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Abstract A review of existing basic turbulence modeling approaches reveals the need for the development
of unified turbulence models which can be used continuously as filter density function (FDF) or probability
density function (PDF) methods, large eddy simulation (LES) or Reynolds-averaged Navier–Stokes (RANS)
methods. It is then shown that such unified stochastic and deterministic turbulence models can be constructed
by explaining the dependence of the characteristic time scale of velocity fluctuations on the scale considered.
The unified stochastic model obtained generalizes usually applied FDF and PDF models. The unified deter-
ministic turbulence model that is implied by the stochastic model recovers and extends well-known linear and
nonlinear LES and RANS models for the subgrid-scale and Reynolds stress tensor.

Keywords Filter density function · Probability density function · Large eddy simulation · Reynolds-averaged
Navier–Stokes equations · Unified turbulence models

PACS 47.11.−j, 47.27.E−, 47.27.eb

1 Introduction

The numerical integration of the basic equations of fluid and thermodynamics represents a unique tool for study-
ing fundamental mechanisms of turbulent flows, but the computational costs related to such direct numerical
simulation (DNS) do not allow applications to most engineering and environmental flows [1–5]. In order to
overcome this problem one has to reduce the computational requirements by modeling at least a part of the
spectrum of turbulent motions. Such turbulence modeling can be performed in two basic ways. The first way
applies modeling assumptions to processes at all scales, which results in deterministic Reynolds-averaged Na-
vier–Stokes (RANS) [4, 6–8] or stochastic probability density function (PDF) methods [4, 9–13]. The second
way applies modeling assumptions to small-scale processes, which results in deterministic large eddy simula-
tion (LES) [4, 14–18] or stochastic filter density function (FDF) methods [12, 19–27]. It is worth noting that
PDF and FDF methods overcome closure problems of RANS and LES equations by explaining the dynamics
of fluctuations (so that reacting flows can be treated without the need to close filtered reaction rates). There
are also several intermediate strategies, e.g., very large eddy simulation (VLES), unsteady RANS (URANS)
and detached eddy simulation (DES) methods [28–30].

The availability of unified turbulence models that could be used continuously to perform LES and RANS,
FDF and PDF simulations appears to be very helpful for a better understanding of the generality of modeling
assumptions, and to make optimal use of the characteristic advantages of models. Nevertheless, existing models
do not represent unified turbulence models [12, 17, 28, 30, 31]. The question of how it is possible to develop
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such unified turbulence models will be addressed here. To provide a basis for the following developments
and to explain the basic techniques applied, the fluid dynamic equations that are implied by molecular motion
will be presented in Sect. 2. The rescaling of these equations allows the construction of stochastic and deter-
ministic turbulence models. This will be shown in Sects. 3 and 4 with regard to PDF/RANS and FDF/LES
equations, respectively. The questions of why it is needed and how it is possible to develop unified models for
compressible turbulent flows is considered in Sect. 5. Conclusions of this analysis are presented in Sect. 6.

2 The fluid dynamics implied by molecular motion

First, let us consider the modeling of fluid dynamics at the molecular scale. In Sects. 3 and 4 the analogy
between molecular and turbulent motion [32, 33] will then be used for the construction of equations for tur-
bulent motion. The following discussion also includes an explanation of the methodologies used to derive the
deterministic equations and the related algebraic closure models from the underlying stochastic equations.

2.1 The fluid dynamic variables

Fluid dynamic variables can be defined on the basis of conditional ensemble means. We define the mean of
any function Q of molecular properties (for example, velocities) conditioned on the position x = (x1, x2, x3)
in physical space by

Q̄(x, t) = 1

ρ(x, t)
〈ρm(x, t) Q〉. (2.1)

The symbol 〈· · · 〉 denotes an ensemble mean. By setting Q = 1 in (2.1) one observes that the mean mass den-
sity ρ(x, t) represents the ensemble mean of ρm, this means ρ(x, t) = <ρm(x, t)>. The instantaneous molecular
mass density ρm is defined by

ρm(x, t) = M δ
(
x∗(t) − x

)
. (2.2)

Here, δ refers to the delta function and x*(t) = (x∗
1 , x∗

2 , x∗
3 ) is the position of a molecule at time t. The spatial

integration of (2.2) reveals that M represents the total mass of molecules within the domain considered.
By invoking the ergodic theorem [34], the ensemble averaging considered may be seen as a filtering in

space where the filter width is much smaller than the domain considered but so large that a very large number
of molecules is involved in the calculation of means at x. Such ensemble-averaged variables describe, there-
fore, the properties of a continuum: they represent fluid dynamic variables, such as for instance the fluid mass
density or velocity.

The density-weighted mean (2.1) may also be represented as the mean of a PDF. This relation reads

Q̄(x, t) =
∫

dw Q(w, x,t) F(w, x, t), (2.3)

where the conditional PDF of the molecular velocities is given by

F(w, x, t) = 1

ρ(x, t)

〈
ρm(x, t) δ

(
V ∗(x∗(t), t

) − w
) 〉

. (2.4)

Here, V ∗(x∗(t), t) = (V ∗
1 , V ∗

2 , V ∗
3 ) is the velocity of a molecule. To show the consistency of Q̄ definitions one

has to apply (2.4) in (2.3). The use of the shifting property of delta functions and integration over the velocity
sample space then recovers the Q̄ definition (2.1).

According to (2.3), fluid dynamic variables in addition to the mass density ρ(x, t) = 〈ρm(x, t)〉 may be
obtained from F by multiplying it by the corresponding variables and integrating over the sample space. The
mean velocity Ui (i = 1, 3) of molecules

Ui (x, t) =
∫

dw F(w, x, t) wi (2.5)
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describes the fluid velocity at time t in an infinitesimal vicinity of x. The variance of F is characterized by the
molecular stress tensor Mi j , which is given by

Mi j =
∫

dw F(w, x, t)(wi − Ui )
(
w j − U j

)
. (2.6)

Regarding the following developments it is helpful to write Mi j in terms of isotropic and deviatoric contribu-
tions,

Mi j = 2e

[
1

3
δi j + mi j

]
. (2.7)

Here, e = Mkk/2 represents the specific kinetic energy e of molecular velocity fluctuations (the sum conven-
tion is applied throughout this paper) and mi j = (Mi j − Mkkδi j/3)/(2e) is the standardized deviatoric molecular
stress tensor. Further moments of F are given correspondingly. For example,

Ti jk =
∫

dw F(w, x, t)(wi − Ui )
(
w j − U j

)
(wk − Uk) (2.8)

is the molecular triple correlation tensor that appears in the molecular stress transport equation (see Sect. 2.3).

2.2 Stochastic equations

To calculate the PDF F, one needs a model for the molecular positions x∗(t) and velocities V∗(t). Such micro-
scale modeling of thermal fluctuations is usually addressed on the basis of the Boltzmann equation. However,
the derivation of fluid dynamic equations in this way is problematic [35–37]. The first problem arises from the
fact that the construction of the Boltzmann equation is related to the consideration of rarefied gases, whereas
one is interested in dense fluids (gases and liquids) in fluid mechanics in general. The second problem is
related to the fact that the derivation of extensions to the Navier–Stokes model poses a nontrivial problem. By
adopting this approach one may find various equations, and the physical relevance of such extensions to the
Navier–Stokes model is not clarified [37–40].

A way to overcome these problems is to construct stochastic equations for molecular motion. By adopting
a systematic projection method [12, 41–42] one may extract an equation for the motion of one molecule from
known equations for the coupled motion of all molecules. This approach explains molecular dynamics by a
interaction of the molecule considered with the collective of all the other molecules: the molecule considered
is accelerated due to random impacts of other molecules and decelerated because other molecules damp its
motion. By neglecting possible contributions due to external forces, one obtains in this way for the molecular
positions x∗

i and velocities V ∗
i (i = 1, 3) the equations [42]

dx∗
i

dt
= V ∗

i , (2.9a)

dV ∗
i

dt
= − 1

τm

(
V ∗

i − Ui
) +

√
4e

3τm

dWi

dt
. (2.9b)

The right-hand side of (2.9b) explains the mechanism of molecular velocity fluctuations as a competition
between the generation of fluctuations and their relaxation. The generation of fluctuations is described by the
noise term (the last term), which is determined by the properties of dWi/dt . The latter is a Gaussian process
with vanishing means, 〈dWi/dt〉 = 0, and uncorrelated values at different times, 〈dWi/dt (t) · dW j/dt ′(t ′)〉 =
δi jδ(t − t ′). The symbol δi j is the Kronecker delta. The specific kinetic energy e = Mkk/2 of molecular
velocity fluctuations controls the intensity of fluctuations. The relaxation of fluctuations is described by the
first term on the right-hand side of (2.9b): V ∗

i relaxes towards the fluid velocity Ui where τm characterizes the
relaxation time scale of velocity fluctuations. The noise strength 4e/(3τm) and molecular relaxation frequency
τ−1

m are given in (2.9b) by isotropic quantities. The latter assumption corresponds to the idea that there are
isotropic random impacts of other molecules and a corresponding isotropic relaxation of molecular velocity
fluctuations only in interaction with their mean velocity Ui .
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2.3 Deterministic equations

All molecular statistics can be obtained by solving (2.9a,b) directly. However, such a Monte Carlo simulation
turns out to be much too expensive to calculate most flows. A way to reduce the computational costs is to simply
(2.9a,b) to deterministic equations. To do this we rewrite the model (2.9a,b) as a Fokker–Planck equation for
the molecular velocity PDF F(w, x, t). This PDF equation reads [12, 42]

∂ρF

∂t
+ ∂ρwk F

∂xk
= 1

τm

∂

∂wi

[
wi − Ui + 2

3
e

∂

∂wi

]
ρF. (2.10)

By multiplying (2.10) by 1, wi and wi , w j , respectively, and integrating the resulting equations over the veloc-
ity sample space, one may derive the following compressible flow transport equations for the fluid mass density
ρ(x, t), the velocity Ui and the molecular stress tensor Mi j :

Dρ

Dt
= −ρ

∂Uk

∂xk
, (2.11a)

DUi

Dt
+ 1

ρ

∂ρMik

∂xk
= 0, (2.11b)

DMi j

Dt
+ 1

ρ

∂ρTki j

∂xk
+ Mik

∂U j

∂xk
+ M jk

∂Ui

∂xk
= − 2

τm

(
Mi j − 2

3
eδi j

)
. (2.11c)

Here, D/Dt =∂/∂t +Uk ∂/∂xk denotes the Lagrangian time derivative along the fluid velocity field, and Ti jk is
the triple correlation tensor defined by (2.8).

Equation (2.11c) can be used to calculate an algebraic expression for the molecular stress tensor Mi j =
2e(δi j/3 + mi j ), which can be used for the closure of Eq. (2.11b). To do this it is helpful to rewrite (2.11c) as
an equation for the standardized deviatoric molecular stress tensor mi j and an equation for e. These equations
read

De

Dt
+ 1

2ρ

∂ρTknn

∂xk
+ 2e

(
mnk + 1

3
δnk

)
∂Un

∂xk
= 0, (2.12a)

Dmi j

Dt
+ 1

2ρe

∂ρ(Tki j − Tknnδi j/3)

∂xk
+ mi j

e

De

Dt
+ mik

∂U j

∂xk
+ m jk

∂Ui

∂xk
− 2

3
mnk

∂Un

∂xk
δi j = − 2

τm
mi j − 2

3
Sd

i j .

(2.12b)

Sd
i j = Si j − Snnδi j/3 is the deviatoric part of the rate-of-strain tensor Si j = (∂Ui/∂x j +∂U j/∂xi )/2. Equation

(2.12b) can be used for the calculation of mi j in the following way [42]. In the first order of approximation,
we neglect all transport terms (the first three terms on the left-hand side) and production terms (the last three
terms on the left-hand side) of Eq. (2.12b). Correspondingly, one finds m(1)

i j = −τm Sd
i j/3 in this first-order

approximation. This implies the Navier–Stokes model

M (1)
i j = 2

3
eδi j − 2ν Sd

i j . (2.13)

Here, the kinematic viscosity ν = eτm/3 is introduced such that the molecular time scale is given by

τm = 3ν/e. (2.14)

The second order of approximation for Mij is given by neglecting [in consistency with the assumption of
isotropic coefficients 4e/(3τm) and τ−1

m in (2.9b)] the deviatoric triple correlation contribution and adopting
the first-order approximation for Mi j in all the other expressions of the left-hand side of (2.12b). According to
(2.12a) we apply De/Dt =−2Snne/3 (note that mnk∂Un/∂xk represents a term of higher order). Correspond-
ingly, we find the following second order of approximation for the molecular stress tensor Mi j :

M (2)
i j = 2

3
eδi j − 2ν

(

Sd
i j − 1

2

Dτm Sd
i j

Dt

)

+ 3ν2

e

[
2Sd

ik Sd
k j − 2

3
Sd

nk Sd
kn δi j − Sd

ik�k j − Sd
jk�ki

]
. (2.15)
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Here, �i j = (∂Ui/∂x j − ∂U j/∂xi )/2 is the rate-of-rotation tensor. An analysis of the scaling of M (2)
i j reveals

that terms in addition to M (1)
i j scale with the squared Knudsen number Kn [42], which is very small for flows

with a relatively small Mach number and a relatively high Reynolds number. Under these conditions (which
are given for most of the flows of practical relevance), it is well justified to use the first-order approximation
M (1)

i j . The turbulence models described in Sects. 3, 4 and 5 will be presented for such flows governed by the
compressible Navier–Stokes equations (which are given by combining (2.11a,b) with (2.13) for Mi j ).

2.4 The BGK model

It is of interest to compare the nonlinear molecular stress model (2.15) with consequences of other kinetic
equations. To do this, let us consider a modified Boltzmann equation given by the Bhatnagar, Gross and Krook
(BGK) model [43]

∂ρF

∂t
+ ∂ρwk F

∂xk
= −2ρ

τm

(
F − Feq

)
. (2.16)

The PDF F evolves towards its equilibrium PDF Feq, which is modeled as an isotropic Gaussian PDF,

Feq = 1

(4πe/3)3/2 exp

{
− (wi − Ui )(wi − Ui )

4e/3

}
. (2.17)

The implied transport equations for the fluid mass density ρ(x, t), velocity Ui and stress tensor Mi j are again
given by (2.11a–c). The use of the procedure described above shows that the nonlinear molecular stress model
obtained on the basis of the BGK model is again given by (2.15). It is of interest to note that the same nonlinear
stress model can be derived from the stress transport equation by adopting the Chapman–Enskog expansion
technique, which accounts for small deviations of F from the equilibrium PDF Feq [33]. The latter fact pro-
vides additional support for the validity of the nonlinear stress model (2.15). Compared to the use of invariance
constraints for the construction of nonlinear stress models [44], an important advantage of using stress models
derived from kinetic equations is given by the fact that all the model coefficients are obtained consistently.

Regarding the differences between the stochastic model (2.9a,b) and the BGK model (2.16) it is worth
emphasizing that the rescaling of (2.16) for turbulent flow computations suffers from significant problems.
It is impossible to account correctly for the transport of mean velocities in inhomogeneous turbulent flows,
such that the range of applicability of such a model would be limited to homogeneous flows. The turbulent
kinetic energy equation implied by a BGK model for turbulent flow does not involve dissipation of turbulent
kinetic energy. To overcome this problem one could modify the variance in the equilibrium PDF Feq by a
nondimensional factor such that the stress transport equation implied by the BGK model would correspond
to Eq. (3.6c). However, for the case of homogeneous turbulence, one finds that such a BGK model does not
allow an asymptotic Gaussian solution. The comparison with experimental data then reveals that such a model
behavior disagrees with observations [45]. Due to these reasons, the BGK model does not provide a basis for
the development of models for turbulent motion.

3 Large-scale turbulence modeling

The microscale Eqs. (2.11a,b) combined with a molecular stress tensor model are applicable to simulate mac-
roscale processes, but such an application of DNS is much too expensive to calculate most turbulent flows of
practical relevance. Thus, there is a need to develop equations that do not involve all the details of molecular
motion. Depending on the type of filtering applied, such turbulence modeling can be performed in two basic
ways: one can apply PDF/RANS methods involving ensemble-averaged variables, or one can apply FDF/LES
methods involving spatially filtered variables. Essential features of PDF/RANS methods will be described in
this section. Their advantages and disadvantages will be discussed in comparison with FDF/LES methods in
Sect. 5.1. According to the discussion following relation (2.15), these methods will be presented with regard
to flows that can be described by the compressible Navier–Stokes equations.
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3.1 Ensemble-averaged variables

One approach to develop equations for macroscale processes is to consider (in correspondence to the devel-
opment of molecular equations) the dynamics of ensemble-averaged variables. Such mass-density-weighted
ensemble-averaged variables can be defined by

Q̄(x, t) = 1

〈ρ(x, t)〉 〈ρ(x, t) Q〉, (3.1)

where Q refers to any variable that fluctuates on the fluid dynamic scale. The symbol 〈· · · 〉 denotes an ensemble
mean, and ρ(x, t) represents the instantaneous fluid mass density.

However, a significant problem of using ensemble-averaged variables is the following. According to the
ergodic hypothesis [34], ensemble-averaged fluid dynamic variables may be seen as spatial averages where the
filter width is large compared to the characteristic length scale of turbulent eddies. In other words, all the spec-
trum of turbulent motions has to be modeled by developing equations for the dynamics of ensemble-averaged
fluid dynamic variables.

3.2 Stochastic equations

In correspondence to the presentation of equations for molecular motion, let us first consider stochastic equa-
tions for turbulent motion. This approach allows the derivation of closure models for correlations of turbulent
fluctuations that appear as unknowns in deterministic equations. A particular advantage is given by the fact that
the realizability (the constraint that any transport equations for correlations of turbulent fluctuations should
represent realizable equations for correlations of a stochastic process) of closure models is assured in this
way. Realizability was proven to represent a valuable guiding principle for turbulence modeling [46–49].
Correspondingly, the use of realizable closure models was found to be of remarkable relevance regarding the
application of PDF and RANS methods [50–52].

The stochastic model considered is the generalized Langevin model for the i th components of fluid particle
positions x∗

i and velocities U∗
i . This PDF model for compressible flow reads [4, 9–12]

d

dt
x∗

i = U∗
i , (3.2a)

d

dt
U∗

i = 2

〈ρ〉
∂〈ρ〉ν̄ S̄d

ik

∂xk
− 1

〈ρ〉
∂〈p〉
∂xi

+ Gi j

(
U∗

j − Ū j

)
+

√√√
√4c(P DF)

0 k

3τ
(P DF)
L

dW i

dt
. (3.2b)

The analogy between equations for molecular and turbulent motion [32–33] provides the basis for this model.
First of all, fluctuations are characterized by their energy and characteristic relaxation time. To adopt the
molecular equations (2.9a,b) for the modeling of turbulent motions, one has to replace, therefore, the molecu-
lar energy e of fluctuations and relaxation time scale τm by the turbulent kinetic energy k and relaxation time
scale τ

(PDF)
L used in PDF methods for turbulent flows.

The comparison between (3.2b) and (2.9b) shows that Eq. (3.2b) is more general than Eq. (2.9b). A first
difference is given by the inclusion of spatial transport terms [the first two terms on the right-hand side of
Eq. (3.2b)]. These terms involve the averaged mass density 〈ρ〉, viscosity ν̄, deviatoric rate-of-strain tensor
S̄d

ik (for simplicity, ν and Sd
i j are assumed to be uncorrelated), and pressure 〈p〉. Equation (3.6b) given in

Sect. 3.3 reveals the need to include these spatial gradient terms: these terms assure the correct transport of
mean velocities. A second difference between (3.2b) and (2.9b) is given by the consideration of an anisotropic
matrix Gi j . As shown in Sects. 3.3 and 3.4, such an anisotropic matrix Gi j has to be considered in order to
account correctly for the anisotropy of the Reynolds stress tensor. In analogy to (2.9b) we define a characteristic
relaxation time scale τ

(PDF)
L = −3/Gnn . A third difference to (2.9b) is given by the consideration of c(PDF)

0
in (3.2b). The need to involve this nondimensional parameter [which is equal to 1 in (2.9b)] may be seen by
looking at Eq. (3.7a). The right-hand side of this equation represents the negative dissipation rate ε of turbulent
kinetic energy, this means

ε = 2
(

1 − c(PDF)
0

)
k/τ

(PDF)
L . (3.3)
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Consequently, the assumption c(PDF)
0 = 1 would incorrectly imply that the dissipation of turbulent kinetic

energy is zero (fluid particles do not conserve kinetic energy as molecules).
The Eqs. (3.2a,b) are unclosed as long as the time scale τ

(PDF)
L of turbulent motion is not defined. By Eq.

(3.3), this time scale is given by

τ
(PDF)
L = 2

(
1 − c(PDF)

0

)
L k−1/2. (3.4)

Here, L = k3/2/ε is the characteristic length scale of large-scale turbulent eddies. No assumptions are made
regarding the calculation of L. This length scale can be provided by a variety of methods [4, 7] which may
well involve several relevant length or time scales [53]. By adopting (3.4), the noise term in Eq. (3.2b) may
be written in terms of its standard formulation (C (PDF)

0 ε)1/2dWi/dt . Here, C (PDF)
0 = 2c(PDF)

0 /
[
3(1 − c(PDF)

0 )
]

refers to the Kolmogorov constant for high-Reynolds-number turbulence. By rewriting this expression for
C (PDF)

0 we obtain for the calculation of c(PDF)
0 the relation

c(PDF)
0 = C (PDF)

0

C (PDF)
0 + 2/3

. (3.5)

This relation reveals that c(PDF)
0 is bounded (0 ≤ c(PDF)

0 ≤ 1) because C (PDF)
0 ≥ 0. Expression (3.5) can be

used to calculate c(PDF)
0 by adopting available C (PDF)

0 measurements. As discussed in detail elsewhere [54]
one finds for structured flows (decaying turbulence, evolving scalar fields, the atmospheric boundary layer and
channel flows) C (PDF)

0 values near two if accurate models are applied. Higher C (PDF)
0 values near six are found

for less-structured flows (homogeneous, isotropic, stationary turbulence) or models that involve simplifying
assumptions. The reason for these differences is given by the fact that additional stochastic forcing is needed
to compensate for the disappearance or neglect of contributions due to acceleration fluctuations or anisotropic
turbulence [54]. These C (PDF)

0 variations imply a range c(PDF)
0 = 0.83 ± 0.07 of c(PDF)

0 variations.

3.3 Deterministic equations

The generalized Langevin model (3.2a,b) can be used to derive deterministic equations (which require less
computational costs) for the transport of mean variables. The way to obtain these equations was explained
above with regard to molecular motion. By rewriting (3.2a,b) as the corresponding Fokker–Planck equation
for the PDF, one obtains the following RANS equations for the mean mass density 〈ρ〉, mass-density-weighted
velocity Ūi , and Reynolds stresses Ri j (the variance of the velocity PDF: Ri j = ui u j , where ui refers to
turbulent velocity fluctuations):

D̄〈ρ〉
D̄t

= −〈ρ〉∂Ūk

∂xk
, (3.6a)

D̄ Ūi

D̄t
+ 1

〈ρ〉
∂〈ρ〉Rik

∂xk
= 2

〈ρ〉
∂〈ρ〉ν̄ S̄d

ik

∂xk
− 1

〈ρ〉
∂〈p〉
∂xi

, (3.6b)

D̄Ri j

D̄t
+ 1

〈ρ〉
∂〈ρ〉T R

ki j

∂xk
+ Rik

(
∂Ū j

∂xk
− G jk

)

+ R jk

(
∂Ūi

∂xk
− Gik

)
= 4c(PDF)

0 k

3τ
(PDF)
L

δi j . (3.6c)

D̄/D̄t = ∂/∂t + Ūk ∂/∂xk refers to the mean Lagrangian time derivative, and T R
ki j represents the triple cor-

relation tensor of velocity fluctuations [corresponding to the Ti jk defined by relation (2.8): T R
ki j = ui u j uk].

Equation (3.6c) for the Reynolds stress tensor Ri j = 2k(δi j/3 + ri j ) can be rewritten in terms of equations for
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the turbulent kinetic energy k = Rkk/2 and standardized anisotropy tensor ri j = (Ri j − 2kδi j/3)/(2k). These
equations read

D̄k

D̄t
+ 1

2〈ρ〉
∂〈ρ〉T R

knn

∂xk
+ 2k

(
rkn + 1

3
δkn

)
∂Ūn

∂xk
− 2k rknGd

nk = −
2
(

1 − c(PDF)
0

)
k

τ
(PDF)
L

. (3.7a)

D̄ri j

D̄t
+ 1

2〈ρ〉k
∂〈ρ〉(T R

ki j − T R
knnδi j/3)

∂xk
+ ri j

k

D̄k

D̄t
+ rik

(
∂Ū j

∂xk
− Gd

jk

)

+ r jk

(
∂Ūi

∂xk
− Gd

ik

)

−2

3
rkn

(
∂Ūn

∂xk
− Gd

nk

)
δi j = − 2

τ
(PDF)
L

ri j − 1

3

(
2S̄d

i j − Gd
i j − Gd

ji

)
, (3.7b)

where Gd
i j = Gi j − Gnnδi j/3 is the deviatoric component of Gi j . The comparison with the correspond-

ing molecular equations reveals that these equations account for two processes in addition to the processes
involved in (2.12a,b): dissipation of turbulent kinetic energy [the last term of (3.7a), which is equal to the
negative dissipation rate ε] and turbulent kinetic energy redistribution (terms that contain Gd

i j ). By comparing
the Reynolds stress transport equation (3.6c) with the exact Reynolds stress transport equation which follows
from averaging the Navier–Stokes equations [4, 11–12], one observes that terms related to compressibility
effects and viscous and pressure transport terms do not appear explicitly in Eq. (3.6c). The effects of these
terms are found to be small for many flows, but such contributions can be involved via the choice of Gi j in

Eq. (3.6c). Compressibility effects, for example, can be taken into account by the specification of τ
(PDF)
L and

Gd
i j [55].

3.4 Relaxation frequency models

A significant problem related to the application of the stochastic PDF model is given by the need to specify the
deviatoric frequency Gd

i j in order to close Eqs. (3.2a,b). The most convenient way to address this problem is

to use the ri j transport equation (3.7b) for the calculation of Gd
i j in order to assure the correct treatment of the

anisotropy of Reynolds stresses. However, Eq. (3.7b) only provides conditions for the symmetric component
of Gd

i j . To determine Gd
i j completely one may assume that Gd

i j is a symmetric matrix, like the Reynolds stress
tensor. The resulting extended Langevin model is completely defined in terms of the Reynolds stress tensor
[12, 54, 55]. However, the use of such an implicit equation for Gd

i j is cumbersome to implement in complex

flows: numerical stiffness problems can result from the need for successive matrix inversions. To calculate Gd
i j

explicitly, one can apply the same approach as used for the molecular stress calculation in Sect. 2. By adopting
Gd

i j = Gd
ji , the first order of approximation for Gd

i j is given by a zero right-hand side of (3.7b),

Gd
i j

(1) = 3

τ
(PDF)
L

ri j + S̄d
i j . (3.8)

By neglecting the deviatoric contribution due to triple correlations and using the first-order approximation
Gd(1)

i j on the left-hand side, Gd
i j is given in the second order of approximation by

Gd
i j

(2) = 3ri j

τ
(PDF)
L

+ S̄d
i j − 9

τ
(PDF)
L

[
rikrk j − rnkrkn

3
δi j

]

−3

2

[
rik�̄k j + r jk�̄ki

] + 3ri j

2

(
1

k

D̄k

D̄t
+ 2

3
S̄nn

)
+ 3

2

D̄ri j

D̄t
, (3.9)
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where �̄i j denotes the averaged rate-of-rotation tensor �i j = (∂Ui/∂x j − ∂U j/∂xi )/2. This model may be
rewritten such that it has the same structure as the Haworth–Pope model [4, 48, 56, 57],

Gd
i j

(2) = 3

2

D̄ri j

D̄t
+

[
3rnkrkn

τ
(PDF)
L

− 1

3
S̄nn

]

δi j +
[

3

τ
(PDF)
L

+ 3

2

(
1

k

D̄k

D̄t
+ 2

3
S̄nn

)]

ri j

− 9

τ
(PDF)
L

rikrk j + Hi jkn
∂Ūk

∂xn
. (3.10)

According to expression (3.9), the tensor Hi jkn is given by

Hi jkn = 1

2

[
δikδ jn + δ jkδin

] − 3

2

[
rikδ jn + r jkδin − rinδ jk − r jnδik

]
. (3.11)

Compared to the Haworth–Pope model one observes that the model (3.10) does not require the calculation of
11 adjustable parameters for each flow considered. One also observes that (3.10) involves one additional term
(the first term on the right-hand side).

Instead of assuming Gd
i j = Gd

j i , the deviatoric component Gd
i j is often neglected in PDF models, which

corresponds to the use of the simplified Langevin model Gi j = −δi j/τ
(PDF)
L . The latter assumption repre-

sents an approximation that is not always well satisfied. For incompressible flow, Sarkar’s turbulent shear
flow DNS [58] reveal for example (G11, G22, G33) = −(0.39, 0.52, 0.37)|S̄|. The equilibrium turbulent
boundary layer DNS data of Moser et al. [59] demonstrate for a friction Reynolds number Reτ = 590 that
(G11, G22, G33) = −(0.51, 0.76, 0.49)|S̄|. Here, |S̄| = (2S̄d

kl S̄d
lk)

1/2 refers to the characteristic strain rate.
With regard to these findings, the approximation Gd

i j = 0 is, therefore, related to deviations of 10–22%. With
regard to compressible flows, such deviations may be larger provided the gradient Mach number becomes
larger than unity [55, 58]. However, it is worth noting that such differences to DNS data do not have to imply
corresponding shortcomings of simulations. Instead, the simplified Langevin model was applied successfully
in many simulations (see, for example [60, 61] and the references therein).

In order to calculate the Reynolds stresses according to Eq. (3.7b) one has to define the deviatoric compo-
nent Gd

i j . The extended Langevin model explains Gd
i j in terms of ri j (it provides a mapping between Gd

i j and
ri j ) such that this model cannot be used to calculate the Reynolds stresses. The simplified Langevin model,
however, enables the Reynolds stress calculation due to the assumption Gd

i j = 0. In correspondence to the
calculation of the molecular stress tensor in Sect. 2, the Reynolds stress tensor is given in the first order of
approximation by

R(1)
i j = 2

3
kδi j − 2ν(PDF) S̄d

i j . (3.12)

Here, the turbulent viscosity ν(PDF) = kτ
(PDF)
L /3 is introduced. The latter expression recovers the standard

model for ν(PDF), which is given by

ν(PDF) = Cµ

k2

ε
, (3.13)

where Cµ = 2(1−c(PDF)
0 )/3. By adopting c(PDF)

0 = 5/6 (see Sect. 5) one finds Cµ = 1/9. This Cµ value agrees
with the results of many investigations [4, 62]. Compressible channel-flow DNS data for different Reynolds
and Mach numbers indicate Cµ = 0.11 ± 0.03 away from solid walls [63]. The second-order approximation
of the Reynolds stress tensor Ri j is then given by

R(2)
i j = 2

3
kδi j − 2ν(PDF)

(

S̄d
i j − 1

2

D̄τ
(PDF)
L S̄d

i j

D̄t

)

+3
[
ν(PDF)

] 2

k

[
2S̄d

ik S̄d
k j − 2

3
S̄d

nk S̄d
kn δi j − S̄d

ik�̄k j − S̄d
jk�̄ki

]
. (3.14)

The model (3.14) represents the rescaled nonlinear molecular stress model (2.15). It extends the nonlinear
model of Gatski and Speziale [64] by involving the derivative of τ

(PDF)
L S̄d

i j , and it provides the parameters
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β1 and β2 applied in Gatski and Speziale’s model: 2 β1 = β2 = 6 C2
µ. A specific feature of Eq. (3.14) is

given by the fact that there is no contribution due to �̄ik�̄k j − �̄nk�̄knδi j/3, which appears in the models of
Yoshizawa [65] and Rubinstein and Barton [66]. Speziale [67] showed that such a quadratic rate-of-rotation
tensor contribution yields erroneous predictions for isotropic turbulence subjected to a solid-body rotation.

4 Small-scale turbulence modeling

The need to model all the spectrum of turbulent motions in PDF/RANS methods represents a nontrivial prob-
lem. For example, a universal model for the characteristic length scale L of large-scale turbulent eddies is
unavailable, and complex methods are required to account accurately for the anisotropy of Reynolds stresses.
A natural approach to overcome these problems is given by the replacement of ensemble averages by spatially
filtered variables such that only small-scale processes have to be modeled. The essential features of such
FDF/LES methods will be described next. Their characteristic advantages and disadvantages will be discussed
in comparison to PDF/RANS methods in Sect. 5.1.

4.1 Filtered variables

FDF/LES methods calculate the dynamics of fluid dynamic variables that are filtered in space. In analogy to
(2.1), we define mass-density-weighted filtered variables by

Q̃(x, t) = 〈ρ(x, t) Q〉G

〈ρ(x, t)〉G
, (4.1)

where 〈· · · 〉G refers to a filtering in space that is defined by

〈ρ(x, t)Q(x, t)〉G =
∫

dr ρ(x + r, t) Q(x + r, t) G(r). (4.2)

The filter function G is assumed to be homogeneous, i.e., independent of x. We assume
∫

dr G(r) = 1 and
G(r) = G(−r). Moreover, only positive filter functions are considered for which all the moments

∫
dr rmG(r)

exist for m ≥ 0 [19]. G has, therefore, the properties of a PDF.
The scale of filtering is defined by the filter width �, which is chosen such that � << L . FDF or LES

calculations are performed if η << � << L , where η is the Kolmogorov length scale. We assume that G
becomes a delta function (this means G(r) → δ(r)) for � << η. Relation (4.2) reveals that the effect of
filtering then disappears. It will be shown in Sect. 4.4 that DNS is performed in the latter case.

4.2 Stochastic equations

In correspondence to the PDF model (3.2a,b), let us consider the following stochastic FDF velocity model
which has been validated for several applications [21, 22, 27]:

d

dt
x∗

i = U∗
i , (4.3a)

d

dt
U∗

i = 2

〈ρ〉G

∂〈ρ〉G ν̃ S̃d
ik

∂xk
− 1

〈ρ〉G

∂〈p〉G

∂xi
− 1

τ
(FDF)
L

(
U∗

i − Ũi

)
+

√√
√√4c(FDF)

0 k

3τ
(FDF)
L

dW i

dt
. (4.3b)

Here, x∗
i and U∗

i represent the ith components of a fluid particle position and velocity. The transport terms (the
first two terms on the right-hand side of (4.3b)) correspond to the transport terms in (3.2b): 〈ρ〉G , 〈p〉G , ν̃ and
S̃d

ik denote the filtered fluid mass density, pressure, viscosity and deviatoric rate-of-strain tensor (ν and Sd
i j are

again assumed to be uncorrelated), respectively. The relaxation term describes a relaxation towards the filtered
velocity Ũi with a characteristic FDF relaxation time scale τ

(FDF)
L . An anisotropic matrix Gd

i j is not involved.
The latter assumption seems to represent an appropriate concept for the modeling of small-scale processes, in
particular if a small filter width is used such that modeling assumptions applied to small-scale motions have
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little influence on the dynamics of filtered variables (see Sect. 4.4). Nevertheless, this question cannot be seen
to be completely clarified until now [68, 69]. k represents the residual turbulent kinetic energy (the same nota-
tion k is used as in the PDF model (3.2a,b) because k does not need modeling). The residual turbulent kinetic
energy is defined by k = Dkk/2, where Di j represents the subgrid-scale (SGS) stress tensor (the variance of
the FDF, which is defined in correspondence to Ri j ). The noise strength is controlled by the nondimensional

parameter c(FDF)
0 . In analogy to relation (3.5), one finds c(FDF)

0 = C (FDF)
0 /[C (FDF)

0 + 2/3]. With regard to the

FDF model (4.3a,b), C (FDF)
0 agrees with the Kolmogorov constant CK that determines the energy spectrum

[23]. An analysis of implications of (4.3a,b) reveals that C (FDF)
0 = 19/12 ≈ 1.58, which agrees very well

with the conclusion CK = 1.62 ± 0.17 of many measurements [70]. Thus, one finds c(FDF)
0 = 19/27 ≈ 0.7

[23]. DNS results [21] support this finding very well, and investigations of the effects of c(FDF)
0 variations on

simulation results [21, 22] also confirm the suitability of c(FDF)
0 ≈ 0.7.

The FDF model (4.3a,b) is unclosed as long as the relaxation time scale τ
(FDF)
L is not defined. According

to Prandtl’s mixing-length assumption [71], we write

τ
(FDF)
L = (FDF) k−1/2, (4.4)

where (FDF) refers to the characteristic length scale of SGS fluctuations. In contrast to the scaling of L involved
in (3.4) for τ

(PDF)
L , the significant advantage of the applied filtering in space is the fact that the scaling of the

length scale (FDF) is known. The length scale of SGS fluctuations has to be controlled by the filter width
�, which justifies the assumption that (FDF) is proportional to � . An analysis of this scaling reveals that
(FDF) = ∗�, where ∗ = (1 ± 0.5)/3 [23]. The latter implies

τ
(FDF)
L = ∗� k−1/2 . (4.5)

By adopting available DNS data and studies of the effects of parameter variations on simulation results [21,
22], one can show that relation (4.5) is very well supported [23].

4.3 Deterministic equations

The consequences of the stochastic FDF model (4.3a,b) for the transport of filtered variables can be obtained in
the same way as explained above with regard to molecular motion. By rewriting (4.3a,b) as the corresponding
Fokker–Planck equation for the FDF, one obtains the following LES equations for the filtered mass density
〈ρ〉G , velocity Ũi , and SGS tensor Di j :

D̃〈ρ〉G

D̃t
= −〈ρ〉G

∂Ũk

∂xk
, (4.6a)

D̃ Ũi

D̃t
+ 1

〈ρ〉G

∂〈ρ〉G Dik

∂xk
= 2

〈ρ〉G

∂〈ρ〉G ν̃ S̃d
ik

∂xk
− 1

〈ρ〉G

∂〈p〉G

∂xi
, (4.6b)

D̃Di j

D̃t
+ 1

〈ρ〉G

∂〈ρ〉G T D
ki j

∂xk
+ Dik

∂Ũ j

∂xk
+ D jk

∂Ũi

∂xk
= − 2

τ
(F DF)
L

(
Di j − 2

3
c(FDF)

0 kδi j

)
. (4.6c)

Here, D̃/D̃t = ∂/∂t +Ũk ∂/∂xk denotes the filtered Lagrangian time derivative, and T D
ki j is the triple correlation

tensor of the SGS velocity fluctuations (corresponding to T R
ki j in Eq. (3.6c)).

In correspondence to the molecular equations (2.12a,b), Eq. (4.6c) for the SGS stress tensor Di j =
2k(δi j/3 + di j ) can be rewritten in terms of equations for the residual turbulent kinetic energy k = Dkk/2 and
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the standardized anisotropy tensor di j = (Di j − 2kδi j/3)/(2k). These equations read

D̃k

D̃t
+ 1

2〈ρ〉G

∂〈ρ〉G T D
knn

∂xk
+ 2k

(
dkn + 1

3
δkn

)
∂Ũn

∂xk
= −

2
(

1 − c(FDF)
0

)
k

τ
(FDF)
L

. (4.7a)

D̃di j

D̃t
+ 1

2〈ρ〉Gk

∂〈ρ〉G(T D
ki j − T D

knnδi j/3)

∂xk
+ di j

k

D̃k

D̃t
+ dik

∂Ũ j

∂xk
+ d jk

∂Ũi

∂xk
− 2

3
dkn

∂Ũn

∂xk
δi j

= − 2

τ
(FDF)
L

di j − 2

3
S̃d

i j . (4.7b)

The first-order approximation for the anisotropy tensor di j is then given by the balance of the terms on the

right-hand side of (4.7b): d(1)
i j = −S̃d

i jτ
(FDF)
L /3. The latter result implies the following expression for the SGS

stress tensor Di j in the first order of approximation,

D(1)
i j = 2

3
kδi j − 2ν(FDF) S̃d

i j , (4.8)

where the SGS viscosity ν(FDF) = kτ
(FDF)
L /3 is introduced. By adopting expression (4.5) for τ

(FDF)
L , the SGS

viscosity ν(FDF) is given by

ν(FDF) = � k1/2/9. (4.9)

This parametrization for ν(FDF) has been used in several applications [4, 72, 73]. To recover the Smagorinsky
model we assume a balance between the production and dissipation in (4.7a) given by d(1)

kn ∂Ũn/∂xkτ
(FDF)
L =

c(FDF)
0 −1. By introducing the characteristic strain rate |S̃| = (2S̃d

kl S̃d
lk)

1/2 and adopting d(1)
i j = −S̃d

i jτ
(FDF)
L /3

and c(FDF)
0 = 19/27, one finds |S̃| τ

(FDF)
L = 4/3. Combined with τ

(FDF)
L = �k−1/2/3 according to relation

(4.5), the latter expression provides k1/2 = �|S̃| /4. Hence, expression (4.9) can be written

ν(FDF) = cS�
2|S̃|, (4.10)

where the Smagorinsky coefficient is given by cS = (1/6)2. This latter value for the Smagorinsky coefficient
cS corresponds to the standard value for this parameter [4, 72]. The coefficient cS can also be calculated by
a dynamic procedure [74, 75]. The latter approach avoids the problem of finding an appropriate constant cS
value, and it enables the use of different cS values for various flow regions.

In the second-order approximation, the SGS stress Di j is given in correspondence to (2.15) by

D(2)
i j = 2

3
kδi j − 2ν(FDF)

(

S̃d
i j − 1

2

D̃τ
(FDF)
L S̃d

i j

D̃t

)

+3
[
ν(FDF)

] 2

k

[
2S̃d

ik S̃d
k j − 2

3
S̃d

nk S̃d
kn δi j − S̃d

ik�̃k j − S̃d
jk�̃ki

]
. (4.11)

�̃i j refers to the filtered rate-of-rotation tensor. In contrast to the low relevance of nonlinear terms in (2.15)
with regard to small-Knudsen-number flows, one finds that nonlinear terms in (4.11) may well be relevant
[23]. The advantage of deriving nonlinear contributions as a consequence of a stochastic model is given by the
fact that one obtains consistent expressions for all model coefficients (which is otherwise a nontrivial problem
[76–78]). It is worth noting that the coefficients of linear and nonlinear terms in (4.11) can also be calculated
by a dynamic procedure [79, 80].
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4.4 The DNS limit

To prepare for the discussion in Sect. 5, let us have a closer look at the limit case that the filter width � << η,
where η refers to the Kolmogorov length scale. To do this, it is helpful to consider first the equations for SGS
velocity fluctuations that are implied by the stochastic model (4.3a,b) and the filtered equations (4.6a,b). These
equations for velocity fluctuations read

d

dt
x∗

i = U∗
i , (4.12a)

d

dt

(
U∗

i − Ũi

)
= −

[
δik

τ
(FDF)
L

+ ∂Ũi

∂xk

](
U∗

k − Ũk

)
+ 1

〈ρ〉G

∂〈ρ〉G Dik

∂xk
+

√√
√√4c(FDF)

0 k

3τ
(FDF)
L

dW i

dt
. (4.12b)

The results presented in Sect. 4.3 show that the residual turbulent kinetic energy k = (�|S̃| /4)2 and SGS vis-
cosity ν(FDF) = �k1/2/9 disappear for � << η. Correspondingly, the SGS stress tensor Dik disappears, too.
The last two terms in (4.12b) disappear, therefore, for � << η (τ (FDF)

L remains finite because |S̃| τ (FDF)
L = 4/3;

see above), which means that there is no stochastic forcing. In consistency with the vanishing residual turbulent
kinetic energy k we set U∗

k = Ũk initially for the integration of (4.12b). Then, Eq. (4.12b) predicts zero velocity
fluctuations for all times.

For the case of vanishing SGS fluctuations, filtered variables have to be equal to their instantaneous vari-
ables [which implies G(r) → δ(r) for � << η as assumed in Sect. 4.1]. By neglecting all effects of filtering
in (4.6a,b), the equations for filtered variables reduce to

Dρ

Dt
= −ρ

∂Uk

∂xk
, (4.13a)

D Ui

Dt
= 2

ρ

∂ρν Sd
ik

∂xk
− 1

ρ

∂p

∂xi
. (4.13b)

D/Dt =∂/∂t+Uk∂/∂xk is the Lagrangian time derivative as applied above. Equations (4.13a,b) recover (2.11a,b)
combined with Eq. (2.13) for the molecular stress tensor, where the pressure p is given by 2ρe/3. Hence, the
model (4.3a,b) recovers DNS equations for � << η. The influence of SGS fluctuation models on the dynamics
of filtered variables becomes, therefore, smaller with decreasing filter width, which provides support for the
use of relatively simple fluctuation models (without anisotropic relaxation).

5 Unified turbulence models

After considering PDF/RANS and FDF/LES methods in Sects. 3 and 4, respectively, let us have a closer look
at the characteristic advantages and disadvantages of these methods and their consequences.

5.1 The need to develop unified turbulence models

The application of the stochastic PDF model (3.2a,b) to flow simulations is much more efficient than the
use of DNS, but this approach also faces significant problems. A first question is related to the deviatoric
matrix Gd

ik , which has to be provided to describe the turbulent energy redistribution correctly. This problem
can be solved as described in Sect. 3, but the required calculation of Reynolds stresses represents a significant
source of numerical error due to the finite number of realizations used in simulations. A second question is
related to the isotropic noise source applied in (3.2b). In correspondence to the modeling of the relaxation
of velocity fluctuations, one may expect in general a noise-term structure given by bikdWk /dt, where bik is
any anisotropic matrix. Indeed, there seem to be indications that such an anisotropic matrix bik should be
considered, in particular with regard to flows with relatively low Reynolds number [81]. However, the question
of how such a matrix bik should be modeled remains unsolved until now. A third question is related to the
need to provide the characteristic length scale L of large-scale turbulent eddies in relation (3.4) for τ

(PDF)
L . The

generality of concepts applied currently to provide a corresponding scale-determining equation is certainly
questionable [63].
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The relevance of such modeling issues seems to be much lower when adopting FDF/LES methods, but the
use of these methods may require infeasible computational costs. FDF simulations are six times less expensive
than DNS, but they may require 15–30 times more effort than LES methods [21]. Similarly, the use of LES will
be too expensive for many applications. In regions away from solid walls the number of grid points required
for LES scales with the Reynolds number Re according to Re0.4, but the resolution of near-wall motions
requires a number of grid points that increases proportional to Re1.76 [82]. The required number of grid points
is then nearly the same as for DNS, which is characterized by a Re9/4 scaling [83, 84]; see the illustration in
Fig. 1. Consequently, such simulations become infeasible for high-Reynolds-number flows such as those that
occur in aeronautical and meteorological applications. In contrast, the RANS grid requires clustering only in
the wall-normal direction so that the grid requirements are proportional to ln(Re) [4, 30], and the RANS grid
requirements away from solid walls are independent of Re.

Due to the demanding computational requirements related to FDF/LES methods, at least the simulation
of high-Reynolds number wall-bounded flows requires, therefore, combinations of FDF and PDF, or LES and
RANS methods. The use of consistent combinations appears to be helpful to perform accurate computations.
Thus, there is a need for the development of unified turbulence models that may be used depending on the
resolution as FDF or PDF, LES or RANS methods. From a more general point of view, the development of such
methods appears to be helpful for the improvement of the efficiency and accuracy of turbulence simulations
(see the illustration in Fig. 2): accurate FDF and LES calculations could be applied to assess and improve
the performance of more-efficient PDF and RANS calculations. Also from a theoretical point of view, the
development of unified turbulence models is relevant: a common modeling strategy may well contribute to
model developments.

However, the construction of such unified models turned out to be a nontrivial problem. Previously pre-
sented suggestions addressed this problem by considering the question of how it is possible to find a generalized
stress tensor that recovers the Reynolds stress and SGS stress tensors in limits [12, 17, 28–31]. The stress tensor
is the result of a variety of physical processes. It is, therefore, impossible to find support for the construction of
a generalized stress tensor by taking reference to a simple physical explanation of scale effects. The only way to
develop generalized stress tensor models is then given by the application of heuristic interpolation procedures
between RANS and LES limits. Many different suggestions were presented for that, and the assessment of
differences between such suggestions turned out to be a complicated problem. A general formal solution to this
question considered was presented recently by Germano in conjunction with an analysis of all the problems
related to the application of this approach [31].

5.2 The unification of stochastic velocity models

As an alternative to existing approaches, the question of how it is possible to construct unified models for com-
pressible turbulent flows will be addressed here at the level of stochastic turbulence models. This approach is
very helpful because it implies a separate consideration of the evolution of velocity fluctuations and their char-
acteristic time scales. The discussions in Sects. 3 [see (3.2a,b)] and 4 [see (4.3a,b)] show that the generalized
Langevin model represents an appropriate basis for the modeling of velocities fields,

d

dt
x∗

i = U∗
i , (5.1a)

d

dt
U∗

i = 2

〈ρ〉G

∂〈ρ〉G ν̃ S̃d
ik

∂xk
− 1

〈ρ〉G

∂〈p〉G

∂xi
− 1

τL

[
δik − τL Gd

ik

](
U∗

k − Ũk

)
+

√
4c0k

3τL

dW i

dt
. (5.1b)

Here, τL and c0 are used without superscripts (which were applied above to indicate the FDF and PDF limits
of τL and c0). Gd

ik is assumed to be given as explained in Sect. 3.
The filtered variables involved in (5.1a,b) are defined as spatially filtered variables according to (4.1). The

properties of the stochastic model (5.1a,b) depend essentially on the choice of the filter function G that is
controlled, basically, by the filter width �. In particular, the properties of (5.1a,b) are determined by the ratio
of � to several characteristic length scales. A first case (the small-� limit) is given by adopting a small filter
width � << L , where L is the characteristic length scale of large-scale motions. FDF/LES calculations are
then performed by adopting η << � << L (η is the Kolmogorov length scale), and DNS is performed
by adopting � << η (see Sect. 4.4). A second case (the large-� limit) is given by choosing � very large,
L << � << L0, where L0 characterizes the length scale of the largest eddies that are injected into the flow.
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Fig. 1 An illustration of the scaling of the number of grid points with the Reynolds number Re for different methodologies. The
use of DNS is characterized by a Re9/4 scaling [83–84]. In regions away from a solid wall the number of grid points required
for LES scales with Re0.4, but the resolution of near-wall motions requires a number of grid points that increases proportional to
Re1.76 [82]. In contrast, the RANS grid requirements are proportional to ln(Re) [4, 30]. Away from a solid wall the RANS grid
is independent of Re

∆
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Fig. 2 An illustration of unified turbulence models. A sketch of the energy cascade is given by eddies of the order L0 (eddies that
are injected into the flow), L (large-scale eddies) and η (Kolmogorov-scale eddies). The method applied depends on the choice
of the filter width � . One applies a RANS method if L << � << L0, a LES method if η << � << L , and DNS if � << η.
The appearance of filtered chemical reaction rates in models for reacting flows can be avoided by generalizing the RANS and
LES methods to the PDF and FDF methods, respectively

To prove the suitability of the stochastic model (5.1a,b) as a unified turbulence model, let us compare the
small-� and large-� limits of (5.1a,b) with the FDF model (4.3a,b) and PDF model (3.2a,b).

Regarding the small-� limit of (5.1a,b) one observes only one difference to (4.3a,b): the FDF model (4.3a,b)
is generalized by involving the deviatoric frequency Gd

i j according to (3.2a,b). This consideration of Gd
i j is an

option that assures a common structure of FDF and PDF models, but this approach may be related to some
disadvantages; see Sect. 5.1. Another option is given by the neglect of Gd

i j in (5.1a,b). The suitability of the
resulting FDF model was proved in a variety of investigations and applications (see Sect. 4), and the resulting
PDF model represents a reasonable model (see Sect. 3) as long as the gradient Mach number is smaller than
unity [55].

Regarding the large-� limit of the stochastic model (5.1a,b) one observes that (5.1a,b) recovers the PDF
model (3.2a,b) with one exception: spatially filtered variables are applied in (5.1a,b) whereas ensemble aver-
ages are used in the PDF model (3.2a,b). An ensemble average is defined as a mean over all possible values
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of a variable considered at any position and time. The use of a sufficiently large filter width � >> L is then
an obvious requirement to involve values of all the energy spectrum. Do such spatially averaged variables
represent ensemble means? The latter is strictly only the case if turbulence statistics do not change in space,
that is, for statistically homogeneous flows. With regard to inhomogeneous flows one calculates variables in
this way which are both ensemble-averaged (in the sense that all possible values of a variable considered are
involved) and smoothed in space; this means that one calculates variables that are somewhat coarser than
strict ensemble means. The use of such smoothed ensemble means represents a valid concept provided the
smoothing in space allows an appropriate characterization of spatial variations of the flow considered. It is
worth noting that exactly this type of averaging is applied to solve PDF transport equations numerically (in
stochastic particle methods one calculates ensemble averages as means over an ensemble of particles inside a
box considered [4]). Thus, the large-� limit of (5.1a,b) represents a PDF model.

5.3 The unification of time-scale models

The stochastic model (5.1a,b) is unclosed as long as the time scale τL of turbulent motions is not defined. In
particular, τL should recover τ

(PDF)
L = 2(1 − c(PDF)

0 )L k−1/2 according to the PDF limit (3.4) and τ
(FDF)
L =

∗�k−1/2 according to the FDF limit (4.5). First, we assume again

τL =  k−1/2. (5.2)

The characteristic length scale  of turbulent fluctuations will be defined by  = ∗TλL . Here, L = k3/2/ε
is the characteristic length scale of large-scale eddies, and a transfer function Tλ is introduced (which may
depend on any parameter λ; see below). By adopting ∗ = 1/3 as above, we obtain

τL = ∗Tλ L k−1/2. (5.3)

The PDF and FDF limits of τL provide support for the following PDF and FDF limits of Tλ,

Tλ =
{

�/L if �/L << 1,
1 if �/L >> 1.

(5.4)

According to (5.4), the FDF limit of τL is given by τ
(FDF)
L = ∗�k−1/2, which recovers (4.5). The PDF

limit τ
(PDF)
L = ∗ L k−1/2 recovers relation (3.4), where ∗ = 2(1 − c(PDF)

0 ). By adopting ∗ = 1/3 we find

c(PDF)
0 = 5/6 ≈ 0.83, which agrees with the result c(PDF)

0 = 0.83±0.07 of many other investigations regarding

the range of c(PDF)
0 variations (see Sect. 3). To take c0 variations in the FDF and PDF limits into account, one

may generalize this parameter by c0 = 19/27 + 7Tλ/54 (but the effect of such small c0 variations will be very
limited; see the discussion in Sect. 5.4).

To obtain a continuous model for Tλ it is convenient to consider instead of relation (5.4) the derivative
dTλ/d(�/L), because this quantity is bounded by zero and unity,

dTλ

d(�/L)
=

{
1 if �/L << 1,
0 if �/L >> 1.

(5.5)

This relation shows that 1 − dTλ/d(�/L) may be considered as a distribution function which will be denoted
by θλ(�/L − 1); the probability for the large-� limit is equal to zero for �/L << 1 and equal to one for
�/L >> 1. By adopting θλ(�/L − 1) = 1 − θλ(1 − �/L), relation (5.5) can be rewritten as

dTλ

d(�/L)
= θλ(1 − �/L). (5.6)

The transfer function Tλ can then be obtained by integrating (5.6),

Tλ =
�/L∫

0

dy θλ(1 − y). (5.7)

Thus, the transfer function Tλ depends on the specification of the distribution function θλ(1 − �/L).



Unified turbulence models for LES and RANS, FDF and PDF simulations 115

(a) (b)

(c)

Fig. 3 The derivative dTλ/d(�/L) and Tλ are shown in a and b according to (5.6)–(5.9) for values λ = (0, 0.05, 0.2, 0.5); the
functions decrease with growing λ for �/L ≤ 1. � is the filter width and L = k3/2/ε is the characteristic length scale of
large-scale eddies. For λ → 0, these curves recover dT/d(�/L) and T, respectively. c The variation of ∗(λ). The corresponding
minimum and maximum values are given by (5.13)

5.4 The evaluation of the unified time-scale model

To address the relevance of different choices of the distribution function θλ(1 − �/L) in Eq. (5.7), let us
consider a smooth generalization of the theta function (which allows a smooth transition between zero and
one depending on parameter variations 0 ≤ λ ≤ 1),

θλ

(
1 − �

L

)
= 1

2
+ 1

2
tanh

(
1 − �/L

λ

)
. (5.8)

According to (5.7), we obtain a continuous and smooth function Tλ,

Tλ = �

2L
− λ

2
ln

(
cosh

(
(1 − �/L)/λ

)

cosh( 1/λ)

)

. (5.9)

Examples for Tλ and dTλ/d(�/L) are given in Fig. 3 for several values of λ. It is worth noting that the right-hand
side of (5.9) recovers the theta function θ(1 − �/L) for λ → 0. The corresponding limit T of Tλ represents
the extrapolation of the trends given by (5.4),

T = lim
λ→0

Tλ =
�/L∫

0

dy θ(1 − y) =
{

�/L if �/L ≤ 1,
1 if �/L ≥ 1.

(5.10)

To assess the relevance of the transition parameter λ, let us rewrite τL as

τL(λ) = ∗Tλ L k−1/2 = ∗(λ)T L k−1/2, (5.11)

where ∗(λ) = ∗Tλ/T is introduced (∗ = 1/3 as above). A closer look at the variation of ∗(λ) then reveals
the following range of variations:

∗(λ)min ≤ ∗(λ) ≤ ∗(λ)max. (5.12)
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Here, the minimum ∗(λ)min at �/L = 1 and maximum ∗(λ)max of λ∗ are given by

∗(λ)min =
(

1

2
+ λ

2
ln

(
cosh( 1/λ)

))
∗, ∗(λ)max = ∗. (5.13)

The corresponding range of variations of ∗(λ) is shown in Fig. 3c. With regard to the parameter values
λ = (0.05; 0.2; 0.5) applied in Fig. 3a,b, we see that ∗(λ)min = (0.33; 0.31; 0.28). It is worth noting that
the calculation of ∗ on the basis of DNS data shows ∗ variations that may well be larger than the range of
variations obtained here [23]. Available experience related to studies of the relevance of parameter variations
to FDF simulations [27] indicates that the relevance of such minor ∗ modifications will be very low.

As a result of this discussion, it appears to be well justified to consider Tλ to be independent of λ, which
corresponds to the limit λ → 0, where Tλ → T . In this case, the model (5.3) combined with Tλ = T provides
a simple physical explanation for resolution effects (see the illustration in Fig. 2). For � ≤ L we find  = ∗�.
This dependence of  on � is plausible; � determines the correlation length of fluctuations as long as � ≤ L .
For � ≥ L we find  = ∗ L . This result is also plausible because the correlation length of fluctuations cannot
become larger than the large eddy length scale L. It is worth noting that the definition of L is unconstrained.
This length scale can be provided by a variety of methods [4, 7] that may well involve several relevant length
or time scales [53].

6 Summary

This study can be summarized in the following way. First, stochastic PDF and FDF and deterministic RANS
and LES methods for the modeling of turbulent flows (which can be described by the compressible Navier–
Stokes equations) were described and compared with equations for molecular motion. On this basis it was
shown that there is a need for the development of unified turbulence models that can be used continuously to
perform LES and RANS, FDF and PDF simulations. It was also shown that the question of how it is possible
to develop unified models for compressible turbulent flows should be addressed on the basis of stochastic
methods. Compared to previous studies of this question based on deterministic LES and RANS methods [12,
17, 28–31], the advantage of considering stochastic FDF and PDF methods is given by the fact that the devel-
opment of unified turbulence models can be concentrated on the generalization of characteristic time scales of
turbulent velocity fluctuations.

A main result obtained here is the generalized relation τL = ∗T Lk−1/2 for the characteristic time scale of
turbulent velocity fluctuations, which provides a simple physical explanation for scale effects. The suitability
of the unified stochastic turbulence model (5.1a,b) combined with τL = ∗T Lk−1/2 was demonstrated by
showing its correct behavior in the FDF and PDF limits. Regarding the transition between these limits it was
shown that available experience indicates that the use of more-complex models (which depend on the choice
of λ in (5.9)) will hardly be relevant to applications. Deterministic LES and RANS models can be obtained as a
consequence of the unified stochastic model (see Sects. 3,4). These models recover and extend the well-known
linear and nonlinear LES and RANS models for the SGS and Reynolds stress tensors. Dynamic formulations
of these stress models can also be used, which enables the use of different parameter values for various flow
regions.
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