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Unified treatment of synchronization patterns in
generalized networks with higher-order, multilayer,
and temporal interactions
Yuanzhao Zhang 1,2✉, Vito Latora 3,4,5,6 & Adilson E. Motter 2,7✉

When describing complex interconnected systems, one often has to go beyond the standard

network description to account for generalized interactions. Here, we establish a unified

framework to simplify the stability analysis of cluster synchronization patterns for a wide

range of generalized networks, including hypergraphs, multilayer networks, and temporal

networks. The framework is based on finding a simultaneous block diagonalization of the

matrices encoding the synchronization pattern and the network topology. As an application,

we use simultaneous block diagonalization to unveil an intriguing type of chimera states that

appear only in the presence of higher-order interactions. The unified framework established

here can be extended to other dynamical processes and can facilitate the discovery of

emergent phenomena in complex systems with generalized interactions.
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O
ver the past two decades, networks have emerged as a
versatile description of interconnected complex
systems1,2, generating crucial insights into myriad social3,

biological4, and physical5 systems. However, it has also become
increasingly clear that the original formulation of a static network
representing a single type of pairwise interaction has its limita-
tions. For instance, neuronal networks change over time due to
plasticity and comprise both chemical and electrical interaction
pathways6. For this reason, the original formulation has been
generalized in different directions, including hypergraphs that
account for nonpairwise interactions involving three or more
nodes simultaneously7,8, multilayer networks that accommodate
multiple types of interactions9,10, and temporal networks whose
connections change over time11. Naturally, with the increased
descriptive power comes increased analytical complexity, espe-
cially for dynamical processes on these generalized networks.

One important class of dynamical processes on networks is
cluster synchronization. Many biological and technological net-
works show intricate cluster synchronization patterns, where one
or more internally coherent but mutually independent clusters
coexist12–19. Maintaining the desired dynamical patterns is cri-
tical to the function of those networked systems20,21. For
instance, long-range synchronization in the theta frequency band
between the prefrontal cortex and the temporal cortex has been
shown to improve working memory in older adults22.

Up until now, synchronization (and other dynamical pro-
cesses) in hypergraphs23–25, multilayer networks26–28, and tem-
poral networks29–31 have been studied mostly on a case-by-case
basis. Recently, it was shown that, in synchronization problems,
simultaneous block diagonalization (SBD) optimally decouples
the variational equation and enables the characterization of
arbitrary synchronization patterns in large networks32. However,
aside from multilayer networks, for which the multiple layers
naturally translate into multiple matrices32,33, the full potential of
SBD for analyzing dynamical patterns in generalized networks is
yet to be realized. As a technique, SBD has also found applica-
tions in numerous fields such as semi-definite programming34,
structural engineering35, signal processing36, and quantum
algorithms37.

In this Article, we develop a versatile SBD-based framework
that allows the stability analysis of synchronization patterns in
generalized networks, which include hypergraphs, multilayer
networks, and temporal networks. This framework enables us to
treat all three classes of generalized networks in a unified fashion.
In particular, we show that different generalized interactions can
all be represented by multiple matrices (as opposed to a single
matrix as in the case of standard networks), and we introduce a
practical method for finding the SBD of these matrices to simplify
the stability analysis. As an application of our unified framework,
we use it to discover higher-order chimera states—intriguing
cluster synchronization patterns that only emerge in the presence
of nonpairwise couplings.

Results and discussion
General formulation and the SBD approach. Consider a general
set of equations describing N interacting oscillators:

xi½t þ 1� ¼ Fðxi½t�Þ þ hiðx1½t�; � � � ; xN ½t�; tÞ; ð1Þ

where F describes the intrinsic node dynamics and hi specifies the
influence of other nodes on node i. We present our framework
assuming discrete-time dynamics, although it works equally well
for systems with continuous-time dynamics.

For a static network with a single type of pairwise interaction,

hiðx1; � � � ; xN ; tÞ ¼ σ∑N
j¼1 CijHðxi; xjÞ, where σ is the coupling

strength, the (potentially weighted) coupling matrix C reflects the

network structure, and H is the interaction function. When the
network is globally synchronized, x1=⋯= xN= s, assuming H
only depends on xj, the synchronization stability can be
determined through the Lyapunov exponents associated with
the variational equation

δ½t þ 1� ¼
�
IN � JFðsÞ þ σC� JHðsÞ

�
δ½t�; ð2Þ

where δ ¼ ðx
⊺

1 � s⊺; � � � ; x⊺N � s⊺Þ⊺ is the perturbation vector, IN
is the identity matrix,⊗ represents the Kronecker product, and J
is the Jacobian operator. In the case of undirected networks, Eq.
(2) can always be decoupled into N independent low-dimensional
equations by switching to coordinates that diagonalize the
coupling matrix C38.

For more complex synchronization patterns, however, addi-
tional matrices encoding information about dynamical clusters
are inevitably introduced into the variational equation. In
particular, the identity matrix IN is replaced by diagonal matrices
D(m) defined by

D
ðmÞ
ii ¼

1 if node i 2 Cm;

0 otherwise ;

�
ð3Þ

where Cm represents the mth dynamical cluster (oscillators within
the same dynamical cluster are identically synchronized). More-
over, as we show below, when hi( ⋅ ) includes nonpairwise
interactions, multilayer interactions, or time-varying interactions,
it leads to additional coupling matrices C(k) in the variational
equation. Consequently, the variational equations for complex
synchronization patterns on generalized networks share the
following form:

δ½t þ 1� ¼ ∑
m
DðmÞ � JFðsmÞþ

�

∑
m;k

σkC
ðkÞDðmÞ � JHðm;kÞðsmÞ

�
δ½t�;

ð4Þ

where sm is the synchronized state of the oscillators in the mth
dynamical cluster, and JH(m, k)(sm) is a Jacobian-like matrix
whose expression depends on the class of generalized networks
being considered.

For Eq. (4), diagonalizing any one of the matrices D(m) or C(k)

generally does not lead to optimal decoupling of the equation.
Instead, all of the matrices D(m) and C(k) should be considered
concurrently and be simultaneously block diagonalized to reveal
independent perturbation modes. In particular, the new coordi-
nates should separate the perturbation modes parallel to and
transverse to the cluster synchronization manifold, and decouple
transverse perturbations to the fullest extent possible.

For this purpose, we propose a practical algorithm to find an
orthogonal transformation matrix P that simultaneously block
diagonalizes multiple matrices. Given a set of symmetric matrices

B ¼ fBð1Þ;Bð2Þ; ¼ ;BðLÞg, the algorithm consists of three simple
steps:

i. Find the (orthogonal) eigenvectors vi of the matrix
B ¼ ∑

L

‘¼1 ξ‘B
ð‘Þ, where ξℓ are independent random coeffi-

cients which can be drawn from a Gaussian distribution. Set
Q= [v1,⋯ , vN].

ii. Generate B ¼ ∑
L

‘¼1 ξ‘B
ð‘Þ for a new realization of ξℓ and

compute eB ¼ Q⊺BQ. Mark the indexes i and j as being in
the same block if eBij≠0 (and thus eBji ≠ 0).

iii. Set P= [vϵ(1),⋯ , vϵ(N)], where ϵ is a permutation of
1,⋯ ,N such that indexes in the same block are sorted
consecutively (i.e., the base vectors vi corresponding to the
same block are grouped together).

The proposed algorithm is inspired by and adapted from
Murota et al.39. There, the authors use the eigendecompostion of
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a random linear combination of the given matrices to find a
partial SBD, but the operations needed for refining the blocks can
be cumbersome. Here, we show that the simplified algorithm
above is guaranteed to find the finest SBD when there are no
degeneracies—i.e., no two vi have the same eigenvalue (see
“Methods” for a proof). Intuitively, this is because a random
linear combination of B(ℓ) contains all the information about
their common block structure in the absence of degeneracy,
which can be efficiently extracted through eigendecompostion.
When there is a degeneracy, cases exist for which the proposed
algorithm does not find the finest SBD (see “Methods” for
details). However, these cases are rare in practice and is a small
price to pay for the improved simplicity and efficiency of the
algorithm.

We note that the algorithm can be adapted to asymmetric
matrices, and in all nondegenerate cases it finds the finest SBD
that can be achieved by orthogonal transformations. However,
this does not exclude the possibility that more general similarity
transformations could result in finer blocks for certain asym-
metric matrices. (For symmetric matrices, general similarity
transformations do not have an advantage over orthogonal
transformations).

In Fig. 1, we compare the proposed algorithm with two previous
state-of-the-art algorithms on SBD32,34. The algorithms are tested on
sets of N×N matrices, each consisting of 10 random matrices with
predefined common block structures (see “Methods” for how the
matrices are generated). For each algorithm and each matrix size N,
100 independent matrix sets are tested. Figure 1 shows the mean
CPU time from each set of tests (the standard deviations are smaller
than the size of the symbols). The algorithm presented here finds the
finest SBD in all cases tested and has the most favorable scaling in
terms of computational complexity. For instance, it can process
matrices with N ≈ 1000 in under 10 s (tested on Intel Xeon E5-
2680v3 processors), which is orders of magnitude faster than the
other methods. The Python and MATLAB implementations of the
proposed SBD algorithm are available online as part of this
publication (see “Code availability”).

Cluster synchronization and chimera states in hypergraphs.
Hypergraphs7 and simplicial complexes40 provide a general
description of networks with nonpairwise interactions and have
been widely adopted in the literature41–63. However, the asso-
ciated tensors describing those higher-order structures are more
involved than matrices, especially when combined with the ana-
lysis of dynamical processes64–69. There have been several efforts
to generalize the master stability function (MSF) formalism38 to
these settings, for which different variants of an aggregated
Laplacian have been proposed24,25,70,71. The aggregated Laplacian
captures interactions of all orders in a single matrix, whose

spectral decomposition allows the stability analysis to be divided
into structural and dynamical components, just like the standard
MSF for pairwise interactions. However, such powerful reduction
comes at an inevitable cost: simplifying assumptions must be
made about the network structure (e.g., all-to-all coupling), node
dynamics (e.g., fixed points), and/or interaction functions (e.g.,
linear) in order for the aggregation to a single matrix to be valid.

Here, we consider general oscillators coupled on hypergraphs
without the aforementioned restrictions. For the ease of
presentation and without loss of generality, we focus on networks
with interactions that involve up to three oscillators simulta-
neously:

xi½t þ 1� ¼F xi½t�
� �

þ σ1 ∑
N

j¼1
A
ð1Þ
ij H

ð1Þ xi½t�; xj½t�
� �

þ σ2 ∑
N

j¼1
∑
N

k¼1
A
ð2Þ
ijkH

ð2Þ xi½t�; xj½t�; xk½t�
� �

:

ð5Þ

The adjacency matrix A(1) and adjacency tensor A(2) represent
the pairwise and the three-body interaction, respectively. To
make progress, we use the following key insight from Gambuzza
et al.72: for noninvasive coupling [i.e., H(1)(s, s)= 0 and H(2)

(s, s, s)= 0] and global synchronization, synchronization stability
in hypergraphs is determined by Eq. (4) with C(k)

=− L(k), where
L(k) are generalized Laplacians defined based on the adjacency
tensors A(k). More concretely, L(1) is the usual Laplacian, for

which L
ð1Þ
ij ¼ δij∑kA

ð1Þ
ik � A

ð1Þ
ij ; L(2) retains the zero row-sum

property and is defined as L
ð2Þ
ij ¼ �∑kA

ð2Þ
ijk for i ≠ j and

L
ð2Þ
ii ¼ �∑k≠iL

ð2Þ
ik . Higher-order generalized Laplacians for k > 2

can be defined similarly72.
Crucially, we can show that the generalized Laplacians are

sufficient for the stability analysis of cluster synchronization
patterns provided that the clusters are nonintertwined73,74 (see
Supplementary Note 1 for a mathematical derivation). Thus, in
these cases, the problem reduces to applying the SBD algorithm to
the set formed by matrices {D(m)} (determined by the
synchronization pattern) and {L(k)} (encoding the hypergraph
structure). For the most general case that includes intertwined
clusters, SBD still provides the optimal reduction, as long as the
generalized Laplacians are replaced by matrices that encode more
nuanced information about the relation between different
clusters75. The resulting SBD coordinates significantly simplifies
the calculation of Lyapunov exponents in Eq. (4) and can provide
valuable insight on the origin of instability, as we show below.

As an application to nontrivial synchronization patterns, we
study chimera states76,77 on hypergraphs. Here, chimera states
are defined as spatiotemporal patterns that emerge in systems of
identically coupled identical oscillators in which part of the

Fig. 1 Computational costs of different simultaneous block diagonalization algorithms as functions of matrix size N. The computational costs of all three

algorithms scale as Nα for large N. However, the algorithm proposed here has the smallest exponent α, which translates to order-of-magnitude speedups

already for moderate matrix sizes.
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oscillators are mutually synchronized while the others are
desynchronized. For a comprehensive review on different notions
of chimeras, see the recent survey by Haugland78.

The hypergraph in Fig. 2a consists of two subnetworks
of optoelectronic oscillators. Each subnetwork is a simplicial
complex, in which a node is coupled to its four nearest neighbors
through pairwise interactions of strength σ1 and it also
participates in three-body interactions of strength σ2. The two
subnetworks are all-to-all coupled through weaker links of
strength κσ1, and in our simulations we take κ= 1/5. The
individual oscillators are modeled as discrete maps xi½t þ 1� ¼
βsin2ðxi½t� þ π=4Þ, where β is the self-feedback strength that is
tunable in experiments79,80. For the pairwise interaction, we set

Hð1Þðxi; xjÞ ¼ sin2ðxj þ π=4Þ � sin2ðxi þ π=4Þ. For the three-body

interaction, we set Hð2Þðxi; xj; xkÞ ¼ sin2ðxj þ xk � 2xiÞ. The full

dynamical equation of the system can be summarized as follows:

xi½t þ 1� ¼β sin2ðxi½t� þ
π

4
Þ

þ σ1 ∑
N

j¼1
A
ð1Þ
ij sin2ðxj½t� þ

π

4
Þ � sin2ðxi½t� þ

π

4
Þ

� �

þ σ2 ∑
N

j¼1
∑
N

k¼1
A
ð2Þ
ijk sin

2ðxj½t� þ xk½t� � 2xi½t�Þ:

ð6Þ

Since couplings in previous optoelectronic experiments are imple-
mented through a field-programmable gate array that can realize
three-body interactions, we expect that our predictions below can be
explored and verified experimentally on the same platform.

To characterize chimera states for which one subnetwork is
synchronized and one subnetwork is incoherent, we are
confronted with 10 noncommuting matrices in Eq. (4). Eight of
them are {D(1),⋯ ,D(8)}, corresponding to one dynamical cluster

with 7 synchronized nodes and seven dynamical clusters with 1
node each (distinguished by colors in Fig. 2a). The other two
matrices are {L(1), L(2)}, which describe the pairwise and three-
body interactions, respectively. Applying the SBD algorithm to
these matrices reveals the common block structure depicted in
Fig. 2b. The gray block corresponds to perturbations parallel to
the cluster synchronization manifold and does not affect the
chimera stability. The other blocks control the transverse
perturbations (all localized within the synchronized subnetwork
C1) and are included in the stability analysis. This allows us to
focus on one 1 × 1 block at a time and to efficiently calculate the
maximum transverse Lyapunov exponent (MTLE) Λ of the
chimera state using previously established procedure81,82.

For the system in Fig. 2, SBD coordinates offer not only
dimension reduction but also analytical insights. As we show in
Supplementary Note 2, because the transverse blocks (colored
pink in Fig. 2b) found by the SBD algorithm are all 1 × 1, the
Lyapunov exponents associated with chimera stability are given
by a simple formula,

Λi ¼ ln 1�
σ1
β

λð1Þi þ
κN

2

� 	








þ Γ; ð7Þ

where λð1Þi is the scalar inside the ith transverse block of L(1) after
the SBD transformation. Here,

Γ ¼ lim
T !1

1

T
∑
T

t¼1
ln JFðs½t�Þ


 



¼ lim
T !1

β

T
∑
T

t¼1
ln sinð2s½t� þ

π

2
Þ










ð8Þ

is a finite constant determined by the synchronous trajectory s[t]
of the coherent subnetwork C1, which in turn is influenced by
both σ1 and σ2.

Fig. 2 Chimera states arising from nonpairwise interactions. a Two identical subnetworks (C1 and C2) of optoelectronic oscillators with strong intracluster

connections (black lines) and weak intercluster connections (gray lines). The three-body interactions are indicated by 2-simplices (beige triangles). The

eight dynamical clusters that form the chimera state are indicated by different node colors. b Common block structure of the matrices in the variational

equation (4) revealed by the SBD algorithm, in which nonzero entries are represented by solid circles. The gray block corresponds to perturbations parallel

to the synchronization manifold, and the pink blocks represent perturbations transverse to the synchronization manifold. Thus, only the pink blocks need to

be considered in the stability analysis. For the network in a, the transverse perturbations are all localized within the subnetwork C1. c Linear stability analysis

of chimera states based on the SBD coordinates for a range of the pairwise interaction strength σ1 and three-body interaction strength σ2. Chimeras are

stable when the maximum transverse Lyapunov exponent Λ is negative, and they occur only in the presence of nonvanishing three-body interactions. d

Chimera dynamics for σ1= 0.6 and σ2= 0.4 (green dot in c). Here, xi is the dynamical state of the ith oscillator, and the vertical axis indexes the oscillators

in the respective subnetworks.
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Using Eqs. (7) and (8), we can calculate the MTLE in the σ1–σ2
parameter space to map out the stable chimera region. As can be
seen from Fig. 2c, where we fix β= 1.5, chimera states are
unstable when oscillators are coupled only through pairwise
interactions (i.e., when σ2= 0), but they become stable in the
presence of three-body interactions of intermediate strength.
Figure 2d shows the typical chimera dynamics for β= 1.5,
σ1= 0.6, and σ2= 0.4. According to Eqs. (7) and (8), the higher-
order interaction stabilizes chimera states solely by changing the
dynamics in the incoherent subnetwork C2, which in turn
influences the synchronous trajectory in C1 and thus the value of
Γ. This insight highlights the critical role played by the incoherent
subnetwork in determining chimera stability82.

To test the complexity reduction capability of the SBD
algorithm systematically, we consider networks consisting of M
dynamical clusters, each with n nodes (Fig. 3a), such that:

1. each cluster is a random subnetwork with link density p, to
which three-body interactions are added by transforming
triangles into 2-simplices;

2. two clusters are either all-to-all connected (with probability
q > 0) or fully disconnected from each other (with
probability 1− q).

For the analysis of the M-cluster synchronization state in these
networks, the reduction in computational complexity yielded by the

SBD algorithm can be measured using rðαÞ ¼ ∑in
α
i =N

α, where ni is
the size of the ith common block for the transformed matrices. If the
computational complexity of analyzing Eq. (4) in its original form
scales asOðNαÞ, then r(α) gives the fraction of time needed to analyze
Eq. (4) in its decoupled form under the SBD coordinates. Given that
the computational complexity of finding the Lyapunov exponents for
a fixed point in an n-dimensional space typically lies between Oðn2Þ
and Oðn3Þ, here we set α= 3 as a reference for the more challenging
task of calculating the Lyapunov exponents for periodic or chaotic
trajectories.

In Fig. 3b, we apply the SBD algorithm to {D(1),⋯ ,D(M),
L(1), L(2)} and plot r(3) against the number of clusters M in the
networks. We see a reduction in complexity of at least two orders
of magnitude (r(3) ≤ 10−2) for M ≥ 10. This reduction does not
depend sensitively on other parameters in our model (n, p, and q).

Synchronization patterns in multilayer and temporal networks.
The coexistence of different types (i.e., layers) of interactions in a

network9,10,83 can dramatically influence underlying dynamical
processes, such as percolation84,85, diffusion86,87, and
synchronization28,88,89. Multilayer networks of N oscillators dif-
fusively coupled through K different types of interactions can be
described by

xi½t þ 1� ¼ Fðxi½t�Þ � ∑
K

k¼1
σk ∑

N

j¼1
L
ðkÞ
ij H

ðkÞðxj½t�Þ; ð9Þ

where L(k) is the Laplacian matrix representing the links med-
iating interactions of the form H(k) and coupling strength σk. It is
easy to see that the corresponding variational equation for a given
synchronization pattern32,90 is a special case of Eq. (4) and can be
readily addressed using the SBD framework.

Temporal networks11 are another class of systems that can
naturally be addressed using our SBD framework. Such networks are
ubiquitous in nature and society91,92, and their time-varying nature
has been shown to significantly alter many dynamical characteristics,
including controllability91,93 and synchronizability94–97.

Consider a temporal network whose connection pattern at time
t is described by L(t),

xi½t þ 1� ¼ Fðxi½t�Þ � σ ∑
N

j¼1
L
ðtÞ
ij Hðxj½t�Þ: ð10Þ

Here, the stability analysis of synchronization patterns can by
simplified by simultaneously block diagonalizing {D(m)} and
{L(t)}. This framework generalizes existing master stability
methods for synchronization in temporal networks98, which
assumes that synchronization is global and the set of all L(t) to be
commutative. We also do not require separation of time scales
between the evolution of the network structure and the internal
dynamics of oscillators, which was assumed in various previous
studies in exchange of analytical insights30,31. It is worth noting
that {L(t)} can in principle contain infinitely many different
matrices. This would pose a challenge to the SBD algorithm
unless there are relations among the matrices to be exploited.
Here, for simplicity, we assume that L(t) are selected from a finite
set of matrices. This class of temporal networks is also referred to
as switched systems in the engineering literature and has been
widely studied29.

As an application, we characterize chimera states on a temporal
network that alternates between two different configurations.
Figure 4a illustrates the temporal evolution of the network, which
has intracluster coupling of strength σ and intercluster coupling
of strength κσ (again for κ= 1/5, the same optoelectronic
oscillator and pairwise interaction function as in Fig. 2). This
system has a variational equation with noncommuting matrices
{D(1),⋯ ,D(6), L(1), L(2)}, where L(1) and L(2) correspond to the
network configuration at odd and even t, respectively. Applying
the SBD algorithm reveals one 6 × 6 parallel block and two 2 × 2
transverse blocks (Fig. 4b), effectively reducing the dimension of
the stability analysis problem from 10 to 2.

Despite the transverse blocks not being 1 × 1, by looking at the
transformation matrix P one can still gather insights about the
nature of the instability. For example, the first pink block consists
of transverse perturbations (localized in the synchronized
subnetwork) of the form ða; 0;�a; b;�bÞ, while perturbations
in the second pink block are constrained to be
ðc;�2ðcþ dÞ; c; d; dÞ. Depending on which block becomes
unstable first, the synchronized subnetwork (and thus the
chimera state) loses stability through different routes. The
chimera region based on the MTLE calculated under the SBD
coordinates is shown in Fig. 4c and the typical chimera dynamics
for σ= 0.9 and β= 1.1 are presented in Fig. 4d.

To further demonstrate the utility of the SBD framework, we
systematically consider temporal networks that alternate between

Fig. 3 Complexity reduction in the analysis of synchronization patterns in

hypergraphs. a Example of a hypergraph consisting of M= 5 clusters, each

with n= 7 nodes. Inside each cluster there are pairwise interactions (black

lines) and three-body interactions (beige triangles). Two clusters are either

all-to-all connected (gray lines) or fully disconnected. b Reduction in

computational complexity achieved by the SBD algorithm for cluster size

n= 7, intracluster link density p= 0.5, and intercluster link density q= 0.5

as the cluster number M is varied. The box covers the range 25th–75th

percentile, the whiskers mark the range 5th–95th percentile, and the dots

indicate the remaining 10% outliers. Each boxplot is based on 1000

independent network realizations.
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two different configurations. The network construction is similar
to that in Fig. 3, except that here each cluster has time-varying
instead of nonpairwise interactions. In the example shown in
Fig. 5a, each cluster has red links active at odd t and blue links
active at even t, while the black links are always active. Figure 5b
confirms that the SBD algorithm consistently leads to substantial
reduction in computational complexity. Moreover, as in the case
of hypergraphs (Fig. 3), the complexity reduction increases as the
number of clusters M is increased. Again, the results do not
depend sensitively on cluster size and link densities.

Conclusion. In this work, we established SBD as a versatile tool to
analyze complex synchronization patterns in generalized

networks with nonpairwise, multilayer, and time-varying inter-
actions. The method can be easily applied to other dynamical
processes, such as diffusion87, random walks60, and consensus99.
Indeed, the equations describing such processes on generalized
networks often involve two or more noncommuting matrices,
whose SBD naturally leads to an optimal mode decoupling and
the simplification of the analysis.

The usefulness of our framework also extends beyond the
generalized networks discussed here. Many real-world networks
are composed of different types of nodes and can experience
nonidentical delays in the communications among nodes. These
heterogeneities can be represented through additional matrices
and are automatically accounted for by our SBD framework in the
stability analysis100. Finally, we suggest that our results may find
applications beyond network dynamics, since SBD is also a
powerful tool to address other problems involving multiple
matrices in which dimension reduction is desired, such as
independent component analysis and blind source
separation101,102. The flexibility and scalability of our framework
make it adaptable to various practical situations, and we thus
expect it to facilitate the exploration of collective dynamics in a
broad range of complex systems.

Methods
Optimality of the common block structure discovered by the SBD algorithm.

Given a set of symmetric matrices B ¼ fBð1Þ;Bð2Þ; ¼ ;BðLÞg, let B ¼ ∑
L

‘¼1 ξ‘B
ð‘Þ,

where ξℓ are random coefficients. Without loss of generality, we can assume all
matrices B(ℓ) to be in their finest common block form. Our goal is then to prove
that, when there is no degeneracy, each eigenvector vi of B is localized within a
single (square) block, meaning that the indices of the nonzero entries of vi are
limited to the rows of one of the common blocks shared by {B(ℓ)} (Fig. 6).

We first notice that B inherits the common block structure of {B(ℓ)}. Thus, for
each ni × ni block shared by {B(ℓ)}, we can always find ni eigenvectors of B that are
localized within that block. When the eigenvalues of B are nondegenerate, the
eigenvectors are unique, and thus all N=∑ini eigenvectors of matrix B are
localized within individual blocks.

Based on the results above, it follows that after computing the eigenvectors vi of
matrix B (step i of the SBD algorithm) and sorting them according to their
associated block (steps ii and iii of the SBD algorithm), the resulting orthogonal

Fig. 4 Chimera states on a temporal network. a Two identical subnetworks of optoelectronic oscillators with strong intracluster connections (black lines)

and weak intercluster connections (gray lines). The network structure switches back and forth between two different configurations. The six dynamical

clusters that form the chimera state are indicated by different node colors. b Common block structure of the matrices in the variational equation (4) under

the SBD coordinates. The entries of the transformed matrices that are not required to be zero are represented by solid circles. The gray block corresponds

to perturbations that do not affect the chimera stability, and the pink blocks represent transverse perturbations that determine the chimera stability. c

Linear stability analysis of chimera states based on the SBD coordinates for a range of coupling strength σ and self-feedback strength β. Chimeras are stable

when the maximum transverse Lyapunov exponent Λ is negative. d Chimera dynamics for σ= 0.9 and β= 1.1 (green dot in c). Here, xi is the dynamical

state of the ith oscillator, and the vertical axis indexes the oscillators in the respective subnetworks marked in a.

Fig. 5 Complexity reduction in the analysis of synchronization patterns in

temporal networks. a Example of a temporal network consisting of M= 5

clusters, each with n= 7 nodes. In each cluster, an expected 20% of the

links are temporal (connections alternate between the blue and the red

links) and the remaining 80% are static (black links). Two clusters are

either all-to-all connected (gray lines) or fully disconnected. b Reduction in

computational complexity achieved by the SBD algorithm for cluster size

n= 7, intracluster link density p= 0.5, and intercluster link density q= 0.5

as the cluster number M is varied. The box covers the range 25th–75th

percentile, the whiskers mark the range 5th–95th percentile, and the dots

indicate the remaining 10% outliers. Each boxplot is based on 1000

independent network realizations.
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matrix P= [vϵ(1), vϵ(N)] will reveal the finest common block structure. Here, finest is
characterized by the number of common blocks being maximal (which is also
equivalent to the sizes of the blocks being minimal), and the block sizes are unique
up to permutations.

In the presence of degeneracies (i.e., when there are distinct eigenvectors with
the same eigenvalue), no theoretical guarantee can be given that the strategy above
will find the finest SBD39. To see why, consider the matrices
B(ℓ)

= diag(b(ℓ), b(ℓ),…, b(ℓ)) formed by the direct sum of duplicate blocks. In this
case, a generic B has eigenvalues with multiplicity M, where M is the number of
duplicate blocks. For example, if u is an eigenvector corresponding to the first block
of B, then ðξ1u

⊺; ¼ ; ξMu
⊺Þ⊺ is also an eigenvector of B (with the same eigenvalue)

for any set of random coefficients {ξm}. As a result, the eigenvectors of B are no
longer guaranteed to be localized within a single block.

Generating random matrices with predefined block structures. In order to
compare the computational costs of different SBD algorithms, we generate sets of
random matrices with predefined common block structures. For each set, we start
withL ¼ 10 matrices of size N. The ℓth matrix is constructed as the direct sum of

smaller random matrices, Bð‘Þ ¼ diag ðb
ð‘Þ
1 ; ¼ ; bð‘ÞM Þ, where bð‘Þm are symmetric

matrices with entries drawn from the Gaussian distribution N ð0; 1Þ. The size of the

mth block bð‘Þm is chosen randomly between 1 and N/2 and is set to be the same for

all ℓ. We then apply a random orthogonal transformation Q to B ¼ fBð1Þ;Bð2Þ; ¼ ;

BðLÞg, which results in a matrix set eB ¼ feBð1Þ
; eBð2Þ

; ¼ ; eBðLÞ
g with no apparent

block structure in eBð‘Þ
¼ Q⊺Bð‘ÞQ. Finally, the SBD algorithms are applied to eB to

recover the common block structure. All tests are performed on Intel Xeon E5-
2680 v3 Processors, and the CPU time used by each algorithm is recorded using the
timeit function from MATLAB.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and

Supplementary Information. Additional data related to this paper may be requested from

the authors.

Code availability
The Python and MATLAB code implementing the SBD Algorithm is available at https://

github.com/y-z-zhang/SBD.

Received: 16 June 2021; Accepted: 27 July 2021;

References
1. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).
2. Newman, M. E. The structure and function of complex networks. SIAM Rev.

45, 167–256 (2003).
3. Clauset, A., Newman, M. E. & Moore, C. Finding community structure in very

large networks. Phys. Rev. E 70, 066111 (2004).
4. Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during

learning. Proc. Natl. Acad. Sci. USA 108, 7641–7646 (2011).
5. Motter, A. E., Myers, S. A., Anghel, M. & Nishikawa, T. Spontaneous

synchrony in power-grid networks. Nat. Phys. 9, 191–197 (2013).
6. Sporns, O. Networks of the Brain (MIT press, 2010).
7. Berge, C. Graphs and hypergraphs (North-Holland, 1973).
8. Battiston, F. et al. Networks beyond pairwise interactions: Structure and

dynamics. Phys. Rep. 874, 1–92 (2020).

9. Kivelä, M. et al. Multilayer networks. J. Complex Netw. 2, 203–271 (2014).
10. Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys.

Rep. 544, 1–122 (2014).
11. Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).
12. Stewart, I., Golubitsky, M. & Pivato, M. Symmetry groupoids and patterns of

synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2, 609–646 (2003).
13. Belykh, V. N., Osipov, G. V., Petrov, V. S., Suykens, J. A. & Vandewalle, J.

Cluster synchronization in oscillatory networks. Chaos 18, 037106 (2008).
14. Dahms, T., Lehnert, J. & Schöll, E. Cluster and group synchronization in

delay-coupled networks. Phys. Rev. E 86, 016202 (2012).
15. Nicosia, V., Valencia, M., Chavez, M., Díaz-Guilera, A. & Latora, V. Remote

synchronization reveals network symmetries and functional modules. Phys.
Rev. Lett. 110, 174102 (2013).

16. Williams, C. R. et al. Experimental observations of group synchrony in a system of
chaotic optoelectronic oscillators. Phys. Rev. Lett. 110, 064104 (2013).

17. Rosin, D. P., Rontani, D., Gauthier, D. J. & Schöll, E. Control of
synchronization patterns in neural-like boolean networks. Phys. Rev. Lett. 110,
104102 (2013).

18. Fu, C., Deng, Z., Huang, L. & Wang, X. Topological control of synchronous
patterns in systems of networked chaotic oscillators. Phys. Rev. E 87, 032909
(2013).

19. Brady, F. M., Zhang, Y. & Motter, A. E. Forget partitions: cluster
synchronization in directed networks generate hierarchies. arXiv:2106.13220.
Preprint at https://arxiv.org/abs/2106.13220 (2021).

20. Schnitzler, A. & Gross, J. Normal and pathological oscillatory communication
in the brain. Nat. Rev. Neurosci. 6, 285–296 (2005).

21. Blaabjerg, F., Teodorescu, R., Liserre, M. & Timbus, A. V. Overview of control
and grid synchronization for distributed power generation systems. IEEE
Trans. Ind. Electron. 53, 1398–1409 (2006).

22. Reinhart, R. M. & Nguyen, J. A. Working memory revived in older adults by
synchronizing rhythmic brain circuits. Nat. Neurosci. 22, 820–827 (2019).

23. Krawiecki, A. Chaotic synchronization on complex hypergraphs. Chaos
Solitons Fractals 65, 44–50 (2014).

24. Carletti, T., Fanelli, D. & Nicoletti, S. Dynamical systems on hypergraphs. J.
Phys. Complex. 1, 035006 (2020).

25. Mulas, R., Kuehn, C. & Jost, J. Coupled dynamics on hypergraphs: Master
stability of steady states and synchronization. Phys. Rev. E 101, 062313 (2020).

26. Gambuzza, L. V., Frasca, M. & Gomez-Gardeñes, J. Intra-layer
synchronization in multiplex networks. Europhys. Lett. 110, 20010 (2015).

27. Saa, A. Symmetries and synchronization in multilayer random networks. Phys.
Rev. E 97, 042304 (2018).

28. Belykh, I., Carter, D. & Jeter, R. Synchronization in multilayer networks: when
good links go bad. SIAM J. Appl. Dyn. Syst. 18, 2267–2302 (2019).

29. Liberzon, D. & Morse, A. S. Basic problems in stability and design of switched
systems. IEEE Control Syst. Mag. 19, 59–70 (1999).

30. Belykh, I. V., Belykh, V. N. & Hasler, M. Blinking model and synchronization
in small-world networks with a time-varying coupling. Physica D 195,
188–206 (2004).

31. Stilwell, D. J., Bollt, E. M. & Roberson, D. G. Sufficient conditions for fast
switching synchronization in time-varying network topologies. SIAM J. Appl.
Dyn. Syst. 5, 140–156 (2006).

32. Zhang, Y. & Motter, A. E. Symmetry-independent stability analysis of
synchronization patterns. SIAM Rev. 62, 817–836 (2020).

33. Irving, D. & Sorrentino, F. Synchronization of dynamical hypernetworks:
Dimensionality reduction through simultaneous block-diagonalization of
matrices. Phys. Rev. E 86, 056102 (2012).

34. Maehara, T. & Murota, K. Algorithm for error-controlled simultaneous block-
diagonalization of matrices. SIAM J. Matrix Anal. Appl. 32, 605–620 (2011).

35. Murota, K. & Ikeda, K. Computational use of group theory in bifurcation
analysis of symmetric structures. SIAM J. Sci. Comput. 12, 273–297 (1991).

36. Cardoso, J.-F. Multidimensional independent component analysis. In
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP’98, vol. 4, 1941–1944 (IEEE, 1998).

37. Špalek, R. The multiplicative quantum adversary. In 23rd Annual IEEE
Conference on Computational Complexity, 237–248 (IEEE, 2008).

38. Pecora, L. M. & Carroll, T. L. Master stability functions for synchronized
coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998).

39. Murota, K., Kanno, Y., Kojima, M. & Kojima, S. A numerical algorithm for
block-diagonal decomposition of matrix *-algebras with application to
semidefinite programming. Jpn. J. Ind. Appl. Math 27, 125–160 (2010).

40. Hatcher, A. Algebraic topology (Cambridge University Press, 2002).
41. Petri, G. et al. Homological scaffolds of brain functional networks. J. R. Soc.

Interface 11, 20140873 (2014).
42. Giusti, C., Ghrist, R. & Bassett, D. S. Two’s company, three (or more) is a

simplex. J Comput Neurosci. 41, 1–14 (2016).
43. Benson, A. R., Gleich, D. F. & Leskovec, J. Higher-order organization of

complex networks. Science 353, 163–166 (2016).

Fig. 6 Illustration of a localized eigenvector. The vector vi is localized

within the green block of the matrix. The nonzero entries of the matrix and

the vector are represented as solid circles.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00695-0 ARTICLE

COMMUNICATIONS PHYSICS |           (2021) 4:195 | https://doi.org/10.1038/s42005-021-00695-0 | www.nature.com/commsphys 7

https://github.com/y-z-zhang/SBD
https://github.com/y-z-zhang/SBD
https://arxiv.org/abs/2106.13220
www.nature.com/commsphys
www.nature.com/commsphys


44. Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions shape
ecosystem diversity. Nat. Commun. 7, 12285 (2016).

45. Mayfield, M. M. & Stouffer, D. B. Higher-order interactions capture unexplained
complexity in diverse communities. Nat. Ecol. Evol. 1, 0062 (2017).

46. Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise
mechanisms of species coexistence in complex communities. Nature 546,
56–64 (2017).

47. Patania, A., Petri, G. & Vaccarino, F. The shape of collaborations. EPJ Data
Sci. 6, 18 (2017).

48. Reimann, M. W. et al. Cliques of neurons bound into cavities provide a missing
link between structure and function. Front. Comput. Neurosci. 11, 48 (2017).

49. Sizemore, A. E. et al. Cliques and cavities in the human connectome. J.
Comput. Neurosci. 44, 115–145 (2018).

50. Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J.
Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. USA
115, E11221–E11230 (2018).

51. Petri, G. & Barrat, A. Simplicial activity driven model. Phys. Rev. Lett. 121,
228301 (2018).

52. Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science
360, eaao1729 (2018).

53. Tekin, E. et al. Prevalence and patterns of higher-order drug interactions in
Escherichia coli. NPJ Syst Biol App 4, 31 (2018).

54. Estrada, E. & Ross, G. J. Centralities in simplicial complexes. Applications to
protein interaction networks. J. Theor. Biol. 438, 46–60 (2018).

55. Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social
contagion. Nat. Commun. 10, 2485 (2019).

56. León, I. & Pazó, D. Phase reduction beyond the first order: the case of the mean-
field complex Ginzburg-Landau equation. Phys. Rev. E 100, 012211 (2019).

57. Matheny, M. H. et al. Exotic states in a simple network of
nanoelectromechanical oscillators. Science 363, eaav7932 (2019).

58. Matamalas, J. T., Gómez, S. & Arenas, A. Abrupt phase transition of epidemic
spreading in simplicial complexes. Phys. Rev. Res. 2, 012049 (2020).

59. de Arruda, G. F., Petri, G. & Moreno, Y. Social contagion models on
hypergraphs. Phys. Rev. Res. 2, 023032 (2020).

60. Schaub, M. T., Benson, A. R., Horn, P., Lippner, G. & Jadbabaie, A. Random
walks on simplicial complexes and the normalized Hodge 1-Laplacian. SIAM
Rev. 62, 353–391 (2020).

61. Carletti, T., Battiston, F., Cencetti, G. & Fanelli, D. Random walks on
hypergraphs. Phys. Rev. E 101, 022308 (2020).

62. Landry, N. W. & Restrepo, J. G. The effect of heterogeneity on hypergraph
contagion models. Chaos 30, 103117 (2020).

63. St-Onge, G., Thibeault, V., Allard, A., Dubé, L. J. & Hébert-Dufresne, L.
Master equation analysis of mesoscopic localization in contagion dynamics on
higher-order networks. Phys. Rev. E 103, 032301 (2021).

64. Tanaka, T. & Aoyagi, T. Multistable attractors in a network of phase
oscillators with three-body interactions. Phys. Rev. Lett. 106, 224101
(2011).

65. Bick, C., Ashwin, P. & Rodrigues, A. Chaos in generically coupled phase
oscillator networks with nonpairwise interactions. Chaos 26, 094814 (2016).

66. Skardal, P. S. & Arenas, A. Abrupt desynchronization and extensive
multistability in globally coupled oscillator simplexes. Phys. Rev. Lett. 122,
248301 (2019).

67. Skardal, P. S. & Arenas, A. Higher order interactions in complex networks of
phase oscillators promote abrupt synchronization switching. Commun. Phys.
3, 218 (2020).

68. Xu, C., Wang, X. & Skardal, P. S. Bifurcation analysis and structural stability
of simplicial oscillator populations. Phys. Rev. Res. 2, 023281 (2020).

69. Millán, A. P., Torres, J. J. & Bianconi, G. Explosive higher-order Kuramoto
dynamics on simplicial complexes. Phys. Rev. Lett. 124, 218301 (2020).

70. Lucas, M., Cencetti, G. & Battiston, F. Multiorder Laplacian for
synchronization in higher-order networks. Phys. Rev. Res. 2, 033410
(2020).

71. de Arruda, G. F., Tizzani, M. & Moreno, Y. Phase transitions and stability of
dynamical processes on hypergraphs. Commun. Phys. 4, 24 (2021).

72. Gambuzza, L. et al. Stability of synchronization in simplicial complexes. Nat.
Commun. 12, 1255 (2021).

73. Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E. & Roy, R.
Cluster synchronization and isolated desynchronization in complex networks
with symmetries. Nat. Commun. 5, 4079 (2014).

74. Cho, Y. S., Nishikawa, T. & Motter, A. E. Stable chimeras and independently
synchronizable clusters. Phys. Rev. Lett. 119, 084101 (2017).

75. Salova, A. & D’Souza, R. M. Cluster synchronization on hypergraphs.
arXiv:2101.05464. Preprint at https://arxiv.org/abs/2101.05464 (2021).

76. Panaggio, M. J. & Abrams, D. M. Chimera states: coexistence of coherence and
incoherence in networks of coupled oscillators. Nonlinearity 28, R67–R87
(2015).

77. Omel’chenko, O. E. The mathematics behind chimera states. Nonlinearity 31,
R121–R164 (2018).

78. Haugland, S. W. The changing notion of chimera states, a critical review. J.
Phys. Complex. 2, 032001 (2021).

79. Hart, J. D., Schmadel, D. C., Murphy, T. E. & Roy, R. Experiments with arbitrary
networks in time-multiplexed delay systems. Chaos 27, 121103 (2017).

80. Hart, J. D., Zhang, Y., Roy, R. & Motter, A. E. Topological control of
synchronization patterns: trading symmetry for stability. Phys. Rev. Lett. 122,
058301 (2019).

81. Zhang, Y., Nicolaou, Z. G., Hart, J. D., Roy, R. & Motter, A. E. Critical
switching in globally attractive chimeras. Phys. Rev. X 10, 011044 (2020).

82. Zhang, Y. & Motter, A. E. Mechanism for strong chimeras. Phys. Rev. Lett.
126, 094101 (2021).

83. Aleta, A. & Moreno, Y. Multilayer networks in a nutshell. Annu. Rev. Condens.
Matter Phys. 10, 45–62 (2019).

84. Cellai, D., López, E., Zhou, J., Gleeson, J. P. & Bianconi, G. Percolation in
multiplex networks with overlap. Phys. Rev. E 88, 052811 (2013).

85. Osat, S., Faqeeh, A. & Radicchi, F. Optimal percolation on multiplex networks.
Nat. Commun. 8, 1540 (2017).

86. Gomez, S. et al. Diffusion dynamics on multiplex networks. Phys. Rev. Lett.
110, 028701 (2013).

87. De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. The physics of
spreading processes in multilayer networks. Nat. Phys. 12, 901–906
(2016).

88. Jalan, S. & Singh, A. Cluster synchronization in multiplex networks. Europhys.
Lett. 113, 30002 (2016).

89. Nicosia, V., Skardal, P. S., Arenas, A. & Latora, V. Collective phenomena
emerging from the interactions between dynamical processes in multiplex
networks. Phys. Rev. Lett. 118, 138302 (2017).

90. Della Rossa, F. et al. Symmetries and cluster synchronization in multilayer
networks. Nat. Commun. 11, 3179 (2020).

91. Li, A., Cornelius, S. P., Liu, Y.-Y., Wang, L. & Barabási, A.-L. The fundamental
advantages of temporal networks. Science 358, 1042–1046 (2017).

92. Paranjape, A., Benson, A. R. & Leskovec, J. Motifs in temporal networks. In
Proceedings of the Tenth ACM International Conference on Web Search and
Data Mining, 601–610 (2017).

93. Pósfai, M. & Hövel, P. Structural controllability of temporal networks. New J.
Phys. 16, 123055 (2014).

94. Amritkar, R. & Hu, C.-K. Synchronized state of coupled dynamics on time-
varying networks. Chaos 16, 015117 (2006).

95. Lu, W., Atay, F. M. & Jost, J. Synchronization of discrete-time dynamical networks
with time-varying couplings. SIAM J. Math. Anal. 39, 1231–1259 (2008).

96. Jeter, R. & Belykh, I. Synchronization in on-off stochastic networks: windows
of opportunity. IEEE Trans. Circuits Syst. I, Reg. Papers 62, 1260–1269
(2015).

97. Zhang, Y. & Strogatz, S. H. Designing temporal networks that synchronize
under resource constraints. Nat. Commun. 12, 3273 (2021).

98. Boccaletti, S. et al. Synchronization in dynamical networks: Evolution along
commutative graphs. Phys. Rev. E 74, 016102 (2006).

99. Neuhäuser, L., Mellor, A. & Lambiotte, R. Multibody interactions and
nonlinear consensus dynamics on networked systems. Phys. Rev. E 101,
032310 (2020).

100. Zhang, Y. & Motter, A. E. Identical synchronization of nonidentical
oscillators: When only birds of different feathers flock together. Nonlinearity
31, R1–R23 (2018).

101. Choi, S., Cichocki, A., Park, H.-M. & Lee, S.-Y. Blind source separation and
independent component analysis: a review. Neural Inf Process Lett Rev 6, 1–57
(2005).

102. Comon, P. & Jutten, C. Handbook of Blind Source Separation: Independent
Component Analysis and Applications (Academic Press, 2010).

Acknowledgements
The authors thank Fiona Brady, Takanori Maehara, Anastasiya Salova, and Raissa

D’Souza for insightful discussions. This work was supported by the U.S. Army Research

Office (Grant No. W911NF-19-1-0383). Y.Z. was further supported by a Schmidt Science

Fellowship. V.L. acknowledges support from the Leverhulme Trust Research Fellowship

“CREATE: The Network Components of Creativity and Success” and the Engineering

and Physical Sciences Research Council (Grant No. EP/N013492/1).

Author contributions
Y.Z., V.L. and A.E.M. designed the research. Y.Z. performed the research. Y.Z., V.L. and

A.E.M. wrote the manuscript.

Competing interests
The authors declare no competing interests.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00695-0

8 COMMUNICATIONS PHYSICS |           (2021) 4:195 | https://doi.org/10.1038/s42005-021-00695-0 | www.nature.com/commsphys

https://arxiv.org/abs/2101.05464
www.nature.com/commsphys


Additional information
Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s42005-021-00695-0.

Correspondence and requests for materials should be addressed to Y.Z. or A.E.M.

Peer review information Communications Physics thanks the anonymous reviewers for

their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00695-0 ARTICLE

COMMUNICATIONS PHYSICS |           (2021) 4:195 | https://doi.org/10.1038/s42005-021-00695-0 | www.nature.com/commsphys 9

https://doi.org/10.1038/s42005-021-00695-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys
www.nature.com/commsphys

	Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions
	Results and discussion
	General formulation and the SBD approach
	Cluster synchronization and chimera states in hypergraphs
	Synchronization patterns in multilayer and temporal networks
	Conclusion

	Methods
	Optimality of the common block structure discovered by the SBD algorithm
	Generating random matrices with predefined block structures

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


