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Abstract — Classical unit commitment (UC) algorithms may 

be extremely time-consuming when applied to large systems and 

for long term simulations (for instance, a year) and may not 

consider all the features required for flexibility assessment, 

including analysis of different reserve types. In this light, this 

paper presents a novel flexibility-oriented unified formulation of 

a large-scale scheduling model considering multiple types of 

plants (including storage) and reserves, which can seamlessly 

model binary (BUC), mixed integer linear programming (MILP), 

and relaxed linear programming (LP) UC. Comparisons are 

carried out on several case studies for a reduced model of Great 

Britain, assessing loss of accuracy (as measured according to 

various metrics specifically introduced) against computational 

benefits in different renewables scenarios with more or less 

flexible systems. It is demonstrated how the computational time 

of the LP model is significantly less than the BUC and MILP 

approaches while capturing with relatively high precision all the 

relevant flexibility requirements and allocation of multiple types 

of reserves to different types of plants. The results indicate that 

the proposed fast LP model could be suitable for various 

computationally intensive flexibility studies (e.g., Monte Carlo 

simulations or planning), with significant reduction in simulation 

time and only minor errors relative to established MILP models. 

 
Keywords: Flexibility, Linear Programming (LP), Mixed 

Integer Linear Programming (MILP), Renewable energy sources, 

Energy storage, Unit commitment. 

 

ACRONYMS 

 

BUC binary unit commitment  

GM generation mix 

CCGT combine cycle gas turbines 

LP linear programming 

MILP mixed integer linear programming 

MSG minimum stable generation 

OCGT open cycle gas turbines 

PFR primary frequency response 
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PP power provision 

PSPP pumped-hydro storage power plant 

RES renewable energy sources 

SUR secondary up reserve 

TUR tertiary up reserve 

 

NOMENCLATURE 

 

Indices 

, ,t T     time period (h) 

,i I   generation unit/cluster, set of generation 

units/clusters 

,s S      output power segment, set of segments 

,k K      storage unit/cluster, set of storage units/clusters 

 

Variables 
total

C     total system operational cost (£) 

,
flex

i tC     cost of flexibility provider (£) 

,
inflex
i tC     cost of insufficient flexibility (£) 

/

,
SU SDGen

i tU             generator start-up or shut-down index 

U
i,t

Gen
ON  generator online/offline commitment state in 

BUC or the number of online units in MILP/LP 

U
k ,t

St
ON     storage generation mode index 

shed
te                load shedding volume (MW) 

,
over
i te   over-generation volume (MW) 

tFLEX     sum of flexible components (MW) 

tINFLEX    sum of inflexible components (MW) 

/

,
UP DOWNst

k tFLEX  storage discharging or charging power (MW) 

,FLEX INFLEX
t tD D  flexible, inflexible demand (MW) 

,
Gen
i tFLEX  total power output of generator (MW) 

,
st
k tFLEX  storage net power output (MW) 

,t t      curtailed wind, solar generation (MW) 

E
k ,t

st      storage energy content (MWh) 

, ,s i tp  segment of generator output power (MW) 

,
P

i t
U

f  primary frequency response contribution (MW) 
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/_
,

UP DOWNSec spin
i tr  secondary up or down spinning reserve 

contribution (MW) 

/_
,

UP DOWNSec st

k tr  secondary up or down storage reserve 

contribution (MW) 

/_
,

UP DOWNTer spin
i tr  tertiary up and down spinning reserve 

contribution (MW) 

/_
,

UP DOWNTer st

k tr  tertiary up and down storage reserve 

contribution (MW) 
_

,
UPTer standing

i tr  tertiary up standing reserve contribution (MW) 

cost
M  operational cost metric (%) 

GM
M  generation output metric (%) 

PP
M  power deviation metric (%) 

 flexibility services
M  flexibility services deviation metric (%) 

 

Parameters 

t  simulation time step (h) 

_ _,r Sec r Ter   secondary, tertiary reserve deployment 

timeframe (h) 

_ _,r Sec r TerT T  maximum period for sustaining secondary, 

tertiary reserve (h) 

,t tW PV  potential wind, solar production (MW) 

tD  total demand (MW) 

NL
iC  no-load cost of generation unit (£/h) 

,SU SUEGen Gen
i iC C  generation unit start-up fuel, emission cost (£) 

, ,, EGenGen
s i s iFU FU  segment generation fuel, emission cost 

(£/MWh) 
/ /shed over curt

C  load shedding, over-generation or renewable 

generation curtailment penalties (£/MWh) 

/MAX MINGen
iP  maximum or minimum output of generator 

(MW) 

/MAX MINSt

kF  maximum or minimum storage discharging 

power (MW) 

/MAX MINSt

kP  maximum or minimum storage charging 

power (MW) 

/

,
MAX MINst

k tE  maximum or minimum storage energy level 

(MWh) 
UP
iFC  maximum frequency response capability 

(MW/unit) 
P

i
U  frequency response function slope ratio 

P
t
U

F  primary frequency response requirement 

(MW) 

UPSt

kPR  maximum percentage of storage capacity for 

each reserve provision (%) 

iG  maximum available number of units within the 

cluster 
/

i
UP DOWN

V  generation unit maximum ramping up or down 

rate(MW/h) 

/UP DOWN
iT  generation unit minimum on, off time (h) 

/stup shdn
iT  generation unit from off to on, on to off 

transition period(h) 
/c dc

k  storage charging, discharging efficiency  (%) 

/UP DOWM
t
Sec

R  secondary up or down reserve requirement 

(MW) 

/UP DOWNTer
tR  tertiary up or down reserve requirement (MW) 

 

I.  INTRODUCTION 

HE share of renewable energy sources (RES) in power 

systems around the world is rapidly increasing and this 

trend is expected to continue in the future as policy makers are 

setting more and more ambitious goals for emission 

reductions. The stochastic nature of RES has increased the 

uncertainty and variability historically present in power 

systems and, as the share of RES rises, so will the flexibility 

requirements, thus challenging the principles of today’s power 
systems operation and planning. These arising flexibility 

requirements question the adequacy of existing market 

principles and services [1] and call for rethinking technical 

limitations of power system component (e.g., as to whether it 

is possible to lower the minimum generation level of power 

plants or increase their ramp rates [2]). The common final goal 

of flexibility requirement studies is to enhance systems 

capability to cope with the variability and uncertainty of 

renewable production, possibly also facilitated or supported by 

the integration of other low carbon technologies such as 

demand side response and storage [3], [4].  

Assessment of the operational capability of the entire 

power system is a computationally intensive task, aimed at 

coordinating a large number of participants in order to 

maintain the supply-demand balance over different time 

horizons and services. Traditionally, unit commitment (UC) 

models have been developed to realistically represent day-

ahead and intra-day system (and market) operation and 

multiple reserves scheduling, including reserves and in case 

frequency control requirements [5], [6]. The objective of these 

models is to schedule the resources available in the system in 

order to provide the desired service (in case through a relevant 

market) while minimising the operational cost and complying 

with a number of system and units’ technical constraints such 

as minimum up and down times, ramp rates, minimum stable 

generation, and so forth. The complexity of these models 

increases with the integration of large share of RES, 

particularly if they mean to capture multiple time scales and 

services such as day-ahead and intra-day operation, primary 

and secondary frequency control, and tertiary reserves [7].  

Based on the above, there is a continuous need for 

developing fast and reliable models capable of assessing 

power systems operational flexibility by capturing all relevant 

technical constraints and, by doing that, indirectly providing a 

backbone for planning future power systems. On the other 

hand, while the concept of UC is intrinsically associated to the 

need for scheduling individual power plants (and in case 

T 
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energy storage), this level of detail may not be necessary for 

flexibility assessment and “generic” units could be modelled, 
provided that they are representative of the “flexibility issue” 
under investigation. In this light, this paper brings together the 

following contributions: 

- A novel flexibility-oriented formulation of UC modelling 

approach using binary, integer and continuous variables (the 

latter two relaxing the problem and improving its solution’s 
computational performance) is presented, showing how power 

system operation can be seamlessly modelled in a unified way 

for the three classes of algorithms and specifically taking into 

consideration the technical constraints relevant to flexibility 

provision. In particular, the latter element is supported by a 

formulation that highlights the interaction between flexibility 

providers and insufficient flexibility indicators for increased 

flexibility requirements, particularly due to RES. 

- Comparison of the scheduling and computational time 

performance of different classes of algorithms based on 

metrics specifically introduced and also considering the 

provision of different flexibility/reserve services from 

different plants (including energy storage). In this respect, 

clear demonstration is given of the merit of the proposed fast 

UC algorithm based on linear programming (LP) and 

benchmarked against classical mixed integer linear 

programming (MILP) approaches considering different 

generating unit clustering schemes as well as standard binary 

unit commitment (BUC), for assessing low-carbon systems’ 
flexibility. 

The rest of this work is organized as follows: In Section II 

the current research on system operation modelling and 

flexibility assessment is investigated. Then, the flexibility-

oriented unified formulation proposed for BUC, MILP and LP 

UC is described in Section III. Section IV introduces the 

metrics used for performance assessment of the three classes 

of algorithms. Section V contains the description of several 

case study applications for multiple RES and flexibility 

scenarios starting from a reduced system model of Great 

Britain. Section VI analyses the results to demonstrate the 

features of the proposed model, highlighting the pros and cons 

of an LP approach. Section VII finally concludes the paper.  

 

II.  CURRENT RESEARCH 

A number of models have been proposed for fast 

assessment of power system operation, such as for instance the 

one in [8]; however, often these models do not sufficiently 

represent all the set of constraints and frequency control and 

reserve services needed to explicitly capture relevant system 

flexibility characteristics and metrics. With the advent of 

faster and faster optimization solvers commercially available, 

MILP methods have recently been developed in the direction 

of reducing computational time while maintaining reasonable 

accuracy in capturing all the relevant technical and economic 

aspects of system operation, particularly with inclusion of 

multiple services provided in different markets. In this respect, 

benefits of MILP modelling over more classical Lagrangian 

Relaxation techniques are well known [9]. However, the 

complexity of MILP models is still relatively high when 

dealing with realistic large scale systems with hundreds of 

generators. In addition, in many cases when performing 

flexibility analysis there is a need to carry out studies over 

long time frames (for instance over a year in order to capture 

all the possible time varying correlation between RES supply 

and demand and therefore net load flexibility requirements), 

with fine resolution (30 minutes or below) and for multiple 

scenarios. Similarly, MILP models have proven to be 

computationally too expensive to be applied for planning 

purposes [10] thus requiring planners to make assumptions 

such as using representative week simulations instead of entire 

year analysis and by doing so, missing out on capturing all the 

seasonal characteristics and recognizing potential flexibility 

bottlenecks and requirements. Several techniques to increase 

the computational efficiency of MILP models for large scale 

systems have also been proposed, such as for instance [11], 

where an efficient formulation is proposed so as to require 

fewer binary variables and constraints. However, only one 

type of reserve is discussed there and the model is presented 

only for thermal units. The authors in [12], [13] use a 

clustering algorithm to simulate multiple power systems and 

interactions focusing on integration of electric vehicles in the 

presence of large share of renewable sources. However, they 

do not focus on assessing how accurate such an approach is 

relative to a full binary UC model or on the comparison 

between MILP and LP formulations. An effective approach 

has been proposed in [14], where a model based on integer 

variables rather than binary variables is used to represent 

clusters of thermal generators, thus increasing computational 

efficiency while also considering primary frequency regulation 

and tertiary reserve. On the same line, and with more focus on 

flexibility modelling, recent work [15] has demonstrated how 

clustering in MILP algorithms can significantly reduce the 

computational demand of UC studies with multiple services 

while maintaining very high level of accuracy. However, the 

authors do not elaborate as to how energy output and different 

services, such as frequency response and reserves, are 

allocated to specific clusters, nor are the results compared to 

those obtained when scheduling the same flexibility services 

using BUC. A similar operational modelling approach has 

been applied to power system generation planning [16]; 

however, again even with reduced requirements in 

computational time, analysing multiple services and multiple 

scenarios requires focusing on representative weeks only. 

Interesting work investigating which constraints can be 

relaxed for planning future low-carbon systems is presented in 

[17], but again not discussing how this relaxation might affect 

the allocation of specific services associated to flexibility 

provision (such as primary frequency response (PFR) and 

secondary and tertiary reserves) from a single or a cluster of 

units. In addition, energy storage providing multiple services 

is not included in the assessment. Hence, generally speaking 

no analysis could be found in the literature with respect to the 

use of LP approaches for UC, and especially for flexibility 

analysis purposes. 
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III.  UNIFIED UNIT COMMITMENT MODEL FOR FLEXIBILITY 

ANALYSIS IN SUSTAINABLE POWER SYSTEMS 

A.  Objective function  

While, as mentioned above, there are a number of UC 

formulations proposed in the literature, the one presented here 

presents a flexibility-oriented mathematical description 

distinguishing between costs associated to “flexible providers” 

and costs associated to presence of “insufficient flexibility” or 

“flexibility requirements” (which together eventually represent 

drivers for additional flexibility). The objective function is 

expressed as in (1), where it is emphasised how power system 

operation is driven by the minimisation of total operational 

cost (𝐶𝑡𝑜𝑡𝑎𝑙), expressed as the sum of cost of flexibility 

providers (𝐶𝑓𝑙𝑒𝑥) and “penalty” costs for insufficient 

flexibility (𝐶𝑖𝑛𝑓𝑙𝑒𝑥): 

, ,

,

minimise 
i t i t

flex inflextotal

t T i I

C C C

 

            (1) 

In (1), C denotes operational cost, t the time periods during 

the considered interval T, and i refers to a specific unit (in the 

case of BUC) or cluster of units
1
 (in the case of MILP or LP) 

in set I. 

The first part of the objective function (𝐶𝑓𝑙𝑒𝑥), is capturing 

all flexible units that can adjust their output according to 

market or system requirements. Traditionally, these are 

flexible conventional generators and more recently storage 

(which are the focus of this paper), but in the context of future 

power systems new sources also arise, e.g., demand response 

and controllable wind power plants [17]. The operational cost 

of each generating unit or cluster i consuming fuel as input is 

modelled as a sum of: start-up cost (𝐶𝑖𝐺𝑒𝑛𝑆𝑈)2
 times the 

number of start-ups (𝑈𝑖,𝑡𝐺𝑒𝑛𝑆𝑈); operating cost, which includes 

the no load cost (𝐶𝑖𝑁𝐿) and the segment fuel cost (𝐹𝑈𝑠,𝑖𝐺𝑒𝑛) (a 

concept used for piece-wise linearization of the generator cost 

curve); and carbon emission cost (𝐶𝑖𝐺𝑒𝑛𝑆𝑈𝐸 and  𝐹𝑈𝑠,𝑖𝐺𝑒𝑛𝐸), 

where ∆𝑡 indicates the simulation time step. This is shown in 

Eq (2): 

 , , , , , ,
ON EGen Genflex NL Gen

i t i i t ts i t s i s i

s S

C C U p FU FU



 
   
  

    
  ,

SU SUE SUGen Gen Gen
i i i tC C U            (2) 

On the other hand, the second part of the objective function 

(1) captures all the components characterizing “insufficient” 

flexibility in the system, namely, penalised by the cost of load 

shedding (𝐶𝑠ℎ𝑒𝑑), over-generation (𝐶𝑜𝑣𝑒𝑟), and renewable 

curtailment (𝐶𝑐𝑢𝑟𝑡), as in Eq (3). The variables 𝑒𝑡𝑠ℎ𝑒𝑑, 𝑒𝑖,𝑡𝑜𝑣𝑒𝑟 , µ t 

and Ωt quantify the energy of load shed, over-generation, and 

wind and photovoltaic (PV) curtailment, respectively.  

                                                           
1 As discussed later, the equations below can be seamlessly applied to both 

individual units and cluster of units, and we will refer to either of them 

depending on the specific case. 
2 This term includes the costs potentially associated to additional fuel 

consumptions and emissions (in the case emissions are penalized). 

 , ,
inflex shed shed over over curt
i t t i t t t

i I

tC C e C e C  


 
   
  

 (3) 

B.  Energy balances  

As shown in Eq (4), the “flexibility providers” are the 

controllable conventional generation units (𝐹𝐿𝐸𝑋𝑖,𝑡𝐺𝑒𝑛) and 

storage (𝐹𝐿𝐸𝑋𝑘,𝑡𝑠𝑡 ), along with, in general (although not 

discussed in detail here), flexible demand (D
FLEX

t). Some 

research papers also interpret curtailment of RES (µ t and Ωt) as 

an additional provider of flexibility for the purposes of 

economic system operation [17], [18]. However, in this paper 

we prefer to treat RES curtailment as an indicator of 

insufficient flexibility in the system, in line with current 

operational practices of system operators. Therefore, the non-

flexible energy balance terms in Eq (5) include inflexible 

demand and components indicating insufficient capability of 

the system to avoid over-generation (𝑒𝑖,𝑡𝑜𝑣𝑒𝑟), load shedding 

(𝑒𝑡𝑠ℎ𝑒𝑑), and harness all the renewable energy that could be 

potentially produced (Wt and PVt). The over-generation 

variables are used to ensure sufficient ability to provide 

reserve, specifically during periods of high renewable 

generation and low demand. In this sense the over-generation 

variable (𝑒𝑖,𝑡𝑜𝑣𝑒𝑟) indicates if the output level of the online units 

needs to be kept higher than demand in order to satisfy the 

downward reserve requirement. The definition of the 

generation-side flexibility providers is shown in Eq (6), and it 

is constrained by the maximum output power (𝑃𝑖𝐺𝑒𝑛𝑀𝐴𝑋) and 

minimum stable generation (MSG) level (𝑃𝑖𝐺𝑒𝑛𝑀𝐼𝑁) of each 

generator, as shown in (7). In (8), the system’s total load is 

modelled as the sum of flexible and inflexible shares. The 

operational constraints of storage, which is used in this work 

for energy arbitrage purposes, are modelled in Eqs. (9)–(13). 

More specifically: Eq. (9) illustrates the flexibility that storage 

can provide, with 𝐹𝐿𝐸𝑋𝑖,𝑡𝑠𝑡𝐷𝑂𝑊𝑁 representing downward 

flexibility provision while it is charging and 𝐹𝐿𝐸𝑋𝑖,𝑡𝑠𝑡𝑈𝑃 

upward flexibility provision of discharging operation; the 

energy content of storage is constrained in (10) by energy 

inflows considering charging and discharging efficiencies 

(𝜂𝑘𝑐 , 𝜂𝑘𝑑𝑐) as well as the energy content in the previous time 

step (𝐸𝑘,𝑡−1𝑠𝑡 ); Eq (11) describes that the energy content of 

storage is constrained by its minimum and maximum value 

(𝐸𝑘,𝑡𝑠𝑡𝑀𝐼𝑁, 𝐸𝑘,𝑡𝑠𝑡𝑀𝐴𝑋); both charging and discharging operations 

are constrained by minimum and maximum powers, as in (12) 

and (13); finally, the two flexible and inflexible components 

(FLEX and INFLEX) need to be kept in equilibrium, as from 

(14). It is also worth highlighting that, without loss of 

generality, in the case studies Pumped-Hydro Storage Power 

Plant (PSPP) has been taken as typical example of storage, so 

that charging and discharging can be associated to turbine and 

pumping operation respectively, which is also reflected in the 

commitment variables and constraints in (12) and (13).  

, ,
Gen st FLEX

t i t k t t

i I k K

FLEX FLEX FLEX D

 

          (4) 
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, ( ) ( )overINFLEX
t t t t

shed
i t t t

i I

tINFLEX D We PVe 


       (5) 

, , ,
Gen

s i

s S

i ttFLE pX



                (6) 

,, ,
ON OMIN MAX NGen GenGen GenGe

i i t it ii t
n

P FLEU X P U      (7) 

FLEX INFLEX
t t tD D D               (8) 

, , ,
UP DOWNst stst

k t k t k tFLEX FLEX FLEX            (9) 

, , 1, ,

1
DOWN UPst stst dc st

k t k t k tk t k tc
k

E FLEX FLEX E
 

 
     
 

   (10) 

,
MIN MAXst stst

k tk kE E E                 (11) 

, , ,
MIN ON UP ONMAXSt St st StSt

k k t k t k k tF U FLEX F U           (12) 

   , , ,1 1MIN ON DOWN ONMAXSt St st StSt

k k t k t k k tP U FLEX P U        (13) 

t tFLEX INFLEX                 (14) 

 

C.  Reserves 

All the flexible components in (4) may in principle 

contribute to provision of reserves. In this paper, the focus is 

put on generation units as reserve providers while more 

specific modelling and analysis of reserves from storage and 

flexible demand are left to future extension. The proposed 

model captures three types of reserve, namely, primary 

frequency response, secondary spinning reserve and tertiary 

spinning and standing reserves [19].  

1) Primary frequency response 

The total primary frequency response (𝐹𝑡𝑈𝑃) that needs to 

be available in case of contingency is typically a constant 

value, for instance defined in the Great Britain based on the 

largest generating unit. This needs to be provided by online 

generators (𝑓𝑖,𝑡𝑈𝑃), as in (15), depending on their characteristics. 

Typically, thermal units can provide around 10% of their 

nominal capacity (𝐹𝐶𝑖𝑈𝑃) within the time frame of primary 

reserve. 

,i t t

i

UP U

I

P
f F



                  (15) 

 

Provision of primary frequency response is constrained by 

the spare capacity of the generator excluding secondary and 

tertiary spinning reserve provision, the upper limit of the 

response contribution of individual generators, and the slope 

function (𝛾𝑖𝑈𝑃) when the output power is close to 

maximum/minimum value, as shown in Fig. 1 and formulated 

in (16) and (17). Typical technical constraints are listed in 

Table 1 of the case study using similar values as in [20].  

 
 

, ,
ONGen

i t i
U

t i
P UP

f U FC        (16) 

,
, _ _

, , ,
UP UP NAX OMi t Sec spin Ter sp

UP
Gen Gen

i tUP

in Gen
i t i t i i t

i

f
r r P U FLEX


  (17) 

 
Fig. 1. Limitations of the generator response contributions. 

 

2) Secondary reserve 

Secondary up and down reserves (SUR and SDR)  are to be 

provided by spinning generation (online) units (𝑟𝑖,𝑡𝑆𝑒𝑐_𝑠𝑝𝑖𝑛
) and 

pumped-hydro storage units (𝑟𝑖,𝑡𝑆𝑒𝑐_𝑠𝑡
), as shown in Eq. (18)-

(19). The secondary reserve requirement is calculated here 

based on the maximum existing generation plant capacity in 

the system and the potential volatility of the load and RES, 

which are normally a result of uncertainty and variability [10], 

[21]. An interesting work elaborating on variability and 

uncertainty time frames of wind generation can be found in 

[22]. 

The spinning reserve contribution of each generating unit is 

limited by its ramping ability associated with the required 

timeframe of reserve deployment (Δr_Sec), as defined in (20) 

and (21). In addition, the generator’s spare capacity also needs 

to be considered. A spare capacity constraint for upward 

reserve is already considered in the primary up frequency 

response in Eq. (17). Eq. (22) adds spare capacity constraint 

for downward spinning reserves too. The reserve contribution 

of storage units is constrained by the minimum and maximum 

energy content and the maximum period required for 

sustaining the secondary and tertiary reserves (𝑇𝑟_𝑆𝑒𝑐, 𝑇𝑟_𝑇𝑒𝑟), 

as shown in (23) and (24). In addition, the maximum 

percentage of storage capacity used for each reserve provision 

(𝑃𝑅𝑘𝑆𝑡𝑈𝑃) is also limited in Eqs. (25) and (26). Further, the 

amount of reserve provision from storage is calculated based 

on the operating mode (turbine or pumping). More 

specifically, as shown in Eq (27), the maximum amount of up 

reserve provision is calculated either with the spare capacity in 

turbine mode or storage input power in pumping mode. A 

similar principle is used to constrain the downward reserve 

provision by using spare capacity in pumping mode or 

generation output in turbine mode, as defined in (28). The 

storage model used here is based on the work carried out in 

[23]. 
_ _

, ,
UP UP UPSec spin Sec st

i t tk t

i I

Se

k

c

K

r r R

 

             (18) 

_ _
, ,

DOWN DO DWN OWNSec st
i t tk t

k K

Sec spin Sec

i I

r r R

 

         (19) 

, _
_

,
OUP NGenUPSec s

i t
pin

i r ci Setr V U       (20) 

_
_, ,

DOWN ONGenDOWN
i t

Sec spin
r Seci t ir V U      (21) 

_ _

, ,, ,
DOWN DOW MIN ONN Gen GenGen

i

Sec spin Ter spin

i t i t it i t
FLEXr P Ur      (22) 

_ _
, ,_ _ ,

MP NUP IUSec st Ter s stst
r Sec r Ter t

t

k t k t k kr rT T E E      (23) 

_ _
_ ,, ,_

MADOWN OWN XDSec st Ter s st st
r Sec r Terk k tt t kk

t
T T Er r E       (24) 
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 _ _

, ,, UP MAXUP UPSec st Ter st

k t k t

St St

k kPR Fr r      (25) 

 _ _

, ,, DOWN MAXDOWN DOWNSec st Ter st

k t k t

St St

k kPR Pr r      (26) 

_
,

_
, , ,,

ON UP DOWNMAXUP UP St st stSec st Ter st

k t k t

St

k k t k t k tF U FLE LEXr X Fr       (27) 

_ _
, ,

DOWN DOWNSec st Ter st

k t k tr r   

  , , ,1 ON DOWN UPMAX St st stSt

k k t k t k tP U FLEX FLEX      (28) 

3) Tertiary reserve 

Similar logic as for secondary reserve can be applied for 

tertiary up and down reserves (TUR and TDR), with the 

variability and uncertainty of load and RES generation 

depending on the relevant deployment time of tertiary reserve 

(Δr_Ter). Again, all participating units, namely spinning 

(𝑟𝑖,𝑡𝑇𝑒𝑟𝑡_𝑠𝑝𝑖𝑛
) and standing (𝑟𝑖,𝑡𝑇𝑒𝑟𝑡_𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔

) and pumped-hydro 

storage (𝑟𝑖,𝑡𝑇𝑒𝑟_𝑠𝑡
) can be scheduled so as to leave “headroom” 

for provision of tertiary reserve, as in (29) and (30).  

_ _ _

, , ,
UP UP U UPPTer spin Ter standing Ter st Ter

i t i t k t t

i I i I k K

r r r R
  

        (29) 

_ _

, ,
DOWDOWN DOWN NTer spin Ter st Ter

i t k t t

i I k K

r r R
 

          (30) 

, _
_

,
OUP NGenUPTer s

i t
pin

i r ri Tetr V U             (31) 

_
_, ,

DOWN ONGenDOWN
i t

Ter spin
r Teri t ir V U           (32) 

D.  Unified UC formulation  

Traditional UC models [24] use binary variables for 

modelling whether a unit is coming online, whether it is online 

and whether it is turning offline at a given time; this is 

modelled by 𝑈𝑖,𝑡𝐺𝑒𝑛𝑆𝑈 , 𝑈𝑖,𝑡𝐺𝑒𝑛𝑂𝑁  and 𝑈𝑖,𝑡𝐺𝑒𝑛𝑆𝐷 . In [25], the author 

provides a detailed analysis of UC and compares the approach 

using binary and integer variables in a clustered UC model; 

excellent correlation of results of the models is shown. In the 

UC formulation proposed here, 𝑈𝑖,𝑡𝐺𝑒𝑛𝑆𝑈 , 𝑈𝑖,𝑡𝐺𝑒𝑛𝑂𝑁  and 𝑈𝑖,𝑡𝐺𝑒𝑛𝑆𝐷  

can seamlessly be binary, integer or continuous variables, and 

this indeed allows writing a compact and unified formulation 

for the BUC, MILP and LP algorithms, respectively. In 

particular, and focusing our description on the clustered cases, 

the number of the online units 𝑈𝑖,𝑡𝐺𝑒𝑛𝑂𝑁  is defined as in (33). 

Further, the number of online units at time t should be less 

than the total available number of units within the cluster (𝐺𝑖) 
minus the offline units, as from (34). More specifically, the 

constraints on the number of online units in (34) can be 

explained by considering that the online units at time t need to 

be fewer than the units in the cluster minus the number of 

units which are shut down within 𝑇𝑖𝑑𝑜𝑤𝑛 + 𝑇𝑖𝑠𝑡𝑢𝑝 + 𝑇𝑖𝑠ℎ𝑑𝑛 − 1 

before t. Similarly, the online units need to be more than the 

units that start up within 𝑇𝑖𝑢𝑝 − 1 before t (Eq. (35)).  

, , ,, 1
ON ON SU SDGen Gen Gen Gen

i t i t i ti tU U U U            (33) 

 
, ,

11,

ON SD

stupshdn
i i i

DOWN

Gen Gen
i t i

T T T

i

t

U UG 

       

        (34) 

,

1)1 (

,

,

ON SU

UP
i

Gen G

t

en
i t i

T

U U 

     

              (35)  

In (34) and (35), 𝑇𝑖𝐷𝑂𝑊𝑁  represents the minimum down-

time, 𝑇𝑖𝑈𝑃 the minimum up-time, and 𝑇𝑖𝑠𝑡𝑢𝑝
 and 𝑇𝑖𝑠ℎ𝑑𝑛 the 

transition times from and to off-status, respectively. These 

transition times are calculated from the unit’s ramping up 

(𝑉𝑖𝑈𝑃) or down (𝑉𝑖𝐷𝑂𝑊𝑁) rates, as shown in (36) and (37), 

respectively:  

( / )MINstup
i i i

Gen UP
T ceil P V              (36) 

( / )MINGshdn en
i i i

DOWN
T ceil P V            (37) 

The reason for explicitly considering these transition times 

is that when a unit switches from online to offline state, the 

unit takes time to ramp down to its final off-status. Similarly, 

when a unit is switched on it takes a certain time before 

reaching its MSG level and therefore its online state. Hence, it 

is necessary to include ramping times too, and not minimum 

up and down times only, to fully account for the actual 

constraints relevant to transitions to and from the off-status.  

The ability of a single unit as well as unit cluster to change 

operational point between two time steps is bound by its 

ramping constraint, which is in turn related to the number of 

the existing committed units and the new units coming online. 

In particular, the increase in cluster’s output is limited by the 

ramping limits of the units already online at the previous time 

step plus the maximum output power of the new online units. 

This is defined in (38):  

, , 1
Gen Gen
i t i tFLEX FLEX    

      ,, 1
ON SUUPGen Gen stup

i i t i i
UP

ti tU V U V T          (38) 

In addition, the power increase that can be achieved is also 

limited by the maximum power of the units already online, as 

from (39): 

, , 1
Gen Gen
i t i tFLEX FLEX    

,,, 11
ON SX UMAGen Gen UP

i t
Gen Gen stup

i i t i ii t FLEU XP U V T      (39) 

Similarly, the decrease of the power output, formulated in 

(33), is constrained by the down-ramping limits of the units 

already online at the previous time step plus the output power 

of the units that have been shut down at the given time step t. 

, 1 ,
Gen Gen
i t i tFLEX FLEX    

      ,, 1
ON SDGen Gen shdn

i i
DO

t i ii t
WN DOWN

tU V U V T        (40) 

The mathematical model in equations (33) – (40) describes 

the operation of the flexible generating units, with, as 

aforementioned, 𝑈𝑖,𝑡𝐺𝑒𝑛𝑂𝑁 , 𝑈𝑖,𝑡𝐺𝑒𝑛𝑆𝑈  and 𝑈𝑖,𝑡𝐺𝑒𝑛𝑆𝐷  potentially being 

binary, integer or continuous variables, depending on the 

algorithm used (BUC, MILP or LP, respectively). This is 

again the core of the unified formulation that we propose here, 

which can seamlessly model the three classes of algorithm.  

The following sections present and compare the results of 

all three approaches, highlighting how for LP relevant metrics 

(introduced next) are within limited margins of error but while 

running potentially several thousand times faster. 
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TABLE I  

CONVENTIONAL GENERATOR CHARACTERISTIC IN CLUSTERING 

Technology 
No. generators 

(units) 
𝑷𝑮𝒆𝒏𝑴𝑨𝑿/𝑷𝑮𝒆𝒏𝑴𝑰𝑵 

(MW/unit) 

𝑪𝑵𝑳 

(£/(unit.h)) 

𝑭𝑼𝑮𝒆𝒏  

(£/MWh) 

𝑪𝑮𝒆𝒏𝑺𝑼 

(£/unit) 

𝑻𝑼𝑷/𝑻𝑫𝑶𝑾𝑵 

(hour(s)) 

𝑽𝑼𝑷/𝑽𝑫𝑶𝑾𝑵 

 (MW/h) 
𝜸𝑼𝑷 

𝑭𝑪𝑼𝑷 

(MW/unit) 

Coal 13 1585 / 634 5869 30.6 47538 4 / 4 634 / 634 0.3 158.5 

Nuclear 1 9373 / 4687 5680 7.1 - - 170 / 120 - - 

CCGT 39 770 / 308 7554 40.3 13231 6 / 4 462 / 462 0.4 77 

 

IV.  METRICS FOR LP, MILP AND BUC SCHEDULING 

ALGORITHM COMPARISON 

In order to assess the performance of the LP, MILP and 

BUC methods, specific metrics have been identified with 

respect to system operational cost and accuracy of generation 

mix (GM) (as in [15]), as well as accuracy of flexibility 

services (e.g., frequency response and secondary and tertiary 

up reserves) allocation (as a novel contribution of this work). 

These metrics have been selected owing to their ability to 

assess how two algorithms, for example MILP and BUC, can 

schedule energy and different types of reserves and allocate 

them to different plants. The differences between the two 

algorithms should thus emerge clearly when considering the 

metrics proposed, namely, differences in total cost, in energy 

generation share per plant type, in type of generation 

providing energy and each reserve at every time step, and in 

simulation time. All three methods are compared with each 

other to obtain information in relative terms. 

A.  Operational cost 

This metric (𝑀𝑐𝑜𝑠𝑡) is used to determine the relative 

difference of the total system operational cost between two 

methods, as in (41): 

 A  
 /

o

 

c st
total total
Method Method B

Method A B total
Method B

C C
M

C


           (41) 

B.  Generation mix 

The following metric (𝑀𝐺𝑀) is used to capture the average 

difference of energy shares in between algorithms. The energy 

share supplied by each type of conventional generator is 

calculated; then the average absolute difference of these shares 

between two algorithms is determined, as from (42). 

 

, , ,  , , , 
, ,

  /

, , ,  , , , 
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    (42) 

C.  Power and flexibility services provision 

In order to compare the performance of different simulation 

methods in terms of generation and flexibility service 

provisions, the mean deviation is calculated for power 

provision (PP) of all generation (𝑀𝑀𝑒𝑡ℎ𝑜𝑑 𝐴/𝐵𝑃𝑃 ) and flexibility 

services (𝑀𝑀𝑒𝑡ℎ𝑜𝑑 𝐴/𝐵𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠
) for all generator types and at 

each time steps. For example, Eq. (43) is used to calculate the 

relative total power output deviation: 

, ,   , ,  

 / ,

, ,  
,

s i t A s i t B
s S s SP

Method A B t T i I

s i t B
s S i I

P
p p

M Mean
p

 
 

 




 


    (43) 

 

For the flexibility services, the calculation method is the 

same, but just replacing the power output with the contribution 

of each cluster on primary frequency response (𝑓𝑖,𝑡𝑈𝑃), 

secondary reserve (𝑟𝑖,𝑡𝑆𝑒𝑐_𝑠𝑝𝑖𝑛
) or tertiary reserve (𝑟𝑖,𝑡𝑇𝑒𝑟_𝑠𝑝𝑖𝑛

). 

D.  Simulation time 

The simulation time represents the time taken by the 

optimization solver, excluding input data loading and output 

data writing processes. 
TABLE II 

CLUSTERS WITH DIFFERENT SEGMENT SIZES 

Segment 

size 

(MW) 

Number of clusters per each type of plant 

Total Coal plant  Nuclear 

plant 

CCGT  

all 3 1 1 1 

2000 5 2 1 2 

1000 8 4 1 3 

500 12 6 1 5 

250 19 10 1 8 

100 28 10 1 17 

V.  CASE STUDY DESCRIPTION 

A.  Base system description 

In order to provide a comparison of the performance of LP, 

MILP and BUC algorithms, a reduced version of the current 

Great Britain generation portfolio is modelled considering 

historical demand data [26] and wind generation data [27] 

with half-hour resolution. Most of the Great Britain power 

plant capacity information is taken from [28]. However, only 

30GW out of actual 35GW Combined Cycle Gas Turbine 

(CCGT) plant, 25 GW out of actual 30GW coal plant, and 

9.4GW nuclear plant capacity values are presented there, 

making up 62 conventional plant units. Other types of plants 

such as biomass, oil and diesel plants are omitted due to their 

relatively small capacity (2.6 GW in total) and minor 

generation contribution to the system. The Open Cycle Gas 

Turbine (OCGT) plants are considered here as a standing 

reserve provider for the tertiary up reserve and are not 

included in the simulation of the generation portfolio. The 

original demand profile has a 56.6 GW peak, but considering 

the smaller generation capacity in the model, it has been 

scaled down to a profile with a 49.7 GW peak. This reduced 

plant model has been simulated according to a classical BUC. 

The conventional power plant characteristics for different 

clusters by fuel type are shown in Table II. The nine nuclear 

power plants are clustered into one equivalent unit as it is 

assumed that they will operate as “must-run”, therefore 
without start-up or shut down actions. The different power 

plants characteristics such as start-up cost, no load cost, 

ramping rates, etc. are scaled up/down based on their 

capacities. The frequency response requirement of the system  
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TABLE III 

PROBLEM SIZE FOR ONE AND OBJECTIVE VALUE FOR THE DIFFERENT ALGORITHMS, ONE WEEK SIMULATION 

Model No. constraints No. variables No. non-zeros No. global entities  
Optimal objective 

value (£M) 

BUC 384393 337344 1625789 98784 156.320 

MILP, full size, 3 clusters 28216 23520 203333 4032 156.736 

MILP, 2000MW, 5 clusters 40980 31584 256853 6048 156.711 

MILP, 1000MW,8 clusters 60126 43680 336480 9072 156.522 

MILP, 500MW, 12 clusters 85654 59808 443520 13104 156.365 

MILP, 250MW, 19 clusters 130328 88032 630187 20160 156.336 

MILP, 100MW,28 clusters 187766 124329 876904 29232 156.327 

LP, full size,3 clusters 28216 23520 203333 0 156.144 

 

 

is fixed to 1900 MW based on National Grid regulation [29] 

and the wind and solar forecast error used for reserve 

requirement determination is obtained from [21]. The standing 

reserve provided by OCGT is fixed to 1524 GW based on 

National Grid information [30]. 

For the metric comparison, a week simulation (starting from 

2013.04.14) with half-hour time steps is considered. The 

demand pattern of this week has been chosen as having the 

least deviation from the average demand pattern of 13 weeks 

in the spring season of the year. 

B.  Case studies 

1) Size of clusters  

To assess the impact of clustering different plants of each 

type when running MILP and LP algorithms, different 

numbers of clusters have been considered based on fuel type 

and “segment size”. The total number of clusters thus range 
from 3 (units clustered based on fuel type only, as in Table I) 

to 28. In the latter case, the units have been clustered based on 

fuel type and 100MW segments; this means that plants with 

same fuel type and size in the range of 0÷100 MW have been 

clustered into one group, plants with same fuel type and 

capacity in the range 100÷200MW into another group, and so 

forth. The details of the different clusters with different 

“segment size” are shown in Table II.  

2) Renewable energy integration scenarios 

With higher RES penetration level, flexibility requirements 

(for reserves, in particular) will change; this, along with the 

different levels of energy produced by RES, will in turn affect 

the operations and utilisation levels of different generators. 

Therefore, it is important to investigate the impact of different 

RES scenarios on simulation result accuracy, particularly in 

the comparison between MILP and LP, which is the core of 

this work. Four scenarios have thus been identified (adapted 

from National Grid’s Gone Green scenario [31]): 

- Traditional system, with no RES; 

- Current system, with 11.5GW wind (8.86% energy 

penetration level) and 5GW PV (1.26% energy level); 

- 2020 system, with 21.7GW wind (16.32% energy level) 

and 6.7GW PV (1.69% energy level); 

- 2024 system, with 30.9GW wind (23.24% energy level) 

and 8.2GW PV (2.07% energy level). 

3) Scenarios with different levels of system flexibility  

To further demonstrate comparisons of MILP and LP 

models, the four RES scenarios introduced above have also 

been analysed considering three different system 

characteristics in terms of flexibility, as from below: 

- The first (“Normal”) flexibility scenario is the base case 
with characteristics given in Table I. 

- In the second (“Flexible”) flexibility scenario, the system’s 
flexibility has been changed by altering some key technical 

constraints, namely, system’s MSG, ramp rates, and 
minimum down times. In this case, following [32], the 

system’s MSG is reduced by reducing the MSG of coal 
and CCGT generators from 40% to 30%; the ramp rate of 

coal and CCGT units is increased by 66%; the minimum 

down time of coal units is reduced from 4 to 2 hours;  

- The third (“Flexible with storage”) flexibility scenario is 

the same as the second one with the addition of energy 

storage for energy balancing and secondary and tertiary 

reserve provision, which are the most likely services that 

pumped-hydro plants would provide [32]. This also means, 

in practice, that the system’s MSG is further reduced and 
its ramp rate further increased. As aforementioned, a PSPP 

has been selected as storage, with the current Great Britain 

characteristics [34], namely, 2.8 GW of installed capacity, 

and 27.6 GWh of energy volume [35], and assuming 87% 

storage discharging (turbine) efficiency and 87% storage 

charging (pumping) efficiency. The maximum percentage 

for reserve provision (𝑃𝑅𝑘𝑆𝑡𝑈𝑃) is set to 50%. 

C.  Simulation setup and problem size 

The optimization solver applied here is FICO XPRESS 7.6 

mixed-integer solver [36]. The input, output and solver setting 

are configured through MATLAB 2013a. The Mixed-Integer 

Program (MIP) Gap is set to 0.1%. The time step of simulation 

profile is half hour and the data is processed on a weekly basis 

(so as to also capture typical arbitrage operations of storage, in 

case). This results in 336 time steps in one optimization 

program. The duration of one simulation is limited to 10 

hours. The computer used in the simulation has an 8 core CPU 

with 3.7 GHz clock speed (Intel i7-3770) and 16 GB RAM. 

The number of constraints, variables, non-zeros and global 

entities (i.e., binary or integer variables) for different UC 

models before pre-solving, as well as their achieved objective 

values, are shown in Table III for a one-week simulation. It 
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can be seen that clustering similar units and using integer 

variables for the clusters of units with similar technical 

constraints (and thus similar behaviour) is an effective way to 

reduce the problem size, passing from binary to integer 

variables. This should also significantly reduce the solution 

time, as will be shown later. 

VI.  ANALYSIS OF THE RESULTS 

A.  Base case: clustering by capacity size  

The performance of the three algorithms for the base case 

(taken here as “current system” with “normal flexibility”) are 
compared for the different cluster sizes of Table II in Fig. 2 

(showing the computational speed, in logarithmic scale, of the 

different algorithms vs different cluster sizes), while Fig. 3 

shows the performance comparison according to the different 

metrics introduced in Section IV per cluster group. The values 

in the brackets in the legend in Fig. 2 and Fig.3 represent the 

total number of clusters. 

From Fig. 2, it can be noticed that the BUC simulation hits 

the predefined time constraint which is 10 hours. The 

simulation time of MILP exponentially increases with 

increasing number of clusters and reaches the simulation time 

limit when the group number of clusters increases to 8. 

However, for the first two clustering levels the MILP 

algorithm runs 35800 and 4300 times faster than the BUC 

(taking as reference the 10h of time limit that the BUC hits, 

without converging to the pre-set 0.1% gap – see also Section 

VI.D for further discussion). This confirms that clustering 

similar units and using integer variables for the clusters of 

units with similar technical constraints (and thus similar 

behaviour), besides being an effective way to reduce the 

problem size, also significantly reduces the solution time. 

Furthermore, the LP algorithm can be 3 times (for the 3-

clusters case) to 16500 times (8-clusters case) faster than 

MILP, thus showing the computational benefits of further 

relaxing integer into continuous variables.  

It can be seen from Fig. 3
3
 that all the metrics considered 

for different cluster groups feature errors smaller than 1.6% 

and the largest error occurs when comparing secondary up 

reserve between LP and MILP algorithms. The secondary up 

requirement has the largest value among all three flexibility 

services in this case. Also, the tertiary up reserve requirement 

is always higher than the requirement of secondary up reserve, 

but the former can be partially provided by standing reserve; 

that is why the spinning reserve of tertiary up reserve is 

smaller than the secondary up reserve. For the MILP, its 

performance relative to BUC generally improves with more 

clusters. In addition, it can be noticed that when the number of 

clusters increases from 19 to 28, the MILP performance 

doesn’t improve noticeably. Moreover, it is interesting to 
notice that, based on the result of the cost metric, the MILP 

gives higher total costs (by 0.004% to 0.27%) relative to 

                                                           
3 It has to be noted that, since during the simulation it was found that the 

BUC could hardly converge to the desired 0.1% MIP gap due to the size of the 

problem, in order to allow a like-for-like performance comparison and enable 

the results to converge to a uniform MIP gap the three algorithms have been 

tested on a daily simulation instead of a weekly one. More discussions on this 

aspect are also provided in Section VI.D. 

BUC
4
. This is because the BUC can commit units of smaller 

size and with wider choice relative to the units in MILP, 

which are characterised by their average capacity; hence, in 

spite of being more constrained, BUC results into cheaper 

commitment, as no-load and start-up costs can be lower. With 

regards to LP, since the online number of units is relaxed to a 

continuous value and the algorithms is less constrained, as it 

could be expected it is characterised by lower commitment 

cost relative to both MILP and BUC. In addition, the LP 

simulation maintains similar performance across different 

clustering cases when using the BUC performance as a 

benchmark (in the order of -0.15% for the cost metric, 0.5% 

for primary frequency response, 0.8% for secondary up 

reserve, and 0.35% for tertiary up reserve). In fact, the LP 

algorithm allows generators to be “partially online”, so the 

change in cluster size will not have a significant impact on the 

simulation result. Furthermore, the difference between the 

performances of MILP and LP decreases with increasing 

cluster number, as the maximum value of any metric reduces 

from 1.5% to 0.8% in this case. 

The above findings indicate that relaxing the MILP discrete 

variables to continuous ones (making the problem an LP one), 

as proposed here, can result into substantial computational 

efficiency gain without losing significant accuracy in the 

results relative to a full BUC. These benefits may be of high 

value in many cases, particularly when running strategic 

flexibility studies for large scale systems and long temporal 

horizons. Hence, in order to explore more the robustness of 

the MILP-to-LP relaxation, more studies are discussed below. 

 
Fig. 2. Computation time of LP and MILP with different clusters and BUC: 

annual simulation on a weekly basis, “current system” with “normal 

flexibility”. 

B.  Algorithm comparison for different RES scenarios  

As aforementioned, increasing the number of clusters 

reduces the differences between MILP and LP. Therefore, in 

order to be conservative in the comparison between a relaxed 

LP and a “non-relaxed” MILP, only the “worst case” with 

three clusters (by fuel type) is considered below
5
. On the other 

hand, the 3-cluster LP model also proves to be very close to a 

full BUC in terms of performance, within 0.8% in any metric 

value, as from Fig. 3. 

                                                           
4 However, it has to be noticed that since a 0.1% MIP gap has been used, 

this is the highest accuracy that is meaningful in the comparisons carried out 

by means of the cost metric.   
5 However, although the details are not shown here for brevity, our further 

studies indicate that other cluster sizes would bring similar results and trends 

as in Fig. 3.  
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Fig. 3. Value of metrics in the simulations of LP and MILP with different clusters and BUC: week simulation on a daily basis, “current system” with “normal 

flexibility”. 

 
Fig. 4. Value of metrics in the simulations of LP and MILP with three generation clusters and BUC: weekly simulation on a daily basis, at different RES 

penetration levels with “normal flexibility”. 

The values of the considered metrics for different RES 

penetration scenarios are shown in Fig. 4. The results 

generally indicate that the error increases with the RES 

penetration. This increase is particularly evident in the 

secondary and tertiary reserve metrics, since their 

requirements are also increasing with the renewable 

penetration level. Again, the highest error is incurred for 

secondary up reserve at the 30.9 GW wind capacity case, 

which gives around 2.2% error between LP and MILP. On the 

other hand, increasing RES penetration only causes minor 

increase on the output power deviation and generation output 

assessment, with these metrics staying within 0.15%. 

As a key finding, it can be noticed that the LP gives a better 

or similar performance relative to MILP across all the metrics 

at different RES penetration levels, if using the BUC as 

benchmark. Therefore, again these studies suggest that there is 

only a minor loss of accuracy in adopting the proposed relaxed 

LP as opposed to a commonly used clustered MILP for the 

purposes of assessing flexible system operation, while creating 

noticeable benefits by reducing the required computational 

time. 

C.  Analysis of different scenarios of system’s flexibility 

Further studies have been run to specifically compare the 

performance of LP and MILP approaches, again with three 

clusters. As a result, the cost, primary frequency response and 

secondary up reserve metrics are shown in Figs. 5, 6 and 7, 

respectively, for all combinations of RES and flexibility 

scenarios. These three metrics have been selected since the 

cost metrics is the most indicative for system operation, while 

the previous studies have shown that the other two metrics 

typically had the largest value. The simulation timeframe has 

been set to one week, which is also the typical maximum 

cycling period for the PSPP storage size considered here.  

The results illustrate how the values of all three metrics 

generally decrease with increasing flexibility of the system 

(meaning that MILP and LP get closer to each other in terms 

of performance). In particular, in Fig. 7 the worst case of the 

cost metric occurs for the 2024 scenario, with the metric’s 
absolute value decreasing from 0.46% to 0.28% when the 

plants become more flexible and then further to 0.2% for the 

case with storage. For the primary frequency response, as it 

can be seen in Fig. 8, the metric value does not vary 

noticeably when increasing the plants’ flexibility, and stays in 
the order of 1.3%÷1.4% across different RES scenarios. 

However, when including storage, the value of the metric is 

slightly reduced to 1.07%÷1.16%. A similar trend can be seen 

in Fig. 9 in terms of secondary up reserve. For example, the 

metric in the 2024 system decreases from 2.25% to 1.89%. It 

is also of interest to notice that, for each metric, the 

differences across RES scenarios for the “Flexible plants with 

storage” case tends to be lower than in the other two 
flexibility scenarios. In fact, storage increases system 

flexibility, which in turn supports RES integration, and as a 

result the two algorithms get closer to each other. This is also 

consistent with the results of Fig. 3, whereby with an increase 

in flexibility (which in Fig. 3 can be associated to an increase 
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in number of MILP clusters) the LP and MILP algorithms 

perform closer to each other.  

It is also interesting to highlight that while the system 

becomes more flexible, relevant savings in operational costs 

may be associated to the “value of flexibility”. In this respect, 
when using MILP, the total system costs between “normal 
plants” and “flexible plants with storage” decrease by 1.9% (in 
the “traditional system”) to 3% (in the “2024 system”). On the 
other hand, the results in Fig. 5 indicate that MILP and LP 

perform extremely close to each other (with a difference in 

assessing the value of flexibility in the order of 2÷3%). Hence, 

considering that MILP algorithms are widespread for 

flexibility studies, it can be said once again the proposed 

relaxed LP algorithm (which is the focus of our work) can also 

be very effective to quantify the economic value of flexibility, 

especially in scenario and planning studies. 

 

 
Fig. 5. Value of cost metric in the simulations of LP and MILP with different 

RES scenarios and system’s flexibility characteristics, weekly simulation. 

 

Fig. 6. Value of primary frequency response metric in the simulations of LP 

and MILP with different RES scenarios and system’s flexibility 
characteristics, weekly simulation. 

 
Fig. 7. Value of secondary up reserve metric in the simulations of LP and 

MILP with different RES scenarios and system’s flexibility characteristics, 

weekly simulation. 

D.  Analysis and discussion of the computational time 

requirements 

The computational time requirements of the LP model 

(with three clusters) for the simulation of the Great Britain 

power system’s annual operation keep in the order of 15 

seconds across the multiple scenarios with different RES 

penetration and flexibility cases. The simulation duration 

increases slightly (in the order of a few seconds) when storage 

is also considered, as this adds more constraints to system 

operation. 

In the case of the MILP model (with three clusters), the 

computational time in the “normal flexibility” case increases 

from 45 seconds in the traditional system to 835 seconds in the 

2024 system scenario. In the scenario when plants become 

more flexible the computational time reduces, by in the order 

of 10% for traditional system to 70% for 2024 system. 

However adding storage again increases the computational 

time, similarly to LP, due to a larger number of constraints in 

the problem. In general, the ratio of computational time 

between MILP and LP across multiple scenarios ranges 

between about 3 times (for the case of “traditional system” 

with “normal plants”) and about 50 times (for the case of 

“2024 system” with “normal plants”) in favour of LP. 

As a further point to highlight, it was shown in Fig. 3 how 

the computational time ratio between LP and MILP increases 

with larger number of clusters. This result is consistent with 

the fact that with larger number of clusters MILP becomes 

more and more similar to BUC, with an increasing number of 

discrete variables. On the other hand, the number of 

constraints and variables in the LP problem increase too, but 

the problem keeps being fully linear and therefore relatively 

easier to solve. Although the computational comparison across 

scenarios is based on the 3-cluster model, as the one with the 

largest error between LP and MILP, our further studies 

confirm that simulating more clusters would favour LP even 

more in terms of computational time required, in line with the 

general trend shown in Fig. 3 and Fig. 4. 

In order to further investigate computational time issues 

and the ability of MILP and BUC to converge to the pre-set 

MIP gap, additional simulations for all three algorithms and 

clustering approaches have been conducted. In particular, Fig. 

8 illustrates the simulation time for a weekly simulation in the 

base scenario, for a number of LP and MILP clusters as well 

as for BUC, along with the remaining MIP gap in those cases 

when time limit was reached for the MILP and BUC 

algorithms. Furthermore, the figure now also demonstrates the 

performance of the different algorithms and clustering 

approaches with respect to a further dimension of problem 

complexity, namely, the number of reserves used in the 

simulations. In fact, considering multiple reserves is critical to 

properly addressing flexibility issues, but may become 

computationally onerous for larger clusters. To confirm this, 

different cases named “single reserve”, “two reserves” and 
“full reserves” have been run: “single reserve” means that only 
one reserve type is considered, which can be either primary, 

secondary or tertiary reserve; in the “two reserve” cases, three 
combinations are analysed combining the reserves in groups 

of two, i.e., primary and secondary, primary and tertiary, and 

secondary and tertiary
6; finally, the “full reserves” cases mean 

                                                           
6 For simplicity, in order to show the results in a compact form and due to 

space reasons, the values reported in Fig. 8 represent the average 

computational time of the three reserves (in the “single reserve” cases) or of 
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that all three reserve types are included in the algorithm, 

which are also the general formulation and case studies 

considered above in the paper
7
.  

The results in Fig.8 indicate that increasing the number of 

reserves leads to longer average computational time. For 

example, in the “8 clusters” scenario the MILP algorithm 
takes 16600, 25000 and 36000 seconds for the “single”, “two” 
and “full” reserve cases, respectively, with 36000 seconds 
(=10h) hitting the time limit with a remaining MIP gap equal 

to 0.17%. Likewise, the BUC algorithm converges in about 

26600 seconds on average in the “single reserve” case, but hits 
the pre-set simulation time limit of 10h with a remaining MIP 

gap of 0.19% and 0.49% in the “two reserves” and “full 
reserves” cases, respectively8

. Hence, the results from Fig. 8 

clearly show how considering multiple reserves can 

substantially increase the problem complexity and capability 

and speed of the solver to converge to a solution within the 

pre-set gap, while many of the UC algorithms that are used for 

different studies and particularly flexibility ones often only 

use one or at most two reserves. On the other hand, as 

demonstrated above in the paper, the proposed relaxed LP 

algorithms manages to perform very close to and (much) faster 

than MILP and BUC when providing “full reserves”, which 
further strengthens the contribution of this work. 

Since the BUC algorithm and MILP algorithms with high 

number of clusters may not converge within the given time 

cap when adopting two or three reserves, additional analyses 

for a smaller problem (in terms of fewer simulation time 

steps), namely, simulation of one day, are shown in Fig. 9 for 

LP and MILP for different number of clusters as well as BUC. 

The results once again support the previous findings of the 

paper. For a single day analyses all three models converge to a 

uniform MIP gap of 0.1% within the computational time limit. 

The performance of LP compared to MILP in terms of 

computational time is in line with similar results on a weekly 

basis (Fig. 2 and Fig. 3). The simulation times of LP 

algorithms are between 0.19 and 2.32 seconds across different 

clustering methods, and then increase to in a range of 0.25 to 

362 seconds in the MILP cases and further to 3090 seconds in 

BUC case. The computational time difference between MILP 

and BUC (besides LP) algorithms can thus now also be fully 

appreciated. 

                                                                                                     
the three reserve combinations (in the “two reserve” cases). Generally 

speaking, the different algorithms are slower when using primary reserves 

than when using secondary and in turn than when using tertiary, and this trend 

becomes more evident with increasing number of clusters. 
7 Regarding the modification of relevant constraints in the problem 

formulation when considering different number of reserves, if a specific 

reserve type is not considered then its relevant variable is to be set to zero for 

all considered simulation time steps. More specifically, Eq. (16) is neglected 

when primary frequency response is not considered. Ramping constraints (20) 

and (21) are discarded in the cases without secondary reserve. Similarly, Eqs 

(31) and (32) are excluded when tertiary reserve is not considered. In addition, 𝑓𝑖,𝑡𝑢𝑝
 is eliminated from (17) if the primary frequency response is not 

considered; 𝑟𝑖,𝑡𝑆𝑒𝑐_𝑠𝑝𝑖𝑛
 is taken out from (17) and (22), for the cases without 

secondary reserve; and 𝑟𝑖,𝑡𝑇𝑒𝑟_𝑠𝑝𝑖𝑛
 is neglected in Eqs (17) and (22) for the cases 

without tertiary reserve. 
8 In this respect, again it can be seen and somehow quantified how BUC 

“takes longer” than MILP, as even when neither algorithm converges the gap 
for BUC is still larger than for MILP. 

 
Fig. 8. Computational time and optimality gap of LP and MILP with 3, 5 and 

8 clusters and of BUC: weekly simulation, “current system” with “normal 
flexibility” and different reserve numbers. 

 
Fig. 9. Computational time of LP and MILP with different clusters and BUC: 

daily simulation, “current system” with “normal flexibility” and full reserves. 

VII.  CONCLUSIONS 

In this paper, we have introduced a flexibility-oriented 

unified formulation that can seamlessly model binary (BUC), 

MILP and LP unit commitment approaches by representing 

the generating plants’ commitment variables as binary, integer 
or continuous values, respectively. In particular, it has been 

shown how an LP algorithm can be modelled within the 

proposed formulation by simply relaxing the variable 

representing the online units from integer (MILP) to 

continuous for different generators’ clustering levels of the 

MILP representation. Frequency response and reserve services 

and all relevant constraints have been explicitly considered, 

and the flexible and inflexible “components” of the UC 
problem formulation have been highlighted.  

The performance of the three methods (BUC as well as 

MILP and LP with different clustering levels) have been 

compared through different metrics specifically introduced, 

namely, performance metrics such as relative differences in 

system’s operational cost, power output composition per 

cluster, and allocation of flexibility services (primary 

frequency response, secondary and tertiary up reserves) per 

cluster, as well as computational efficiency. To demonstrate 

the proposed approach, several case studies have been run 

considering a 62-unit reduced version of the Great Britain 

power system. In the considered base case, the MILP UC can 

perform 4300 to 35800 faster than BUC when using the 

smaller number of clusters, but reaches the pre-set time 

constraint when the number of clusters increases to 8. On the 

other hand, the LP UC can perform tens to thousands times 

faster than MILP across the 3 to 28 cluster cases. All 

performance metrics stay within around 1.5%, and increasing 

the number of clusters does not generally give much 
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improvement in terms of results for LP cases (relative to 

BUC) but improves the MILP performance. Furthermore, for 

different RES penetration scenarios (run for a conservative 3-

cluster case), the maximum difference in results between the 

LP and MILP algorithms is confined to 2.2% for any 

performance metric. This difference also decreases when the 

system becomes more flexible, making the generating units 

more flexible and then further adding storage to the system. 

On the other hand, the LP always brings substantial 

computational gains, running about 3 to 50 times faster than a 

MILP, depending on the scenario. The complexity of the 

different models when considering different types of reserve 

services has also been investigated in detail, also quantifying 

the optimality gap of MILP and BUC algorithms when the 

pre-set gap could not be reached within the defined time limit 

was also investigated in detail. In addition, the computational 

performance of LP, MILP and BUC for a smaller case study 

(one-day simulation) has also been analysed, confirming the 

trends found for larger scale cases. 

The results of this work generally indicate that the 

proposed relaxed LP UC approach, in case with low level of 

clustering, can be used instead of popular MILP UC 

approaches for strategic flexibility analysis for large systems 

with long time horizons and simulations, with minor (and in 

many cases negligible) loss of accuracy in the different 

metrics considered, while gaining noticeable computational 

speed. Hence, LP UC algorithms could be particularly suitable 

for time-consuming flexibility studies that might for instance 

entail scenario analysis or Monte Carlo/stochastic simulations, 

as well as for planning purposes. On the other hand, given the 

complexity of the issues discussed, the specific results might 

also be affected by the solver choice, solver settings and 

details of the problem formulation, and more research is 

needed to comprehensively address these points. 

Work in progress aims at incorporating demand side 

resources in the analysis in a more comprehensive and 

systematic way, in particular for provision of reserves. 
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