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Abstract

We present a unified rotation curve of the Galaxy re-constructed from the existing data by re-calculating
the distances and velocities for a set of galactic constants R0 = 8 kpc and V0 = 200 km s−1. We decompose
it into a bulge with de Vaucouleurs-law profile of half-mass scale radius 0.5 kpc and mass 1.8×1010M⊙, an
exponential disk of scale radius 3.5 kpc of 6.5× 1010M⊙, and an isothermal dark halo of terminal velocity
200 km s−1. The r1/4-law fit was obtained for the first time for the Milky Way’s rotation curve. After
fitting by these fundamental structures, two local minima, or the dips, of rotation velocity are prominent
at radii 3 and 9 kpc. The 3-kpc dip is consistent with the observed bar. It is alternatively explained by
a massive ring with the density maximum at radius 4 kpc. The 9-kpc dip is clearly exhibited as the most
peculiar feature in the galactic rotation curve. We explain it by a massive ring of amplitude as large as
0.3 to 0.4 times the disk density with the density peak at radius 11 kpc. This great ring may be related to
the Perseus arm, while no peculiar feature of HI-gas is associated.

Key words: galaxies: disk — galaxies: bulge — galaxies: structure — galaxies: The Galaxy —
galaxies: rotation curve

1. Introduction

Rotation curve is the fundamental tool to derive the
mass distribution in the Galaxy. A great deal of data for
the galactic rotation curve have been obtained by vari-
ous methods, such as using terminal velocities of the HI
and CO lines for the inner Galaxy (Burton, Gordon 1978;
Clemens 1985; Fich et al. 1989); optical distances and
CO-line and optical velocities for outer disk (Blitz et al.
1986; Demers and Battinelli 2007); HI thickness for the
entire disk (Merrifield 1992; Honma and Sofue 1997a,b);
and recently parallax and proper motion measurements
using VERA for the outer disk (Honma et al. 2007).

However, the entire rotation curve is still crude because
of the large scatter in the data, not only because of the
different methods, but also for the different parameters
used to convert the observed data to rotation velocities.
This has made it difficult to compare among the existing
rotating curves as well as to compare them with model cal-
culations. In this paper, we unify the existing data into a
single rotation curve by re-calculating the distances and
velocities adopting a nominal set of the galactocentric dis-
tance and the circular velocity of the Sun as (R0,V0)=(8.0
kpc, 200 km s−1).

The mass distribution has been obtained by decompo-
sition of a rotation curve into several components such as
a bulge, disk and dark halo (e.g., Bosma 1981; Kent 1986;
Sofue 1996). It is well established that the luminosity pro-
file of the spheroidal component in galaxies is represented

by the de Vaucouleurs (e−r1/4

or r1/4law; 1953, 1958) law
with some modifications to rn law including asymmetries
(Ciotti et al. 1991; Trujillo et al. 2001). Decomposition
using the de Vaucouleurs and Sérsic (rn) profiles have
been applied to early type galaxies (Noordermeer 2008).
However, there has been no attempt to fit the Milky
Way’s rotation curve by the de Vaucouleurs law. The
de Vaucouleurs law is known for its steep rise of density
toward the center, and indicating that the volume density
increases to infinity at the nucleus. This is particularly
important for the relationship of the bulge to the central
massive black hole (Kormendy and Richstone 1995; Melia
and Falcke 2001).

After fitting the newly developed rotation curve by the
de Vaucouleurs bulge, exponential disk, and an isothermal
dark halo, we discuss the two prominent rotation dips at
radii 3 and 9 kpc. Particularly, the 9-kpc dip is exhib-
ited as the most pronounced and peculiar feature in the
Galactic rotation curve. We discuss the dips in relation
to a bar, wavy rings, and/or spiral arms.

2. Unified Rotation Curve of the Galaxy

We create an updated rotation curve for the galactic
constants R0 =8.0 kpc and V0 =200 km s−1by integrating
the existing data from the literature, and plot them in the
same scale. The adopted galactocentric distance is most
widely used in the literature (e.g. Ghez et al. 2005), but
is smaller than the IAU-recommended value of 8.5 kpc,

http://arXiv.org/abs/0811.0859v1


2 Y. Sofue, et al. [Vol. ,

Table 1. Re-calculated data for galactic rotation curve in
figure 1

http://www.ioa.s.u-tokyo.ac.jp/∼sofue/mw/rc2009/

and larger than the most recent value of about 7.5 kpc
(e.g. Nishiyama et al. 2006; Groenewegen et al. 2008).

The tangent point data for HI line (Burton and Gordon
1978) in the Galactic Center region and the CO-line tan-
gent point data inside the Solar circle, both compiled and
plotted by Clemens (1985), are corrected for by

Rc = Ri + ∆R0

R

R0

(1)

and

Vc(R) = Vi + ∆V (R), (2)

where

∆V (R) = ∆V0

R

R0

(1 + O(∆R0/R0)) ≃ ∆V0

R

R0

. (3)

Here, ∆R0 = −0.5 kpc is the correction for the solar dis-
tance, ∆V0 = −20 km s−1is the correction for the solar
velocity, to those used in Clemens (1985), Ri and Vi are
the radii and rotation velocities read from the literature,
and Rc and Vc are the corrected values.

The HI tangent point data for l=15◦ to 90◦ and l=270◦

to 345◦ presented by Fich et al. (1989) were used to re-
calculate the radii and rotation velocities. We also re-
calculated rotation velocities and galactocentric distances
of HII regions with known distances using the catalogue
compiled in Fich et al. (1989), where we excluded those
at galactic longitudes between 170◦ and 190◦ in order to
avoid larger errors occurring from 1/sin l effect. Rotation
velocities from the HI-disk thickness method, obtained by
Honma and Sofue (1997a,b), are also plotted for the case
of V⊙=200 km s−1. The recent optical measurements of C
stars from Demers and Battinelli (2007) are also plotted,
where we recalculated the values for (R0,V0) = (8.0 kpc,
200.0 km s−1). Finally, we plot the latest, most accurate
data at R = 13.1 kpc from VERA observations (Honma et
al. 2007) by the big circle.

Figure 1 shows the obtained unified rotation curve
of the Galaxy. The plotted data, shown as table
1, are available in a digitized form from our URL,
http://www.ioa.s.u-tokyo.ac.jp/∼sofue/mw/rc2009/ .

The unified rotation curve shows clearly the three dom-
inant components: the galactic bulge, disk, and outer flat
rotation due to the dark halo. In addition, we recognize a
prominent dip at R ∼ 9 kpc from the flatness. This local
dip can be recognized in each plot of individual observa-
tions. It has been recognized already in the rotation curve
obtained from the HI thickness method (Honma and Sofue
1997a), which utilizes the entire HI disk. Individual plots
for the C-stars and HII region data also indicate the same
dip, as indicated by different symbols in the figure. Hence,
we may consider that the dip is not due to local deviations

of nearby stars from the circular motion, but it is a large
scale phenomenon existing in azimuthally averaged data
over large spatial coverage.

Although the 9 kpc dip is found both in C and OB
stars plots, individually, we may note that the C stars ap-
pear to trace lower velocities. Also, C stars show larger
scatter. This fact might indicate that the C-stars have a
higher velocity dispersion, and hence a lower circular ve-
locity. However, it is difficult to evaluate the contribution
of the velocity dispersion from the current data, because
the uncertainties in distance measurements are still large.
The pressure (velocity dispersion) support of the galactic
disk, e.g. of C stars, would be an interesting subject for
the future observations and reductions.

3. Model Rotation Curves

A rotation curve of a system, which is composed of a
spherical bulge, disk, and a dark halo, is calculated by

V (R)2 = Vb(R)2 + Vd(R)2 + Vh(R)2. (4)

We fit an observed rotation curve by the calculated rota-
tion curve V (R). We adjust the parameters involved in
the expressions of the individual mass components such as
the masses and scale radii in order to minimize the resid-
ual between the calculation and observation. Considering
that the accumulated data are not uniform, the fitting was
obtained by eye-estimates after trial and error, comparing
the calculated curves with the plots.

Although the calculated rotation curve based on the
three basic components approximately represents the ob-
servation, we see a considerable discrepancy between these
curves at R∼3 and 9 kpc. Observed velocities show the so
called ’dips’ at R∼3 and 9 kpc. Such small scale variation
of rotation speed cannot be attributed to the basic mass
distributions, but indicates local enhancements and/or de-
pression of the surface mass density, such as due to arms,
rings, and/or a bar.

Recent high accuracy measurement by Honma et al.
(2007) using VERA, an exact data point was given on the
outer rotation curve as (R,V (R))= (13.15±0.22kpc,200±
6km s−1. We, therefore, fit this point with some ignorance
of the other data points that had higher dispersion at
R > 10 kpc.

Since the gas mass density is two orders of magni-
tude smaller than the disk and background mass den-
sity, the gas disk does not influence the rotation curve at
al. However, it may happen that the gas density profile
reflects some more massive underlying structures, super-
posed on the disk. In order to examine such a case, we
added a pseudo gas disk whose surface mass density is
ten times that of the observed density. The result was,
however, not satisfactory, except that some wavy pattern
is obtained, while their amplitudes and phases are not
coincident with the observations.

Finally, we try a case with two wavy rings, and show
that the model can well reproduce the observed 3 and
9-kpc dips quite well. This behavior may be compared
with a model considering a bar, where the 3 kpc dip is
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Fig. 1. Observed circular velocities representing the rotation curve of the Galaxy in linear (top) and logarithmic (bottom) presen-
tations. Open triangles: HI tangent velocity method (Burton and Gordon 1978); Rectangles: CO tangent (Clemens 1989); Reverse
triangles: HI tangent (Fich et al. 1989); Diamonds: CO and HII regions (Fich et al.1989, Blitz et al. 1982); filled triangles: Demers
and Battinelli (2007); Circles: HI thickness (Honma and Sofue 1997a,b); Big circle at 13.1 kpc: VERA-parallax, proper motion and
velocity (Honma et al. 2007). All data have been converted to (R0,V0) = (8.0, 200.0 km s−1). The plotted data are in table 1.

qualitatively reproduced, but we show that the amplitude
is not reproduced. This is because that the bar is a radial
perturbation of mode 2, whereas the ring is a local and
radial perturbation yielding a rapider change of density
and potential gradients.

4. Galactic Mass Components

For constructing the model rotation curves, we used
fundamental galactic mass components, which are the
bulge, disk, and halo. We also introduced some pertur-
bations representing the discrepancies between the obser-
vations and calculated fundamental curves. We describe
individual components below.

4.1. Bulge

The inner region of the galaxy is assumed to be com-
posed of two luminous components, which are a bulge
and disk (Wyse et al. 1997) . The mass-to-luminosity
ratio within each component is assumed to be constant,
so that the mass density distribution has the same pro-
file. The bulge is assumed to have a spherically symmetric
mass distribution, whose surface mass density obeys the
de Vaucouleurs law, as shown in figure 2.

The de Vaucouleurs (1958) law for the surface bright-
ness profile as a function of the projected radius r is ex-
pressed by

logβ = −γ(α1/4 − 1), (5)

with γ = 3.3308. Here, β = Bb(r)/Bbe, α = r/Rb, and

Bb(r) is the brightness distribution normalized by Bbe,
which is the brightness at radius Rb. We adopt the same
de Vaucouleurs profile for the surface mass density:

Σb(r) = λbBb(r) = Σbeexp

[

−κ

(

(

r

Rb

)1/4

− 1

)]

(6)

with Σbc = 2142.0Σbe for κ = γln10 = 7.6695. Here, λb

is the mass-to-luminosity ratio, which is assumed to be
constant within a bulge. The total mass is calculated by

Mbt = 2π

∫ ∞

0

rΣb(r)dr = ηR2
bΣbe, (7)

where η = 22.665 is a dimensionless constant. By defi-
nition a half of the total projected mass (luminosity) is
equal to that inside a cylinder of radius Rb.

We here adopt a spherical bulge. In fact the differences
among circular velocities are not so significant for minor-
to-major axis ratios greater than ∼ 0.5 (Noordermeer
2008). The volume mass density ρ(r) at radius r for a
spherical bulge is calculated by using the surface density
distribution as (Binney and Tremaine 1987; Noordermeer
2008),

ρ(r) =
1

π

∫ ∞

r

dΣb(x)

dx

1√
x2 − r2

dx. (8)

Since the mass distribution is assumed to be spherical,
the total mass enclosed within a sphere of radius R is
calculated by using rho(r) and the circular velocity as

Vb(R)=
√

GMb(R)/R. Obviously, the velocity approaches
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Fig. 2. [Top panel]: Surface mass density distribution for
the bulge, disk, dark halo, and total for a model Galaxy.
High density at the center shows the bulge component with
the center value of 6.8× 106M⊙pc−2. Straight line indicates
the exponential disk. The dashed line represents the dark
halo integrated within height −10 < z < 10 kpc. The upper-
most long-dashed line is their sum. [Middle]: Volume den-
sity profile. The disk density was calculated by ρd = Σd/2z
with z =z0exp(R/Rd)/exp(R0/Rd) being the scale height and
z0 = 247 pc in the solar vicinity (Kent et al. 1991). [Lower
panel]: Total masses of individual components integrated in
a sphere of radius R. Thin line: bulge; thick solid line: disk;
dash: halo; and long dashed line: their sum.

the Keplerian-law value at radii sufficiently greater than
the scale radius. The shape of the rotation curve is similar
to each other for varying total mass and scale radius. For a
given scale radius, the peak velocity varies proportionally
to a square root of the mass. For a fixed total mass, the
peak-velocity position moves inversely proportionally to
the scale radius, or along a Keplerian line.

Decomposition of rotation curves by the e−r1/4

law
surface mass profiles have been extensively applied to
spheroidal components of late type galaxies (Noordermeer

2007, 2008). The e−r1/4

law was fully discussed in relation
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Fig. 3. Composite rotation curve including the bulge, disk,
spiral arms, and dark halo. The big dot denotes the observed
result from VERA (Honma et al. 2007). The pure disk com-
ponent is also indicated by the thin dashed line. The thick
dashed line indicates a simply averaged observed rotation
curve taken from Sofue et al. (1999) where the outer curve is
based only on the HI data of Honma and Sofue (1997a).
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Fig. 4. Model rotation curves for three halo models: isother-
mal (full line), Burkert (long dash) and NFW (dashed line)
models, compared with the observations. Here, we show only
the disk and halo contributions, but the bulge is not added.
The curves are normalized to the same value at 15 kpc. Note
the large scatter in the observations and weak dependency of
the curves on the models in the plot range.
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to its dynamical relation to the galactic structure based
on a more general profile with e−rn

(Ciotti 1991; Trujillo
2002). However, there has been no attempt to apply it
specifically to the Milky Way’s rotation curve.

In figures 3 and 5, we show the calculated rotation curve
for the bulge model. The result shows a reasonable fitting
of the inner rotation curve by a de Vaucouleurs-law bulge.
Our result shows that the central steep rise and sharp peak
at R=300 pc of the observed rotation curve is almost per-
fectly reproduced by the high density mass concentration
in the central region of the bulge.

The best-fit total mass of the bulge is as high as 1.8×
1010M⊙ and the scale radius is as compact as Rb =0.5 kpc
with the accuracy of about 5%. As figure 2 indicates, the
surface mass density in the central 0.5 kpc is dominated
by the bulge component, and nuclear density reaches a
value as high as 6.8× 106M⊙pc−2. The total projected
mass included in the central 500 pc (scale radius) is 9.0×
109M⊙. The total spheroidal mass integrated in a sphere
of Rb is 0.39 times the total bulge mass, which is for the
present case 7.0× 109M⊙.

The surface mass distribution in figure 2 may be com-
pared with the K band surface brightness profile for the
inner Galaxy at |b|<10◦ as presented by Kent et al. (1991,
1992). We now compare the integrated mass and luminos-
ity for the central part of the bulge. The K band lumi-
nosity profile for the central 0.94 kpc is expressed as

νK = 1.04× 106(r/0.482pc)−1.85L⊙pc−3. (9)

This expression approximates the density profile for an
isothermal sphere with a constant mass-to-luminosity ra-
tio, for which the power-law index is −2. Since the func-
tional form is different from that for the Vaucouleurs law
as used here, we cannot compare the profiles directly.
However, it may be worthy to compare the integrated lu-
minosity within a radius with the corresponding mass.
The integrated luminosity within a sphere of radius 0.5
kpc from equation (9) is calculated to be 3.74× 109L⊙.
Thus, we obtain a mass-to-luminosity ratio for the bulge
within a sphere of the scale radius, Rb = 0.5 kpc, to be
M/Lbulge,0.5kpc = 7.1M⊙/L⊙.

As figure 2 indicates, the volume density increases
rapidly toward the Galactic Center, approaching an in-
finite value. The central mass within 1 pc is estimated
to be as high as several 106M⊙. Such a high value is in-
deed observed near the nucleus (Kent 1992; Weiland et
al. 1994). The high-density concentration at the center
may be related to the central massive black hole of a mass
∼ 3× 106M⊙ (Genzel et al. 1997, 2000; Ghez et al. 1998,
2000).

4.2. Exponential Disk

The galactic disk is represented by an exponential disk
(Freeman 1970). The surface mass density is expressed as

Σd(r) = Σdcexp(−r/Rd)+ ∆, (10)

where Σdc is the central value, Rd is the scale radius, and
∆ is density perturbations such as due to arms, rings,
and/or a bar as will be discussed below. The total mass

of the exponential disk is given by Mdisk = 2πΣdcR
2
d.

The rotation curve for a thin exponential disk is ex-
pressed by modified Bessel functions (Freeman 1970;
Binney and Tremaine 1987). Here, we are interested in
rotation curves affected by additional masses ∆ due to
arms, rings, bar, and/or interstellar gas. We, therefore,
directly calculate the gravitational force f(R) acting on a
point at galacto-centric distance x = R by integrating the
x directional component of force due to a mass element
Σd(r)dxdy in the Cartesian coordinates (x,y):

f(R) = G

∫ ∞

−∞

∫ ∞

−∞

Σd(r)(R− x)

s3
dxdy, (11)

where s =
√

(R− x)2 + y2 is the distance between the
mass element and the point. The rotation velocity in or-
der for the centrifugal force on a test particle at radius
R circularly rotating in the disk plane to balance with
the gravitational force by the disk is thus calculated by
Vd(R) =

√
fR.

4.3. Dark Halo

We assume a semi-isothermal spherical distribution for
the dark halo (e.g. Kent 1986). The density profile is
written as

ρh(r) = ρhc

[

1 +

(

r

Rh

)2
]−1

, (12)

where ρhc and Rh are constants giving the central mass
density and scale radius of the halo, respectively. This
profile gives finite mass density at the center, but yields
a flat rotation curve at large radius. The circular velocity
is given by

Vh(r) = V∞

[

1−
(

Rh

r

)

tan−1

(

r

Rh

)]

, (13)

where V∞ is a constant giving the flat rotation velocity at
infinity. The constants are related to each other as

V∞ =
√

4πGρhcR2
h, (14)

or the central density is written as

ρ0 = 0.740

(

V∞

200km s−1

)(

Rh

1kpc

)−2

M⊙pc−3. (15)

Fitting to a dark halo model will be still crude not only
because of the large scatter and errors of observed rota-
tion velocities in the outer disk, but also for the weaker
response of the rotation curve to the halo models. We
here adopted the semi-isothermal halo as equation (12)
with a scale radius Rh = 5.5 kpc and flat rotation at infin-
ity of V∞ = 200 km s−1. However, we are able to obtain
a reasonable fit for different sets of parameters, such as a
higher V∞ and smaller Rh, keeping the nearly flat part be-
tween R∼ 10 and 20 kpc unchanged. Therefore, the fitted
parameters to the halo component may not be unique.

Reasonable fit is also obtained by other halo models
such as the NFW (Navarro et al. 1995) and Burkert pro-
files (Burkert 1995). Dehnen and Binney (1998) used sim-
ilar profiles with a Gaussian truncation outside the outer
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galaxy. Any of these, including the isothermal model
used here, yields smooth, nearly flat rotation curves at
R ∼ 15− 20 kpc. In figure 4 we show the three rotation
curves corresponding to the isothermal, Burkert and NFW
models, where we see that the discrimination among the
models may not be easy within the observed range up to
20 kpc. For any halo models with scale radius of about 5
to 10 kpc, the total mass enclosed within 20 kpc is about
the same, ∼ 1011M⊙ (table 5.5).

The crudeness of fitting in the outer Galaxy, particu-
larly at R > 10 kpc, is mainly due to the large scatter
of the observed data as well as to large errors caused by
uncertainties in the galacto-centric distances. We have re-
cently one data point from VERA observations (Honma
et al. 2007), which provides with galactocentric distance
and velocity with errors as small as ∼ 2% outside the solar
circle. This data point is, however, significantly displaced
from the mean velocities from the current observations.

We have recently combined the present rotation curve
with the velocities of companion galaxies and dwarf galax-
ies in the Local Group to create a pseudo rotation curve
for a the entire Local Group. We obtained a better fit by
the NFW and/or Burkert model than isothermal (Sofue
2009).

5. Perturbations

In addition to the bulge, exponential disk, and dark
halo, which have smooth and axisymmetric density dis-
tributions and construct the fundamental structure of the
Galaxy, we then consider the effects of interstellar gas and
local structure such as the bar, arms, and/or rings.

5.1. Spiral arms

We assume two-armed logarithmic spiral arms, whose
density distribution is expressed as the following.

∆(r,θ) = δΣd(r)cos

[

2

(

θ− 1

tan p
log

r

a
−α

)]

, (16)

where δ is the amplitude of the density waves, p is the
pitch angle of arms, a is a constant defining the position
of an arm, and α adjusts arm’s phase. Here, r and θ are
the cylindrical coordinates.

Figure 3 shows a composite rotation curve for a model
with spiral arms for δ=0.15, a=4 kpc, p=18◦, and α=0◦.
The wavy characteristics of the observed curve are qual-
itatively reproduced, but the detailed fit is not sufficient.
Particularly, the dip at R∼ 9 kpc cannot be explained by
such spiral arms with usual density amplitude of 0.1−0.2
times the background disk density.

5.2. Bar

The effect of a bar on the gas kinematics is signifi-
cant in the inner galaxy (Athanassoula 1992; Weiner and
Sellwood 1992; Fux 1997, 1999; Mulder and Liem 1986).
The observations have indeed revealed a bar (Blitz et
al. 1993; Blitz and Spergel 1991; Weiland et al. 1994;
Freudenreich 1998). The rotation curve dip near 3 kpc and
related detailed behavior may be discussed in the scheme

of non-linear response of gas to the barred potential. In
this paper, we examine only qualitatively if the 3 kpc dip
manifests the existence of a bar. The central bar and non-
circular flows within ∼ 150 pc (e.g. Jenkins and Binney
1994) are beyond the resolution of the present rotation
curve.

A bar is an extreme case of a spiral arm with a pitch an-
gle 90◦ in the above expression. Precisely speaking, circu-
lar rotation analysis cannot treat with non-axisymmetric
potential. It is not a task here to evaluate the eight pa-
rameters of a bar: three axial lengths, position angle of
major axis, mass, and density profiles along the axes, or at
least six for a planar bar. Orbit computation and galactic
shock are also beyond the scope.

Knowing such limitations, we estimate kinematical ef-
fect of a bar on the circular velocity. Since the half-mass
radius of the bulge Rb ∼ 0.5 kpc is much smaller than the
observed bar length ∼ 2 kpc (e.g. Freudenreich 1998), we
treat the bar as a perturbation on the disk. We express
the perturbation by equation (16) with p ∼ 90◦, and the
amplitude is replaced by

δ = δbarexp[−(r/rbar)
2] (17)

with rbar being a cut-off radius. According to the COBE
observations (Freudenreich 1998), we take rbar = 1.7 kpc
and the tilt angle of 13◦ from the Sun-Galactic center line.
Since the bar width is small enough compared to R0, we
approximate that the lines of sight passes the bar side at
a constant tilt angle of 15◦, or α = 75◦. The amplitude
was taken as δbar ∼ 0.2 to 0.8. These mass profiles, to-
gether with the bulge and disk, approximately mimic the
observed bar profiles.

Along an annulus at r <∼ rbar kpc, the circular velocity
attains maximum on the bar side at r ∼ 1 kpc, where the
density gradient is maximum. Faster velocities on the bar
sides than on the major axis is indeed shown in the nu-
merical computations in the literature as above. On the
other hand, the density depression due to the sinusoidal
perturbation causes slower gradient of potential at r ∼ 2
kpc, leading to lower circular velocity at ∼ 3 kpc. Our
simple calculations showed enhancement of rotation ve-
locity at ∼ 1 kpc and a dip at 3 kpc, consistent with the
observed rotation curve. However, the calculated dip am-
plitude was only a few km s−1 even for a large amplitude
of δbar ∼ 0.8, which is too small to explain the observed
dip.

5.3. Gaseous disk

We examined the effect of gaseous disk observed in the
HI and CO-line observations (Nakanishi and Sofue 2003,
2006). The surface mass fraction of gas is several % in the
inner disk, and it increases toward the outer disk, attain-
ing several tens of percents at around 15 kpc. However, at
these radii, the surface mass density of the dark halo much
exceeds the disk as shown in figure 2. Since the circular
velocity depends on the enclosed mass (bulge, disk, and
halo), the contribution from the gaseous mass is negligible
when computing the circular velocity at any radii.

However, if we artificially multiply the gas density by 10
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Fig. 5. Model rotation curve compared with the observations. Thin lines represent the bulge, disk + rings, and dark halo compo-
nents, and the thick line is the composite rotation curve. Data are the same as in figure 1.

times, the wavy structure of rotation curve is mimicked,
suggesting that the gas distribution is somehow related to
more massive underlying structures. From these consid-
erations, we may conclude that the kinematical effect of
the gas disk is not so strong, and, therefore, the gas dis-
tribution is more passive, determined by the stellar and
dark matter structures.

5.4. Ring Waves

In order to examine if the prominent dips in the ob-
served rotation curve can be reproduced by local den-
sity enhancement and/or dips, we examine effect of wavy
rings. The rings are superposed on the exponential disk
Σd(r), so that the total density profile of the disk is ex-
pressed by the following equation:

Σr = Σd(r)

(

1 +
2
∑

i=1

fiexp(−t2i )sin(
π

2
ti)

)

, (18)

where fi is the fractional amplitude of the i-th ring, ti =
(r−ri)/wi with ri being the ring radius, and wi its width.

By the sinusoidal factor we represent a possible forma-
tion mechanism of the ring: We consider that the ring was
produced from the same amount of mass swept up from
inside the ring with the total mass being kept. In order to
obtain the best fit to the observations, we adopted the fol-
lowing values for the parameters as given in table 2. These
parameters yield the maximum amplitude of f = 0.34 for
the outer ring. The profile of the surface mass density and
relative amplitudes of the ring waves are shown in figure
6. The fitting result is discussed in the next section, and
presented in figure 5. The bumpy features are fitted by
the ring wave model, where the surface mass density varies

by about ±0.17 to 0.34 times the background exponential
disk for the 3 and 9 kpc rings, respectively. Instead of the
ring, the features may also be reproduced by introducing
a spiral density wave of amplitude of about 20 % of the
exponential disk.

The 9 kpc dip requires a massive ring wave of node
radius 9.5 kpc with the maximum at radius 11 kpc, mini-
mum at 8.5 kpc, and the amplitude as high as ∼0.34 times
the underlying disk density. Since the rotation curve is
based not only on the HI and molecular gases, but also on
the observations of many stars (figures 1, 5), the 9 kpc dip
is not considered to be due to some non-linear response
of the gas on a weaker density wave. Hence, we conclude
that there is indeed a ring-like density enhancement at
R = 11 kpc with its precursor dip at 8.5 kpc. We call such
a massive ring wave the ”great ring” at 11 kpc. Since
the observed data are obtained for stars and gas within
several kpc from the Sun, it is possible that this ring rep-
resents a density wave corresponding to the Perseus Arm
(e.g. Nakanishi and Sofue 2003, 2006). The radial profile
of the annulus-averaged HI density shows double peaks
at 8 and 11 kpc. These HI peaks might be related to
the great ring, but the HI kinematical properties are not
particularly peculiar.

5.5. Perturbations by Subhalos

It is possible that the halo itself is not spherical, but
has substructures, which influence the dynamics of the
galactic disk (e.g. Hayashi and Chiba 2006; Bekki and
Chiba 2006). Such substructure would particularly affect
the outer rotation curve. In fact the broad maximum
seen in figure 1 at R∼ 15 kpc could be due to such effect.
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Fig. 6. [Top panel]: Relative amplitudes of two wavy rings.
[Lower panel]: Surface mass density of the disk superposed
by the rings.

Table 2. Parameters for wavy rings expressed by equation
(18)

Ring i ri wi fi Σr/Σd

(kpc) (kpc) (at peak)

1 r1 = 3.0 w1 = 1 f1 = 0.3 0.17
2 r2 = 9.5 w2 = 2 f2 = 0.6 0.34

However, inclusion of subhalo models is beyond the scope
of this paper, and would be a subject for future numerical
simulations.

6. Discussion

We have obtained an updated rotation curve by inte-
grating the current data in the decades, and plotted them
in the same scale for a nominal galactic constants R0 = 8
kpc and V0 = 200 km s−1. We have decomposed the ob-
tained unified rotation curve into a bulge, disk and dark
halo components. The functional form of the bulge was so
adopted that the surface mass density is represented by
the de Vaucouleurs law, which was tried for the first time
for our Galaxy. The disk was approximated by an expo-
nential disk, and the halo by an isothermal sphere. The
observed characteristics are well fitted by superposition of
these components. The central steep rise and the high ro-
tation peak at R = 300 pc is quite well reproduced by the

de Vaucouleurs bulge of half-mass scale radius Rb = 0.5
kpc. The broad maximum at around R∼ 6 kpc was fitted
by the exponential disk, and the flat outer part by a usual
dark halo.

Table 3 lists the fitting parameters for individual mass
components. Since the used data in figure 1 were compiled
from different observations, their errors are not uniform,
and it was not straightforward to estimate the statistical
errors by calculation. It was particularly difficult in the
outer Galaxy, where we gave the highest priority to the
observation by VERA (Honma et al. 2007): The other
data, largely scattered around the mean values, were ref-
erenced to judge if the fitting result was reasonable. So,
we give only eye-estimated values as evaluated after trial
and error of fitting to the observed points. Nevertheless,
one may be interested in an averaged rotation curve from
the current data, and we show it by the thick dashed line
in figure 3. It indicates a simply averaged observed rota-
tion curve taken from Sofue et al. (1999), where the outer
curve is based only on the HI data of Honma and Sofue
(1997a), but the data from OB stars and C stars are not
included for their particularly large scatter mainly due to
the uncertainties of distance determinations.

The local values of the surface mass and volume den-
sities in the solar vicinity calculated for these parameters
are also shown in table 4. The volume density of the disk
has been calculated by ρd = Σd/(2z0) with z0 being the
scale height at R=R0, when we approximate the disk scale
profile by ρd(R0,z) = ρd0(R0)sechz/z0. For the local thin
galactic disk, we adopted a recent value z0 = 144± 10 pc
for late type stars based on the Hipparcos star catalogue
(Kong and Zhu 2008). The local volume density of the
bulge is four orders of magnitudes smaller than the disk
component, and the halo density is two orders of mag-
nitudes smaller. However, the surface mass densities as
projected on the Galactic plane are not negligible. The
bulge contributes to 1.6% of the disk value, or the stars in
the direction of the galactic pole would include about 2%
bulge stars, given the de Vaucouleurs density profile. The
dark halo mass integrated within heights of −10 < z < 10
kpc exceeds the disk value by a factor of 2.1.

Shorter-scale variations are superposed on the rotation
curve. The deep minima at 3 and 9 kpc are the most
prominent perturbations. These features are not repro-
duced by the basic mass components. The 3 kpc dip is
consistent with the bar observed with COBE. It was also
possible to fit it by adding a wavy ring of radius 4 kpc
(node at 3 kpc), which may be related to the dense molec-
ular ring of radius 4 kpc. The most striking, peculiar fea-
ture firmly confirmed in the unified present rotation curve
is the 9 kpc dip. We have attributed this dip to a massive
ring at 11 kpc, which we called the great ring. The re-
quired density perturbation is as large as ±0.34 times the
underlying disk density. This is much deeper than that
expected for spiral density waves of ∼ 0.1−0.2. However,
the HI gas in the Perseus and nearby arms seems to be
not as strongly disturbed as expected from the great ring.

Finally, we comment on the original question whether
it is indeed not possible to explain the observed rotation



No. ] Unified Rotation Curve of the Milky Way Galaxy 9

Table 3. Parameters for Galactic mass components

Component Parameter Value Uncertainty∗

Bulge Mass Mb = 1.80× 1010M⊙ ∼ 5 %
Half-mass scale radius Rb = 0.5 kpc
SMD at Rb Σbe = 3.2× 103M⊙pc−2

Center SMD Σbc = 6.8× 106M⊙pc−2

Center volume density ρbc = ∞ —

Disk Mass Md = 6.5× 1010 ∼ 5 %
Scale radius Rd = 3.5 kpc
Center SMD Σdc = 8.44× 102M⊙pc−2

Center volume density ρdc = 8M⊙pc−3

Rings Mass Mr ∼ 0
Peak Σr 0.17 and 0.34 ×Σd ∼ 20 %
Radii of wave nodes Rr = 3 and 9.5 kpc ∼ 3
Widths wr = 1 and 2 kpc ∼ 10

Bar for 3 kpc dip Amplitude δbar > 0.8×Σd —
Assumed bar half length† 1.7 kpc —
Assumed tilt angle† 13◦ —

Bulge, disk, rings Total mass Mbdr = 8.3× 1010M⊙ ∼ 5 %

Dark halo Mass in r = 10kpc sphere Mh(10kpc) = 4.2× 1010M⊙ ∼ 10 %
(Spherical, isothermal) Mass in r = 20 kpc sphere‡ Mh(20kpc) = 1.24× 1011M⊙

Core radius Rh = 5.5 kpc
Central SMD in |z| < 10 kpc Σhc = 352M⊙pc−2

Central volume density ρhc = 0.03M⊙pc−3

Circular velocity at infinity V∞ = 200km s−1 (fixed)

Total Galactic mass Mass in r = 20 kpc sphere Mtotal(20kpc) = 2.04× 1011M⊙ ∼ 10 %

∗ Eye estimates after trial-and-error fitting of calculated rotation curve to the observations.
† Freudenreich (1998)
‡ Mass within 20 kpc is weakly dependent on the dark halo models, e.g., about the same for the NFW and Burkert
models.
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Table 4. Local values in the solar vicinity at R = R0 = 8.0 kpc.

Components Local values

Surface Mass Density Bulge (de Vaucouleurs) 1.48 M⊙pc−2

Disk (exponential) 87.5 M⊙pc−2

Dark halo (isothermal, |z| < 10 kpc) 193 M⊙pc−2

Volume Mass Density Bulge 1.3× 10−4 M⊙pc−3

Disk† for z0 = 144 pc 0.30 M⊙pc−3

— for z0 = 247 pc 0.18 M⊙pc−3

Dark halo 9.6× 10−3 M⊙pc−3

Sum 0.19 ∼ 0.31M⊙pc−3

Total Mass within Solar Sphere ‡ Bulge in sphere of r = R0 = 8 kpc 1.75× 1010M⊙

Disk in R = R0 4.33× 1010M⊙

Dark halo in sphere r = R0 8.31× 109M⊙

Total mass∗ in sphere of r = R0 6.91× 1010M⊙

† For scale heights z0 = 247 pc (Kent et al. 1991) and 144 pc (Kong and Zhu 2007).
‡ The ”Solar sphere” is a sphere of radius R0 = 8 kpc centered on the Galactic Center.
∗ Slightly smaller than the Keplerian mass 7.43× 1010M⊙ for V0 = 200 km s−1because of the disk effect.

curve, including the 9 kpc dip, only with a bulge, disk, and
a halo. This is part of the disk halo conspiracy, in which
the disk and halo conspire to create a flat rotation curve,
but we might see here at the dip an indication of a tran-
sition between halo and disk. However, such transition
seems difficult to be recognized on the theoretical rota-
tion curves, even if it existed, because of the long-range
force of the gravity as well as the smooth distributions of
the disk and halo masses. One may be convinced with
this from the model calculations in figure 3. This is in
fact the reason why we had to attribute the 9-kpc dip to
local structures in the disk.

Acknowledgements: The authors are indebted to the
anonymous referee for the valuable comments and sugges-
tion to add: discussion of reality of the 9 kpc dip related to
the possibility of pressure support of C-star disk by high
velocity dispersion; the effect of subhalos on the outer ro-
tation curve; and the disk-halo conspiracy in creating a
flat rotation curve.
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