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Unified Modular State-Space Modeling of Grid-

Connected Voltage-Source Converters 

Dongsheng Yang, Senior Member, IEEE, Xiongfei Wang, Senior Member, IEEE

Abstract—This paper proposes a modular state-space modeling 

framework for grid-connected voltage-source converters, where the 

different control loops, including the ac current control, the phase-

locked loop, the dc-link voltage control and the ac voltage magnitude 

control, can be modeled separately as building blocks. Moreover, the 

mathematical relationship between state-space models in the rotating 

(dq-) frame and the stationary (αβ-) frame are explicitly established, 

and thus the modal analysis can be performed directly in the αβ-
frame, which allows intuitive interpretation of voltage and current 

oscillation modes in the αβ-frame. Experimental tests of a 3 kW back-

to-back converter system validate the effectiveness of the unified 

modular state-space modeling and analysis. 

Index Terms—state-space model, component connection method, 

sensitivity analysis, frequency coupling, stationary frame 

I. INTRODUCTION 

Voltage-Source Converters (VSCs) are widely used in power 

grid applications, e.g. renewable power generations [1], flexible 

power transmission and distributions, as well as energy-efficient 

consumptions [2]-[3]. The ever-increasing use of VSCs brings in 

more control flexibility and improved efficiency, but does also 

pose a number of new challenges to stability and power quality 

of the power system [4].  

Many research efforts have thus been made to address VSC-

grid interactions. The impedance-based modeling approach has 

been recently reported in [5], [6] to analyze the dynamic effects 

of different control loops on the VSC-grid interactions. For the 

inner current loop, the multiple-input multiple-output (MIMO) 

system model can be simplified into single-input single-output 

(SISO) transfer functions based on complex space vectors. This 

SISO impedance model not only provides an intuitive insight 

into the interactions among the paralleled VSCs and weak power 

grids, but also enables to reshape the output impedances of VSCs 

for stabilizing the power system [7]-[8]. 

However, the frequency coupling effects will be induced by 

the inherent asymmetry of the outer control loops, such as the 

phase-locked loop (PLL), the dc-link voltage control (DVC), and 

the ac voltage magnitude control (AVC), which significantly 

complicate the analysis of converter dynamics. Instead of the 

SISO impedance transfer function, the impedance matrix has to 

be used to model the terminal dynamics of converters [9]-[11]. 

Consequently, the Generalized Nyquist Criterion (GNC) is 

utilized for the stability assessment, and the stability analysis 

results usually provide little insight into the controller design and 

the system damping.   

To facilitate the controller design-oriented analysis, research 

works on transforming the MIMO impedance model as a closed-

loop SISO system have been reported recently [12]. However, 

the approach requires prior knowledge on the grid impedance, 

which is varying over time in practice and it is difficult to predict. 
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Alternatively, the state-space modeling and modal analysis can 

also be employed to design controllers for stabilizing VSC-grid 

interactions [13]. The eigenvalues and eigenvectors of the state 

matrix provide a complete overview of the system oscillatory 

modes and their damping factors [14]. The participation factors 
and sensitivity analysis further reveal the dynamic contributions 

of state variables and system parameters, and thus help to identify 

the root causes of critical oscillations [15]. Moreover, differing 

from the impedance-based analysis, which reflects the input-

output dynamic relationship locally, the state-space modeling 

gives a global view of the system dynamics and is thus generally 

preferred for large-scale interconnected systems [16]. 

In spite of the advantages of the modal analysis, the basic 

state-space modeling approach features less modularity and 

scalability than the impedance-based method, with respect 

to analyzing the control impacts of VSCs [17]. Moreover, 

the nonlinear dynamics of the outer control loops and the 

PLL adds more interconnections among control loops [18]-

[20], which complicate the derivation of the state matrix of 

the whole control system.  

To simplify the modeling process, many efforts have been 

devoted to modularize the state-space modeling method. In 

[21], each control loop of the VSC is modeled separately as 

a sub-state-space model, and then the models are combined 

together based on their interconnections. However, there are 

shared state variables among sub-state-space models, which 

have to be merged together to obtain the right state variables 

for the state matrix of the overall system. Therefore, without 

a clear definition of the combination rule, considerable 

efforts are needed to reformulate the sub-state-space models 

for them to be incorporated into the system model. Hence, 

to tackle this challenge, the rules for combining two sub-

state-space models with different interconnection forms, i.e., 

the parallel, the concatenation, the feedback, and the 

common input or output, are introduced in [22]. The shared 

state variables can be represented by a single state variable 

with interconnections between the sub-modules. Thus, the 

overall system model can be readily derived without the 

reformulations of sub-state-space models. Those rules only 

apply to two subsystems with a well-defined interconnection 

form, whereas the control loops of VSCs are cross-coupled 

with each other, which makes those rules difficult to apply.    

Another modular state-space modeling approach that has 

been applied to power systems is the component connection 

method (CCM) [23], where the system is decomposed into 

multiple components, whose interconnections are modeled 

as a linear algebra matrix based on the algebraic relations of 

their inputs and outputs. Thus, the system state-space model 

can be obtained by combining the linear algebra matrix with 

the individual state-space models of components [24]. This 

 

 

 

 



 

method features better modularity and scalability than that 

reported in [22], and remarkably reduces the computational 

effort for the power networks where the interconnections of 

equipment can be explicitly defined. However, the CCM is 

still not readily used for modeling the control loops of VSCs, 

since the linearization of the outer control loops introduces 

additional sub-state-space models and interconnections, 

which are implicit as opposed to the physical sub-state-space 

model and interconnections. Therefore, a modular state-

space modeling method that can characterize the effects of 

control loops is still missing.  

Besides the modeling complexity, another obstacle that 

impedes the widespread use of the state-space modeling 

method is the lack of a unified mathematical relationship 

between the state-space models in different reference frames. 

To obtain the time-invariant operating point, the state-

space models of VSCs are generally developed in the dq- 

frame [25]. However, with the dq-frame state-space model, 

it is difficult to link the oscillation modes in the dq-frame to 

actual oscillation modes in the αβ-frame. The relations between 

the oscillation modes in the two frames can be either frequency-

shifted, e.g. the symmetric dq-frame current control, or frequency-

coupled, e.g. the asymmetric dq-frame dynamics of the PLL [11], 

[26]-[27]. It is worth noting that this limitation of the dq-frame 

state-space model is also imposed on the dq-frame impedance 

model, and recent studies have thus been devoted to developing 

the αβ impedance model [28]-[29]. In [27], the unified impedance 

model is introduced which bridges the mathematical relationships 

between the impedance models in the dq- and αβ-frames. It is 

shown that the αβ-frame impedance-based analysis can explicitly 

reveal the frequency-couplings between the sub- and super-

synchronous oscillations. However, the αβ- frame state-space 

model of VSCs still remains an open issue.  

To address the abovementioned challenges, this study 

provides an improved modular state-space modeling 

framework as compared with [23], which enables to model 

the system with implicit sub-systems and connections 

caused by linearization of control loops. Another major 

contribution of this study is to establish the mathematical 

relationship between the state-space models in the dq-frame 

and the αβ-frame, which allows the straightforward stability 

analysis and intuitive interpretation of voltage and current 

oscillation modes in the αβ-frame.  

The remainder of the paper is organized as follows: 

Section II describes the configuration of the studied system, 

and also proposes the improved framework of modular state-

space modeling. The sub-state-space models and 

interconnections used in the framework are derived in 

Section III and IV. Based on which, the system state-space 

model is established firstly in the dq-frame in Section V, and 

the mathematical relationships between the state-space 

models in the dq- and αβ-frames are proposed in Section VI. 

Then the stability analysis based on the unified state-space 

model is presented in Section VII. Lastly, experimental tests 

on a 3 kW back-to-back converter system are conducted to 

validate the effectiveness of the unified modular state-space 

modeling approach in Section VIII, and Section IX 

concludes the paper. 

II. SYSTEM DESCRIPTION AND MODELING METHOD 

A. System Configuration 

The control scheme of the grid-connected VSC is shown 

in Fig. 1. Basically, the control scheme can be divided into  
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Fig. 1. The control scheme of the grid-connected VSC 

 

four parts, including the AC current control (ACC), Phase-

locked-loop (PLL), dc-link voltage control (DVC), and AC 

voltage magnitude control (AVC). Cdc is the dc-link 

capacitor; L1 is the converter filter inductor; Cg and Lg are 

equivalent grid capacitance and grid inductance seen from 

point of common connection (PCC). 

As shown in [8], the real space vectors are usually 

denoted with italic letters, e.g., xdq = [xd, xq]T, while complex 

space vectors are denoted with boldface letters, e.g., xdq = xd 

+ jxq, xdq
* = xd − jxq. To avoid the confusion between real 

space vector (such as xdq) and scalar (such as xd), the vectors 

in this paper are accented with a right arrow, i.e., 

dq d q,
T

x x x   


 and ,
T

   
*

dq dq dq
X x x


.  

In Fig. 1, the complex space vectors of converter output 

current and voltage are denoted by i and v respectively, while the 

compelx space vector of grid voltage is denoted by vg. 

B. Modular State-Space Modeling Method 

The flow chart of the CCM based modular state-space 

modeling is shown in Fig. 2(a). Firstly, the system can be 

portioned to n sub-systems. Then the sub-systems are modeled 

separately. Assuming that the sub-state-space model of ith 

component can be given by a set of nonlinear equations as 

follows: 

 ,i i i ix f x a
    

(1a) 

 ,i i i ib g x a
    

(1b) 

where 
i

x


,
i

a


and
ib


denotes the state variables, input variables, 

and output variables. The small-signal state-space model of the 

ith component can be obtained by linearizing (1)  

i i i i ix F x H a    
    

(2a) 

i i i i ib J x K a    
    

(2b) 

For simplicity, the prefixes Δ in (2) are disregarded in the 

following.  

Moreover, the interconnections among different components 

have to be obtained and expressed by algebraic equations as  

1 2a L b L u 
   

(3a) 

3 4y L b L u 
   

(3b) 

where  1, ,
T

i na a a a
     and

1, ,
T

i nb b b b   
   

  are input 

and output vectors of all components; u


and y


are system input 

and output vectors. L1, L2, L3, and L4 are parameter matrices that 

map the interconnection relationships among different 

components.  

The combination rule for obtaining the system state-space 

model can be given as follows:  
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Fig. 2. Modular State-space modeling methods (a) conventional 

CCM method (b) Proposed method 
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Fig. 3. Block diagram of the current control in the converter dq-frame 

without considering the PLL dynamics. 
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Fig. 4. Comparison of Pade approximations with different orders 

The composite system model can be formulated by combining 

all the sub-state-space models of components 

x Fx Ha 
    (4a) 

b Jx Ka 
    (4b) 

where F, H, J, K are the diagonal parameter matrices of the 

composite system model, F=diag(F1,… Fi, … Fn), H=diag(H1,… 

Hi, … Hn), J=diag(J1,… Ji, … Jn), K=diag(K1,… Ki, … Kn); 

 1, ,
T

i nx x x x
     . 

Then, the overall state-space model of the system can be 

expressed as: 

x Ax Bu 
    (5a) 

y C x D u 
    

(5b) 

where A, B, C, D are the parameter matrices of the overall state-

space model of the system, which are expressed as.  
             1

1 1A F HL I KL J
    

(6a) 

             1

1 1 2 2B HL I KL KL HL
    

(6b) 

             1

3 1C L I KL J
   

(6c) 

             1

3 1 2 4D L I KL KL L
    

(6d) 

where I is the identity matrix with the same dimension as KL1. 

However, the traditional CCM based modular state-space 

modeling method can only be applied to the system where the 

interconnections among its sub-systems can be explicitly 

defined. Therefore, a modular state-space modeling method 

is developed in this work to deal with implicit sub-state 

space models and interconnections which are introduced by 

linearizing of the outer loops, as shown in Fig. 2(b). 

Moreover, mathematical relationships between the system-state-

space model in the dq-frame and that in the αβ-frame are also 

incorporated to facilitate the system stability analysis.  

 

III. PHYSICAL SUB-STATE-SPACE MODELS  

A. AC Current Control 

The block diagram of the current control in the converter 

dq-frame without considering the PLL dynamics is shown in 

Fig. 3, which contains the current controller Gi, the voltage 

feedforward controller Gff, the control delay Gd, and the 

admittance of L filter Yp. id/q_ref, id/q_err are the current 

reference and error, respectively; vm1d/q, vm2d/q, vmd/q are 

modulating signals generated by the current control, the 

feedforward controller and their sum; vod/q, vLd/q are 

converter output voltages and the inductor voltages, 

respectively; c

d/qv , c

d/qi are the voltage and current at the PCC 

of VSC, respectively; All these variables are defined in the 

converter dq-frame.   

Since the ACC contains multiple components, the CCM 

will be employed to establish its state-space model. For a 

clear illustration, Gi, Gff, Gd, and Yp will be denoted as 

component 1 to 4, respectively.  

The current controller Gi(s) adopts PI controller, given by 

ic

i pc( )
k

G s k
s

 
 

(7) 

Active damping is implemented by a first-order High-



 

Pass Filter (HPF) based feedforward control, express as: 

a

ff1

a

( )
k s

G s
s 




 

(8) 

The HPF is chosen because it can be equivalently treated 

as a virtual parallel resistor at the PCC within the corner-
frequency of HPF [30], which helps to improve the stability 

of the system. 

With the digital control, the computation and pulse-width 
modulation (PWM) will introduce the control delay, which 

can be expressed as: 

d

d ( )
sT

G s e
  

(9) 

where Td is the delay time, which is typically 1.5 times of 

sampling period Ts, i.e., Td=1.5Ts. To get the adequate state-

space model of the control delay, the third-order Pade 

approximation is applied to make the model sufficiently 

accurate within Nyquist frequency, i.e., half of the sampling 

frequency, and meanwhile minimize the complexity, as 

shown in Fig. 4, which is expressed as  

   
   

d

2 3

d d d

d 2 3

d d d

120 60 12
( )

120 60 12

sT
T s T s T s

G s e
T s T s T s

   
 

  

 

(10) 

The admittance of L filter in the converter dq-frame can 

be given by: 

 p

1 1 1

1
( )Y s

s j L R


 

 

(11) 

where ω1 is the nominal angular frequency of the grid, and 

R1 is the equivalent series resistor (ESR). 
Since all the components in ACC are linear, their state-

space models can be directly obtained according to their 

transfer-functions, where the details are presented in the 

Appendix A. With these sub-state-space models denoted by 

subscript from 1 to 4, the composite model of ACC can be 

obtained by rearranging these matrices in a diagonal form, 

which is expressed as 

  

1 1 11 1

2 2 22 2

3 33 33

4 44 4
4

acc accacc acc
acc

x x aF H

x x aF H

x aF Hx

F Hx ax

x aF H
x

        
        
                                  

  
  

 
    

 (12a) 

  

1 1 11 1

2 2 22 2

3 33 33

4 44 4
4

acc accacc acc
acc

b x aJ K

b x aJ K

x aJ Kb

J Kx ab

x aJ K
b

                                                  

  
  
  

 
  

 (12b) 

where the expressions of matrices F1, H1, J1, K1 are defined 

in (A1); F2, H2, J2, K2 in (A2); F3, H3, J3, K3 in (A3); and F4, 
H4, J4, K4 in (A6). 

According to Fig. 3, the input vector acca


and output vector 

accb


in (12) can be expanded as: 
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Fig. 5. Block diagram of the SRF-PLL 
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 (13) 

The input vector accu


and output vector acc y


of overall ACC 

are expressed as 

d_ref

c
q_ref d

cacc acc c
d q

c

q

          

i

i i
u y

v i

v

 
            
  

 
 (14) 

Consequently, the physical interconnection among 

different components in Fig. 3 can be depicted by  
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 (15b) 

where the prefixes Δ in (15) are disregarded for simplification.  

Accordingly, the state-space model of overall ACC can be 

established as 

acc acc acc acc accx A x B u 
    

(16a) 

acc acc acc acc accy C x D u 
    

(16b) 

where Aacc, Bacc, Cacc, Dacc are the matrices of the state-space 

model of ACC, which can be formulated according to the rule 

defined in (6), using matrices Facc, Hacc, Jacc, Kacc in (12) and Lacc1, 

Lacc2, Lacc3, Lacc4 in (15). 

 

B. Phase-Locked Loop 

Two dq-frames are defined in this paper to include the 

dynamics of the PLL [8]. One is the grid dq-frame that 

defined by the phase angle of fundamental positive-

sequence PCC voltage v, denoted as θ1. The other is the 

converter dq-frame, which is defined by the phase angle 

obtained from conventional SRF-PLL, denoted as θ. The 

input and output variables of the state-space model in the 

converter dq-frame will be denoted with the superscript c. 

The control scheme of the synchronous rotating frame 

(SRF) PLL is shown in Fig. 5, where vα, vβ are the PCC 

voltages in the αβ-frame; Gpll(s) is the PLL controller. 

According to Fig. 5, the open-loop transfer function 

between the input q-axis voltage perturbation c

qv  and the 



 

output synchronization angle variation  is given by: 

c

pp ip q

pll

1 1

( )

k k v
s s

G s

        
   (17) 

In the time domain, (17) can be expressed by two 

differential equations: 

q c

q

d
v

dt


   (18a) 

c

pp q ip q

d
k v k

dt

 
  

 
(18b) 

Therefore, the state-space model for the SRF-PLL can be 

given by: 
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C. Dc-Link Voltage Control 

The block scheme of the dc-link voltage control is shown 

in Fig. 6. To avoid the operating-point-dependent control 

dynamics, the voltage-square control scheme is employed 

[31], i.e., using the error  2 2

dc_ref dc / 2v v  to calculate the 

power reference Pref, and then generate the d-axis current 

reference. 

The active power reference in the frequency domain can 

be given by: 
2 2

dc_ref dcid

ref pd

dc

2

( )

v vk
P k

s

G s

   
 

 

(20) 

Therefore, the small-signal variation of the active power 

reference ΔPref resulted from dc-link voltage perturbation 

Δvdc can be expressed by 

ref dc dc0 dc( )P G s V v     
(21) 

where Vdc0 is the rated dc-link voltage. 

The d-axis current reference is generated by: 

ref ref dc dc0
d_ref d_ref dc

1 1 1

( )P P G s V
i i v

V V V


       

 

(22) 

where V1 is the rated voltage at the PCC point. 
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Pref2

vdc  

u2

1/2

 

Fig. 6. Block diagram of dc-link voltage control (DVC) 
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Fig. 7. Block diagram of the ac voltage magnitude control (AVC) 

In the time domain, (22) can be expressed by  

dc

dc

d
v

dt


 

 

(23a) 
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k V k V
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(23b) 

According (23), the state-space model of the DVC can be 

derived as:  

         dc dc dc

dvc dvcdvc dvcdvc

0 1 v

F Hx ax

   
   (24a) 

   
pd dc0id dc0

d_ref dc dc

1 1

dvc dvc
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dvc dvc

k Vk V
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V V
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         (24b) 

D. AC Voltage Magnitude Control 

The block diagram of the ac voltage magnitude control is 

shown in Fig. 7.  

Assuming that the AC voltage is regulated using the 

droop control method, then the expression of the q-axis 

current reference can be given by: 

 pa ac

q_ref ac_ref m

ac

ac ( )

k
i v V

s

G s




  


 

(25) 

where 2 2

m d qV v v  v . The small-signal variation of 

voltage magnitude ΔVm resulted from the Δvd and Δvq can be 

derived as: 

   2 2 2

m1 m 1 d q m dV V V v v V v        
(26) 

According (25) and (26), it can be obtained that  

pa ac

q_ref d

ac

k
i v

s




  


 

(27) 

In the time domain, (27) can be expressed by 

ac

ac ac pa ac d

dx
x k v

dt
      

(28a) 

ac q_refx i   
(28b) 

Then the state-space model of AVC can be derived as:  

      ac ac ac pa ac d

avc avcavc avcavc

x x k v

x aF Hx

      
  

 

(29a) 

       qref ac d

avc avcavc avc
avc

1 0i x v

J Kx a
b

         (29b) 

 IV. IMPLICIT SUB-STATE-SPACE MODELS AND 

INTERCONNECTIONS  

The major challenge of CCM-based modeling in the 

converter-level lies in the representation of the implicit sub-

state-space modes and implicit connections caused by the 

control couplings. The implicit connections between ACC 

and PLL can be established by linearizing the dq 

transformations. Moreover, the implicit connections and 

sub-state-space models between DVC control loop and 

voltages and currents at PCC can be obtained according to 

the active power balance principle.  
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A. Dq-Transformation I 

As shown in Fig. 8, the inputs of dq-transformation I are 

PCC voltages in the stationary frame, i.e., vα and vβ, and the 

synchronization angle θ obtained from the PLL; the outputs 

are PCC voltages in the converter dq-frame c c

d q,v v . The 

input and output voltages can be represented in the complex 

space vector form, i.e., 

s

α βv jv v
 c c c

d qv jv v
 

(30) 

The relationship between the PCC voltage vector vs and 

converter dq-frame defined by synchronization angle θ is 

shown in Fig. 9. Accordingly, the dq-transformation can be 

expressed as 

c s je  v v  (31) 

Assuming that both inputs, including PCC voltages and 

synchronization angle, contain the small-signal 

perturbations, the PCC voltage in the stationary αβ-frame can 

be expressed as: 

  1s

1

j
e

 v V Δv
 

(32) 

where V1 = V1 + j0 is the steady-state PCC voltage vector in 

the grid dq-frame, and Δv= Δvd+jΔvq is the corresponding 

small-signal perturbation.  

Similarly, the PLL output synchronization angle with the 

small-signal perturbation can be expressed by 

1      
(33) 

Substituting (33) and (32) into (31), yields 
 11c s

1

1

( )

( )

jjj

j

e V e e

V e

 



 

 

   

 

v v Δv

Δv

 

(34) 

Considering the small-signal perturbation Δθ, and 

applying the first-order Taylor expansion, (34) can be 

approximated as: 



c

1

1 1

c c
1

( )(1 )V j

V jV j





   

    



v Δv

Δv Δθ Δv

V v



 

(35) 

By neglecting the second-order small-signal variation 

term ΔvΔθ, the small-signal variation of PCC voltage in the 

converter dq-frame 
cv  can be obtained as 

c c c

1 d qjV v j v       v Δv
 

(36) 

Therefore, the relationship between the PCC voltages in 

converter dq-frame and grid dq-frame can be given by 

c

d dv v    
(37a) 

c

q q 1v v V       (37b) 

B. Dq-Transformation II 

As shown in Fig. 8, the inputs of dq-transformation I are 

the PCC currents in the stationary frame, i.e., iα and iβ, and 

the synchronization angle θ obtained from PLL; the outputs 

are the PCC currents in the converter dq-frame c c

d q,i i . The 

input and output currents can be represented in the complex 

space vector form, i.e., 

s

α βi ji i
 c c c

d qi ji i
 

(38) 

The relationship between the PCC current vector is and 

converter dq-frame defined by synchronization angle θ is 

shown in Fig. 9. Accordingly, the dq-transformation can be 

expressed as 

c s je  i i  (39) 

Assuming that PCC current vector contains the small-

signal perturbations, i.e.,   

  1s

1

j
e

 i i Δi
 

(40) 

where I1=Id1+jIq1 is the steady-state PCC current vector in 

the grid dq-frame and thereby φ=arctan(Iq1/Id1); Δi= Δid+jΔiq 
is the corresponding small-signal perturbation.  

Substituting (33) and (40) into (39), yields 

  c s

1 1
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( ) 1j je e j
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1 1
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I Δi I Δi
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 (41) 

By neglecting the second-order small-signal variation term 

ΔiΔθ, it can be obtained that 

c c c

1 d qj i j i       i Δi I
 

(42) 

Therefore, the relationship between the PCC currents in 

grid dq-frame and converter dq-frame can be given by 

c

d d q1i i I       
(43a) 

c

q q d1i i I       (43b) 

C. Active Power Balance 

As shown in Fig. 10, the dynamic equation for the dc-link 

capacitor can be given by 

 2

dc

dc in dc

1

2

d v
C P P

dt
 

 
(44) 



 

Applying the small-signal perturbation, yields 

dc

dc dc0 in dc

d v
C V P P

dt


  

 
(45) 

Assuming that input power fluctuation is negligible, i.e., 

ΔPin ≈0 and the power switches are ideal with no loss, the 

input active power injected into the dc side of VSC is equal 

to the output active power at the ac side, i.e., 

ΔPdc≈dEL/dt+ΔPo, where EL is the energy storage in the 

inductor L1. 

The energy stored in the inductor L1 can be given by 

 2 2 2

L 1 1 d q

1 1

2 2
E L L i i  i

 
(46) 

Applying the small-signal perturbation, yields 

qdL

1 d1 q1

d id idE
L I I

dt dt dt

 
    

 

 

(47) 

The output instantaneous complex power at the PCC is 

expressed by 
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(48) 

Considering ΔPdc≈dEL/dt+ΔPo, and substituting (47) and 

(48) into (45), yields  

dc

dc dc0

qd

1 d1 1 q1 d1 d q1 q 1 d

d v
C V

dt

d id i
L I L I I v I v V i

dt dt




 
          
 

 
(49) 

which can be further rewritten as 

q1dc d1 1

d q d

dc dc0 dc dc0 dc dc0

Idx I V
v v i

dt C V C V C V
     

 

(50a) 

1 d1 d 1 q1 q

dc dc

dc dc0

L I i L I i
v x

C V

   
    

 

 

(50b) 

Consequently, an additional state-space model of active 

power balance can be established to represent the implicit 

connections between the dc-link voltage dynamics and the 

PCC voltages and currents, which is expressed as  
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(51b) 

According to physical connections in Fig. 1 and implicit 

connections in (37), (43), (51), the overall connections 

among different control loops can be depicted by Fig. 11, 

where the prefixes Δ are disregarded for simplification.  
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Fig. 11. Interconnection relationships among different control loops 

V. SYSTEM STATE-SPACE MODEL IN THE DQ-FRAME 

A. State-space Model of VSC 

Considering the state-space models of ACC, PLL, DVC, 

AVC, and APB, the composite system model of VSC can be 

given by: 

  

acc acc acc
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 (52b) 

where Fvsc=diag(Aacc, Fpll, Fdvc, Favc, Fapb ), Hvsc=diag(Bacc, Hpll, 

Hdvc, Havc, Hapb), Jvsc=diag(Cacc, Jpll, Jdvc, Javc, Japb), Kvsc=diag(Dacc, 

Kpll, Kdvc, Kavc, Kapb), with the matrices Aacc, Bacc, Cacc, Dacc defined 

in (16), the matrices Fpll, Hpll, Jpll, Kpll defined in (19), the matrices 

Fdvc, Hdvc, Jdvc, Kdvc defined in (24), the matrices Favc, Havc, Javc, 

Kavc defined in (29), the matrices Fapb, Hapb, Japb, Kapb defined in 

(51).  

According to Fig. 11, the input vector uvsc and output 

vector yvsc of overall VSC are expressed as 

d d

vsc vsc
q q

         
v i

u y
v i

  
    

    

 
 (53) 

The interconnection relationship can be described as:  
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 (54b) 

Therefore the state-space model of VSC can be derived as 

vsc vsc vsc vsc vscx A x B u 
    

(55a) 

vsc vsc vsc vsc vscy C x D u 
    

(55b) 

where Avsc, Bvsc, Cvsc, Dvsc are the matrices of the state-space 

model of ACC, which can be formulated according to the rule 

defined in (6), using matrices Fvsc, Hvsc, Jvsc, Kvsc in (52) and 

Lvsc1, Lvsc2, Lvsc3, Lvsc4 in (54). 

B. State-space Model of the Grid-Side Impedance 

As for the equivalent grid impedance shown in Fig.1, its 

dynamic equations can be derived as: 

Cgd

g 1 Cgq d Lgd

dv
C v i i

dt


 
   

 

 

(56a) 

 Lgd

g 1 Lgq Lg Lgd Cgd Cg d Lgd

di
L i R i v R i i

dt


 
     

 

 

(56b) 

gq

g 1 gd q Lgq

C

C

dv
C v i i

dt


 
   

 

 

(56c) 

 Lgq

g 1 Lgd Lg Lgq Cgq Cg q Lgq

di
L i R i v R i i

dt


 
     

 

 

(56d) 

where vCgd/q and iLgd/q are the grid capacitor voltage and grid 

inductor current, respectively; RLg and RCg are the ESRs of 

Lg and Cg, respectively. 

According to (56), the state-space model of the grid 

impedance can be derived as  
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 (57b) 

C. State-space Model of Overall system 

The block diagram of single VSC and grid impedance is 

given in Fig. 12. The composite system model of VSC and 

grid impedance can be given by: 
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(58b) 

where the matrices Avsc, Bvsc, Cvsc, Dvsc are defined in (55), the 

matrices Fg, Hg, Jg, Kg are defined in (57).  

According to Fig. 12, the interconnections between the 

VSC and grid impedance can be explained by the following 

equations:  
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 (59b) 

Thus, the whole system state-space model can be obtained 

as 

all all all all allx A x B u 
    

(60a) 

all all all all ally C x D u 
    

(60b) 

where Aall, Ball, Call, Dall are obtained using (58) and (59), 
expressed as 

  1

all all all all1 all all1 allA F H L I K L J
  

 
(61a) 

all all all 0B C D    
(61b) 

and allx


can be expended as (61c). 
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Fig. 12. Block diagram of VSC and grid impedance 

c c

all id iq ff_d ff_q del_1d del_2d del_3d del_1q del_2q del_3q d q q dc ac dc Cgd Lgd Cgq Lgq[ ]Tx x x x x x x x x i i x x v i v i    
  

(61c) 



 

VI. MATHEMATICAL RELATIONSHIP BETWEEN STATE-SPACE 

MODELS IN DIFFERENT FRAMES 

In order to bridge the state-space models of VSC in the 

dq-frame and the αβ-frame, the relationships between the 

variables in the two frames have to be established.  

Assumed that the state-space model of the subsystem or 

the whole system in the dq-frame is denoted by: 

dq dq dq dq dqx A x B u 
    

(62a) 

dq dq dq dq dqy C x D u 
    

(62b) 

which can represent the state-space models of components 

or the whole system.  

The variables in the state vector
dqx
 , input vector

dqu
 , and 

the output vector
dqy
 can be categorized into two types. One 

type is the variable that appeared in dq pairs, such as id and 

iq. The other type is the variable does not have their d or q 

counterparts, such as vdc and θ.  

As for the dq pairs, taking xd and xq as the example, the 

complex space vector and its conjugation can be defined as   

d qx jx dqx
 

(63a) 

d qx jx *

dq
x

 
(63b) 

Then, the transformation between dq pairs and complex 

space vectors can be obtained as 

d

q
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dq
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(64) 

 As for the single variable, take xs as an example, it can 

be treated as the real part of a virtual complex space vector

dq
x  [32], which can be expressed by 

s vx jx 
dq

x  
(65) 

where xv is the virtual imaginary part. Since xv is the virtual 

variable with no physical meaning, it can be set to zero for 

simplification and thereby xs =
dq

x .  

Consequently, the transformation rule from the real state 

vector 
dqx
 to the complex space state vector 

dq
X


 can be 

obtained as  
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 (66) 

The state complex space vector dq
X


in (66) can be further 

translated to the stationary frame, which can be expressed as  
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 (67) 

Substituting (67) into (66), yields 

1

dq x x

j
x T T e

    
dq αβX X
   

(68) 

Similar transformation rule can be derived for the input 

vector
dqu
 , and the output vector

dqy
 , which are defined as 

1

dq u u

j
u T T e

    
dq αβU U
   

(69a) 

1

dq y y

j
y T T e

    
dq αβY Y
   

(69b) 

Substituting (68) and (69) into (62), yields 
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   1 1 1

y dq x dq u

j j jT e C T e D T e             αβ αβ αβY X U
    

(70b) 

The derivative term in the left side of (70a) can be 

expended as: 
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(71) 

where ω1=dθ1/dt. By substituting (71) into (70a), and 

eliminating e−jθ1 from both sides of Eq. (70), the state-space 

model in stationary αβ-frame can be obtained as  

 1 1

x dq 1 x x dq uT A j I T T B T     αβ αβ αβX X U
    

(72a) 

1 1

y dq x y dq uT C T T D T    αβ αβ αβY X U
    

(72b) 

As a conclusion, the transformation between the matrices 

of the state-space model in the dq- and αβ-frames can be 

expressed by: 
            1

αβ x dq 1 xA T A j I T   
(73a) 

           1

αβ x dq uB T B T  
(73b) 

           1

αβ y dq xC T C T  
(73c) 

           1

αβ y dq uD T D T  
(73d) 

VII. MODAL ANALYSIS USING UNIFIED STATE-SPACE MODEL 

The modal analysis is a common practice for the small-

signal stability of power grids, which is mainly about how 

to interpret the dynamic modes of system by analyzing the 

eigenvalues, eigenvectors, participation factor and 

sensitivity of the state matrix in the state-space models. 

Since the modal analysis procedures are the same for the dq 

state matrix Adq and αβ state matrix Aαβ, therefore the 

notation Adq/αβ is used to stand for either Adq or Aαβ for the 

following analysis.  

The eigenvalues of state-matrix Adq/αβ can be derived by: 

 dq/αβdet 0I A    
(74) 

Assuming that Adq/αβ is n by n matrix, n eigenvalues can 

be obtained by solving (74).  

Supposing that hth eigenvalue of Adq/αβ, λh, is expressed by: 

h h hj     
(75) 

Then corresponding frequency fh and damping ratio ζh of 

hth dynamic mode can be obtained as 
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h
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 The stability of the hth dynamic mode can be assessed by 



 

the value of ζh: when ζh >0, the mode is stable; when ζh = 0, 

the mode is marginally stable; when ζh <0, the mode is 

unstable. 

The right eigenvector Rh of λh is defined as 

dq/αβ h h hA   R R
 

(77) 

which contains n elements, indicating the magnitudes and 

phase angles of n state variables of xdq/Xαβ, respectively, in 

the hth dynamic mode [33], i.e.,  
1
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 (78) 

To provide a good insight into the tuning the control 

parameters to damp the critical dynamic modes, the 

sensitivity of the damping ratio with respect to the specific 

control parameter can be also calculated. The damping ratio 

ζh with respect to the control parameter p can be obtained as 

   0 0h hh
p p p

p p

    


 

 

(79) 

where p0 is the original control parameter, and Δp=5%~10% 

p0 is the parameter perturbation. 

It should be noted that since the elements of Aαβ are 

complex numbers, the eigenvalues of complex matrix Aαβ are 

not paired with their conjugations, which can directly reveal 

the coupled oscillation frequencies in the αβ frame caused 

by the asymmetrical dynamics of the control system. 

VIII. EXPERIMENTAL VERIFICATION 

In order to verify the correctness of the unified modular 

state-space model and modal analysis, a down-scaled 

experimental setup is built in the lab, as shown in Fig. 13, 

where two converters are operated back-to-back. The 

converter 1# draws the constant magnitude of current at ac 

side, which can be treated as a constant power source given 

that both the power loss and ac voltage magnitude of 

converter 1# are constant. The converter 2# is the grid-

connected VSC, which contains ACC, PLL, DVC and AVC 

control loops. All the control algorithms are implemented in 

the dSPACE 1007. The capacitor Cg and inductor Lg are 

connected with grid simulator Chroma 61845 to emulate the 

weak grid. The main circuit parameters of the grid-

connected VSC are shown in Tab. I. The control parameters 

and steady-state values are presented in Tabl. II. In real-life 

applications, the dc source with variable input power may 

be used, such as a PV generator, where the steady-state 

values of the system will be changed by the input power 

fluctuations. In this case, the stability analysis may need to 

be performed at different operating points. 

Using the state-space model in the dq-frame, it is able to 

identify the critical oscillation modes and tell the stability 

margin by checking the corresponding damping ratios. 

Based on the control parameters in Table II, the frequencies 

and damping ratios of different dynamic modes are shown 

in Fig. 14, the dynamic mode at ±37 Hz have negative 

damping ratios, which is unstable. However, these stability 

analysis is difficult to be verified in the grid dq-frame 

directly from the perspectives of both the measurement and 

the interpretation.  

 
Fig. 13. Photo of the experimental setup. 

 

TABLE I  

MAIN CIRCUIT PARAMETERS OF GRID-CONNECTED VSC  

Parameters Values 

Vdc Input dc-link voltage 600 V 

V1 Rated line to line grid voltage, RMS 126 V 

f1 Grid fundamental frequency 50 Hz 

fsw Inverter switching frequency 10 kHz 

fs Inverter control sampling frequency 10 kHz 

Pn Rated power  3050 W 

Cdc Dc-link capacitance 1500 μF 

L1 Inverter-side inductance 1 mH 

R1 ESR of the inverter-side inductor 0.3 mΩ 

Cg Equivalent grid-side capacitance 20 μF 

RCg ESR of the grid-side capacitor 0.5 mΩ 

Lg Equivalent grid-side inductance 11 mH 

RLg ESR of the grid-side inductor 3.3 mΩ 

 

 

TABLE II  

CONTROL PARAMETERS AND STEADY-STATE VALUES  

Parameters Values 

ka Proportional gain of the feedforward controller  1 

ωa Corner frequency of the feedforward controller 12560 

kpc Proportional gain of the ac current controller 5.236 

kic Integral gain of the ac current controller 1827 

kpp Proportional gain of the PLL controller 1.392 

kip Integral gain of the PLL controller 122.4 

kpd Proportional gain of the active power controller 0.095 

kid Integral gain of the active power controller 2.998 

kpa Proportional gain of the ac voltage controller 1.519 

ωac Corner frequency of the ac voltage controller 6.283 

Id1 Steady-state value ac current at d-axis 25 A 

Iq1 Steady-state value ac current at q-axis −9.6 A 

Vd1 Steady-state value PCC voltage at d-axis 126 V 

Vq1 Steady-state value PCC voltage at q-axis 0 V 



 

On the one hand, the current and voltage oscillations can 

not measurable directly and the ideal phase angle θ1 defined 

by the fundamental positive component of PCC voltage 

needs to be estimated for dq-transformation, which could be 

easily distorted by oscillation itself. Any algorithm that used 

to estimate θ1 may introduce additional errors due to the 

dynamics of the phase-tracking controller and the filters 

used for separating the fundamental positive component of 

PCC voltage from oscillations. Fig. 15 and 16 show the 

oscillated voltage and current waveforms in the different 

grid dq-frame estimated by PLL with different control 

bandwidth. As seen, the oscillation magnitudes of voltages 

and currents are significantly different from each other in 

different estimated grid dq-frames. 

On the other hand, the linkage between oscillation 

frequencies in the dq-frame and the αβ-frame is control-

structure dependent. Considering the 50Hz frequency shift 

effect of the dq transformation, if the control system is 

symmetrical for d- and q-axis (such as single current control 

loop), 37 Hz oscillation in the dq-frame only results in single 

oscillation at 87 Hz in the αβ-frame [27]. If the control 

system is asymmetrical, then 37 Hz oscillation in the dq 

frame will result in 13 Hz and 87 in the αβ-frame. Therefore, 

it is not straightforward to predict the actual oscillations in 

the αβ-frame based on the modal analysis results in the dq-

frame.  

Using the state-space model in the αβ-frame, the 

frequencies and damping ratios of different dynamic modes 

can be directly obtained, as shown in Fig. 17, the dynamic 

modes at 13 Hz and 87 Hz have negative damping ratios, 

and thus they are unstable. Moreover, according to Eq. (78), 

the right eigenvectors of the two critical dynamic modes at 

13 Hz and 87 Hz can be obtained, which provides an insight 

on the oscillations magnitudes of the PCC voltages and 

currents in the αβ-frame, as shown in Fig. 18. As seen, the 

oscillations in PCC voltages are dominated at 87 Hz, while 

comparable oscillations at both 13 Hz and 87 Hz are 

observed in the PCC currents. These analysis results can be 

directly verified in the αβ-frame. 

Fig. 19 shows experimental results, where the sustained 

low-frequency oscillations can be observed in both the PCC 

voltages and currents. According to the DFT analysis in Fig. 

20, the oscillation frequencies can be observed at 13 Hz and 

87 Hz, and the normalized magnitudes of the oscillations are 

matched well with the predictions in Fig. 18. 

Fig. 21 shows the damping ratio sensitivity of the critical 

modes at 13 Hz and 87 Hz with respect to the different 

controller parameters. It reveals that the tuning of the 

proportional gains kpp in the PLL controller and kpc in ac 

current controller is the most effective way to stabilize the 

unstable modes. As for the case in this paper, the control 

parameters kpp and kpc are set 0.8 and 1.2 of their original 

values, respectively. Fig. 22 shows the frequencies and 

damping ratios of dynamic modes in αβ-frame after tuning 

the controllers, where the unstable modes are successfully 

stabilized. 

Fig. 23 shows the experimental results after tuning the 

controller parameters, and the system is stabilized, which 

confirms the effectiveness of the control tuning strategy. 
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Fig. 14 Frequencies and damping ratios of dynamic modes in the 

ideal grid dq-frame  
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Fig. 15 Transformed waveforms in the grid dq-frame estimated by 

PLL with 20 Hz control bandwidth 
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Fig. 16 Transformed waveforms in the grid dq-frame estimated by 

PLL with 100 Hz control bandwidth 
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Fig. 17 Frequencies and damping ratios of dynamic modes in the 

αβ-frame  
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Fig. 18 Oscillations of PCC voltages and currents for unstable 

modes at 13 Hz and 87Hz in the αβ-frame 
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Fig. 19 Oscillated experimental waveforms in the αβ frame. 
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Fig. 20 DFT analysis experimental waveforms in the αβ frame.  
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Fig. 21 Damping ratio sensitivity of the unstable modes and critical 

modes 
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Fig. 22 Frequencies and damping ratios of dynamic modes in the 

αβ-frame after tuning the controllers.  
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Fig. 23 Stabilized experimental waveforms after tuning controllers 

IX. CONCLUSION 

This paper proposed a modular state-space model of grid-

connected voltage source converters, where the cross-couplings 

among various loops are identified and represented by the implicit 

interconnections, which allows the different control loops can be 

modeled separately and merged together like building blocks. 

Moreover, the mathematical relationship between the state-space 

models in the dq-frame and the αβ-frame is established. Intuitive 

interpretations of the modal analysis in the αβ-frame are also 

provided which can directly predict the frequencies and 

magnitudes of voltage and current oscillations in the αβ-frame. 

Experimental results from a 3kW VSC confirms the 

accuracy of the established state-space model and the 

effectiveness of the new modal analysis. 

APPENDIX A 

1. AC current controller 

The inputs are dq-current errors id_err, iq_err and the outputs 

are part of the PWM references, noted as vm1d, vm1q. Defining 

the states in integrators of current controllers Gi(s) as γid, γiq, 

the state-space models of the current controllers can be 

given by: 
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2. Feedforward Controller 

The inputs of the feedforward controller are PCC voltages 
c c

d q,v v , and the outputs are PWM reference noted as vm2d,vm2q. 

By defining [xff_d, xff_q]T as the state variables, the state-

space model of feedforward controllers Gff(s) can be derived 

as: 



c
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c
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3. Digital Control Delay  

The inputs of the control delay are PWM references vmd, 

vmq, and the outputs are VSC bridge voltages vod,voq. By 

defining [xdel_1d, xdel_2d, xdel_3d , xdel_1q, xdel_2q, xdel_3q]T as the 

state variables, the state-space model of the control delay 

can be derived as:  
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where the matrices Fd, Fq, Hd, Hq, Jd, Jq are expressed by: 

d q

3 2

d d d

0 1 0

0 0 1

120 / 60 / 12 /
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T T T
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    d q 0 0 1
T
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d q d d240 / 0 24 /J J T T    
 

(A4c) 

4. L filter 

For the L filter, the relationship between the inductor 

voltages vLd, vLq and inductor currents c c

d q,i i  in the time 

domain can be given by: 
c

c cd Ld1

1 q d

1 1

di vR
i i

dt L L
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c

q Lqc c1

1 d q

1 1

di vR
i i
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Therefore, the state-space model of the L filter can be 

derived by: 
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