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Unified treatment of quantum coherent and incoherent hopping dynamics
in electronic energy transfer: Reduced hierarchy equation approach
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A new quantum dynamic equation for excitation energy transfer is developed which can describe
quantum coherent wavelike motion and incoherent hopping in a unified manner. The developed
equation reduces to the conventional Redfield theory and Forster theory in their respective limits of
validity. In the regime of coherent wavelike motion, the equation predicts several times longer
lifetime of electronic coherence between chromophores than does the conventional Redfield
equation. Furthermore, we show quantum coherent motion can be observed even when
reorganization energy is large in comparison to intersite electronic coupling (the Forster incoherent
regime). In the region of small reorganization energy, slow fluctuation sustains longer-lived coherent
oscillation, whereas the Markov approximation in the Redfield framework causes infinitely fast
fluctuation and then collapses the quantum coherence. In the region of large reorganization energy,
sluggish dissipation of reorganization energy increases the time electronic excitation stays above an
energy barrier separating chromophores and thus prolongs delocalization over the chromophores.

© 2009 American Institute of Physics. [DOI: 10.1063/1.3155372]

I. INTRODUCTION

Quantum dynamic phenomena are ubiquitous in molecu-
lar processes, and yet remain a challenge for experimental
and theoretical investigations. On the experimental side, it
has become possible to explore molecules on a time scale
down to a few femtoseconds. This progress in ultrafast spec-
troscopy has opened up real-time observation of dynamic
processes in complex chemical and biological systems, and
has provided a strong impetus to theoretical studies of con-
densed phase quantum dynamics.

Recently, techniques of two-dimensional Fourier trans-
form electronic spectroscopylf3 have been applied to explore
photosynthetic light harvesting complexes. Engel et al* in-
vestigated photosynthetic excitation energy transfer (EET) in
the Fenna—Matthews—Olson (FMO) protein™® of green sulfur
bacteria. This protein is a trimer made of identical subunits,
each of which contains seven bacteriochlorophyll (BChl)
molecules, and is tasked with transporting sunlight energy
collected in the chlorosome antenna to the reaction center,
where charge separation is initiated. Their experiment re-
vealed the existence of long-lived quantum coherence be-
tween electronic excited states of BChls in the FMO protein.
The observed coherence clearly lasts for time scales similar
to the EET time scales, implying that electronic excitations
move coherently through the FMO protein rather than by
incoherent hopping motion as has usually been assumed.”®
Furthermore, Lee ef al.’ revealed coherent dynamics in the
reaction center of purple bacteria by applying a two-color
electronic coherence photon echo technique. The two spec-
troscopic observations raise obvious questions regarding the
role of the protein environment in protecting the quantum
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coherence, and the significance of quantum superposition
states in generating an efficiency of near unity in the quan-
tum yield of photosynthetic EET. In order to address these
questions, detailed theoretical investigations and novel theo-
retical frameworks are required in addition to further experi-
mental studies.'**

One of the viable approaches to explore long-lived quan-
tum coherence and its interplay with the protein environment
in EET processes is the reduced equation of motion. In this
approach, the key quantity of interest is the reduced density
matrix, i.e., the partial trace of the total density matrix over
the environmental degrees of freedom. The most commonly
used theory from this approach is the Redfield equation,ls_18
which is based on second-order perturbative truncation with
respect to electron-environment interaction and the Markov
approximation. In photosynthetic EET, each site of a multi-
chromophoric array is coupled to its local environmental
phonons. Additionally, electronic de-excitation of a donor
chromophore and excitation of an acceptor occur via non-
equilibrium phonon states in accordance with the vertical
Franck—Condon transition. The phonons coupled to each
chromophore then relax to their respective equilibrium states
on a characteristic time scale. This process becomes more
significant when the reorganization energies are not small in
comparison to the electronic coupling—a typical situation in
photosynthetic EET. In the FMO protein, for example, the
electronic coupling strengths span a wide range,
1-100 cm™!, while the suggested reorganization energies
span a similar range.3’19’20 However, these site-dependent re-
organization processes cannot be described by the Redfield
equation due to the Markov approximation. The Markov ap-
proximation requires the phonons to relax to their equilib-

© 2009 American Institute of Physics
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rium states instantaneously, that is, the phonons are always in
equilibrium even under the electron-phonon interaction.”'

In order to go beyond the Markov approximation, a fea-
sible path is to employ non-Markovian quantum master
equations such as the Nakajima—Zwanzig equation22’23 (time-
convolution formalism) or the Shibata—Takahashi—
Hashitsume equation24 (time-convolutionless formalism)
based on projection operator techniques. They are math-
ematically exact and hold for arbitrary systems and interac-
tions; however, it is impossible to reduce explicit expressions
for the equations beyond the exact formal structures. Hence,
the second-order perturbative expansion with respect to
system-environmental interaction is usually invoked to make
practical calculations possible. Under the second-order per-
turbation theory, however, the time-convolution equation of
the Nakajima—Zwanzig type can be proven to correspond to
the two-state-jump model.>?® The optical line shapes calcu-
lated by the equation contain unphysical peak splitting in
strong non-Markovian regime entailing sluggish fluctuations
and/or dissipation of large reorganization energy. Hence, the
equation is applicable only for the nearly Markovian regime.
On the other hand, the time-convolutionless equation of the
Shibata—Takahashi—Hashitsume type can be recast into the
well-known time-dependent Redfield equation in the eigen-
state representation,

J
EPMV([) == iw,qu/.LV([) + ,E’ Ruv,,u’v’(t)p,u,’v’(t)’ (1 1)
1%

where w,,,, is the energy gap between the uth and vth eigen-
states and the time-dependent relaxation tensors, R, ,/,/(f),
are responsible for non-Markovian nature. This equation has
a mathematical advantage of time locality without involving
any integrodifferential form. Due to this time locality, how-
ever, the phonon modes associated with each chromophore
can relax independently of electronic states of the chro-
mophores. For this reason, the equation cannot capture the
above mentioned site-dependent reorganization processes in
spite of its non-Markovian nature. In addition, after the cor-
relation time of phonon-induced fluctuations, the time-
dependent relaxation tensors converge to steady values,
R, 0 (t=2), that is, the EET after the correlation time is
described by the Markovian Redfield equation.

In order to elucidate the origin of the long-lived quantum
coherence and its interplay with the protein environment in
EET processes, it is crucial to consider and describe the dy-
namics of environmental phonons in a more detailed fashion.
In this work, we tackle the development of a new theoretical
framework which can describe the above mentioned site-
dependent reorganization dynamics of environmental
phonons. For this purpose, we utilize the Gaussian property
of phonon operators in the electron-phonon interaction
Hamiltonian. A remark which should be made here is that the
cumulant expansion up to second order is rigorous for pho-
non operators owing to the Gaussian property, whereas the
second-order perturbative truncation is just an approxima-
tion. Further we employ the overdamped Brownian oscillator
model®” and the hierarchical expansion techniquezs’zgf30 to
obtain a practical expression for the reduced equation of mo-
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tion. The developed equation can describe quantum coherent
wavelike motion and incoherent hopping in the same frame-
work, and reduces to the conventional Redfield theory and
Forster theory in their respective limits of validity. Further-
more, the equation predicts several times longer-lived quan-
tum coherence between electronic excited states of chro-
mophores than the conventional Redfield equation does. The
paper is organized as follows: In Sec. II, we describe new
formalism of quantum dynamics in excitation energy trans-
fer. In Sec. III, we present and discuss numerical results for
the formalism developed in Sec. II Finally, Sec. IV is de-
voted to concluding remarks.

Il. FORMULATION

In this paper, we discuss the simplest electronic energy
transfer system, a dimer (a spin-boson-type model’"). We
employ the following Frenkel exciton Hamiltonian to study
excitation energy transfer dynamics,32

H,, = H®' + H°" + o' 4 g0 (2.1)
where
2
H= 2 |j)e)il + Tia(| 1]+ [2)(1)), (2.2a)
j=1
2
H™ =2 B, (2.2b)
j=1
2
Hee = [N (2.2¢)
j=1
and
2 2
HP = B = Vi, (2.2d)

J=1 J=1

In the above, |j) represents the state where only the jth site is
in its excited electronic state |gojg) and another is in its
ground electronic state @), i.e., |j) =|@;.)|¢@x). In addition,
we define the ground state |0) as [0)=|¢;,)|¢,,). Equation
(2.2a) is the electronic Hamiltonian in which the Hamil-
tonian of the ground electronic state is set to be zero by
definition. s;) is the excited electronic energy of the jth site in
the absence of phonons. J;, is the electronic coupling be-
tween the two sites, which responsible for EET between the
individual sites. In Eq. (2.2b), H?"=3dhw p;+q;)/2 is the
phonon Hamiltonian associated with the jth site, where g,
Pg and w, are the dimensionless coordinate, conjugate mo-
mentum, and frequency of the &th phonon mode, respec-
tively. In Eq. (2.2¢), )\jzﬁlgﬁwfdjz-g/ 2 is the reorganization
energy of the jth site, where d;; is the dimensionless dis-
placement of the equilibrium configuration of the &th phonon
mode between the ground and excited electronic states of the
jth site. In Eq. (2.2d), H{"™" is the coupling Hamiltonian
between the jth site and the phonon modes and we have
defined u;=-3fiwd;sq; and V;=|j)(j|. For simplicity we
assume the phonon modes associated with one site are un-
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correlated with those of another site. The Liouvillian for the
Hamiltonian in Eq. (2.1) is decomposed as

L= L, + LPM 4 £oPh (2.3)
where £,, £P", and £¢P" correspond to H,= H®'+ H™""¢, ",
and HPh, respectively.

Now, we identify the electronic excitations as the rel-
evant system. The phonon degrees of freedom constitute the
heat bath responsible for electronic energy fluctuations and
dissipation of reorganization energy. An adequate description
of the EET dynamics is given by the reduced density opera-
tor p(1), that is, the partial trace of the total density operator
p'(z) over the irrelevant phonon degrees of freedom: p(r)
=Try{p"(1)}. In order to reduce the total density operator,
we suppose that the total system at the initial time #=0
is in the factorized product state of the form,
p°(0)=p(0) @ exp(-BH")/Z, where B=1/kzT and
Z="Tr,;, exp(—BH™). This factorized initial condition is gen-
erally unphysical since it neglects an inherent correlation be-
tween a system and its environment. Hence, it may lead to
serious issues in the time evolution of the reduced density
0perator.3033_38 In electronic excitation processes, however,
this initial condition is of no consequence because it corre-
sponds to the electronic ground state or an electronic excited
state generated by photoexcitation in accordance to the ver-
tical Franck—Condon transition. The reduced density opera-
tor p(t) evolves in time as follows:

(1) = U p(0), (2.4)

where the interaction picture has been employed and a tilde
indicates an operator in the interaction picture: 0(1)

= ¢Le'Q for any operator O. The reduced propagator (1) is
expressed as

Ui =(T, exp{— ifzdszel’ph(s)} Dph-> (2.5)
0

where (...), stands for Trp{.. .exp(=BHP")}/Z and the sym-
bol T, describes the usual chronological time ordering of

LPh(7). Here, we notice that Wick’s theorem™® yields the
Gaussian property for the phonon operator u; as follows:

(Tt (ty,) i (tr-1) - W;(15)i8;(t)) Ypn

= H<Tﬁj(tk)ﬁj(t{f)>ph,

a.p.p. k¢

(2.6)

where the sum is over all possible ways of picking pairs
(a.p.p) among 2n operators, and the symbol 7 denotes an
ordering operator which orders products by some rule, e.g.,
the chronological time ordering operator 7=T,. Therefore,
Eq. (2.5) can be recast into

(2.7)

2 t
Ut = T+H exp{J dsVT/j(s)} ,

j=1 0

with
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t

Wj(t) =- i

hz . dSVj(t)X

X[Sj(f —S)V;(S)X—ing(t—s)\?/(s)° . (28)

where we have introduced the hyperoperator notations,
0*f=[0.f] (a commutator) and O°f={0,f} (an anticom-
mutator), for any operator O and operand operator f. Equa-
tion (2.7) is the cumulant expansion of Eq. (2.5) up to second
order. In Eq. (2.8), Si(z) is the symmetrized correlation func-
tion of (1) expressed as

S{() = 54, (0),@,0) P,

which describe fluctuations of the electronic energy of the jth
site. On the other hand, x;(#) is the response function defined
by

(2.9)

Lo o
x;(1) = %<[u_,~(t),u,~(0)]>ph, (2.10)
which describes the dissipation of the phonon reorganization
energy associated with the jth site.** From Egs. (2.4) and
(2.7), we obtain the equation of motion for the reduced den-
sity operator p(z) as follows:

2
J _ =~
—p(0)=T.2 W,0)p(1). (2.11)
Jdt j=1
Note that Eq. (2.11) is not a time-local equation unlike the
time-dependent Redfield equation, Eq. (1.1), owing to the
chronological time ordering operator 7',, which resequences
and mixes the hyperoperators V*(z) and V() comprised in
W;(1) and p(r).

Here, we consider two limiting cases of Eq. (2.11). First,
if the Markov approximation is employed, Eq. (2.11) reduces
to the well-known second-order perturbative quantum master
equation,18

2
14 .
a—tp(t) =—iLp(t) - 2 VI [Ajp() - p(DAT],  (2.12a)
j=1
with
I . ,
Aj=25 fo diCi(n)e ey et (2.12b)
where we have introduced the phonon correlation function,
C;(t)= (i, (t)i(0)),p. Equation (2.12) is transformed to the
full Redfield equation in the eigenstate representation,
H(e,)=E,e,), where E, and |e,) are the uth eigenenergy
and the corresponding eigenstate, respectively. In the repre-

sentation, the matrix element of Eq. (2.12b) can be expressed
as

1
(elu|Aj|eV) = %(eﬂ|vj|e,,>ij[wm], (2.13)
where C;[w] Efgdteia”cj]-(t) and ,,=(E,—E,)/h. Accord-
ing to Eq. (2.13), in order to get a nonvanishing transition

rate between two eigenstates, the energy gap between them
must be matched with the frequency of a phonon mode. Con-
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sequently a transition through hot phonon states or a mul-
tiphonon transition cannot be captured in the Redfield frame-
work, as examined by Yang and Fleming.3 % This shortcoming
is an artifact caused by the second-order perturbative expres-
sion, Eq. (2.12), as the consequence of the Markov approxi-
mation. However, Eq. (2.11) itself is a non-Markovian equa-
tion derived in a nonperturbative manner with respect to the
electron-phonon coupling, and thus Eq. (2.11) can describe
multiphonon transition processes, which play a role in
Forster-type incoherent hopping EET.* In the second place,
when the intersite electronic coupling Ji, is vanishingly
small, we have V,(r)=V;=[j)(j| in Eq. (2.8). In this limit, Eq.
(2.11) leads to

. 0
(jlp(0)]0) = e~ =50 p(0)]0),

where g;(#) is the line shape function®’ defined by g;(t)
= [ods[ods' Cii(s")/ #2. The Fourier transform of Eq. (2.14)
yields the absorption spectrum of the jth site, which plays an
important role in Forster theoryf”’42 According to Forster
theory an incoherent hopping rate from the jth site to the kth
site is given by32

(2.14)

K —& wd—“’A F 2.15
T n | oa LolF o], (2.15)

where A [w] and F[w] are the absorption and fluorescence
spectra of the jth site, respectively, and are expressed as

Afo]l= f diei® e =g;(0) (2.16a)
0

Flo]= f die e EN =g () (2.16b)
0

Since we have adopted the equilibrium phonon states asso-
ciated with the electronic ground state as the initial condi-
tion, Eq. (2.11) cannot be reduced to the fluorescence spec-
trum directly. However, it is possible to obtain the
fluorescence spectrum by integrating Eq. (2.11) numerically
until the phonon states associated with the electronic excited
state reach their equilibrium states, as will be discussed be-
low.

The quantum fluctuation-dissipation relation® allows us
to express the symmetrized correlation function and the re-
sponse function as

i~ i)

S{1) = —J dw)(}’[w]cothﬂ @ cos wt, (2.17)
m™Jo 2
2 - 14 .

X;(0) = —f dwy[o]sin wt, (2.18)
m™Jo

where x/[w] is termed the spectral distribution function de-
fined by the imaginary part of the Fourier—Laplace transform
of the response function: y,[w]=[jdwe™ x/(r). The absolute
magnitude of the spectral distribution function is related to
the reorganization energy by \;=Jjdwx/[w]/(mw). Several
forms of x/[w] are employed in literature, either based on
model assumptions or analyses of molecular simulations. In
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this paper, we employ the Drude—Lorentz density (the over-
damped Brownian oscillator model):**%’

4 wy
xjlo]=2N——

+

which has been successfully used for theoretical analyses of
experimental results.** = If we further assume the high-
temperature condition characterized by Bhy;<1, Egs. (2.17)
and (2.18) can be evaluated as

(2.19)

Si(r) = %e‘“’f’, X;(1) = 2Ny, (2.20)
which satisfies the classical fluctuation-dissipation relation,
Xj/()=—p(d/dt)S;(t). The parameter vy; characterizes a time-
scale of fluctuation of the electronic energy and dissipation
of the phonon reorganization energy associated with the jth
site. Typical values of y; for photosynthetic EET satisty the
high-temperature assumption. For example, we have Bfhy;
=0.25 for a case of 7;1: 100 fs and T=300 K. If the high-
temperature assumption cannot be applied, we can improve
the formalism by employing the low-temperature correction
in Ref. 49. Here, we should not overlook that the initial
behaviors of the symmetrized correlation function § j(t) and
the response function x;(z) are coarse grained. To be exact,
the value of )(J»(O) should vanish by definition, and corre-
spondingly the first time derivative of S;(r) at t=0 should
also vanish. This coarse-grained nature is a drawback of the
Drude—Lorentz density or the overdamped Brownian oscilla-
tor model, Eq. (2.19). However, as long as we discuss slow
fluctuation and dissipation processes caused by the environ-
mental phonons, this coarse-grained nature should not be a
fatal defect. Substitution of Eq. (2.20) into Eq. (2.8) yields

VT/J-(I):f dsCBj(t)e_yj(T_s)@j(s), (2.21)
0

where we have defined the phonon-induced relaxation opera-
tors as

P, = iVjX, (2.22a)
[ 2\, A

Owing to the exponential function in Eq. (2.21), we can de-
rive the following hierarchically coupled equations of motion
for the reduced density operator p(z):

Jd
&—tp(t) =—iLp(t) + D, 0(1) + PV (1), (2.23a)
with
4 (ny.ny) . (ny.1n7)
070' 12(t) == (iL, + nyyy + nyy,) o2 (1)
+ @, " (1) 4 1,0, 07 1(r)
+ CDQO'(’ZI’”2+1)(I) + n2®20'("1’"2_1)(t),
(2.23b)
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for non-negative integers (n,,n,). In Eq. (2.23), we have
introduced operators defined by

Fmm)(y)

2 t _ n; o
=111 J dse‘yi(t_‘y)(*Dj(s) exp J dsW(s) |p(0).
j=1

0 0
(2.24)
When n; and n, are both equal to zero, Eq. (2.24) is reduced
to
2 t
7 0m =1,]1 exp|:f dswj(s):| p(0), (2.25)
j=1 0

which is identical to the reduced density operator p(z) ex-
pressed by Egs. (2.4) and (2.7). The others {o""1"2)(r)} are
auxiliary operators to take into account fluctuation of the
electronic energy and dissipation of reorganization energy. At
the initial time #=0 just after the photoexcitation, all the aux-
iliary operators are set to be zero. It corresponds to a state
where the phonon modes are in the equilibrium state in the
absence of the electron-phonon coupling; however, it is a
nonequilibrium state in the presence of such coupling.
Hence, the coupling relaxes the phonons toward the actual
equilibrium state, allowing the reorganization process to pro-
ceed. This reorganization dynamics is described as follows:
After t=0, the matrix elements of {12} start to have non-
zero values, and finally converge to the steady values. The
steady states described by a full set of the hierarchical ele-
ments (p,{o""1")}) correspond to the actual equilibrium state
in the presence of the electron-phonon coupling. In Fig. 1,
we show the time evolution of a set of (p,{o"1"2}). In order
to clarify the role of the auxiliary elements {o"1"?}, we
calculated the time evolution only for site 1 in the absence of
the intersite coupling, J;,=0, depicted in Fig. 1(a). For the
calculation, we used the parameters, \;=200 cm~' and 1y,
=53 cm‘l(yf:lOO fs). Figure 1(b) shows the time evolu-
tion of the populations of the reduced density operator
(1|p(#)|1) and the auxiliary operators {(1|a"1"2)(£)| 1)} where
the phonons associated with site 2 is in equilibrium due to
the absence of the interchromophoric coupling and then n,
=0. The red line indicates the evolution of (1|p(#)|1), which
is time independent because of no energy transfer. On the
other hand, the blue lines represent the evolution of
{(1|a19(1)|1)}. From top to bottom, the values of n, are I,
2,3, 4, and 5. We can recognize the elements {o"1:9} start to
have nonzero values after =0, and converge to the steady
values on the time scale of ¥ '=100 fs. In order to confirm
that the steady state corresponds to the equilibrium phonon
state in the presence of the electron-phonon coupling, in Fig.
1(c), we calculated the emission spectrum from the elec-
tronic excited state |¢;,) as a function of a delay time ¢ after
the photoexcitation. We normalized the intensity of Fig. 1(c)
is such that the maximum value of the spectrum of =0 is
unity. The white line follows the maximum of the spectrum
at a given delay time ¢. Just after the excitation, =0, the
maximum of the emission spectrum is located in the vicinity
of w:£?+)\l. The frequency of a maximum peak position
lessens over time, and finally converges to the vicinity of

J. Chem. Phys. 130, 234111 (2009)
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FIG. 1. (Color) Time evolution of phonon modes in the present formalism.
In panel (a), the lower parabola is the electronic ground state of site 1 while
the upper one is the electronic excited state. The gray packets illustrate the
phonon states. The wavy arrow stands for the reorganization process. In
panel (b), the red line presents the time evolution of the population of site 1.
The blue lines show the time evolution of the matrix elements of the auxil-
iary operators, {(1|a"1:9|1)}; from top to bottom, the values of n, are 1, 2, 3,
4, and 5. Panel (c) gives the emission spectrum calculated by the present
theory, Eq. (2.23), as a function of a delay time ¢ after photoexcitation. In
panels (b) and (c), the parameters are set to be A\;=200 cm™!, 1y,
=53.08 cm~!(y'=100 fs), and T=150 K. The normalization of the spectra
is such that the maximum value is unity.

w:si—)\l. This phenomenon is the time-dependent Stokes
shift.* As can be seen in Fig. 1(a), the emission spectrum
with the convergent frequency, wzs(l)—)\l, originates from
the equilibrium phonons associated with the electronic ex-
cited state, and then the spectrum is identical to the fluores-
cence spectrum F[w] in Eq. (2.16).

The hierarchically coupled equations Eq. (2.23b) con-
tinue to infinity, which is impossible to treat computationally.
In order to terminate Eq. (2.23b) at a finite stage, we solve
Eq. (2.23b) formally as

t
0'(”1’”2)(t)=f dse—(iﬂe+n1y1+n2y2)(t—s)
0

X[‘I)la(n1+l’"2)(s) + n1®10("1_1’"2)(s)

+(I)20'("1’"2+1)(S) +n2®20'("1’"2_1)(s)]. (226)
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1.4 T T
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1.0
0.8
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0.4 -
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Intersite Transfer Rate (1/ps)

0.0 L i
1 10 100 1000

Reorganization Energy 1 (cm™)

FIG. 2. (Color online) Intersite energy transfer rates from |1) to |2), k,._;, as
a function of reorganization energy, \, predicted by the present theory, Eq.
(2.23) (closed circles), the full-Redfield equation (open circles), and Forster
theory (solid line). The other parameters are a?—sg: 100 em™, J;,
=20 cm™', y=53 ecm™!(y'=100 fs), and T=300 K. For theses param-
eters, the intersite dynamics is dominantly incoherent for the entire region
depicted.

If nyy,+n,y, is large enough compared to characteristic
quantities for £,, w,, the kernel of the time integral can be
replaced by Dirac’s delta function as

(nl’yl + nz,y2)e—(”1’}/1+n2’yz)(f—5) = 5(t - S) . (227)
and hence Eq. (2.23b) can be approximated by

d

py mem)(f) = = iL ") (r). (2.28)

We replace Eq. (2.23b) by Eq. (2.28) for the integers, n; and
n,, satisfying
o

< (2.29)

NE ny +I’l2 > -,
min(y;,%,)

because this is a sufficient condition for n;y;+n,%,> w,.
Since we can always choose a constant integer A to satisfy
Eq. (2.29), the hierarchically coupled equations Eq. (2.23b)
can be terminated at a finite stage.

lll. DISCUSSION: NUMERICAL RESULTS

In this section, we present and discuss numerical results
in order to examine the applicability of the present developed
theory, Eq. (2.23). For simplicity, we assume that the phonon
spectral distribution functions for the two sites are equiva-
lent. Then, we have

NM=M=MN and y =y, =v. (3.1)

A. Weak electronic coupling

In this subsection, we consider a case with weak intersite
coupling. In Fig. 2, we show the intersite energy transfer
rates from site 1 to site 2, k., as a function of reorganiza-
tion energy, N\, predicted by the present theory (closed
circles). The other parameters are fixed to be &'—&)
=100 cm™', J;,=20 cm™!, y=53 cm™!(y =100 fs), and
T=300 K, which are typical for photosynthetic EET. The
intersite dynamics calculated by using these parameters is
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dominantly incoherent for the entire region depicted in Fig.
2. In a region of small \(<5 cm™!), a weak coherent oscil-
lation is observed at a short time; however, the oscillation
does not affect the overall exponential-decay behavior.
Therefore, we can assume the overall dynamics can be ad-
equately analyzed by the following master equation:5 0

Jd
a_t<1|P|1>=—k2%1<1|P|1>+k1F2<2|P|2>’ (3.2a)

J
E<2|P|2>=+k291<1|P|1>—k1ez<2|P|2>- (3.2b)

The transition rates k,, ; and k., are determined as follows:
For the initial condition (1]|p(0)|1)=1, we calculate the time
evolution of p(¢). We used the fourth-order Runge-Kutta
method as the numerical propagation scheme. The time evo-
lution of p(7) does not strictly follow exponential decay ki-
netics because of the non-Markovian feature. Therefore, we
determined the intersite transfer rates k,, | and k;._, with the
least-square routine. For comparison, we show the rate cal-
culated from the second-order quantum master equation, Eq.
(2.12), or equivalently the Redfield equation in the full
form®' for the same parameters (open circles). Furthermore,
as a benchmark for discussion of large reorganization energy
cases, we also show the rate predicted by Forster theory, Eq.
(2.15) (solid line).

In a region of small reorganization energy, the rate pre-
dicted by the present theory coincides with that of the full-
Redfield equation. In this region, the relaxation of the re-
duced density matrix is much slower than the correlation
time of the phonon-induced fluctuation, y‘l =100 fs. This is
the precondition which makes the Markov approximation ap-
propriate for description of the quantum dynamics. In this
case, the present theory reduces to the second-order quantum
master equation, as mentioned in Eq. (2.12). The Markov
approximation in the Redfield framework requires the pho-
non modes to relax to their equilibrium state instantaneously,
that is, the phonons are always in equilibrium.21 For the ex-
tremely small reorganization energy, the reorganization pro-
cess does not play a major role; hence, the phonon modes are
almost in equilibrium. As the result, we see the coincidence
between the rates predicted by the present theory and the
full-Redfield equation. However, such small reorganization
energies are not likely to be physically realizable in molecu-
lar systems.

With increasing reorganization energy A, the difference
between the present theory and the full-Redfield equation
becomes large. In a region of large reorganization energy, the
rate predicted by the full-Redfield theory shows a
\-independent plateau.21 However, the rate predicted by the
present theory decreases with increasing A, and is in accord
with the Forster rate. In this region, the reorganization dy-
namics plays a major role. Electronic de-excitation of a do-
nor chromophore and excitation of an acceptor occur via
nonequilibrium phonon states in accordance with the
Franck—Condon principle. The nonequilibrium states are de-
pendent on the magnitude of reorganization energy. The
phonons coupled to each chromophore then relax to their
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FIG. 3. (Color) Emission spectrum from site 1 (a) and site 2 (b) calculated
by the present theory, Eq. (2.23), as a function of a delay time ¢ after the
photoexcitation of site 1. For the calculations, the parameters are chosen to
be &Y-€9=100 em™', J;,=20 ecm™!, \=200 em™!, =53 cm~'(y’!
=100 fs), and T=150 K. The normalization of the spectra is such that the
maximum value of panel (a) is unity. Twenty equally spaced contour levels
from 0.05 to 1 are drawn.

respective equilibrium states. As noted in the companion
paper,21 this site-dependent reorganization dynamics cannot
be described by the Redfield framework due to the Markov
approximation. However, the present theory does describe
the site-dependent reorganization dynamics. In order to dem-
onstrate this, we present the dynamics of electronic excita-
tion and the accompanying phonon modes as the emission
spectra from site 1 and site 2 in Fig. 3. The reorganization
energy is set to A=200 cm™!, and the temperature is changed
to 7=150 K in order to narrow the spectrum. The normal-
ization of the spectra is such that the maximum value of the
spectrum of site 1 is unity. Twenty equally spaced contour
levels from 0.05 to 1 are drawn. Figure 3(a) is the emission
spectrum from site 1 as a function of a delay time ¢ after the
photoexcitation of site 1. Just after the excitation, =0, the
maximum value of the emission spectrum is located in the
vicinity of w=s(l)+ \. The frequency of a maximum peak po-
sition decreases with time, and reaches w=8?—)\ with almost
constant magnitude. This indicates that the phonon reorgani-
zation dynamics takes place prior to the EET. This is reason-
able because the interaction between the sites occurs at a rate
of once every J;,=265 fs(J;,=20 cm™') whereas the time
scale of the phonon reorganization process is y'=100 fs.
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Figure 3(b) shows the emission spectrum from site 2. The
contour line of the lowest level clearly shows that the emis-
sion spectrum emerges from close to w=8(2)+)\ in the short
time region. This indicates that the excitation of site 2 occurs
from the equilibrium phonons of the electronic ground state
|<,02g) to the nonequilibrium phonons of the electronic excited
state |¢,,) in accordance with the vertical Franck—-Condon
principle. Since the reorganization process takes place sub-
sequently, we observe the emission spectrum in the vicinity
of w:ag—)\ in the long time region. In contrast to the con-
tour in the region indicated by the white arrow, the contour
indicated by the red arrow is weakly dependent on the delay
time ¢. This is because the excitation energy continuously
flows into site 2 via the Franck—Condon state, and represents
the above mentioned multiphonon transition process where
the EET occurs through hot phonon states in the acceptor
state. The observations from Fig. 3 can be summarized as
follows: First, the reorganization process of the initial state,
|D=]¢1)|@,,), takes place. Subsequently, the electronic de-
excitation of site 1 and the excitation of site 2 occurs from
the equilibrium phonons of the initial state to the nonequilib-
rium phonons of the final state, [2)=|¢,.)|¢;,), in accordance
to the Franck—Condon principle. Then, the reorganization
process in the final state follows. It should be noticed that
this sequential process is the assumption of Forster theory.
For this reason, the rate predicted by the present theory
agrees completely with the Forster rate in a region of large
reorganization energy, A>J,,=20 cm™!, in Fig. 2.

In Fig. 2, the overall behavior of the rates predicted by
the present theory and Forster theory are qualitatively simi-
lar. For incoherent EET, energy conservation is required be-
tween a donor state and an acceptor state. The energy con-
servation in the weak electronic coupling case is ensured by
overlap of the donor fluorescence spectrum with the acceptor
absorption spectrum. The spectra in the present theory and
those in Forster theory are same. As the result, we observe
qualitatively similar behavior between them. However, the
Forster rate is derived on the basis of the assumption that
intersite electronic coupling is very small compared to the
reorganization energy. In regions of small or intermediate
reorganization energy, A <J,,=20 cm™!, the perturbative as-
sumption breaks down, and quantitative differences emerge.

B. Strong electronic coupling

In this subsection, we consider the quantum dynamics
for the case of stronger electronic coupling. Figure 4 shows
population dynamics of site 1 calculated by the present
theory, Eq. (2.23), and the full-Redfield equation for various
values of reorganization energy A. As the initial condition for
numerical calculation, we assume only site 1 is excited in
accord to the Franck-Condon principle. The other param-
eters are fixed to be &)—£5=100 cm™', J;,=100 cm™, 7y
=53.08 cm™!(y'=100 fs), and T=300 K. Figure 4(a) is for
A=J;,/50=2 cm~!. The dynamics calculated by the two
theories are almost coincident with each other. As mentioned
in Sec. IIT A, the Markov approximation is appropriate in
this case, because the relaxation of the reduced density ma-
trix is much slower than the correlation time of the phonon-
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FIG. 4. (Color online) Time evolution of the population of site 1 calculated
by the present theory, Eq. (2.23) (solid line) and the full-Redfield equation
(dashed line) for various magnitudes of the reorganization energy \.
The other parameters are fixed to be £’—5=100 cm™', J;,=100 cm™',
y=53.08 cm™!(y'=100 fs), and T=300 K.

induced fluctuation, 'y‘1=100 fs. However, increasing the
reorganization energy produces a difference between the dy-
namics calculated by the two theories. Figure 4(b) shows the
case of A\=J,/5=20 cm™!, which is still small compared to
the electronic coupling and a regime of quantum coherent
motion. The dynamics calculated by the present theory
shows long-lasting coherent motion up to 1000 fs, which
reflects the existence of long-lived quantum superposition
between |1) and |2). On the other hand, the dynamics from
the Redfield theory dephases on the timescale less than 400
fs. The cause of the difference is the breakdown of the
Markov approximation. The infinitely fast dissipation of re-
organization energy then corresponds to infinitely fast fluc-
tuation according to the fluctuation-dissipation relation. The
infinitely fast fluctuation with relatively large amplitude col-
lapses the quantum superposition state. As the result, the
coherent motion in the Redfield theory is destroyed rapidly
compared with the present theory. Figure 4(c) is for the case
of A\=J,,=100 cm™', which is comparable to the electronic
coupling. They are reasonable values for photosynthetic sys-
tems. The dynamics calculated from the Redfield theory
shows no oscillation; however, the present theory predict
wavelike motion up to 300 fs. Figure 4(d) presents the case
of A=5J,,=500 cm™!, which is large compared to the elec-
tronic coupling and should produce incoherent hopping. As
expected, the dynamic behavior of the Redfield theory is
similar to that in Fig. 4(c) because the full-Redfield theory
predicts A-independent dynamics for large reorganization en-
ergy due to the Markov approximation.21 The dynamics cal-
culated by the present theory also shows no wavelike mo-
tion. However, it should be noted that the dynamics involves
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q,

FIG. 5. Adiabatic potential surface E~(q) given by Egs. (3.5). For the cal-
culation, the parameters are chosen to be s?=100 cm™, sg=0 cm™!, Jis
=100 cm™', ®,=53.08 cm™!, and \,=500 cm~!(d,=4.34). Six equally
spaced contour levels from 0 to 500 are drawn. The local minimum located
around (g;,¢,)=(4,0) corresponds to site 1, whereas that around (g,,q,)
=(0,4) is site 2. The point of origin corresponds to the Franck—Condon
state.

two time scales. Comparing Fig. 4(d) with Figs. 4(a)-4(c),
we can recognize that the faster component (¢=<100 fs)
arises from quantum coherence. The quantum coherent mo-
tion is destroyed before the first oscillation, and the subse-
quent dynamics follows the incoherent motion of the slower
component of timescale. In order to explore the origin of the
quantum coherence in the short time region of Fig. 4(d), we
consider the following minimal model:

H(q) =& (q){1] + [2)e2(q)(2] + [1)J 12| + [2)J15(1

i

(3.3)
with
ho ho
ei(q) =&+ S a-dy)’+ —qué, (3.4a)
ho ho
ex@) =g+ = FHgn—d,)*+ — g, (3.4b)

where the electronic excited state of the jth site is coupled to
a single phonon mode, hqu}/ 2, and the reorganization en-
ergy is expressed as )\yzﬁwydf// 2. The Hamiltonian Eq. (3.3)
can be easily diagonalized, and then we can obtain adiabatic
potential surfaces,

= 20t0@ | Jp  a@rel)

> > (3.5)

In Fig. 5, we draw the adiabatic potential surface for the
lower energy, E~(q), as a function of two phonon coordi-
nates, g; and g,. The parameters in this model are chosen to
be £]=100 cm™, &)=0 cm™, J;,=100 cm™!, w,=y
=53.08 cm™', and N,=\=500 cm™'(d,=4.34), which corre-
spond to those in Fig. 4. Since the reorganization energy A,
is large compared with the electronic coupling J,,, we can
observe two local minima which represent the two states,
|D=le1)|@ye) and [2)=|@y,)|@;,). Incoherent hopping EET
describes the transition between the local minima. Attention
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FIG. 6. (Color online) Time evolution of the population of site 1 calculated
by the present theory, Eq. (2.23) (solid line) and the full-Redfield equation
(dashed line) for various magnitudes of the reorganization energy \.
The other parameters are the same as those in Fig. 4, except
y=10.61 cm™!'(y'=500 fs).

will now be given to the point of origin, which corresponds
to the Franck—Condon state. The energy of the point is higher
than the barrier between the minima; therefore, we find that
the electronic excited state is delocalized just after the pho-
toexcitation despite being in the incoherent hopping regime,
AN>Jy,. As time increases, the dissipation of reorganization
energy proceeds and the excitation will fall off into one of
the minima and become localized. It is interesting to note
this phenomenon is equivalent of the localization or polaron
formation, which has been studied extensively in literature of
the solvated electron.’’ This picture is consistent with Fig.
4(d), where we observe quantum coherent motion on the
timescale of the reorganization dynamics, y'=100 fs. The
dynamic behavior of the intermediate regime, Fig. 4(c), can
be understood as the combined influence of the slow fluctua-
tion effect in the regime of small reorganization energy and
the slow dissipation effect in the large reorganization energy
as described in Fig. 5.

According to the above discussion, we can expect a
longer lifetime of quantum coherent oscillation when the
value of vy is smaller than that used in Fig. 4. Figure 6 gives
the population dynamics of site 1 for the case of vy
=10.61 cm™!(y'=500 fs). The other parameters are the
same as in Fig. 4. In this slower fluctuation-dissipation case,
the Markov approximation in the Redfield framework com-
pletely collapses. Figures 6(b)-6(d) reveal the longer-lasting
coherent oscillation in comparison to Figs. 4(b)-4(d). In a
case of small reorganization energy, the slower fluctuation
sustains longer-lived coherent oscillation. In a case of large
reorganization energy, on the other hand, the sluggish reor-
ganization dynamics allow the excitation to stay above the
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barrier between two local minima of the adiabatic potential
surface for a longer time in comparison to Fig. 4(d). There-
fore, clear coherent oscillations emerge in Fig. 6(d) although
the reorganization energy is large in comparison to the elec-
tronic coupling. In Fig. 6(a), however, the lifetime of oscil-
lation is shorter than that in Fig. 4(a). This can be explained
in terms of the inhomogeneity of the electronic energies, 8(1)
and &9. Slow modulation of the electronic energies induced
by the environmental phonons can be regarded as an inho-
mogeneous distribution of the energies. The destructive in-
terference of various frequencies yields the shorter lifetime
observed in Fig. 6(a). This is supported from the fact that the
envelope of the oscillation is a Gaussian-like form, whose
Fourier transform also shows a Gaussian-like form indicating
inhomogeneous spectral broadening.

IV. CONCLUDING REMARKS

In this work, we have developed a new quantum dy-
namic equation for excitation energy transfer based on the
Gaussian property of phonon operators, without employing
the perturbative truncation. The equation can describe quan-
tum coherent wavelike motion and incoherent hopping in the
same framework. When timescale of reorganization is short
compared to EET and reorganization energy is extremely
small compared to any characteristic frequencies of EET (the
Markov limit), the equation reduces to the conventional Red-
field equation. On the other hand, when timescale of reorga-
nization is short compared to EET and reorganization energy
is large compared with intersite electronic coupling, the in-
coherent EET rate predicted by the equation is completely
coincident with the Forster rate. In the regime of coherent
wavelike motion, especially, the equation predicts several
times longer lifetime of quantum coherence between elec-
tronic excited states of chromophores than the conventional
Redfield equation does. Our approach shows that the quan-
tum coherent motion can be observed even when reorganiza-
tion energy is large in comparison to intersite electronic cou-
pling. The reason of the long-lived quantum coherence is as
follows: In a region of small reorganization energy, the slow
fluctuation sustains longer-lived coherent oscillation,
whereas the Markov approximation in the Redfield frame-
work causes the infinitely fast fluctuation and then collapses
the quantum coherence. In the region of large reorganization
energy, on the other hand, the sluggish reorganization dy-
namics allows the excitation to stay above an energy barrier
separating two local minima, which correspond to the two
sites in the adiabatic potential surface, for a prolonged time.

The derivation of the present equation, Eq. (2.23), is
based on a restricted spectral distribution function, i.e., the
Drude-Lorentz spectral density or equivalently the over-
damped Brownian oscillator model, Eq. (2.19). It is possible
to extend the present framework to cases of arbitrary spectral
distribution functions with help from the Meier—Tannor nu-
merical decomposition scheme,52
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(4.1)

This decomposition allows us to express the symmetrized
correlation function S;(#) and the response function y;(#) as
sums of exponential functions, and then we can develop a
theory for the spectral distribution function, Eq. (4.1), in
similar fashion as described below Eq. (2.21). However, the
mathematical expressions of the resultant equations of mo-
tion will be cumbersome and complicated, containing large
quantities of parameters. Recently Jang et al™ developed
another quantum dynamic equation to interpolate between
the Redfield limit and the Forster limit by combining the
small polaron transformation'>*>® and a second-order
quantum master equation formalism. Their equation is appli-
cable to arbitrary spectral distribution functions. It will be
interesting to compare our reduced hierarchy approach with
their small polaron approach. We consider this is a topic for
future work.

In this paper we treated a dimer system in order to make
discussion simple. Generalization of the present theory to
multichromophoric systems is straightforward. Multichro-
mophoric systems may also exhibit other origins of long-
lived quantum coherence and its interplay of protein environ-
ment such as environment-induced coherence transfer
processes.57 The region of applicability of the full Redfield
equation involves such small values of the reorganization
energy that its application to photosynthetic systems seems
highly problematic. In future work we will explore the ap-
plication of the present approach to actual photosynthetic
complexes.
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