole RVE (for instance, x = F · X or P · N = P · N on B0). These cases can be
treated similarly to the cases where the corresponding fields are uniform on the boundary of the RVE.

3.2. Magnetic problem

In terms of the magnetic potential Y and boundary magnetic induction, Hill’s lemma is derived using Equations
(3), (7) and it is written

〈P · F〉0 − P · F =
⌈

[Y − F · X ][P · N − P · N]
⌋

0
. (36)

In terms of the magnetic potential A and boundary magnetic field, Hill’s lemma is derived using Equations (4),
(6) and it is written

〈P · F〉0 − P · F =
⌈[

A − 1
2P × X

]
· [F × N − F × N]

⌋
0

. (37)

From these results we have the following possible types of boundary conditions that satisfy the Hill–Mandel
condition for the magnetostatic problem:

1) Y = F · X on ∂B0, 2) P · N = P · N on ∂B0,

3) A = 1
2P × X on ∂B0, 4) F × N = F × N on ∂B0.

In a similar fashion to the mechanical problem, another option is to apply periodicity conditions. Also, one
could consider cases where the fields are uniform inside the whole RVE (for instance, Y = F · X or P · N = P · N
on B0). These cases can be treated similarly with the cases where the corresponding fields are uniform on the
boundary of the RVE.

The proofs of the Hill’s lemma expressions for both mechanical and magnetic problems are given in the
Appendix.

4. Hill–Mandel conditions for the magnetomechanical problem
We want to study the conditions under which the mechanical energy increments P : δF, F : δP and the magnetic
energy increments F·δP, P·δF satisfy the Hill–Mandel condition that correlates macroscopic energy increments
with the volume average of energy increments over the undeformed RVE.

4.1. Mechanical energy increment

In this energy increment the Piola stress, which satisfies Equation (2), is work conjugated with the increment of
the deformation gradient. Since the deformation gradient can be expressed in terms of x through Equation (1),
the studied energy increment presents similarities with the Hill’s energy expression (34).

P : δF

4.1.1. First case We assume that the spatial position x has linear relation with the macroscopic deformation
gradient. This is written

x = Y (X ) = F · X + Z(X), (38)

where Z is a fluctuation vector field. In this expression a macroscopic (constant in microlevel) term can be
added without disturbing the obtained deformation gradient and Piola stress. Equations (1) and (38) yield

F = GradY = F + GradZ. (39)

Based on Equations (2), (25), (38) and the divergence theorem, we can write

〈P : δF〉0 = 〈P〉0 : δF + 〈P : GradδZ〉0

= 〈P〉0 : δF + 〈P : GradδZ + δZ · DivP〉0

= 〈P〉0 : δF + 〈
Div(Pt · δZ)

〉
0

= 〈P〉0 : δF + �δZ · P · N�0 .

The surface integral vanishes for one of the following two types of boundary conditions,
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1. Z = 0 on ∂B0 (linear displacement boundary conditions);
2. Z is periodic and the tractions T = P · N are antiperiodic for geometrically periodic RVE (periodic

boundary conditions).

These conditions also guarantee that 〈F〉0 = F. Considering 〈P〉0 = P we finally get the Hill–Mandel condition
〈P : δF〉0 = P : δF.

4.1.2. Second case We assume that P · N = P · N on ∂B0. Using the divergence theorem and Equation (2) we see
that

〈P〉0 = �[P · N] ⊗ X�0 = ⌈
[P · N] ⊗ X

⌋
0

= P · �N ⊗ X�0 = P.

Moreover, using the divergence theorem and Equations (2), (5) and (24), we have

〈P : δF〉0 = 〈P : δF + δY · DivP〉0 = 〈
Div(Pt · δY )

〉
0

= �δY · P · N�0 = ⌈
δY · P · N

⌋
0

= P : �δY ⊗ N�0 = P : 〈δF〉0 .

Considering 〈F〉0 = F we finally get the Hill–Mandel condition 〈P : δF〉0 = P : δF.

4.2. Mechanical energy increment

In this energy increment the deformation gradient, which satisfies Equation (5), is work conjugated with the
increment of the Piola stress. Since the Piola stress can be expressed in terms of A through Equation (8), the
studied energy increment presents similarities with the Hill’s energy expression (35).

F : δP

4.2.1. First case We assume that the stress tensor potential A has linear relation with the macroscopic Piola stress.
This is written

A = 1
2 P × X + W (X), (40)

where W is a fluctuation second-order tensor field. In this expression a macroscopic (constant in microlevel)
term can be added without disturbing the obtained deformation gradient and Piola stress. Equations (8) and (40)
yield

P = CurlA = P + CurlW . (41)

Based on Equations (5), (24), (40) and the divergence theorem, we can write

〈F : δP〉0 = 〈F〉0 : δP + 〈F : CurlδW 〉0

= 〈F〉0 : δP + 〈F : CurlδW − δW : CurlF〉0

= 〈F〉0 : δP + 〈
I : Curl

(
Ft · δW

)〉
0

= 〈F〉0 : δP + �δW : [F × N]�0 .

The surface integral vanishes for one of the following two types of boundary conditions,

1. W = 0 on ∂B0 (linear displacement boundary conditions);
2. W is periodic and F ×N is antiperiodic for geometrically periodic RVE (periodic boundary conditions).

These conditions also guarantee that 〈P〉0 = P. Considering 〈F〉0 = F we finally get the Hill–Mandel condition
〈F : δP〉0 = F : δP.

4.2.2. Second case We assume that F × N = F × N on ∂B0. We introduce the skew-symmetric second-order
tensor M := − 1

2ε · X . By observing that1 CurlM = I, we can use Equation (5) and the divergence theorem and
get

〈F〉0 = 〈
F · [CurlM]t − CurlF · M t

〉
0

= ⌈
[F × N] · M t

⌋
0

= ⌈
[F × N] · M t

⌋
0

= F · 〈
[CurlM]t

〉
0

= F.
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Moreover, using Equations (5), (8), (25) and the divergence theorem, we have

〈F : δP〉0 = 〈F : CurlδA − δA : CurlF〉0 = 〈
I : Curl

(
Ft · δA

)〉
0

= �δA : [F × N]�0 = ⌈
δA : [F × N]

⌋
0

= −F : �δA × N�0

= F : 〈CurlδA〉0 = F : 〈δP〉0 .

(42)

Considering 〈P〉0 = P we finally get the Hill–Mandel condition 〈F : δP〉0 = F : δP.

4.3. Magnetic energy increment P · δF

In this energy increment the magnetic induction, which satisfies Equation (3), is work conjugated with the
increment of magnetic field. Since the magnetic field can be expressed in terms of Y through Equation (7), the
studied energy increment presents similarities with the Hill’s energy expression (36).

4.3.1. First case We assume that the magnetic potential Y has a linear relation with the macroscopic magnetic
field. This is written

Y = F · X + Z(X ), (43)

where Z is a fluctuation scalar field. In this expression a macroscopic (constant in microlevel) term can be added
without disturbing the obtained magnetic field and magnetic induction. Equations (7) and (43) yield

F = GradY = F + GradZ. (44)

Based on Equations (3), (27) and (43), we can write

〈P · δF〉0 = 〈P〉0 · δF + 〈P · GradδZ〉0

= 〈P〉0 · δF + 〈P · GradδZ + δZDivP〉0

= 〈P〉0 · δF + 〈Div(PδZ)〉0 = 〈P〉0 · δF + �δZ[P · N]�0 .

The surface integral vanishes for one of the following two types of boundary conditions:

1. Z = O on ∂B0 (linear magnetic potential boundary conditions);
2. Z is periodic and T = P · N is antiperiodic for geometrically periodic RVE (periodic boundary

conditions).

These conditions also guarantee that 〈F〉0 = F. Considering 〈P〉0 = P we finally get the Hill–Mandel condition
〈P · δF〉0 = P · δF.

4.3.2. Second case We assume that P · N = P · N on ∂B0. Using the divergence theorem and Equation (3) we see
that

〈P〉0 = �[P · N]X�0 =
⌈

[P · N]X
⌋

0
= �X ⊗ N�0 · P = P.

Moreover, using Equations (3), (7), (26) and the divergence theorem, we have

〈P · δF〉0 = 〈P · δF + δYDivP〉0 = 〈Div(PδY)〉0 = �δY[P · N]�0

=
⌈
δY[P · N]

⌋
0

= P · �δYN�0 = P · 〈δF〉0 .

Considering 〈F〉0 = F we finally get the Hill–Mandel condition 〈P · δF〉0 = P · δF.

4.4. Magnetic energy increment F · δP

In this energy increment the magnetic field, which satisfies Equation (4), is work conjugated with the increment
of magnetic induction. Since the magnetic induction can be expressed in terms of A through Equation (6), the
studied energy increment presents similarities with the Hill’s energy expression (37).
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4.4.1. First case We assume that the magnetic potential A has linear relation with the macroscopic magnetic
induction. This is written

A = 1
2P × X + W(X), (45)

where W is a fluctuation vector field. In this expression a macroscopic (constant in microlevel) term can be
added without disturbing the obtained magnetic field and magnetic induction. Equations (6) and (45) yield

P = CurlA = P + CurlW. (46)

Based on Equations (4), (26) and (45), we can write

〈F · δP〉0 = 〈F〉0 · δP + 〈F · CurlδW〉0 = 〈F〉0 · δP + 〈F · CurlδW − δW · CurlF〉0

= 〈F〉0 · δP + 〈I : Curl(F ⊗ δW)〉0 = 〈F〉0 · δP + �δW · [F × N]�0 .

The surface integral vanishes for one of the following two types of boundary conditions:

1. W = O on ∂B0 (linear magnetic potential boundary conditions);
2. W is periodic and F×N is antiperiodic for geometrically periodic RVE (periodic boundary conditions).

These conditions also guarantee that 〈P〉0 = P. Considering 〈F〉0 = F we finally get the Hill–Mandel condition
〈F · δP〉0 = F · δP.

4.4.2. Second case We assume that F × N = F × N on ∂B0. Using the second-order tensor M = − 1
2ε · X ,

Equation (4) and the divergence theorem we get

〈F〉0 = 〈CurlM · F − M · CurlF〉0 = �M · [F × N]�0

=
⌈

M · [F × N]
⌋

0
= 〈CurlM〉0 · F = F.

Moreover, using Equations (4), (6), (27) and the divergence theorem, we have

〈F · δP〉0 = 〈F · CurlδA − δA · CurlF〉0 = 〈I : Curl(F ⊗ δA)〉0

= �δA · [F × N]�0 =
⌈
δA · [F × N]

⌋
0

= F · �N × δA�0

= F · 〈CurlδA〉0 = F · 〈δP〉0 .

Considering 〈P〉0 = P we finally get the Hill–Mandel condition 〈F · δP〉0 = F · δP.
Table 2 summarizes the different types of boundary conditions that satisfy the Hill–Mandel condi-

tion for each type of energy increment. It is interesting to observe that, if the incremental forms of the
magnetomechanical equations are considered, i.e.

DivδP = 0, CurlδF = 0, DivδP = O, CurlδF = O, (47)

then one can satisfy the Hill–Mandel condition for all energy increments (12) once we choose one set of
appropriate mechanical and magnetic boundary conditions. Indeed, let us for example choose the mechan-
ical boundary condition of the first case of Section 4.1 and the magnetic boundary condition of the first

case of Section 4.3. Under these conditions we clearly have δWFF

0 =
〈
δW FF

0

〉
0
. Considering Equation (47)1

and following similar steps as in Section 4.1, we can prove that the mechanical boundary condition satisfies

F : δP = 〈F : δP〉0, which means that δW PF

0 =
〈
δW PF

0

〉
0

also holds. Moreover, using Equation (47)3 and follow-

ing similar steps as in Section 4.3, we can prove that the magnetic boundary condition satisfies F·δP = 〈F · δP〉0,

which leads to the relations δWFP

0 =
〈
δW FP

0

〉
0

and δW PP

0 =
〈
δW PP

0

〉
0
. In a similar way we can prove that any

choice of mechanical and magnetic boundary conditions leads to equivalence between all the volume averages
over the undeformed RVE of the energy increments (12) and the macroscopic energy increments (22).
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Table 2. Boundary conditions for satisfying the Hill–Mandel condition. The cases {•} = 0 or {•} = O in B0 can be treated in a
similar manner with the cases {•} = 0 or {•} = O on ∂B0 .

Mechanical energy increment

P : δF = 〈P : δF〉0 F : δP = 〈F : δP〉0

1) Y = F · X + Z 1) A = 1
2 P × X + W

• Z = 0 on ∂B0 • W = 0 on ∂B0
• Z periodic and P · N antiperiodic • W periodic and F × N antiperiodic

2) P · N = P · N on ∂B0 2) F × N = F × N on ∂B0

Magnetic energy increment

P · δF = 〈P · δF〉0 F · δP = 〈F · δP〉0

1) Y = F · X + Z 1) A = 1
2 P × X + W

• Z = O on ∂B0 • W = O on ∂B0
• Z periodic and P · N antiperiodic • W periodic and F × N antiperiodic

2) P · N = P · N on ∂B0 2) F × N = F × N on ∂B0

5. Macroscopic spatial description
The homogenization process in material description does not guarantee a priori that the homogenized field vari-
ables can be transformed into their spatial counterparts through volume averaging in the spatial description. We
need to examine whether or not the transition holds for the boundary conditions of Table 2. Since the transition
of the magnetic variables from the undeformed to the deformed configuration depends on the deformation gra-
dient, as (29) indicates, we should first examine the transition of the mechanical variables. In order to transform
volume and surface integrals from material to spatial description we recall the identities

dv = J dV and n ds = JF−t · N dS. (48)

5.1. Mechanical type of boundary conditions

5.1.1. First case We first consider the boundary conditions presented in the first case of Section 4.1, i.e. that the
position vector x in the spatial description is given by x = F · X + Z(X), where Z is null on ∂B0 or periodic. In
[45] it was shown that, under such a representation of the spatial position vector, the conditions (32)1 and (32)2
hold,

〈f 〉t = f and
Vt

V0
= J .

In addition they have proven that Z being a periodic function guarantees that any periodic or antiperiodic field
in the undeformed configuration remains periodic or antiperiodic, respectively, in the deformed configuration.
For linear displacement (Z = 0) or periodic (Z periodic and tractions antiperiodic) boundary conditions the
condition (32)3 also holds [33, 45],

〈p〉t = V0

Vt
P · Ft = J−1P · Ft.

In [47] it was also shown that the periodicity conditions yield equivalence between the two forms of the macro-
scopic power density expressed in the Lagrangian (using Piola stress and rate of deformation gradient) and
Eulerian (using Cauchy stress and velocity gradient) formulations.

By expressing the periodic function Z in terms of the spatial position vector x, i.e. Z̃(x) ≡ Z(X ), we can
invert Equation (38) and write the material position vector in the form

X = y(x) = f · x + z(x), (49)
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where z(x) := −f · Z̃(x), which is either null on ∂Bt or periodic in the spatial configuration. Equations (14)3,
(27) and (38) allow to rewrite Equation (31)4 of the volume average of the microscopic spatial magnetic
induction as

〈�〉t = �[� · n]x�t = V0

Vt
�[P · N]Y�0

= V0

Vt
F · �[P · N]X�0 + V0

Vt
�[P · N]Z�0

= V0

Vt
P · Ft + V0

Vt
�[P · N]Z�0 .

The second term vanishes and we get 〈�〉t = V0

Vt
P · Ft when one of the following boundary conditions are

considered:

1. Z = 0 on ∂B0;
2. Z periodic and P · N antiperiodic;
3. Z periodic and P · N = P · N on ∂B0.

5.1.2. Second case We consider the boundary conditions presented in the second case of Section 4.1, i.e. P · N =
P · N on ∂B0. Then, using Equations (1), (2), (14)2, (24) and the divergence theorem, we can write

〈p〉t = V0

Vt

〈
P · Ft

〉
0

= V0

Vt

〈
P · Ft + [DivP] ⊗ Y

〉
0

=

= V0

Vt

〈
[Div(Y ⊗ P)] t

〉
0

= V0

Vt
�[P · N] ⊗ Y�0

= V0

Vt

⌈
[P · N] ⊗ Y

⌋
0

= V0

Vt
P · �N ⊗ Y�0 = V0

Vt
P · 〈

Ft
〉
0

= V0

Vt
P · Ft.

For this type of boundary conditions no information about the volume average of the inverse of the deformation
gradient was obtained.

5.1.3. Third case We consider the boundary conditions presented in the first case of Section 4.2, i.e. A = 1
2P ×

X + W (X ), where W is null on ∂B0 or periodic with antiperiodic F × N . Then, using Equations (5), (8), (14)2,
(24) and the divergence theorem, we have

〈p〉t = V0

Vt

〈
P · Ft

〉
0

= V0

Vt

〈
P · Ft + [CurlW ] · Ft

〉
0

= V0

Vt
P · Ft + V0

Vt

〈
[CurlW ] · Ft − W · [CurlF]t

〉
0

= V0

Vt
P · Ft + V0

Vt

⌈
W · [F × N]t

⌋
0

= V0

Vt
P · Ft,

since the last integral vanishes for both types of boundary conditions. For this type of boundary condition, no
information about the volume average of the inverse of the deformation gradient was obtained.

5.1.4. Fourth case We consider the boundary conditions presented in the second case of Section 4.2, i.e. F×N =
F × N on ∂B0. Using Equations (5), (8), (16), (25), the identity Jεjmn = εqrsFjqFmrFns and the divergence
theorem, we can write in indicial notation

〈
pij

〉
t
=

〈
−∂ain

∂xm
εnmj

〉
t

= ⌈
ainnmεmnj

⌋
t
= V0

Vt

⌈
εjmnAikF−1

kn JF−t
muNu

⌋
0

= V0

Vt

⌈
[Jεjmn]AikF−1

kn F−1
um Nu

⌋
0

= V0

Vt

⌈
εqrsFjqFmrFnsAikF−1

kn F−1
um Nu

⌋
0
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= V0

Vt

⌈
AikεqrsFjqδurδksNu

⌋
0

= V0

Vt

⌈
Aik[F × N]jk

⌋
0

= V0

Vt

⌈
Aik[F × N]jk

⌋
0

= V0

Vt
Fjq

⌈
AikεqukNu

⌋
0

= V0

Vt
Ft

qj

〈
−∂Aik

∂Xu
εkuq

〉
0

= V0

Vt
F t

qj

〈
Piq

〉
0

= V0

Vt
PiqFt

qj,

or, in vectorial notation, 〈p〉t = V0

Vt
P · Ft. In addition, using Equations (5), (6), (17) and (27), we can write in

indicial notation

〈
�j

〉
t
=

〈
−∂�n

∂xm
εnmj

〉
t

= ⌈
�nnmεmnj

⌋
t
= V0

Vt

⌈
εjmnAkF−1

kn JF−t
muNu

⌋
0

= V0

Vt

⌈
[Jεjmn]AkF−1

kn F−1
um Nu

⌋
0

= V0

Vt

⌈
εqrsFjqFmrFnsAkF−1

kn F−1
um Nu

⌋
0

= V0

Vt

⌈
AkεqrsFjqδurδksNu

⌋
0

= V0

Vt

⌈
Ak[F × N]jk

⌋
0

= V0

Vt

⌈
Ak[F × N]jk

⌋
0

= V0

Vt
Fjq

⌈
AkεqukNu

⌋
0

= V0

Vt
F t

qj

〈
−∂Ak

∂Xu
εkuq

〉
0

= V0

Vt
F t

qj

〈
Pq

〉
0

= V0

Vt
PqF t

qj,

or, in vectorial notation, 〈�〉t = V0

Vt
P ·Ft. For this type of boundary conditions no information about the volume

average of the inverse of the deformation gradient was obtained.

5.2. Magnetic type of boundary conditions

5.2.1. First case We consider the boundary conditions presented in the first case of Section 4.3, i.e. Y = F · X +
Z(X), where Z is null on ∂B0 or periodic with antiperiodic P · N . In order to proceed to the spatial description
we need to express Y in terms of the spatial position vector x. This is possible if we assume that the mechanical
boundary conditions are those presented in the first case of Section 4.1, i.e. that the position vector x in the
spatial description is given by x = F · X + Z(X), where Z is null on ∂B0 or periodic. Then the scalar �(x) can
be expressed using Equations (29)2, (43) and (49) as

� = � · x + �(x), (50)

with �(x) = −F · z(x) + Z̃(x), Z̃(x) ≡ Z(X). We mention that � is either null on ∂Bt or periodic in the spatial
configuration [45]. Under these conditions and using Equation (7) we get

〈�〉t = 〈grad�〉t = � . (51)

As indicated in the first case of Section 5.1, the condition (32)5 holds, either when Z is null on ∂B0 or when we
consider periodicity for the spatial position vector x and antiperiodicity for the term P · N .

5.2.2. Second case We consider the boundary conditions presented in the second case of Section 4.3, i.e. P · N =
P · N on ∂B0. Then, using Equations (1), (3), (14)3, (24) and the divergence theorem we get

〈�〉t = V0

Vt

〈
P · Ft

〉
0

= V0

Vt

〈
P · Ft + YDivP

〉
0

= V0

Vt
〈Div(Y ⊗ P)〉0 = V0

Vt
�Y [P · N]�0

= V0

Vt

⌈
Y [P · N]

⌋
0

= V0

Vt
�Y ⊗ N�0 · P = V0

Vt
P · Ft.

The examined case is more general than the third type of boundary conditions presented in the first case of
Section 5.1 for the magnetic induction, since it does not require any assumption about the form of the spatial
position vector. For this type of boundary conditions no information about the volume average of the magnetic
field was obtained.
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5.2.3. Third case We consider the boundary conditions presented in the first case of Section 4.4, i.e. A = 1
2P ×

X + W(X), where W is null on ∂B0 or periodic with antiperiodic F × N . Using Equations (5), (14)3, (24) and
the divergence theorem we have

〈�〉t = V0

Vt

〈
P · Ft

〉
0

= V0

Vt
〈F〉0 · P + V0

Vt
〈F · CurlW〉0

= V0

Vt
P · Ft + V0

Vt
〈F · CurlW − [CurlF] · W〉0

= V0

Vt
P · Ft + V0

Vt
〈Curl (F ⊗ W) : I〉0 = V0

Vt
P · Ft + V0

Vt
�W · [F × N]�0 .

The integral of the second term vanishes and we get 〈�〉t = V0

Vt
P · Ft under one of the following conditions:

1. W = O on ∂B0;
2. W periodic and F × N antiperiodic;
3. W periodic and F × N = F × N on ∂B0.

The last condition is less general than the boundary conditions presented in the fourth case of Section 5.1 for
the deformation gradient, which does not require any assumption about the form of the potential W. For the
examined types of boundary conditions no information about the volume average of the magnetic field was
obtained.

5.2.4. Fourth case We consider the boundary conditions presented in the second case of Section 4.4, i.e. F×N =
F × N on ∂B0. For the examined type of boundary conditions no information about the volume average of the
magnetic field or the magnetic induction was obtained.

Table 3 summarizes the results of this section. Even though the stress condition (32)3 and the magnetic
induction condition (32)5 are satisfied for many cases, as Table 3 indicates, 〈p〉t =/ p and 〈�〉t =/ �, since
Vt

V0
does not always represent the determinant of the macroscopic deformation gradient. For the mechanical

problem one could consider the microscopic Kirchhoff stress s := Jp = P · Ft and the macroscopic Kirchhoff
stress s := P · Ft as the spatial representation of the stress tensor in the RVE and the body respectively [28]. For
all mechanical boundary conditions it holds

〈s〉0 = Vt

V0
〈p〉t = P · Ft = s.

In the case of incompressible materials J = Vt

V0
= 1 and p = s = 〈s〉0 = 〈p〉t.

In a similar manner one could identify a microscopic spatial magnetic induction � := J� = P · Ft and the
corresponding macroscopic spatial magnetic induction � := P · Ft and get for all boundary conditions of the
second column in magnetic variables of Table 3

〈�〉0 = Vt

V0
〈�〉t = P · Ft = �.

In the case of incompressible materials J = Vt

V0
= 1 and � = � = 〈�〉0 = 〈�〉t.
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Table 3. Macroscopic transition from material to spatial description.

Mechanical variables

〈f 〉t = f ,
Vt

V0
= J 〈p〉t = V0

Vt
P · Ft, 〈s〉0 = s

1) Y = F · X + Z 1) Y = F · X + Z
• Z = 0 on ∂B0 • Z = 0 on ∂B0
• Z periodic • Z periodic and P · N antiperiodic

2) P · N = P · N on ∂B0
3) A = 1

2 P × X + W
• W = 0 on ∂B0
• W periodic and F × N antiperiodic

4) F × N = F × N on ∂B0

Magnetic variables

〈�〉t = � 〈�〉t = V0

Vt
P · Ft, 〈�〉0 = �

1) Y = F · X + Z and Y = F · X + Z 1) Y = F · X + Z
• Z = 0 and Z = O on ∂B0 • Z = 0 on ∂B0
• Z = 0 on ∂B0 and Z periodic • Z periodic and P · N antiperiodic
• Z = O on ∂B0 and Z periodic 2) P · N = P · N on ∂B0
• Z and Z periodic 3) A = 1

2 P × X + W

• W = O on ∂B0
• W periodic and F × N antiperiodic

4) F × N = F × N on ∂B0

6. Conclusion
A general magnetomechanical homogenization framework under large deformation processes has been pre-
sented. The boundary conditions under which the homogenization problem of a magnetorheological elastomer
is well defined are summarized in Table 2. Any set of mechanical and magnetic boundary conditions guarantees
that the Hill–Mandel condition is satisfied for the magnetomechanical energy increments, when the problem is
described in the material configuration. The analysis in this work also shows that a large deformation process
with meaningful space averages can exist under one of the following pairs of conditions:

1. x = F · X and Y = F · X on ∂B0;
2. x = F · X on ∂B0 and Y = F · X + Z with Z periodic and P · N antiperiodic;
3. x = F · X + Z with Z periodic and P · N antiperiodic and Y = F · X + Z with Z periodic and P · N

antiperiodic.

These types of boundary conditions guarantee that the macroscopic mechanical and magnetic field variables in
the deformed and undeformed configuration are given by volume averaging of the corresponding microscopic
variables over the deformed and undeformed RVE, respectively.

This contribution shows that the use of kinematic and magnetic field potentials instead of kinetic field and
magnetic induction potentials provides a more appropriate homogenization process, in which averaging over the
RVE in material and spatial description renders equivalent counterparts. The choice of kinematic and magnetic
field potentials has additional advantages in the numerical implementation procedure.

Notes

1. For the proof one needs to recall the identity εiklεikm = 2δlm.
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Appendix: Hill’s lemma for magnetomechanics

A.1. Hill’s lemma for mechanics
In order to prove Equation (34), we start from the integral of the right-hand side. Using Equations (1), (2), (24) and the divergence
theorem we have ⌈

[Y − F · X] · [P · N − P · N]
⌋

0 = �Y · P · N�0 − P : �Y ⊗ N�0 − F : �[P · N] ⊗ X�0

+ [Ft · P] : �X ⊗ N�0

= 〈P : F + Y · DivP〉0 − P : F

− F : 〈P + X · DivP〉0 + P : F

= 〈P : F〉0 − P : F.

In order to prove Equation (35), we start from the integral of the right-hand side. We have

⌈[
A − 1

2 P × X
]

: [F × N − F × N]
⌋

0
= �A : [F × N]�0 − ⌈

A : [F × N]
⌋

0

− 1
2

⌈
[P × X ] : [F × N]

⌋
0

+ 1
2

⌈
[P × X ] : [F × N]

⌋
0 .

Using the divergence theorem and Equations (5), (8) and (25), the first term is written

�A : [F × N]�0 = 〈
I : Curl

(
Ft · A

)〉
0 = 〈F : CurlA − A : CurlF〉0 = 〈P : F〉0 ,

the second term is written

− ⌈
A : [F × N]

⌋
0 = − 〈

I : Curl
(
Ft · A

)〉
0 = − 〈

F : CurlA
〉
0 = − 〈P〉0 : F = −P : F,
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and the third term is written

− 1
2

⌈
[P × X] : [F × N]

⌋
0 = − 1

2

〈
I : Curl

(
Ft · [P × X]

)〉
0

= − 1
2

〈
F : Curl(P × X) − [P × X] : CurlF

〉
0

= − 〈
F : P

〉
0 = −P : F,

where we have used the identity εiklεikm = 2δlm. Finally, the fourth term is written

1
2

⌈
[P × X] : [F × N]

⌋
0 = F : 1

2

〈
Curl(P × X )

〉
0 = P : F.

Combining all of the expressions we get

⌈(
A − 1

2 P × X
)

: [F × N − F × N]
⌋

0
= 〈P : F〉0 − P : F.

�

A.2. Hill’s lemma for magnetostatics
In order to prove Equation (36), we start from the integral of the right-hand side. Using indicial notation, Equations (3), (7), (27) and
the divergence theorem, we get

⌈
[Y − F · X][P · N − P · N]

⌋
0

= �YP · N�0 − P · �YN�0 − F · �[X ⊗ P] · N�0

+ [F ⊗ P] : �X ⊗ N�0

= 〈YDivP + P · F〉0 − P · F − F · 〈P + XDivP〉0 + F · P

= 〈P · F〉0 − P · F.

In order to prove Equation (37), we start from the integral of the right-hand side. We have

⌈[
A − 1

2P × X
]

· [F × N − F × N]
⌋

0
= �A · [F × N]�0 −

⌈
A · [F × N]

⌋
0

− 1
2

⌈
[P × X] · [F × N]

⌋
0

+ 1
2

⌈
[P × X] · [F × N]

⌋
0

.

Using the divergence theorem and Equations (4), (6) and (26), the first two terms are written

〈I : Curl (F ⊗ A)〉0 − F · 〈CurlA〉0 = 〈F · CurlA − A · CurlF〉0 − F · P = 〈F · P〉0 − F · P,

the third term is written
− 1

2

⌈
[P × X] · [F × N]

⌋
0

= − 1
2

〈
I : Curl

(
F ⊗ [P × X]

)〉
0

= − 1
2

〈
F · Curl(P × X) − [P × X] · CurlF

〉
0

= −
〈
F · P

〉
0

= −P · F,

and the fourth term is written
1
2

⌈
[P × X] · [F × N]

⌋
0

= 1
2

〈
F · Curl(P × X)

〉
0

= P · F.

Combining all of the previous expressions we get

⌈[
A − 1

2P × X
]

· [F × N − F × N]
⌋

0
= 〈P · F〉0 − P · F.

�
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