
Unified Versioning through Feature Logic

Andreas Zeller and Gregor Snelting

Informatik-Bericht No. 96-01
Überarbeitete Fassung, 15. Februar 1997

Copyright c
�

1997 Institut für Programmiersprachen und Informationssysteme
Abteilung Softwaretechnologie

Technische Universität Braunschweig
Bültenweg 88

D-38092 Braunschweig/Germany

Distribution Notice

This paper has been submitted for publication elsewhere. It has been published as a technical report for early
dissemination of its contents. As a courtesy to the intended publisher, it should not be widely distributed until
after the date of outside publication.

To appear in ACM Transactions on Software Engineering and Methodology 6(3), July 1997

Unified Versioning through Feature Logic

Andreas Zeller and Gregor Snelting∗

Technische Universität Braunschweig, Germany

Abstract

Software Configuration Management (SCM) suffers from tight coupling between SCM ver-
sioning models and the imposed SCM processes. In order to adapt SCM tools to SCM processes,
rather than vice versa, we propose a unified versioning model, the version set model. Version
sets denote versions, components, and configurations by feature terms, that is, boolean terms
over (feature: value)-attributions. Through feature logic, we deduce consistency of abstract con-
figurations as well as features of derived components and describe how features propagate in
the SCM process; using feature implications, we integrate change-oriented and version-oriented
SCM models. We have implemented the version set model in a SCM system called ICE for
Incremental Configuration Environment. ICE is based on a featured file system (FFS), where
version sets are accessed as virtual files and directories. Using the well-known C Preprocessor
representation, users can view and edit multiple versions simultaneously, while still only the
differences between versions are stored. It turns out that all major SCM models can be realized
and integrated efficiently on top of the FFS, demonstrating the flexible and unifying nature of
the version set model.

Categories and Subject Descriptors: D.2.6 [Software Engineering] Programming envi-
ronments; D.2.7 [Software Engineering] Distribution and Maintenance—version control;
D.2.9 [Software Engineering] Management—software configuration management; program-
ming teams; D.4.3 [Operating Systems] File Systems Management; I.2.3 [Artificial Intelli-
gence] Deduction and theorem proving; I.2.4 [Artificial Intelligence] Knowledge representa-
tion formalisms and methods

General Terms: Management, Theory, Standardization

Additional Key Words and Phrases: Feature logic, Version sets

1 Introduction

Software Configuration Management, or SCM for short, is the discipline for controlling the evolution
of software systems. SCM encompasses general configuration management procedures [21, 22] like
identification of components and structures, control of changes and releases, status accounting, or
audit and review, as well as software-specific tasks [12] like manufacture, process management,
and team work. SCM is one of the basic prerequisites for process improvement, stipulated by the
ISO 9000 standard or the SEI capability maturity model, and thus attracts more and more attention
from professional software development.

∗This article is a revised and extended version of a paper [64] presented at the Fifth European Software Engineering
Conference, Sitges, September 1995. Early descriptions of the revision and workspace concepts (sections 4.1 and 4.3)
were presented in [60]. The featured file system (sections 5.2 and 5.3) was first discussed in [61].
This work was supported by the Deutsche Forschungsgemeinschaft, grants Sn11/1-2 and Sn11/2-2.
Authors’ address: Technische Universität Braunschweig, Abteilung Softwaretechnologie, Bültenweg 88, D-38092 Braun-
schweig, Germany; email: {zeller, snelting}@ips.cs.tu-bs.de; http://www.cs.tu-bs.de/softech/.

1

SCM Policy

SCM Protocol

SCM Primitives

Version Set Model

Featured File System

ICE Task Tools

SCM Foundation

ICE Process Tools
Quality assurance, SCM Process, etc.

Transactions, Workspaces, etc.

Tool primitives, Operating system operations, etc.

Unified SCM model Based on feature logic

Transparent version set access

Realize specific SCM procedures

Realize specific SCM process

Figure 1: A federated SCM architecture, as proposed in [8] (left) and as realized in ICE (right)

As all configuration items are accessible on-line, SCM is typically supported and enforced by
automated SCM tools and systems. The early days of SCM were characterized by dedicated SCM
tools like SCCS [43] or RCS [55] (revision and change control); CPP, the C preprocessor [23] (variant
control); or MAKE [17] (manufacture). These days, a new generation has emerged, represented
by SCM systems like ADELE [15], EPOS [19], or CLEARCASE [31]. These systems provide and
integrate support for all SCM aspects through federated SCM system architectures [8], as illustrated
in figure 1: a primitive layer provides basic versioning and access capabilities, a protocol layer
realizes SCM tasks and procedures, and a policy layer implements organization-specific standards.

Today, several SCM vendors compete with each other by means of an ever-growing number of
product features. This has the benefit that users can choose between a large number of SCM systems,
each with an individual set of features [10]. Despite these advances, SCM systems still suffer from
three deficiencies:

Lack of ambiguity tolerance. SCM systems generally provide poor support for treating several
items at once. This includes lack of support for manipulating and identifying permanent vari-
ants [33], change propagation across several versions at once [36], or consistency checking in
abstract (ambiguous) configurations [47].

Lack of process flexibility. SCM systems are frequently used to enforce a specific software
process. Unfortunately, nearly every SCM system relies on its own predefined and inflexi-
ble product life cycle [14]; at least four diverging SCM models have been identified, each
imposing a different SCM process [16]. This is pretty far away from the ideal that a SCM
system should adapt to an organization’s process.

Lack of system integration. Already at the SCM primitive layer, there is considerable disagree-
ment about versioning models [9]. Consequently, the SCM layers are not interchangeable,
resulting in SCM systems that neither interoperate nor integrate. Furthermore, the basic layers
constrain higher layers: flexibility decreases the higher the layer considered [56].

In this paper, we propose to resolve these deficiencies through a unified SCM versioning model
as common SCM foundation. Our version set model integrates the common SCM models, increases
flexibility at the protocol and policy layers, and tolerates ambiguity at all levels. Version sets are sets
of objects (typically software components), characterized by a feature term—a boolean expression
over (feature: value)-attributions denoting common and individual version properties, following the

2

Figure 2: Exploring the configuration space with the ICE file/configuration browser

SCM convention to characterize objects by their attributes. Version sets generalize well-known
SCM concepts such as components, repositories, workspaces, variant sets, or revision histories.
Using feature logic, intersection, union, and complement operations on version sets are realized
in order to express and generalize the semantics of SCM models. Through feature unification, a
constraint-solving technique, we can determine whether version sets exist, ensuring consistency of
configurations and inferring necessary steps for their construction.

We have implemented the version set model in a SCM system, called ICE for Incremental Config-
uration Environment. ICE integrates within software development environments through its featured
file system (FFS), where version sets are represented as files and directories. Arbitrary programs can
access version sets and realize version operations through file manipulations. Through specialized
configuration browsers, as shown in figure 2, users can incrementally explore the configuration
space and have ICE deduce consistency even for incomplete configurations. Using the well-known
CPP representation, users can view and edit multiple versions simultaneously, while still only the
differences between version sets are stored. All four major SCM models can be realized and inte-
grated on top of the FFS, demonstrating the unifying nature of the version set model.

This paper is organized like the federated SCM architecture shown in figure 1. We begin at
the lowest SCM layer by motivating and presenting feature logic as a formal SCM foundation. Sec-
tion 3 introduces the version set model and shows how primitive SCM concepts are modeled through
version sets. In section 4, we discuss the modeling of advanced SCM concepts such as change im-
plications and workspaces, required for the SCM protocol layer. In section 5, we turn to practical
aspects and demonstrate how the FFS realizes the SCM primitive layer through transparent version
set access. In section 6, we treat the SCM protocol layer and demonstrate the realization of SCM
protocols on top of the FFS. Section 7 discusses performance and complexity issues, treating the in-
tegration of SCM protocols. We close with a summary and suggestions for future work in section 8.

3

2 Feature Logic

Most of the existing SCM literature is product-oriented, describing and evaluating a set of SCM
concepts as realized in some specific implementation. We think that this view hinders a deeper
understanding of SCM concepts, as the concept in question cannot be separated from its implemen-
tation. In order to support a large variety of SCM versioning concepts, we must thus abstract from
specific SCM products and turn towards a more fundamental treatment—still keeping the higher
SCM layers in mind.

2.1 A SCM Foundation

The formal foundation we have chosen for capturing SCM versioning concepts is called feature
logic. Feature logic denotes sets of objects by their properties and provides elemental set operations
to manipulate these sets. In our SCM domain, we use feature logic to denote sets of components by
their features and to describe the semantics of SCM operations.

So, why did we use feature logic as a formal foundation? Relying on the three SCM deficiencies
as stated in the introduction, we identified three key elements of such a foundation.

First foundation: Sets. Ambiguity tolerance imposes the necessity to treat sets of versions and
configurations as first-class objects. SCM procedures thus should be set-oriented rather than
item-oriented, as manipulating sets generalizes manipulating items. For instance, editing a
set of versions or checking a set of configurations for consistency subsumes editing a single
version or examining a single configuration.

Second foundation: Attributes. Attribution is one of the few techniques common to the whole
SCM area: all known SCM models rely on that either versions or changes be tagged with
attributes. Identification and selection schemes should be attribute-based; attribution support
includes a description of how attributes propagate in the SCM process, such that composed
and derived objects can be identified.

Third foundation: Unification. The usual selection process in SCM systems consists of determin-
ing the objects whose attributes are consistent with those of a specific environment. Typically,
objects are described by a conjunction of attribute values and the environment by an attribute
expression; but the inverse scheme is also found, as in CPP. In order to encompass both
schemes, selection and identification should both rely on attribute expressions, unifying at-
tribute expressions instead of matching attribute expressions against a conjunction of attribute
values.

There are several formalisms that denote sets of objects by their attributes, subsumed under
the term description logics or terminological logics. Their most important domains are the areas
of knowledge representation, where concept descriptions, also called frames [7, 37, 38], are used
to represent sets of objects by attribute/value combinations, and the semantic analysis of natural
language [25, 27, 49].

In programming languages, attribute/value combinations are used in record structures. Aït-Kaci
was the first to study such structures mathematically, calling them ψ-terms [2]. The resulting ψ-
term calculus is the formal foundation of the programming languages LOGIN [3] and LIFE [4],
which are similar to PROLOG, but use feature unification [51] instead of syntactic unification. In
contrast to several description logics, attributes in ψ-terms are functional : they can have only one
value. This is convenient, since objects can be identified by some unique attribute value.

4

ψ-terms have been successfully applied in the context of SCM, notably in the CAPITL sys-
tem [1]. CAPITL uses a variant of LOGIN, called CONGRESS, to denote the attributes of compo-
nents and tools and to describe how these attributes propagate from source components to derived
components. As CAPITL is also among the most advanced and well-founded SCM systems in terms
of building and attributing derived components, descriptions like ψ-terms seem ideal candidates for
a unified SCM versioning model—the more as they have been successfully used in SCM systems.
Unfortunately, in ψ-terms, only conjunctions of attribute/value combinations are allowed; negations
or disjunctions are not supported. This restriction would severely constrain SCM identification and
selection schemes.

There is an alternative candidate for a SCM foundation that does not suffer from these restric-
tions. Boolean operators from first-order logic are used in several SCM selection schemes [39, 15,
19, 58, 33]; first-order terms may also be used for identification purposes, using deduction tech-
niques such as boolean unification [34] to match identification and selection terms. The problem
with first-order logic is that it is far too general; it lacks the central property of being attribute-
oriented. This implies that all SCM functionality like selection through attributes, attribute propaga-
tion, or inheritance of abstract configurations requires explicit formalization using first-order axioms
and rules.

For a formal SCM foundation, we need the best of three worlds: the boolean operators and
quantifications of first-order logic, in order to express identification and selection schemes, the
attribute-oriented formalisms from description logics, denoting how attributes propagate in the SCM
process, and the functional attributes ofψ-terms, as they uniquely identify objects by their attributes.
Such a logic does exist: Feature logic, as defined by Smolka [50], is a well-founded description logic
that includes quantification, disjunction, and negation over functional attribution terms, forming a
full boolean algebra.

2.2 Feature Logic in a Nutshell

We begin with an informal overview of feature logic. A feature term denotes a set of objects
characterized by certain features. A feature is a functional property or attribute of abstract objects.
In their simplest form, feature terms consist of a conjunction of (feature: value)-pairs, called slots,
where each feature represents an attribute of an object. Feature values include literals, variables,
and (nested) feature terms.

As an example, consider the following feature term T , which expresses the linguistic properties
of a natural language fragment:

T =

tense: present,
predicate: [verb: sing, agent: x,what: y] ,
subject: [x, num: singular, person: third] ,
object: y

This term says that the language fragment is in present tense, third person singular, that the agent of
the predicate is equal to the subject, and so on: T denotes the sentence template “x sings y”.

The syntax of feature terms is summarized in table 1, where we denote variables by x , y, z;
features by f , g, h; constants by a, b, c; and feature terms denoted by S and T .1 Feature terms
are constructed using the well-known boolean set operations intersection, union, and complement.

1Smolka [50] writes ∼S as ¬S, S = T as S ∼ T , and S v T as S
�

T . Implications and equivalences do not occur
in [50]; they are simple syntactical extensions whose equivalence to simpler operators is shown in proposition 1.

5

Notation Name Interpretation
> (also []) Top Universe
⊥ (also {}) Bottom Empty set; Inconsistency
a Atom Singleton set containing a
x Variable
f : S Selection The value of f is in S
f : > Existence f is defined
f ↑ Divergence f is undefined
f ↓ g Agreement f and g have the same value
f ↑ g Disagreement f and g have different values
∼S Complement S does not hold
S u T (also [S, T]) Intersection Both S and T hold
S t T (also {S, T }) Union S or T holds
S → T Implication If S holds, then T holds
S ↔ T Equivalence S holds if and only if T holds
∃x(S) Quantification There is an x such that S holds

Table 1: The syntax of feature terms

Each of these set operations may also be interpreted as logical constraint on the object features,
representing the set of objects satisfying this constraint. For instance, let S = [f : a], the set of all
objects whose feature f has the value a, and T = [g: b], the set of all objects whose feature g has
the value b. Then, S u T = [f : a, g: b] is the intersection of [f : a] and [g: b], namely the set of
objects whose feature f is a and whose feature g is b. Similarly, S t T = { f : a, g: b} is the union
of [f : a] and [g: b]—that is, the set of objects whose feature f is a or whose feature g is b. As
feature terms form a boolean algebra, all boolean transformations like distribution, de Morgan’s law
etc. hold for feature terms as well.

Sometimes it is necessary to specify that a feature exists (i.e. is defined, but without giving
any value), or that a feature does not exist in a feature term. This is written f : > resp. ∼ f : >
(abbreviated as f ↑). The possibility to specify complements greatly increases the expressive power
of the logic. For example, the term ∼[compiler: gcc] denotes all objects whose feature compiler is
either undefined or has another value than gcc. The term [compiler: ∼gcc] denotes all objects whose
feature compiler is defined, but with a value other than gcc.

A feature term can be interpreted as a representation of the infinite set of all ground (variable-
free) terms T ′ which are subsumed by the original term T (that is, T w T ′). Subsumed terms
are obtained by substituting variables or adding more features. Feature terms thus always allow
for further specialization, like classes in object-oriented models. For instance, > w [fruit: x] w

[fruit: apple] w [fruit: apple, color: green] w [fruit: apple, color: green,wormy: no], and so on.

Atoms like apple, green, or gcc denote singleton sets containing some unique object without
any features; the equivalences a u b = ⊥ and a u f : > = ⊥ hold for all atoms a, b and for any
feature f . This leads to a simple consistency notion: As feature logic assumes that each feature
can have only one value, the term [os: dos, os: unix] is equivalent to ⊥, the empty set; formally,
[os: dos, os: unix] = [os: [dos, unix]] = [os: ⊥] = ⊥ holds. Terms which are equivalent to ⊥ are
called inconsistent. Through feature unification [50], a constraint-solving technique, one can de-
termine consistence of arbitrary feature terms. For terms without unions and complements, feature

6

unification works similar to classical unification of first-order terms; the only difference is that sub-
terms are not identified by position (as in PROLOG), but by feature name. Adding unions forces
unification to compute a (finite) union of unifiers as well, whereas complements are usually handled
by constraint solving (similar to negation as failure).

2.3 Properties of Feature Terms

We now give some properties of feature terms. Two feature terms S and T are called equivalent
(written S =

�
T or S = T where unambiguous) if they denote the same set of objects for every

interpretation.2 Using equivalence, most of the introduced feature term forms are redundant and
may be reduced to six primitive forms.

Proposition 1 Every feature term can be rewritten in linear time to an equivalent feature term con-
taining only the forms a, x , f : S, S u T , ∼S, and ∃x(S) by using the following equivalences [50]:

f ↑ = ∼(f : >) ⊥ = x u ∼x
f ↓ g = ∃x(f : x u g: x) > = ∼⊥

f ↑ g = ∃x(f : x u g: ∼x) S t T = ∼(∼S u ∼T)
S → T = ∼(S u ∼T) S ↔ T = ∼(S u ∼T) u ∼(T u ∼S)

A feature term is called closed if it has no free variables. A feature term is ground if it has no
variables, agreements, or disagreements. A feature term is quantifier-free if it contains no quantifi-
cations ∃x(S). A feature term is basic if it is quantifier-free, contains no implications, and contains
only complements of the from ∼a or ∼x . A feature term is simple if it is basic and contains no
unions. A feature term is in disjunctive normal form (DNF) if it has the form S1 t · · · t Sn, where
all S1, . . . , Sn are simple feature terms. Two feature terms are called orthogonal if have no common
features or variables.

Proposition 2 Every quantifier-free feature term can be rewritten in linear time to an equivalent
basic feature term by using the following equivalences [50]:

∼ f : S = f ↑ t f : ∼S ∼⊥ = >

∼ f ↑ = f : > ∼> = ⊥

∼ f ↑ g = f ↑ t g↑ t f ↓ g ∼(S u T) = ∼S t ∼T
∼ f ↓ g = f ↑ t g↑ t f ↑ g ∼(S t T) = ∼S u ∼T

∼∼S = S S → T = ∼S t T
S ↔ T = (∼S t T) u (∼T t S)

A feature term S is said to be included or subsumed by a feature term T (written S v T or
T w S) if the set denoted by S is a subset of the set denoted by T under every possible interpretation.

Proposition 3 Let
�

be the set of feature terms, as defined above. Then (
�
,t,u,∼,⊥,>)/=

�
is

a boolean algebra.
�

and subsumption constitute a subsumption lattice (
�
,v)/=

�
with a supre-

mum of S t T and an infimum of S u T for all S, T ∈
�

.
Proof. As follows from definitions, all properties required for boolean algebras (commutativ-
ity, associativity, idempotency, absorption, distribution, etc.) apply under the equivalence =

�
.

(
�
,v)/=

�
being a subsumption lattice follows from (

�
,t,u,∼,⊥,>)/=

�
being a boolean al-

gebra [62]. �

2The interpretation of feature terms is formally defined in [50].

7

2.4 Consistency

We now discuss the notion of consistency, stating whether feature terms denote empty sets, and
devise algorithms that decide consistency. A feature term S is called coherent or consistent if there
is an interpretation such that the denoted set is non-empty. A feature term is called incoherent or
inconsistent if it is not consistent.

Proposition 4 Consistency, subsumption, and equivalence of feature terms are linear-time re-
ducible to each other [50]:

S inconsistent ⇔ S v ⊥ ⇔ S = ⊥

S v T ⇔ S u ∼T inconsistent

S = T ⇔ S v T ∧ T v S

Proposition 5 Deciding inconsistency, subsumption, and equivalence of quantifier-free feature
terms are co-NP-complete problems [50].
Proof. Follows from the satisfiability problem of propositional logic, as shown in [50]. �

For quantifier-free feature terms, Smolka has devised an algorithm that decides the inconsistency
of arbitrary quantifier-free feature terms. The basic idea behind this so-called feature unification is
that the feature term S is transformed into DNF S = S1tS2t· · ·tSn; consistency of each conjunct Si

can then be determined using a quadratic-time algorithm.

Proposition 6 Deciding inconsistency of simple feature terms is of quadratic time complexity [50].

As transformation of non-simple feature terms to DNF is NP-complete, time complexity of
Smolka’s algorithm is exponential in the worst case, complying with proposition 5. It is thus un-
suitable for practical problems as soon as the feature terms exceed a certain size.

By imposing certain conditions upon feature terms, time complexity of feature unification can
be dramatically reduced. In proposition 6, we have already seen that deciding consistency of a
simple feature term can be decided in quadratic time. The unification problem can be broken down
even more for terms of the form S u T . First, if S and T are orthogonal, S u T is consistent iff S
and T are consistent.

Proposition 7 Let S and T be orthogonal. Then, S u T = ⊥ ⇔ S = ⊥ ∨ T = ⊥ holds.
Proof. Via algebraic induction over S and T ; there can be no intersection of primitives that would
lead to inconsistency [62]. �

Another efficient algorithm is obtained using principles of partial evaluation [24]. We observe
that the unification problem S u T = ⊥ is much simplified if T is a simple feature term of the form
T = T1 u T2 u · · · u Tn: for each primitive Ti , we can check whether S u Ti = ⊥ in linear time
by (syntactically) comparing Ti with the primitives from S and thus deduce inconsistency. This
proposition holds only if S and T are variable-free.

8

Proposition 8 Let S and T be consistent and variable-free feature terms; let T also be simple and S
be in basic form. S u T is inconsistent iff S u T can be rewritten to ⊥ using the equivalences

S u (T1 u T2) = (S u T1) u T2 S u ⊥ = ⊥ f ↑ u f : T = ⊥

(S1 u S2) u T = (S1 u T) u (S2 u T) ⊥ u T = ⊥ f : S u f ↑ = ⊥

(S1 t S2) u T = (S1 t T) u (S2 t T) f : S u a = ⊥ a u b = ⊥

f : S u f : T = f : (S u T) a u f : T = ⊥ ∼a u a = ⊥

f : ⊥ = ⊥ a u ∼a = ⊥

(1)

Proof. The first four equivalences in (1) handle union, intersection, and selection operators; the
remaining equivalences identify all combinations of primitives that might lead to inconsistency.
Correctness follows from algebraic induction over S and T [62]. �

Proposition 9 Let S and T be consistent and variable-free feature terms; let T also be simple. Then,
inconsistency of S u T can be decided in time complexity

�
(s · log t), where s is the number of

primitives in S and t is the number of primitives in T .
Proof. According to proposition 2, the term S can be rewritten to basic form in linear time, such
that proposition 8 applies. Complexity follows from the fact that in the worst case, every primitive
of S must be (syntactically) searched in T , which can be done in logarithmic time [62]. �

2.5 Simplification

Often, we are not only interested in deciding consistency of S u T , but also in simplifying S with
respect to a given T ; that is, to find a S ′ w S which is (syntactically) smaller than S, but for which
S′ u T = S u T holds. The basic idea is to replace all literal occurrences of T in S by > and
simplify S afterwards. This can be done by adding a few more equivalences to the rewrite system
from proposition 8.

Proposition 10 In S u T , the term S may be further reduced in size by expanding (1) with

S u S = > u S f ↑ u a = > u a
∼b u a = > u a ∼a u f : T = > u f : T

(2)

and subsequent simplification

S u ⊥ = ⊥ S u > = S S t > = > S t ⊥ = S ∼> = ⊥

⊥ u S = ⊥ > u S = S > t S = > ⊥ t S = S ∼⊥ = >
(3)

The first equivalence in (2), S u S = > u S, is the essence of simplification: every literal occur-
rence in S of a primitive in T can be replaced by >. The remaining equivalences in (2) eliminate
superfluous negations. The equivalences in (3) propagate the new > values in S; complexity is
unaffected.

Let us illustrate inconsistency decision and simplification by an example. Consider the term
S u T , where S =

[

f : a, g: {b,∼c}
]

and T = g: d . We can decompose S to S1 u (S2 t S3) =

f : a u
(

g: b t g: ∼c
)

. For each primitive Si , we check the consistency of Si u T and simplify Si with
respect to T . Beginning with S1 = f : a, we find that S1 and T have no common features; thus, S1uT
is consistent and S1 cannot be simplified. Regarding S2 = g: b, we have S2 u T = g: b u g: d , which
can be rewritten to S2 u T = g: [b, d] = g: ⊥ = ⊥; S2 u T is inconsistent. Considering S3 = g: ∼c,
we have S3 u T = g: ∼c u g: d = g: [∼c, d] = g: d; the term S3 can thus be replaced by >, as

9

S3uT = T = >uT . The original term SuT becomes SuT = S1u(S2tS3)uT = S1u(⊥t>)uT =

S1 u > u T = S1 u T = [f : a] u T = [f : a, g: d]. Hence, S u T 6= ⊥—that is, the term S u T is
consistent. As a side effect, we find that S can be simplified to S ′ = [f : a], since S u T = S ′ u T
holds.

Our presentation of feature logic is now complete. In the remainder of this article, we always
interpret feature terms as sets of objects, unless otherwise specified. “Traditional” set notation will
not be required, with one single exception: We write |S| to express the cardinality (the number of
elements) of a set denoted by the feature term S under a given interpretation. All other required
notation is already provided by feature logic, as introduced above.

3 The Version Set Model

Having introduced feature logic, we can now return to the SCM domain. We begin with the SCM
primitive layer, that is, basic versioning and access capabilities. We show how to capture SCM states
by means of version sets, that is, sets of software components identified by their attributes. The basic
SCM operations of selecting a version and composing a consistent configurations are modeled by
means of set operations, as provided by feature logic.

3.1 Versions and Components

According with the SCM standards [21, 22], we consider that the object of interest in SCM is a
family of software products. Each of these software products breaks down in several components,
each of which may exist in several component versions. A component version is an unbreakable,
unambiguous configuration item.

In the SCM domain, the common method for identifying component versions is attribution, as
found in ADELE [15], the Context Model [39], EPOS [32], JASON [58], or SHAPE [33]. Using
attribution, every component version is identified by a conjunction of attribute/value pairs describ-
ing its features; version selection is done through a (boolean) attribute expression which must be
satisfied by the selected versions—similar to a classical selection in databases. In conditional inclu-
sion, as exemplified by the C preprocessor (CPP), this setting is reversed: versions are identified by
boolean attribute expressions and selected through a conjunction of attribute/value pairs describing
the features of the environment.

Our model uses feature terms for both version identification and version selection. Every com-
ponent version is assigned a feature term describing its features and uniquely identifying both ver-
sion and component; versions are also selected by feature terms. Besides encompassing and inte-
grating both the database and the CPP scheme, this setting also has a number of advantages for SCM
users:

Alternative properties. Using feature terms, we are not restricted to a pure enumeration of features
to identify versions. For instance, we can use unions like {state: proposed, state: tested} to
identify alternatives. In the database setting, such alternatives can only be used when selecting
versions, but not to identify them. This ability to express alternative component properties is
essential for treating version sets as unique items.

Configuration constraints. Feature terms may also express component properties that must not
apply. For instance, we may use the term ∼[operating-system: unix] to identify a version that
must not be used under the UNIX operating system. Such a feature expresses a constraint on

10

the environment, notably on other components in the configuration. In CPP, such constraints
are realized through the #error directive. But in contrast to CPP, we can still use arbitrary se-
lection terms—a selection term ∼[operating-system: unix] would exclude all UNIX versions,
but still include the non-WINDOWS version.

At the primitive layer, we do not impose specific requirements on the existence and the meaning
of features; but to associate the versions of a component with each other, we must have at least
one common feature across all component versions. We thus assume that each component can
be identified uniquely via an object feature assigning each component a simple (unambiguous)
component identifier. Our configuration universe then becomes the set denoted by [object: >]—the
set of all component versions.

We now define the notions of versions and components. A version set is any set V v [object: >].
A version is a singleton version set; that is, a set V v [object: >] such that |V | = 1. A component
is a set K v [object: k], where k is a simple feature term uniquely identifying the component. A
component version is both a component and a version; that is, a set K v [object: k] with |K | = 1.

The features of a component are modeled as alternatives over the features of each component
version. So, if we have a component K in n component versions V1, V2, . . . , Vn , the component K
is determined as

K = V1 t V2 t · · · t Vn =
⊔

1≤i≤n

Vi . (4)

Features F of the component itself (as [object: k]) are the same across all component versions, and
hence can be factored out through (F u V1) t (F u V2) = F u (V1 t V2).

As a simple example, consider a printer component occurring in two component versions:

printer1 = [object: printer, print-language: postscript]

printer2 = [object: printer, print-language: ascii] .

The printer component is then denoted as

printer = printer1 t printer2

=
[

object: printer, print-language: {postscript, ascii}
]

.

To retrieve a specific version, we specify a selection term S giving the features of the desired
version. For any selection term S and a version set T , we can identify the versions satisfying S
by calculating T ′ = T u S—that is, the version set that is a subset of S as well as a subset of T .
If T ′ = ⊥, selection fails—T ′ does not denote any existing version. In our example, selecting
S = [print-language: postscript] from printer returns printer 1, since printer u S = (printer1 t

printer2) u S = (printer1 u S) t (printer2 u S) = printer1 t ⊥ = printer1. Here, printer2 u S = ⊥

holds since the print-language feature may have only one value. As T ′ is just another version set,
we may give a second selection term S ′ and select T ′′ = T ′ u S ′, give a third selection term S ′′, and
so on, narrowing the choice set incrementally until a singleton set is selected, containing the desired
version.

3.2 Composing Consistent Configurations

A configuration, in our setting, is a set of components. In our model, as in several attribution-
oriented SCM versioning models, features of the components are propagated to the configurations;

11

[os: dos,
 screen-type: {ega, tty},
 concurrent: false]

[os: unix,
 screen-type: {x11, news, tty}]

[screen-type: ega,
 screen-data: bitmap]

[screen-type: tty,
 screen-data: ascii]

[screen-type: x11,
 screen-data: bitmap]

[screen-type: news,
 screen-data:
 {postscript, bitmap}]

[screen-device: dumb,
 data: D,
 screen-data: D]

[screen-device: ghostscript,
 data: postscript,
 screen-data: bitmap,
 concurrent: true]

Sc
re

en
 d

ev
ic

e
Sc

re
en

 ty
pe

O
pe

ra
tin

g
sy

st
em

Figure 3: Consistent configurations in a text/graphic editor

one says that configurations inherit the features from their components. The crucial point when
composing configurations from components is to ensure that the configuration is well-formed or
consistent.

To determine the internal consistency of a configuration, most SCM tools rely on either separate
tools [40] or language-specific knowledge [54, 44]. Consistency with respect to an external speci-
fication is usually combined with configuration selection; each consistency constraint becomes part
of the selection term.

In the version set model, configuration constraints can be specified in the selection term, but
also occur in the features of a component. For this purpose, both inheritance and consistency are
realized by modeling the features of an configuration as intersection of the component features,
excluding inconsistent combinations. For instance, we cannot build an configuration from two
components having the features [operating-system: windows-nt] and [operating-system: unix], since
the operating-system feature can have only one value: formally, [operating-system: windows-nt] u

[operating-system: unix] = ⊥. If we have a configuration C composed of n components with the
features K1, K2, . . . , Kn , the configuration C has the features

C = K1 u K2 u · · · u Kn =

⊔

1≤i≤n

Ki . (5)

As an example of configuration consistency, consider figure 3. We see three source components
of a text editor, where each component comes in several variants. We can choose between two
operating systems (dos and unix), four screen types (ega, tty, x11 and news), and two screen device
drivers (dumb and ghostscript). The dumb driver assumes that the screen type can handle the data
directly (expressed through the variable D); the ghostscript driver is a separate process that can
convert postscript data into a bitmap. The component features imply that at most one version of
each component can be included in a bound configuration.

Let us now compose a consistent configuration from these three source components. We begin

12

by selecting the operating system, and choose the dos version. This implies that we cannot choose
the x11 or news screen types, since (in our example), dos does not support them: Formally,

[

os: dos, screen-type: {ega, tty}
]

u
[

screen-type: {x11, news}
]

= ⊥

due to the differing screen-type features—we cannot use x11 or news screen types. We can, however,
choose ega or tty screen types, as indicated by plain lines.

As final component, we must choose a screen device driver. ghostscript cannot be chosen, since
it requires concurrent to be true, which is not the case under dos. The dumb driver remains; D is
instantiated to bitmap or ascii, depending on the screen type, making our choice complete: editor
can be built in a ega and a tty variants, inheriting the features of its source components. As an
alternative, consider the choice [os: unix], as indicated by dashed lines. Again, each path stands for
a consistent configuration.

The ability of treating component features as configuration constraints allows for arbitrary lo-
calization of configuration constraints: components can be tagged with constraints regarding their
usage, but global constraints regarding (sub-)systems are permitted as well. In short, every con-
straint usually expressed in version selection is also permissible as a component feature, and applies
to the configuration as soon as the component is included.

The benefit of localization is that one single language can be used to specify constraints, to spec-
ify the component features, and to select component versions. But this benefit is also a drawback:
the chosen language must be expressive enough to encompass existing SCM selection schemes, yet
simple enough to keep mutual consistency of configuration constraints decidable. Checking con-
straint consistency can be a hard task; at least the existing SCM selection and identification schemes
should be handled efficiently. With feature logic, we hope having chosen a well-established foun-
dation which addresses all these issues.

3.3 Features of Configurations

Pure intersection is not appropriate for all features. For features like author or status, it makes
perfect sense to differ across components; object features differ by definition. These independent
features must depend on the specific component. A possible approach to do so is to prefix all
independent features f with the component name k, resulting in orthogonal features like tty-author
or screen-status [64]. A far better alternative is to express this dependency explicitly in feature
logic, using implications [object: k] → T that enforce the version T whenever the component k is
required.

To construct such implications, we define a special aggregation operator. The operator “ +uI ” is
similar to “u”, but has a special handling of independent features: instead of unifying them, it makes
them dependent on the specific component; object features are stripped altogether.

Let I = { f1: >, f2: >, . . . , fm : >} be a feature term denoting independent features, where f i 6=

object holds for all 1 ≤ i ≤ m, and let K1, . . . , Kn denote components. For each component K i , let
ki , K ′

i v I , and K ′′
i 6v I be chosen such that

Ki = [object: ki] u K ′
i u K ′′

i

holds—that is, ki is the unique component identifier, K ′′
i denotes the independent features of K i ,

and K ′
i denotes the ordinary (non-independent) features of K i . The aggregation of all K i , written

K1 +uI K2 +uI · · · +uI Kn , is then defined as

K1 +uI K2 +uI · · · +uI Kn = +

⊔

1≤i≤n
I

Ki =

⊔

1≤i≤n

K ′
i u

(

[object: ki] → K ′′
i

)

.

13

Given an aggregation C = S +uI T , we can properly select S and T by intersecting C with [object: s]
and [object: t], respectively:

Proposition 11 Let S v [object: s] and T v [object: t] denote components, and I denote indepen-
dent features, as described above. Then,

[object: s] u (S +uI T) v S (6)

holds.3

Proof. Let T = [object: t] u T ′ u T ′′, as defined above. Then, U = [object: s] u (S +uI T) =

[object: s]u
(

S′uT ′u
(

[object: s] → S ′′
)

u
(

[object: t] → T ′′
))

. But since [object: s]u
(

[object: s] →

S′′
)

= [object: s] u
(

∼[object: s] t S ′′
)

= [object: s] u S ′′ and [object: s] u
(

[object: t] → T ′′
)

=

[object: s]u
(

∼[object: t]tT ′′
)

= [object: s], we have U = [object: s]u(S ′uT ′uS ′′) =
(

[object: s]u
S′ u S ′′

)

u T ′ = S u T ′ v S. �

Using the aggregation operator, we can extend (5) with object features and independent fea-
tures and formally define how features propagate from components to configurations. If we have a
configuration C composed of n components K1, K2, . . . , Kn with Ki v [object: ki], and a term I
denoting the independent features, the configuration C is identified by

C = [object: k1 t k2 t · · · t kn] u K1 +uI K2 +uI · · · +uI Kn

= [object: k1 t k2 t · · · t kn] u +

⊔

1≤i≤n
I

Ki ,
(7)

that is, object features are united, independent features are made dependent on the respective com-
ponent, and all other features are unified.

As an example, consider two components

screen =
[

object: screen, author: lisa, resolution: {high,medium}
]

driver = [object: driver, author: tom, resolution: high] .

Let I = [author: >] be the set of independent features. According to (7), the configuration C
containing screen and driver is

C =
[

object: {screen, driver}, resolution: high,

(object: screen → author: lisa), (object: driver → author: tom)
]

.

Besides unifying the non-independent features of screen and driver to resolution: high, the term C
properly selects Lisa’s screen object and Tom’s driver object—that is, C u [object: screen] v

[author: tom] and C u [object: driver] v [author: lisa].
We close by defining some properties of configurations, following (7). Formally, a configuration

is a set C v [object: c], where c is a feature term identifying the set of configuration components.
A configuration C is called consistent with respect to its features if C 6= ⊥—that is, if the number
of possible configurations is non-zero. A configuration C is called unambiguous or bound if it is
an aggregation of component versions; formally, C is bound if it is a set C v [object: c] such that
|C| = |c|. If it is not bound (|C| > |c| holds), a configuration C is called ambiguous, dynamic, or
abstract.

3In [60], we gave an alternate definition of the aggregation operator, for which (6) did not hold.

14

3.4 Features of Derived Components

In the SCM context, we must not only describe how features propagate from components to config-
urations. An important SCM topic is the identification of derived components, constructed automat-
ically from a configuration of source components—using the well-known MAKE program or one of
its successors.

To determine the features of derived components, we use a variation of (7). Again, derived
components must be consistent, which implies that the source configuration be consistent as well.
To ensure consistency across multiple derivation stages, each derived component must inherit the
features of its source components, just as a configuration inherits the features of its components.

Formally, if we have a component K v [object: k] derived from n source components
K1, K2, . . . , Kn , and a term I denoting the independent features, K is identified by

K = [object: k] u K1 +uI K2 +uI · · · +uI Kn

= [object: k] u +

⊔

1≤i≤n
I

Ki ,
(8)

where the explicit setting of the object feature removes all implications generated by the aggregation
operator—only non-independent features remain to be unified.

As an example of derivation, consider the editor example from figure 3. Let us denote the
three components operating system, screen type, and screen device by [object: os, author: tom],
[object: st, author: lisa], and [object: sd, author: john], respectively; let the independent features be
I = [author: >]. If we derive an editor component from a DOS/EGA configuration, it is identified
by

K = [object: editor]

u
(

[object: os, author: tom, screen-type: {ega, tty}, concurrent: false]

+uI [object: st, author: lisa, screen-type: ega, screen-data: bitmap]

+uI [object: sd, author: john, screen-device: dumb, data: D, screen-data: D]
)

= [object: editor, screen-type: ega, concurrent: false,

screen-data: bitmap, screen-device: dumb, data: bitmap] ,

that is, the object features and independent features of the source components are stripped, and all
other features are unified. In [63], we discuss a MAKE extension using this mechanism to create and
re-use derived components from consistent source configurations.

4 Versioning Dimensions

We now turn to the SCM protocol layer, introducing specific versioning dimensions. SCM liter-
ature distinguishes four versioning dimensions: historic (revisions), logic (variance), cooperative
(workspaces), composition (configurations) [42, 14]. It is a well-known goal of SCM to inte-
grate these dimensions: the concepts of orthogonal versioning [42], and three-dimensional ver-
sioning [14], for instance, each integrate three of these four dimensions. The problem is that these
models use different sets of queries and services due to the differing motivations, which results in a
lack of orthogonality.

15

�
� � �

� �
� �

� � �
� �

�

� �
�

δ2

δ1

δ3 δ4

δ5R0 R1
R3 R4

R2
R5

R6
δ6

Figure 4: A revision history

In this section, we show that each of these versioning dimensions can be realized in the version
set model. The underlying foundation, feature logic, is uniform: all versions are identified with
their features, regardless of their versioning dimension; the SCM primitive layer makes no such
distinction as well. At the protocol level, however, we can introduce diversity: by giving special
meanings to features, we distinguishing versioning dimensions. We have already seen how to handle
variance and composition dimensions; in this section, we turn to the more specific historic and
cooperative dimensions.

4.1 Revisions and Changes

As initial concepts, we show how to realize changes and revisions. A revision is a version intended
to supersede another version (in contrast to a variant) [59]. Typically, a revision is the product
of a change applied to an existing revision. In traditional SCM, these changes are controlled by
version-oriented versioning. Version-oriented versioning controls the impact of changes by seri-
alizing them—one change is applied after the other, forming a revision history. As an example,
consider the revision history in figure 4, where individual revisions of a version set are denoted by
R0, R1, R2, . . . and so on. Each revision Ri is created by applying a change (denoted by δi) to some
originating revisions R j , . . . , Rk . As an example, consider revision R5, which was created from
R2 and R4 by applying the change δ5.

In version-oriented versioning, each change implies several previous changes. In our example,
having the change δ4 applied requires the previous application of change δ3; likewise, δ5 implies
all other changes except δ6. As several configurations are excluded—there simply is no way to
include the change δ5 without also having δ2 applied—, it is quite easy to analyse the impact of a
single change. However, version-oriented versioning becomes a problem when changes are largely
independent of each other—i.e., when one wants a configuration with certain changes applied, but
other excluded. These weaknesses are addressed by change-oriented versioning [20, 19, 36], where
versions are merely the product of applying a change or delta to a baseline, an already existing
version set.

In the version set model, we have adopted change-oriented versioning. Each revision is identi-
fied by a conjunction of delta features standing for the change application. A revision R is a subset
of 1i = [δi : >], if the change δi has been applied; R is a subset of ∇i = ∼1i = [δi↑] if the
change δi has not been applied. The revision R4 in figure 4, for instance, would be identified by

R4 = 11 u ∇2 u13 u14 u ∇5 u ∇6 , (9)

that is, only the changes δ1, δ3, and δ4 have been applied. Again, revisions are identified and selected
just like any other versions, using features.

While a selection scheme enumerating the applied changes is convenient for changes that can
be applied independently from each other, it becomes a pain when, say, revision 211 must be se-
lected by enumerating 211 changes to be applied. A unified versioning model thus must find a
way to accommodate both the convenience of version-oriented versioning as well as the freedom of

16

change-oriented versioning. The idea is to exclude certain change combinations through revision
constraints.

Mutual exclusions. As an example, consider a version set R where selecting an arbitrary change
combination S should result in a consistent product R u S—except for R u (15 u16), which
should be inconsistent (“The changes δ5 and δ6 do not integrate”). This can be achieved by
making R a subset of ∼(15 u 16) = ∇5 t ∇6; it is easy to see that R u S v (∇5 t ∇6) u S
becomes inconsistent when S v (15 u 16) holds. Generally, to exclude the combination
of two changes δi and δ j in a version set R, it suffices to make R a subset of the revision
constraint ∇i t ∇j .

Change implications. Another problem is how to make changes rely on each other. Let us assume
that R contains no version where the change δ9 has been applied, but not δ7—we would
say, the change δ9 implies the change δ7. This implication becomes explicit by making R a
subset of 19 → 17; in this case, R u (19 u ∇7) v (19 → 17) u (19 u ∇7) = (19 →

17) u ∼(19 u 17) = ⊥ holds, effectively excluding the change application. Generally, to
ensure that a change δi implies a change δ j in a version set R, it suffices to make R a subset
of the revision constraint 1i → 1 j .

A simple example of revision constraints is a linear revision history, where each change implies
all previous changes. As an example, let a revision set R be a subset of (1211 → 1210) u (1210 →

1209) u · · · u (12 → 11). We can easily select revision 211 just by selecting R u 1211: all other
changes are automatically implied by the revision constraints. We see how revision constraints
effectively control the application of changes and inhibit inconsistent change combinations—simply
by assigning appropriate features to version sets.

4.2 Constraints and Histories

By specifying appropriate revision constraints, it is even possible to capture arbitrary revision histo-
ries, realizing full version-oriented versioning. As an example, consider the version set R containing
R0, . . . , R6 created through the changes δ1, . . . , δ6, as shown in figure 4. Following (4), R could
be represented as R = R0 t · · · t R6, where each Ri is a conjunction of included and excluded
changes, as R4 in (9). A far more elegant representation is obtained through revision constraints.
For instance, R must be a subset of (12 → 11), since δ2 relies on δ1, and R must also be a subset
of ∇2 t ∇6, as the changes δ2 and δ6 are mutually exclusive. In fact, R can be entirely represented
through revision constraints, denoting the complete revision history:

R = (12 → 11) u (13 → 11) u (14 → 13) u (15 → 12) u (15 → 14) u (16 → 14)

u (12 u13 → 15) u (∇2 t ∇6) . (10)

How are these constraints obtained? Formally, for any two revisions Ri and R j , let Ri, j be their
lowest common ancestor in the revision history, and let Ri, j be their highest common descendant.
Let us denote the changes leading up to Ri , R j , Ri, j , and Ri, j by δi , δ j , δi, j , and δi, j , respectively;
the version sets 1i = [δi : >], 1 j = [δ j : >], 1i, j = [δi, j : >], and 1i, j = [δi, j : >] are defined
as usual. Should Ri, j not exist, then 1i, j = ⊥ holds. Let now Ci, j be a formal revision constraint
defined as

Ci, j = (1i t1 j → 1i, j) u (1i u1 j → 1i, j) (11)

17

If a change δi implies a change δ j , the revision constraint Ci, j becomes Ci, j = (1i t 1 j →

1i) u (1i u 1 j → 1 j) = 1 j → 1i ; if δi and δ j are mutually exclusive, Ci, j v (1i u 1 j →

1i, j) = (1i u1 j → ⊥) = ∇i t ∇j holds.
It now turns out that the intersection of all C i, j is equivalent to R:

Proposition 12 A revision set R can be represented as union of all revisions R i , each identified by
an intersection of included and excluded changes, or as an intersection of revision constraints C i, j ,
as defined in (11). Both representations are equivalent.

R =

⊔

1≤i≤n
1< j<i

Ci, j =
⊔

0≤i≤n

Ri . (12)

Proof. See [62]. �

In our example, the representation in (10) is obtained via (12) and removing superfluous constraints,
following the general scheme (1i → 1 j)u (1 j → 1k) v (1i → 1k). We see how proposition 12
realizes version-oriented versioning on top of change-oriented versioning, using appropriate con-
straints.

The maintenance of these implications is the duty of the SCM protocol layer, hiding them from
the end user; in section 6.1, we discuss a simple check-in/check-out protocol realized through revi-
sion constraints. Our SCM primitive layer has no notion of revisions—all it knows about are com-
ponents identified by features, and it does not distinguish between specific feature types. Hence,
revision constraints may also be used to express implications between delta features and other fea-
tures.

In CLEARCASE, for example, users can assign names to edges in the revision history and se-
lect revisions through a disjunction of name patterns; such naming of changes is easily expressed
through an implication between the name and the appropriate delta features. Another example is
currency: we cannot simply devise some revision as “current”, because currency may differ across
variants. Hence, currency constitutes a part of the SCM protocol, expressed through means of the
SCM primitive layer. A simple scheme to denote currency is to use a set [current: >] that contains
the current variants by implying certain revisions. An implication

(

[current: >, os: unix] → ∇5)

ensures that whenever the current unix variant is requested, the change δ5 is excluded, possibly ex-
cluding subsequent changes through further revision constraints. The maintenance of currency is
also illustrated in section 6.1.

By dropping any distinction between delta features and variant- or process-specific features,
and by unifying the concepts of attribution and revision histories, our SCM primitive layer allows to
create, select, and revise arbitrary revision/variant/component combinations as in orthogonal version
management [42], still while allowing refinement and inheritance as in object-oriented SCM [58].

4.3 Cooperation through Locks and Workspaces

Besides components, variants, and revisions, SCM literature distinguishes a fourth versioning di-
mension. Team functionality enables a team of developers to develop and maintain the software
product. The most basic team functionality is a cooperation strategy that ensures that the changes
of an individual developer are not accidently superseded by another developer.

Using a conservative cooperation strategy, developers must lock each component version or
configuration they wish to change. Locks are exclusive: While a version or configuration is locked,
other developers are excluded from creating new revisions. Using version sets, locks are managed

18

like currency: The set [locked: >] contains all locked versions, ∼[locked: >] = [locked↑] the un-
locked versions. An SCM system locking a component version K would do so by changing its
features such that K v [locked: >]; any selection of K from [locked↑] would fail. As locking is
orthogonal to all other features, arbitrary version sets can be locked.

The second generation of SCM systems introduced optimistic cooperation strategies [5, 11].
Rather than preventing concurrent changes, they rather attempt to integrate changes later. The cen-
tral concept here is the notion of a workspace, the individual area of a developer, isolating him from
changes made by other developers, and isolating others from his changes.

In our model, a user’s workspace is just a variant identified by a feature term W v [user: >]—
that is, [user: lisa] denotes Lisa’s workspace, and [user: tom] is Tom’s workspace. As the user
feature may have only one value, all workspaces are disjoint; that is, developer Lisa in her
workspace [user: lisa] will not see any changes from the [user: tom] workspace. Tom may cre-
ate new revisions 1i in his workspace, or change currency; as his changes are always subsumed by
[user: tom], Lisa’s workspace will remain unaffected. To apply Tom’s changes in her workspace,
Lisa must integrate Tom’s changes and her own changes. Lisa’s changes can be identified by com-
paring the contents of her workspace [user: lisa] with the contents of the originating version set
∼

[

user: {lisa, tom}
]

; Tom’s changes can be identified likewise.
In our setting, locks and workspaces are part of the SCM protocol, as are currency and revisions.

As they are realized through dedicated features, they can be freely integrated with other features in
selections and constraints. Tom may declare his workspace as [user: tom, os: unix], thus confining
all changes to his workspace and the UNIX version. Lisa may wish to work on the current revision
only, but including all variants, thus choosing her workspace as [user: lisa, current: >]. Further
dedicated features may be used for modeling teams or geographically distributed sites, ensuring
orthogonality and uniformity at the interface between the SCM primitive and SCM protocol layers.

4.4 Practical Extensions

Although our versioning model subsumes all common identification and selection schemes as found
in SCM systems, it may prove useful to support additional selection schemes in practice. Some SCM
systems select component versions through a set of configuration rules, using PROLOG-like syntax
as in SHAPE [30] or pattern matching rules as in CLEARCASE [31]. The basic idea is that the first
matching rule is applied. An alternate scheme is realized in preference clauses [29], where each con-
figuration rule refines the results of the previous one, until an unambiguous version is selected. Such
schemes cannot be expressed in feature logic directly, since a version S being unambiguous means
that |S| = 1 holds, and checking the cardinality depends on a specific interpretation. However,
the semantics of such selection schemes can be described on top of feature logic, using preference
operators:

S1 and-then S2 =

{

S1 if S1 is bound,

S1 u S2 otherwise
S1 or-else S2 =

{

S1 if S1 6= ⊥,

S2 otherwise

with the equivalences T u (S1 and-then S2) = (T u S1 and-then T u S2) and T u (S1 or-else S2) =

(T u S1 or-else T u S2). Using “and-then” and “or-else”, we can express preferences in our selection
terms. For instance, S =

(

[current: >] or-else [fixed: true]
)

first selects the current version, and, if
there is none, a “fixed” version; S =

(

[12,∇3] and-then [os: unix]
)

selects revision 2 and, should
this choice be ambiguous, the UNIX variant.

Another practical extension are additional constraints, expressing properties whose mutual con-
sistency cannot be decided in feature logic alone. Useful examples include arithmetic constraints

19

(date < 1997) or function interfaces (gcd: int× int → int). Such constraints can be handled as addi-
tional constraints in Smolka’s feature unification algorithm when deciding about the inconsistency
of simple feature terms; they can be evaluated as soon as their variables (features) are instanti-
ated [52].

When using such extended constraints, users should be aware that the inconsistency of a con-
junction of extended constraints cannot always be determined. In practice, one would use well-
known constraint solving systems like the Simplex Method or language-specific consistency check-
ers to determine most inconsistencies.

5 The Featured File System

To find out how the version set model works in practice, we have realized the version set model in
an experimental SCM system, called ICE for Incremental Configuration Environment. ICE provides
access uses to version sets through a virtual file system called FFS. The FFS represents version sets
in the well-known #if . . . #endif format, which identifies differences between versions. Using the
FFS as example, we explore the feasibility of a repository based on version sets; by defining the
effects of basic file operations, we provide a means to describe operations at the SCM protocol layer.

5.1 Representing Version Sets

Upon designing ICE, the first problem that arose was the representation and efficient storage of ver-
sion sets at the SCM primitive layer. As it was our aim to make ambiguity transparent to developers,
we wanted to represent version sets in a format suitable for human readers.

The by far most common representation of multiple versions in a single source is the C pre-
processor (CPP) representation. Code pieces relevant for certain versions only are enclosed in #if C
. . . #endif, where C expresses the condition under which the code piece is to be included. Upon
compilation, CPP selects a single version out of this set, feeding it to the compiler. (CPP’s additional
functionality, such as macro expansion and file inclusion, is of no interest here.)

Using conditional compilation, the programmer may perform changes simultaneously on the
whole set of versions. Unfortunately, CPP technology does not scale up: as the number of versions
grows, the representation can become so strewn with CPP directives that it is hard to understand, yet
harder to change. Except for a small amount of variance, CPP usage is thus deprecated in the SCM
community. But as this rejection applies to the tool, not the technique, we could represent version
sets in CPP format, giving the user a familiar, well-understood representation.

ICE uses the CPP format to represent version sets and it uses CPP terms (i.e. boolean C ex-
pressions) to represent feature terms. In the CPP representation, feature names are expressed as

Feature Term CPP Expr
> 1
⊥ 0
a −/−

x −/−

f : a f ≡ a
f : ∼a f 6≡ a

Feature Term CPP Expr
f : ∼0 f
f : S −/−

f : > defined(f)
f ↑ ¬defined(f)
f ↓ g f ≡ g
f ↑ g f 6≡ g

Feature Term CPP Expr
∼S ¬S
S u T S ∧ T
S t T S ∨ T
S → T ¬S ∨ T
∃x(S) −/−

Table 2: Translating feature terms into CPP expressions

20

get_load.c[os: unix]
void InitLoadPoint()
{

extern void nlist();
#if defined(AIXV3) ∧ ¬defined(hcx)

nlist(namelist, 1, . . .)
#else

nlist(KERNEL_FILE, namelist);
#endif
#if defined(hcx)

if (namelist[. . .].n_type ≡ 0 ∧

#else
if (namelist[. . .].n_type ≡ 0 ∨

#endif
namelist[. . .].n_value ≡ 0) {

xload_error(. . .);
exit(-1);

}

=

get_load.c[os: unix, hcx: >]
void InitLoadPoint()
{

extern void nlist();
nlist(KERNEL_FILE, namelist);
if (namelist[. . .].n_type ≡ 0 ∧

namelist[. . .].n_value ≡ 0) {

xload_error(. . .);
exit(-1);

}

t

get_load.c[os: unix, hcx↑]
void InitLoadPoint()
{

extern void nlist();
#if defined(AIXV3)

nlist(namelist, 1, . . .)
#else

nlist(KERNEL_FILE, namelist);
#endif

if (namelist[. . .].n_type ≡ 0 ∨

namelist[. . .].n_value ≡ 0) {

xload_error(. . .);
exit(-1);

}

Figure 5: Version sets represented as CPP files

CPP symbols. In table 2, we have summarized the mapping from feature terms to CPP expressions;
for better readability, the C tokens ==, !=, &&, ||, and ! are represented as ≡, 6≡, ∧, ∨, and ¬,
respectively.

For nearly every feature term, there is an equivalent CPP expression. Exceptions (denoted by
“-/-”) include atoms (unless occurring as feature values), variables, and composed feature values.
All of these can be used in CPP expressions by enclosing them in square brackets. Vice versa, every
CPP expression has an equivalent feature term representation, with the exception of arithmetic CPP
expressions, which are treated as atoms in feature terms. The CPP program itself is never used by
ICE; only the syntax and semantics of CPP files and expressions are used.

We will now show how to realize selection and union on version sets represented as CPP files.
Let F be a CPP file representing all source code versions; that is, a version set in CPP representation.
To select a subset of F using a selection term S, that is, the set F u S, we proceed as follows. For
each code piece enclosed in #if C . . . #endif, the governing feature term C is intersected with the
selection term S. If C u S = ⊥, the code piece is removed from F . If C u S = S, the #if directive is
removed, because S v C . Otherwise, C is simplified with respect to S, according to proposition 10.
The new (smaller) CPP file can be characterized by S and is written F[S] = F u S (obviously,
F = F[>]).

Figure 5 shows the constrained CPP file get_load.c taken from xload, a tool displaying
the system load for several architectures. It shows two subsets of get_load.c[os: unix]: a
hcx version get_load.c[os: unix][hcx: >] = get_load.c[os: unix, hcx: >] and a non-hcx version
get_load.c[os: unix][hcx↑] = get_load.c[os: unix, hcx↑] (note the simplified CPP expressions). Fur-
ther selection and refinement is possible until a singleton version set is obtained—that is, a source
file without #if directives.

The union of two CPP files F[S] and F[T] can be computed through F[S] t F[T] = F[S t T].
A compact CPP representation of F[S t T] can also be constructed even if F does not exist. The
idea is to compare the two files textually, using a DIFF algorithm [35] initially ignoring all CPP
directives. In the resulting file F[S t T], text parts occurring only in F[S] or F[T] are governed
by S u ∼T or ∼S u T , respectively; common parts are governed by S t T . Read from right to left,

21

figure 5 demonstrates that

get_load.c[os: unix, hcx: >] t get_load.c[os: unix, hcx↑]

= get_load.c
[

[os: unix, hcx↑] t [os: unix, hcx: >]
]

= get_load.c[os: unix] ,

where the DIFF algorithm determines a compact representation for the generated version set
get_load.c[os: unix]; all governing expressions are simplified with respect to [os: unix]. We see
that feature terms, introduced as a syntactic device for the denotation of version sets, now have a
precise semantics in terms of CPP files.

5.2 Transparent Version Set Access

For integration with software development environments, the SCM primitive layer must make its
configuration items accessible in some way. The least common denominator for today’s environ-
ments is a file system; and we know of no SCM tool that would not provide a file system interface.

Most of today’s SCM tools realize item access by explicit copying of source components from
repositories (databases) to individual file systems and vice versa. This approach has the advan-
tage that database technology like transaction safety or advanced query services are available for
the repository; workspaces may be realized as (possibly ambiguous) sub-databases of the reposi-
tory [15]. The drawback is that configuration items are no more under SCM control, once copied to
the individual file system.

Recent approaches thus allow configurations and workspaces to be selected and manipulated
as virtual file systems, representing individual views of the repository. Typical examples include
NSE [11], n-DFS [18], and CLEARCASE [31]. In these systems, user workspaces are made part of
some classical repository; the actual repository is either hard-wired (as in NSE and CLEARCASE)
or generic (as in n-DFS). The entire repository is then made accessible as virtual file system. While
being convenient for users, this technique also gives the SCM system direct control over user’s
workspaces. It allows for space savings through copy-on-write techniques (also known as view-
pathing), sharing common files between several developers.

We have chosen the CPP representation, as introduced above, as base for a virtual file system in
ICE, called FFS for featured file system, and realizing an example SCM primitive layer. In the FFS,
all files occurring in multiple versions can be accessed by appending a version specification to the
file name—just as in our notation above.4 The following basic operations are supported by the FFS:

Read. Read access to F[S] is accomplished by selection, as shown; opening the virtual file
tty.c[user: tom] gives access to the version set [user: tom] from the file tty.c.

Write. Since F = F[∼S t S] = F[∼S] t F[S], write access to F[S]—that is, changing F[S] to
F ′[S]—is implemented by generating F ′ = F[∼S] t F ′[S].

In practice, this means that any version subset F[S] of some multi-version document can be edited
and changed by invoking an ordinary text editor. CPP directives indicate the common and differing
parts between versions. Upon each write of F[S], the FFS re-determines the differences and CPP
directives in the original file F . This is very similar to using a multi-version editor [46], except that
the maintenance of multiple versions is done at the file system level.

4The current FFS implementation uses the CPP representation in version specifications.

22

.[]
[] 1024 . /
[] 1024 . ./
[user: tom] 16233 newtty.c
[] 78654 screen.c
[user: lisa] 1024 test/
[] 15969 tty.c

=

.[user: tom]
[] 1024 . /
[] 1024 . ./
[] 16233 newtty.c
[] 78654 screen.c
[] 15969 tty.c

t

.[∼user: tom]
[] 1024 . /
[] 1024 . . /
[] 78654 screen.c
[user: lisa] 1024 test/
[] 15969 tty.c

Figure 6: Versioned directories

To express that a file be existent in some configuration only, we use the CPP #error directive.
The #error directive stands for a non-existent file: each #error directive in F governed by a feature
term S indicates that F[S] is non-existent. We thus add the following FFS operations:

Create. Creating a file F[S], where F was non-existent before, creates F containing an #error
directive governed by ∼S—that is, F[∼S] is still considered non-existent.

Remove. Removing a file F[S] augments F with an #error directive governed by S, such that only
F[∼S] is accessible.

As an example, consider the creation of a file printer.c[data: postscript]. After creation, printer.c
will contain the lines #if ¬(data ≡ postscript) . . . #error . . . #endif —any attempt to read
printer.c[∼data: postscript] will fail.

An alternate interpretation of “a file F exists in some specific configuration S only” is “the
features of F are ∼S”. Hence, creation and removal can be used to set and manipulate the features
of a file F : To set the features of a file F to S, remove F[∼S]. This operation is called renaming:

Rename. Renaming a file F to F[S] is equivalent to removing F[∼S].

This tagging technique is further illustrated when discussing the composition protocol in section 6.2.

5.3 A Versioned File System

Besides versioned files, the FFS provides versioned directories, covering state and changes of the
entire file system—that is, the whole configuration universe. Basically, a versioned directory has
the same format like an ordinary directory, except that each directory entry is associated with a
governing feature term.

A directory entry governed by the feature term C is visible only if C is a subset of the selection
term S, or C v S. If Tom creates a new file newtty.c in his workspace [user: tom], the newtty.c entry
in the current directory “ . ” is governed by the term [user: tom], as illustrated in figure 6; in Lisa’s
workspace, that is, the . [user: lisa] directory version, newtty.c is non-existent.

If a versioned directory D[T] is part of the current path, the directory version T affects all con-
tents of the directory, including subdirectories and all files contained therein; any file version F[S]
in D[T] will be implicitly read as F[S u T]. Hence, opening a directory . [os: unix] selects the
UNIX variants of all files and subdirectories; all changes applied in a . [user: tom] directory or below
affects Tom’s workspace only.

By changing the current directory, users can switch between workspaces and versions. Entering
cd . [current: >]/. [os: ∼dos] (or, shorter, cd [current: >]/[os: ∼dos]) makes sure all subsequent
changes apply to the current revision in the non-DOS variants only. As illustrated in figure 7, such

23

. /

w
------------------→

. /[os: ∼dos]/

w
------------------→

. /[os: unix]/

w

y

w

y

w

y

. /[user: tom]/

w
------------------→

. /[user: tom]/[os: ∼dos]/

w
------------------→

. /[user: tom]/[os: unix]/

Figure 7: Narrowing the configuration space in the FFS

directory changes may be also be performed incrementally, subsequently narrowing the configu-
ration space as more and more features are specified. Each workspace, variant, or revision is an
individual view on the configuration space.

The features of a directory are set like the features of individual files, by removing the com-
plement. Removing the directory version . [tested↑] makes the current directory and all contained
items available in the [tested: >] version only. This is convenient for setting the features of all files
in one directory or file system subset.

Besides accepting version specifications as parts of the file path, all other features of file sys-
tems still apply. The “. .” directory refers to the second last component from the current path; that
is, testdir/[user: ∼tom]/. . is equivalent to testdir. File modes, times, and access restrictions are
versioned as well; a file may occur several times in a (versioned) directory, each time with different
attributes and a different governing feature term.5

Technically, the FFS is realized through a modified NFS server [45], making the FFS available
in the network. Version sets are stored as ordinary CPP files, allowing for simple recovery using
CPP; a special format is available for binary files [61]. The FFS server keeps version sets in a cache
once they are read; changed version sets are also kept in the cache until a superset is requested.
Second and later version set accesses are served in constant time. In practice, this means that once
a directory version is entered, the FFS server has the same performance as an ordinary NFS server.
Should this still be considered too slow, alternate FFS realizations like dynamic system libraries as
in n-DFS [18] or virtual device drivers as in CLEARCASE [31] could bypass the NFS bottleneck on
local file systems and show virtually no difference from direct file access. But still, all files common
to several version sets are cached only once, showing the space-saving effects of copy-on-write
techniques.

5In the current implementation, a file is uniquely identified by its name. While versioning contents and modes of
a file exploits a maximum of commonality through the CPP representation, renaming a file inhibits a common CPP
representation; future FFS implementations should add an extra indirection level here.

24

In contrast to the virtual file systems realizes in NSE or CLEARCASE, the FFS does not enforce a
specific SCM policy. Instead, it provides the basic mechanisms for arbitrary version set access. The
specific SCM policy must be realized on top of the FFS by SCM tools that manipulate the version
sets. This is in contrast to n-DFS, where the SCM tools are located at the lowest level, realizing
repository access as well as basic SCM policies. In practice, we do not expect developers to interact
directly with the FFS except for most unusual circumstances. Rather, each developer will work in
some private workspace like . [user: lisa, current: >] and use SCM tools that realize specific SCM
policies by changing the contents of [current: >]. This issue is explored further when discussing
SCM protocols in section 6.

6 Unified Versioning

In this section, we use the FFS to describe the semantics of the four major SCM protocols, taken from
Feiler’s survey on configuration management models in commercial environments [16]. We show
how to implement these protocols on top of the FFS, and we give some ideas on how these protocols
can be integrated. The number of SCM protocols an SCM system supports is still an indicator of its
flexibility both below and above the protocol layer; it turns out that all four protocols can be realized
on top of the FFS, demonstrating the unifying nature of the version set model.

6.1 The Checkin/Checkout Protocol

We begin with the checkin/checkout protocol, as realized in the well-known RCS and SCCS tools. As
sketched in section 5.2, these SCM tools provide operations to copy revisions from a file system to a
repository (check in) and retrieve them back again (check out), as illustrated in figure 8. Individual
developers can lock branches of the revision history against further changes.

We now show how to realize the checkin/checkout protocol on top of the FFS. Let each reposi-
tory be realized through a file F[R], where R is a conjunction of revision constraints as discussed
in section 4.2. In order to select an individual revision Ri , we introduce a special feature ri such
that [ri : >] includes all changes leading up to Ri and excludes all later changes. The term R then
contains additional constraints in the form [r i : >] → 1i u ∇j u · · · u ∇k , where R j , . . . , Rk are the
revisions immediately derived from Ri ; obviously, R u [ri : >] = R u1i u∇j u · · · u∇k = Ri holds.
The current revision is maintained by a currency constraint [current: >] → [r i : >] in R.

The operations of the checkin/checkout protocol are described below.

Check in. To add a new current revision file F ′ to the repository R, let i be some unique identifier
such that F[1i] = F[∇i] holds; in other words, i is a yet unused revision number.

1. Check locks. If F[current: > u locked↑] does not exist, the current revision is locked;
abort the operation.

2. Store new revision. Overwrite F[1i] with F ′. The new revision is now selected by
F[1i]; the old revision set can be accessed as F[∇i].

3. Maintain revision constraints. We require a constraint C = (1i → 1 j u · · · u 1k),
where 1 j , . . . ,1k are the ancestor revisions. This way, including the δi change will
automatically include all earlier changes. This is done by renaming F to F[C], such
that C becomes a feature of F .

4. Maintain revision selector. Rename F to F
[

[ri : >] → 1i

]

, such that accessing F[ri : >]
returns F[1i].

25

Repositories Workspace

Check out

Check in

Check out

Figure 8: The checkin/checkout protocol

5. Maintain currency. The old currency is invalidated by renaming F to F[current↑]. The
new currency is established by renaming F to F

[

[current: >] → 1i

]

.

To add a revision with multiple ancestors, or to add a non-current revision (a branch), the
constraints are maintained according to (11).

Check out. To check out the current revision, copy F[current: >] to some file F ′. To check out
some earlier revision Ri , copy F[ri : >] to some file F ′.

Lock. To lock any revision Ri by a user u, first check whether the revision is locked by someone
else; If F[ri : > u locked: ∼u] exists, abort the operation. Otherwise, rename F[r i : >] to
F[ri : > u locked: u], such that F[ri : >] exists only in a [locked: u] version.

Unlock. To unlock any revision Ri locked by a user u, rename F[ri : > u locked: u] to F[ri : >].

The check in operation is quite complex here, so let us illustrate it by an example. Let F be
a repository of revisions R0, . . . , R6, as shown in figure 4; let R5 be the current revision. Hence,
the file F exists as F[R u (current: > → 16)], where R is defined according to (10). Let us now
check in a new revision R7. After step 2, the new version is accessed by F[17]; the “old” repository
is accessible as F[∇7]; the differences are enclosed in #if 17 . . . #endif or #if ∇7 . . . #endif. But
now, selecting an older revision Ri returns a non-singleton version set, as [ri : >] implies neither 17

nor ∇7. This is handled in step 3: By changing R to R ′ = R u (17 → 16) u [r7: >], selecting
F[r5: >] excludes the 17 change, because R v ([r5: >] → ∇6) and hence R′ u [r5: >] v (17 →

16) u ∇6 v ∇7 holds. The remaining steps 4 and 5 ensure that both F[r7: >] and F[current: >]
return F[17].

6.2 The Composition Protocol

The composition protocol extends the checkin/checkout protocol with the notions of configurations
and consistency. First, a set of components is composed; then, for each component, a version is
selected, resulting in a bound consistent configuration, as shown in figure 9. After composition
and selection have taken place, the selected components are maintained as in the checkin/checkout
protocol; each component has its individual repository.

The composition is usually no more than a simple enumeration of components, obtained by
refining dependency relationships6 ; the selection and identification schemes are mostly subsumed

6See [63] for a discussion of how to represent and version relationships.

26

Repository Configuration

Compose

Composition

Select

Figure 9: The composition protocol

by feature logic.
To realize the composition protocol, the configurations are maintained in the current directory.

The current directory “ . ” records which versions of which components are part of the configuration.
Here are the operations of the composition protocol:

Tag. To assign an attribute T to a file F , rename F to F[T] (or remove F[∼T]). To remove the
attribute, make sure that F[∼T] does not exist, and then rename F[T] to F .

Compose. To compose a set of components, let T be a feature term identifying the composition.
If the composition already exists, just enter the directory version . [T]. Otherwise, select an
originating version . [S] with S w T . In the subset . [S]/[T], set up the configuration by
adding or removing files as required.

Select. To make the configuration in . [T] bound, refine T until each component occurs in one ver-
sion only (unless T was already chosen such that the configuration is bound). This refinement
process is best done by an interactive tool that also ensures configuration consistency [61].

Composition and selection are realized most efficient if T is a simple feature term, as stated
in proposition 9; a disjunction of configuration rules, as in existing SCM systems, is also handled
efficiently.

The single difficult point is to check consistency for ambiguous configurations, as discussed in
section 3.2. In theory, we can easily construct examples where each possible configuration must be
separately checked for consistency, resulting in a combinatorical explosion and exponential com-
plexity. In practice, we do not expect this to be a problem, due to the principles of low coupling and
high cohesion. Low coupling confines changes to some function or module, leaving the interface
intact. This means that the ambiguity has no effect on other components and can thus be factorized
out in consistency checking.

On the other hand, high cohesion between functions or modules means that each change im-
plies several other changes: choosing one component version determines the versions of all other
components, narrowing the configuration space such that only few configurations remain. Whether
these properties apply to today’s software systems and how they affect their configurability is an
open issue.

6.3 The Long Transaction Protocol

The long transaction protocol is centered around the notion of a workspace, as discussed in sec-
tion 4.3 and realized in Sun’s Network Software Environment (NSE) [11].

27

Project workspace User workspace

Update

Commit

Figure 10: The long transaction protocol

To realize the long transaction protocol on top of the FFS, we use the following setting. Each
user u is assigned an individual variant of the project top-level directory, identified by . [user: u].
The common project state is identified by . [user: project], such that it is disjoint from any user’s
workspace; we call it the project workspace. As shown in figure 10, users synchronize their work
by propagating changes through the project workspace.

Each workspace has its own revision history. This is realized as in the checkin/checkout pro-
tocol, with the current revision being accessed directly through the FFS. Hence, each user u usu-
ally works in his workspace on the current revision(s) by entering . [user: u, current: >]. Entire
workspaces can also be versioned.

Some realizations of the long transaction protocol use a conservative strategy and thus rely on
component or workspace locking [16]. Our setting assumes an optimistic cooperation strategy and
thus the existence of change integration tools. Several change integration algorithms are known,
either text-based [5], syntax-based [57], or semantic-based [6]; for our purposes, these algorithms
must be extended to handle version sets [61].

The operations of the long transaction protocol are as follows:

Originate. To create a new workspace for a user u, rename . [user: project] to . [user: {project, u}],
thus (virtually) copying the project workspace to the user’s workspace and making it accessi-
ble to u.

Update. To propagate changes from the project workspace . [user: project] to a user’s workspace
. [user: u], determine the ri such that U = . [user: u, ri : >] = . [user: project, ri : >] is the
common origin of both workspaces. Integrate the changes between the two workspaces, us-
ing U as base, and store the result in the workspace of user u.

Commit. To commit all changes from a user workspace to the project workspace, first update
the user workspace, as described above. Then create a new current revision of the project
workspace containing a (virtual) copy of the user’s workspace.

Here is an example of using the long transaction protocol. Let Tom and Lisa each work in
their individual workspaces . [user: tom] and . [user: lisa]. Both have made changes to the current
revision r7 of file tty.c. Lisa is the first to commit her changes. As no other changes to tty.c were
made since her last update, a new revision r8 of the project workspace is created, containing Lisa’s
changes to tty.c. When Tom updates his workspace before his next commit, he must integrate Lisa’s
changes with his changes, using revision r7 as a base. The integration is then committed, creating a
new revision r9 of the project workspace incorporating both Lisa’s and Tom’s changes.

28

Baselines and Changes Configuration

Apply

δ1

δ2

δ4

δ3

δ5

Figure 11: The change set protocol

6.4 The Change Set Protocol

In section 4.1, we have already discussed the difference between version-oriented and change-
oriented versioning. In the change set protocol, logical changes are the primary objects of inter-
est; versions are merely the product of applying change sets to a baseline, as shown in figure 11.
Change-oriented versioning provides a natural link to change requests, as they originate from the
SCM process; each configuration can be identified by the incorporated changes.

Our revision concept, as discussed in section 4.1, already assumes that revisions are created
by applying changes to an ancestor revision; through appropriate revision constraints, users can
denote revisions by specifying change sets as well as by giving revision numbers, as discussed in
section 6.1.

Here are the operations of the change set protocol:

Change. To create a change δi of a file F , create a new version F[1i] and change it as desired. The
file F may also be a file system subset, such that changes to several files become part of δ i .
If δi implies other changes δ j , . . . , δk , rename F[1i] to F[1i u1 j u · · · u1k].

Apply. To apply a change set δi , . . . , δ j to an arbitrary baseline F[∇k], access F[1i u· · ·u1 j u∇k].
If this version does not exist (because some of the changes are mutually exclusive), create it
by integrating the changes, as discussed in section 6.3.

In contrast to the version-oriented protocols, the change-oriented protocol makes extensive use
of change integration. Version repositories are thus structured by mutual exclusion rather than
implication: conflicting changes δi and δ j are indicated by a constraint (∇i t ∇j). Just like in
version-oriented protocols, arbitrary sets of changes, variants, and components can be specified and
examined.

7 Performance and Complexity

Having shown how individual protocols are realized on top of the FFS, we can now discuss their
complexity issues. At first, this may sound surprising: Obviously, each individual protocol has
already be realized efficiently in some existing SCM system, so why bother? First, we must show
that this efficiency is not endangered by our formal base—in fact, the efficiency is due to a number
of constraints on the organization of features, which we must identify. Second, having understood
how these constraints make SCM protocols efficient, we can turn to the problem of integrating SCM
protocols.

29

7.1 What is it that Makes Today’s SCM Protocols so Efficient?

In proposition 5, we have stated that deciding the inconsistency of a feature term (i.e., deciding
whether S = ⊥ holds) is an NP-complete problem. Several of our SCM principles rely on deciding
inconsistency, which should result in exponential complexity. So, why isn’t this so in existing SCM
systems? Basically, there are three causes, each reducing complexity by imposing constraints on the
general problem.

Simplification. In existing SCM systems, components are either identified or selected using simple
feature terms; the general case of having non-simple feature terms for both identification and
selection never occurs. Hence, the preconditions for proposition 9 apply—whether a version
is member of the selection or not can simply be decided by evaluating the selection term
with the values furnished in the identification term, or vice versa. This makes the selection
operations in section 6 very efficient.

Implication chains. A second issue is specific to revision handling. Applying the revision con-
straint scheme from section 4.1, revisions are identified by long chains of implications like
(142 → 141) u (141 → 140) u A simple method to decide consistency of such an
implication chain R with a selection term S works as follows: for each 1i w S, replace all
(1i → 1 j) by 1 j and repeat the process for 1 j . Likewise, for each ∇i w S, replace all
(1 j → 1i) = (∇i → ∇j) by ∇j and repeat the process for ∇j . This scheme allows for
efficient selection from “classical” revision histories, as realized in today’s SCM systems.

Orthogonality. As stated in proposition 7, if two feature terms S and T are consistent and have no
common features or variables, their intersection is consistent as well—which can be checked
in linear time. This property makes the creation of new versions efficient, since they are iden-
tified by new features which are orthogonal to all existing ones. Furthermore, orthogonality
simplifies the separation of concerns. For instance, maintenance of revisions and variants is
dramatically simplified as soon as revision features and variant features do not interact with
each other—for example, by placing a CPP file under RCS control.

To conclude: as long as all versions are identified by simple feature terms, as long as we stick to
revision histories, as long as we keep revisions, workspaces, and variants separated from each other,
we can realize efficient SCM protocols. This is the status quo. But does our common foundation
also realize them efficiently?

7.2 A Case Study

To see how ICE handles the major SCM protocols, we have implemented the three methods stated
above as deductive shortcuts besides full-fledged feature unification. As a case study, we have
chosen the GNU MAKE program, which is publicly available in 17 revisions named 3.55 to 3.74.7

From the GNU MAKE distribution, we have considered a single file named commands.c; this file
happened to be modified in each revision. We wanted to know how ICE performs in creating a
repository from the 17 revisions of commands.c, compared to well-known tools like RCS and SCCS;
to see the effects of the deductive shortcuts, we also made ICE run without deductive shortcuts and
rely on feature unification alone.

7The recent GNU MAKE distribution as well as differences to earlier revisions are available from the GNU FTP server
ftp://prep.ai.mit.edu/pub/gnu/.

30

commands.c[]

for
(

d = enter_file(".SUFFIXES")→deps; d 6≡ 0; d = d→next
)

{

#if d370
unsigned int slen = strlen

(

dep_name(d)
)

;

#else
unsigned int len = strlen(file→name);

#endif
#if d374

if
(

len > slen ∧ ¬strncmp(dep_name(d), name + (len − slen), slen)
)

#elif d370
if

(

len > slen ∧ ¬strncmp(dep_name(d), name + len − slen, slen)
)

#else
if

(

len > slen ∧ streq(dep_name(d), file→name + len − slen)
)

#endif
{

#if d370
file→stem = savestring(name, len − slen);

#else
file→stem = savestring(file→name, len − slen);

#endif
break;

}

}

if (d ≡ 0)
file→stem = "";

Figure 12: A multi-revision file

In figure 12, we see an excerpt of the version set commands.c, incorporating all 17 revisions.
We see that the change d370 replaced file→name by dep_name(d) and that change d374 introduced
a parenthesized subexpression. In this excerpt, there is a maximum number of two features that
govern code pieces, making the excerpt quite readable. But commands.c also contains code pieces
governed by four features, which is a little harder to understand—but still an alternative to a set of
mutual DIFF runs. From the version set commands.c, ICE can extract individual revisions in linear
time—due to the efficiency of simplification, selecting a specific revision does not take more time
than running the appropriate RCS, SCCS, or CPP command. All results would apply just as well, had
we chosen features for identifying workspaces or variants instead of changes.

While reading individual versions easily competes with existing SCM systems, the creation of
the repository showed up some unexpected problems. In figure 13, we have listed the execution
times for each checkin process in ICE, as well as the checkin times for RCS and SCCS. Initially, we
had no deductive shortcuts in ICE, relying on NP-complete feature unification alone, and execution
time grew beyond all limits, as shown in figure 13. But even with deductive shortcuts enabled, ICE
checkin time still grows with the number of revisions, while the RCS and SCCS checkin times remain
fairly constant. The difference with ICE is that ICE compares entire version sets when determining
a new compact representation, as discussed in section 5.1; in our example, each new revision is
compared with the entire repository, and the ICE inference engine must determine more and more
governing feature terms as the number of revisions grows. This is in contrast to RCS and SCCS,

31

0

1

2

3

4

5

2 4 6 8 10 12 14 16

ICE with deductive shortcuts
ICE with feature unification alone

RCS
SCCS

Figure 13: Revision checkin times (in seconds) for ICE, RCS, and SCCS

which compare the new revision with the previous revision only.

The checkin problem could easily be solved by realizing the RCS/SCCS approach and comparing
only the latest revisions. The data above shows that ICE is quite efficient when comparing small
revision sets; hence, the use of feature logic as a common SCM foundation and the feasibility of a
common SCM primitive layer is unquestioned. But if we have multiple variants in multiple revisions,
all sharing some common code, which are the “latest” revisions ICE should compare? And to which
extent should variants be compared?

The central problem here is the integration of variance with other SCM concepts. Workspaces
that imply certain variants, variants that imply certain revisions, changes that apply to certain vari-
ants only, introduce disjunctions into revision constraints and thus make the deduction process
overly complex. Such interferences are indicators of poor structure of the configuration space, show-
ing low coherence and strong coupling between configuration threads. Although these interferences
can be uncovered by mathematical concept analysis of configuration structures [28], restructuring
software in order to eliminate them is still at its beginning [53]. Future research and experience
will show how far non-orthogonal variance can be allowed to interfere with other SCM concepts and
how much of the resulting complexity is tolerable in practice. We see that while the realization of
an existing SCM protocol imposes no special problems, the integration of SCM concepts remains an
open issue.

32

8 Conclusion

The future of automated SCM lies in a clear separation of primitives, protocol, and policy, based
on a clear semantic foundation. We have proposed feature logic and version sets as such a SCM
foundation. Version sets integrate and unify current SCM versioning models and provide a well-
defined semantics for defining higher SCM layers. Feature logic is powerful enough not to endanger
flexibility at higher SCM layers, and yet sufficiently specialized to describe how features propagate
in the SCM process.

Our implementation of the version set model in ICE has shown that this foundation has numer-
ous user-visible benefits. Through the feature deduction mechanisms, ambiguity is tolerated at all
SCM layers; sets rather than objects are the primary items of interest. The SCM process is not con-
strained by process-specific decisions in lower SCM layers. All major SCM protocols can be realized
efficiently on top of a SCM primitive layer like the FFS. These features make ICE an environment
adapting to its users and their process, instead of vice versa.

Besides refining, extending, and evaluating the ICE implementation, especially at the protocol
and policy levels, our future work will focus on three subjects.

Efficient integration of SCM concepts. We have seen that each of the four major SCM models can
be realized efficiently on top of the version set model. We also have identified complexity
problems with non-orthogonal SCM concepts, especially variance. Based on further expe-
rience with the FFS and the underlying deduction engine, we want to investigate how far
integration of SCM concepts can go without endangering efficiency. Furthermore, we want to
see which integrated SCM protocols are feasible, how they can be realized on top of the FFS,
and how far the SCM process is determined by these protocols.

Versioned component relations. While our model supports versioned components, it has no no-
tions on relationships between these components. What is required is a means to model ver-
sioned component relations—or relations between component versions. Generally, we plan to
extend the version set model such that features represent relationships between version sets.
1: m and 1: n relationships are modeled through non-functional features called roles [50].
This extension will introduce and unify versioning concepts in graph-structured applications
such as computer-aided design (CAD) [26], or graph-based software development environ-
ments [13, 48]; first results are given in [63].

Support of the SCM process. On the conceptual level, we must find out if and how SCM processes
might be formalized using the version set model and whether SCM tool behaviour may be
verified against the SCM process. We imagine organizing the SCM process entirely by manip-
ulating component features—changing their state from proposed via tested to released; SCM
procedures might be modeled by pre- and post-conditions specified as feature terms. Unfor-
tunately, there is no true methodology yet how components and versions should be attributed
with feature terms; experiences from other attribute-oriented SCM systems or faceted classi-
fication [41] might help here. Eventually, we hope to model the entire SCM process through
operations on version sets denoted by feature logic, providing a uniform semantic foundation
for all SCM layers.

ICE and the FFS were developed as part of the NORA project8 which aims at utilizing inference
technology in software tools. ICE and the FFS as well as related technical reports can be accessed

8NORA is a figure in Henrik Ibsen’s play “A Dollhouse”. Hence, NORA is no real acronym.

33

through the ICE WWW page, http://www.cs.tu-bs.de/softech/ice/, and via anonymous
FTP from ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ice/.

Acknowledgments

Many thanks to all who have made ICE possible through contributing to the ICE implementation or
by making program sources and tools available. Lars Düning implemented the CPP representation
using GNU DIFF. Olaf Pfohl built the FFS server on top of a public domain NFS server. Marc
Ziehmann implemented Smolka’s feature unification algorithm. Dirk Babel, Michael Brandes, and
Andreas Mende realized the higher layers of ICE. Finally, we thank the anonymous reviewers for
their useful and constructive comments.

References
[1] Adams, P., and Solomon, M. An overview of the CAPITL software development environment. In Software

Configuration Management: selected papers / ICSE SCM-4 and SCM-5 workshops (Seattle, Washington, Oct.
1995), J. Estublier, Ed., vol. 1005 of Lecture Notes in Computer Science, Springer-Verlag, pp. 1–34.

[2] Aït-Kaci, H. An algebraic semantics approach to the effective resolution of type equations. Theoretical Computer
Science 45 (1986), 293–351.

[3] Aït-Kaci, H., and Nasr, R. Login: A logic programming language with built-in inheritance. Journal of Logic
Programming 1986, 3 (1986), 186–215.

[4] Aït-Kaci, H., and Podelski, A. Towards a meaning of LIFE. In Proc. 3rd International Symposium on Pro-
gramming Language Implementation and Logic Programming (Passau, Germany, Aug. 1991), J. Maluszyński and
M. Wirsing, Eds., vol. 528 of Lecture Notes in Computer Science, Springer-Verlag, pp. 255–274.

[5] Berliner, B. CVS II: Parallelizing software development. In Proc. of the 1990 Winter USENIX Conference
(Washington, D.C., 1990).

[6] Binkley, D., Horwitz, S., and Reps, T. Program integration for languages with procedure calls. ACM Transac-
tions on Software Engineering and Methodology 4, 1 (Jan. 1995), 3–35.

[7] Brachman, R. J., and Levesque, H. J. The tractability of subsumption in frame-based description languages. In
Proc. of the 4th National Conference of the American Association for Artificial Intelligence (Austin, Texas, Aug.
1984), pp. 34–37.

[8] Brown, A., Dart, S., Feiler, P., and Wallnau, K. The state of automated configuration management. Tech. Rep.
CMU/SEI-ATR-91, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, Sept. 1991.

[9] Conradi, R., and Tryggeseth, E. Versioning models. In Software Configuration Management: selected papers /
ICSE SCM-4 and SCM-5 workshops (Seattle, Washington, Oct. 1995), J. Estublier, Ed., vol. 1005 of Lecture Notes
in Computer Science, Springer-Verlag, p. 80.

[10] Conradi, R., and Westfechtel, B. Version models for software configuration management. Tech. Rep. AIB
96-10, RWTH Aachen, Germany, Oct. 1996.

[11] Courington, W. The Network Software Environment. Tech. Rep. FE 197-0, Sun Microsystems, Inc., Feb. 1989.

[12] Dart, S. Concepts in configuration management systems. In Proc. 3rd International Workshop on Software Con-
figuration Management (Trondheim, Norway, June 1991), P. H. Feiler, Ed., ACM Press, pp. 1–18.

[13] Engels, G., Lewerentz, C., Nagl, M., Schäfer, W., and Schürr, A. Building integrated software development
environments—Part 1: Tool specification. ACM Transactions on Software Engineering and Methodology 1, 2
(1992), 135–167.

[14] Estublier, J. Process session. In Software Configuration Management: selected papers / ICSE SCM-4 and SCM-5
workshops (Seattle, Washington, Oct. 1995), J. Estublier, Ed., vol. 1005 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 136–137.

[15] Estublier, J., and Casallas, R. The Adele configuration manager. In Configuration Management, W. F. Tichy,
Ed., vol. 2 of Trends in Software. John Wiley & Sons, Chichester, UK, 1994, ch. 4, pp. 99–133.

34

[16] Feiler, P. H. Configuration management models in commercial environments. Tech. Rep. CMU/SEI-91-TR-7,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, Mar. 1991.

[17] Feldman, S. I. Make—A program for maintaining computer programs. Software—Practice and Experience 9 (Apr.
1979), 255–265.

[18] Fowler, G., Korn, D., and Rao, H. n-DFS: The multiple dimensional file system. In Configuration Management,
W. F. Tichy, Ed., vol. 2 of Trends in Software. John Wiley & Sons, Chichester, UK, 1994, ch. 5, pp. 135–154.

[19] Gulla, B., Karlsson, E.-A., and Yeh, D. Change-oriented version descriptions in EPOS. Software Engineering
Journal 6, 6 (Nov. 1991), 378–386.

[20] Harter, R. Version management and change control; systematic approaches to keeping track of source code and
support files. Unix World 6, 6 (June 1989).

[21] The Institute of Electrical and Electronics Engineers, Inc. IEEE Guide to Software Configuration Man-
agement. New York, 1988. ANSI/IEEE Standard 1042-1987.

[22] The Institute of Electrical and Electronics Engineers, Inc. IEEE Guide to Software Configuration Man-
agement Plans. New York, 1990. ANSI/IEEE Standard 828-1990.

[23] The International Organization for Standardization and The International Electrotechnical Com-

mission. Programming Languages—C, Dec. 1990. ISO/IEC International Standard 9899:1990 (E).

[24] Jones, N. D., Gomard, C. K., and Sestoft, P. Partial Evaluation and Automatic Program Generation. Prentice
Hall, 1993.

[25] Kaplan, R. M., and Bresnan, J. Lexical-functional grammar: A formal system for grammatical representation.
In The Mental Representation of Grammatical Relations, J. Bresnan, Ed. MIT Press, Cambridge, Mass., 1982,
pp. 173–381.

[26] Katz, R. H. Toward a unified framework for version modeling in engineering databases. ACM Computing Surveys
22, 4 (Dec. 1990), 375–408.

[27] Kay, M. Functional unification grammar: A formalism for machine translation. In Proc. 10th International Joint
Conference on Artificial Intelligence (Stanford, 1984), pp. 75–78.

[28] Krone, M., and Snelting, G. On the inference of configuration structures from source code. In Proc. 16th Interna-
tional Conference on Software Engineering (Sorrento, Italy, May 1994), IEEE Computer Society Press, pp. 49–57.

[29] Lacroix, M., and Lavency, P. Preferences: Putting more knowledge into queries. In Proc. of the 13th International
Conference on Very Large Data Bases (Brighton, 1987), P. M. Stocker and W. Kent, Eds., pp. 217–225.

[30] Lampen, A., and Mahler, A. An object base for attributed software objects. In Proc. of the Fall ’88 EUUG
Conference (Cascais, Oct. 1988), pp. 95–105.

[31] Leblang, D. B. The CM challenge: Configuration management that works. In Configuration Management, W. F.
Tichy, Ed., vol. 2 of Trends in Software. John Wiley & Sons, Chichester, UK, 1994, ch. 1, pp. 1–37.

[32] Lie, A., Conradi, R., Didriksen, T. M., Karlsson, E.-A., Hallsteinsen, S. O., and Holager, P. Change oriented
versioning in a software engineering database. In Proc. 2nd International Workshop on Software Configuration
Management (Princeton, New Jersey, Oct. 1989), W. F. Tichy, Ed., ACM Press, pp. 56–65.

[33] Mahler, A. Variants: Keeping things together and telling them apart. In Configuration Management, W. F. Tichy,
Ed., vol. 2 of Trends in Software. John Wiley & Sons, Chichester, UK, 1994, ch. 3, pp. 39–69.

[34] Martin, U., and Nipkow, T. Boolean unification—The story so far. In Unification, C. Kirchner, Ed. Academic
Press, London, 1990, pp. 437–455.

[35] Miller, W., and Myers, E. A file comparison program. Software—Practice and Experience 15, 11 (1985), 1025.

[36] Munch, B. P., Larsen, J.-O., Gulla, B., Conradi, R., and Karlsson, E. A. Uniform versioning: The change-
oriented model. In Proc. 4th International Workshop on Software Configuration Management (Preprint) (Baltimore,
Maryland, May 1993), S. Feldman, Ed., pp. 188–196.

[37] Nebel, B. Reasoning and Revision in Hybrid Representation Systems, vol. 422 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1990.

[38] Nebel, B., and Smolka, G. Representation and reasoning with attributive descriptions. In Sorts and Types in
Artificial Intelligence (Eringerfeld, Apr. 1989), K. H. Bläsius, U. Hedstück, and C.-R. Rollinger, Eds., vol. 256 of
Lecture Notes in Artificial Intelligence, Springer-Verlag, pp. 112–139.

35

[39] Nicklin, P. Managing multi-variant software configurations. In Proc. 3rd International Workshop on Software
Configuration Management (Trondheim, Norway, June 1991), P. H. Feiler, Ed., ACM Press, pp. 53–57.

[40] Ploedereder, E., and Fergany, A. The data model of the configuration management assistant. In Proc. 2nd Inter-
national Workshop on Software Configuration Management (Princeton, New Jersey, Oct. 1989), W. F. Tichy, Ed.,
ACM Press, pp. 5–13.

[41] Prieto-Díaz, R. Classifying software for reusability. IEEE Software 4, 1 (Jan. 1987).

[42] Reichenberger, C. Orthogonal version management. In Proc. 2nd International Workshop on Software Configu-
ration Management (Princeton, New Jersey, Oct. 1989), W. F. Tichy, Ed., ACM Press, pp. 137–140.

[43] Rochkind, M. J. The source code control system. IEEE Transactions on Software Engineering SE-1, 4 (Dec. 1975),
364–370.

[44] Sachweh, S., and Schäfer, W. Version management for tightly integrated software engineering environments. In
Proc. of the 7th international Conference on Software Engineering Environments (Noordwijkerhout, Netherlands,
Apr. 1995), IEEE Computer Society Press.

[45] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. Design and implementation of the Sun
Network filesystem. In Proc. of the Summer 1985 USENIX conference (Portland, Oregon, June 1985), pp. 119–
130.

[46] Sarnak, N., Bernstein, R., and Kruskal, V. Creation and maintenance of multiple versions. In Proc. of the
International Workshop on Software Version and Configuration Control (Grassau, Jan. 1988), J. F. H. Winkler, Ed.,
Teubner Verlag, Stuttgart, pp. 264–275.

[47] Schmerl, B. D., and Marlin, C. D. Designing configuration management facilities for dynamically bound sys-
tems. In Software Configuration Management: selected papers / ICSE SCM-4 and SCM-5 workshops (Seattle,
Washington, Oct. 1995), J. Estublier, Ed., vol. 1005 of Lecture Notes in Computer Science, Springer-Verlag, pp. 88–
100.

[48] Schürr, A., Winter, A. J., and Zündorf, A. Graph grammar engineering with PROGRES. In Proc. 5th European
Software Engineering Conference (Sitges, Spain, Sept. 1995), W. Schäfer and P. Botella, Eds., vol. 989 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 219–234.

[49] Shieber, S., Uszkorzeit, H., Pereira, F., Robinson, J., and Tyson, M. The formalism and implementation of
PATR-II. In Research on Interactive Acquisition and Use of Knowledge, J. Bresnan, Ed. SRI International, 1983.

[50] Smolka, G. Feature-constrained logics for unification grammars. Journal of Logic Programming 12 (1992), 51–87.

[51] Smolka, G., and Aït-Kaci, H. Inheritance hierarchies: Semantics and unification. In Unification, C. Kirchner, Ed.
Academic Press, London, 1990, pp. 489–516.

[52] Snelting, G. The calculus of context relations. Acta Informatica 28 (May 1991), 411–445.

[53] Snelting, G. Reengineering of configurations based on mathematical concept analysis. ACM Transactions on
Software Engineering and Methodology 5, 2 (Apr. 1996), 146–189.

[54] Snelting, G., Grosch, F.-J., and Schroeder, U. Inference-based support for programming in the large. In Proc.
3rd European Software Engineering Conference (Milano, Italy, Oct. 1991), A. van Lamsweerde and A. Fugetta,
Eds., vol. 550 of Lecture Notes in Computer Science, Springer-Verlag, pp. 396–408.

[55] Tichy, W. F. RCS—A system for version control. Software—Practice and Experience 15, 7 (July 1985), 637–654.

[56] van der Hoek, A., Heimbigner, D., and Wolf, A. L. A generic, peer-to-peer repository for distributed configura-
tion management. In Proc. 18th International Conference on Software Engineering (Berlin, Germany, Mar. 1996),
IEEE Computer Society Press, pp. 308–317.

[57] Westfechtel, B. Structure-oriented merging of revisions of software documents. In Proc. 3rd. SCM (Trondheim,
Norway, June 1991), P. H. Feiler, Ed., ACM Press, pp. 86–79.

[58] Wiebe, D. Object-oriented software configuration management. In Proc. 4th International Workshop on Software
Configuration Management (Preprint) (Baltimore, Maryland, May 1993), S. Feldman, Ed., pp. 241–252.

[59] Winkler, J. F. H. Version control in families of large programs. In Proc. 9th International Conference on Software
Engineering (Monterey, California, Mar. 1987), E. Riddle, Ed., IEEE Computer Society Press, pp. 91–105.

[60] Zeller, A. A unified version model for configuration management. In Proc. 3rd ACM SIGSOFT Symposium
on the Foundations of Software Engineering (Washington, DC, Oct. 1995), G. Kaiser, Ed., vol. 20 (4) of ACM
Software Engineering Notes, ACM Press, pp. 151–160.

36

[61] Zeller, A. Smooth operations with square operators—The version set model in ICE. In Proc. 6th International
Workshop on Software Configuration Management (Berlin, Germany, Mar. 1996), I. Sommerville, Ed., vol. 1167
of Lecture Notes in Computer Science, Springer-Verlag, pp. 8–30.

[62] Zeller, A. Configuration Management with Version Sets. PhD thesis, Technical University of Braunschweig,
Germany, Apr. 1997.

[63] Zeller, A. Versioning software systems through concept descriptions. Computer Science Report 97-01, Technical
University of Braunschweig, Germany, Jan. 1997. Submitted for publication.

[64] Zeller, A., and Snelting, G. Handling version sets through feature logic. In Proc. 5th European Software
Engineering Conference (Sitges, Spain, Sept. 1995), W. Schäfer and P. Botella, Eds., vol. 989 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 191–204.

37

���������
	�����������
	��������	����� ����� ��� �����������	�
! ��"$#���% � �	�&(')������	*�����+� �-,/. ��021�34'�5�6

1�34'�5�6 7 0�89	��
:�	� ;<�>=?89@BADCFEG� � �H�	�� ��I �2JLKM� 7 �N���&�����"$#��?; 7>O @2PQ@
1�34'�5�5 O 0 ')RS0
@2�N��	��T� ����	��+�4�� ���U �/VXWXY ; W ' � �
:Z� Y�W 898B[]\�^-_�`a')b ��I�I �+� � :�	����
1dc-')6N5 C�0feM� I*I ��� 7 #g�Nh� � � � �	�#g�/P � � � ���%i�����j�j	���ZbN� � � � ��S8k#� g	����
1dc-')6gl m 0f;<�T�9�#g�(�S���I :N����n O 0�8 � �N ����
:9�#��"o��� . ���+U������&<% � � � ���%i������pq������������	 ,
� �� r:N����@ts<Ku#g� � ��

��� "t:N��� 7 ��� ! �?vw1dc
1dc-')6g3 �?0 O � ���% � ���xnfyS0u; ��� &���n

Y 0 m � �N g� I���� ��nNEz0 O � ��+� I n m 0 V{� ��T�
Y ���<	��+��:Z|t���T�	�#g�Z#�"}��N��P/#L:�� I�I 	��N ~8 � �� ��� ��S�{�u���(�
� |t�����	�#g��lL0
6(�

1dc-')6-c C�0feM� I*I ����n
yS0M;<��� I �	��N ! �
�H���%i����� ��I 7 #g�Nh
 � � � �	�#g��P � � � ���%i������� � �+��:/#g�
bN� � � � ��S���
	�h
� � �	�#g�

1dc-')6g� ;M0 7 #g�N� � : C�� � ��	�� 7 ��I � �
I�� ��"$#��j|t����	�"oJL	��� ~EG�#�Ku����	����>#�"
;LJ<�����N��#g�N# � � I J ! ���+��� � �H�	��� W�,<� ���H��

1dc-')6g� P�0fy�#� �# I*I�� n . 0N| I*� ��� � ���+#g��	���n
Y 0 O ���U�	� NnMyS0fR�����&�����nM;M0 7 #g��� � :xn
O 0 ')RS0
@2�N��	��T�

���N� V?WXY ; W CjK
K��# � �����+#r��N��R������ I #�K
%r���(��#�" Y � I 	 �-,
I �
! ��"$#���% � �	�#g�Q;LJ<�+�+��%r�

1dc-')6(� 7 0�89	��
:�	� ! ��&����%r���(�+� I�I ��nN���� �&L ���&�#�K�Ku� I �+�S; � ���N�{	*�
;L#�"o�)� � ��H')�>	 ,
I 	�#������&����

1dc-')6g� ��0�b}	������N����nMP�0 V 	���������� � �� I n
� 0M;<�+� � �&<% � ���

| 7 Y{� CF|XR?PZ' ,f� �+��:/�+#�"o�)� � ��S�H#g%iKu#g�N���(�j����+��	���� ��I �+#�# I

1��4')6N5 |�0f;M0 7 �N������	 � �L�&�J EG��	 I #g�+#�K
��	*����N�XC��+Ku��&��+��:�����������# I�I ����� ��:�	� �&���	�����N��#����%r�
��#g��yi�#g:�� I

1��4')6gl yS0f;<�N� I �	*�N Y �����N g	*�N������	��N i#�" 7 #g�Nh
 � � � �	�#g����� � �+��:/#g�/P � ��N��% � �	�� ��I
7 #g���H��K���C�� ��I JL�	*�

1��4')6g3 C�0feM� I*I ��� C�����	�h���: 7 #g�Nh� � � � �	�#g��P � � � ���%i������P/#L:N� I
1��4')6-c O 0��>	���&�� I n � 0M;L�+� � ��&L% � ��� ���N� O # � ���89#� g	��X#�"tR � � � �2J�Ku���
1��4')6g� b20 ' m 0My��#g����� . #��GJLKu��;L� � %iK
� � �
: . #�;L�+� � �H� � ���{;<� � %iK
��A

�rY ��"o��������	 ��I�I J�')��� � ���+K � �����(� O 	� g�N���+' W ��:N���jP/#L: �
I �
8 � �N �
� ��

1��4')6g� |�0f;M0 7 �N������	 � �L�&�J �� , �����+��% � �(�	������N� � �
:�"o#���% ��I 	��+�	���T�N�X�2������	��%r����N#L:����Z	��
:N���Z�Hs � &��+��� � 	���+��������� � "o�+���

1��4')6(� C�0feM� I*I ����nNRS0
8��� �+&���� ��� � RXR�R�'2CFb�����~y�� � K
��	�� ��I bN��#g�(��')@2��:Z"o#���� . !��
R�� ,
� � ������

1��4')6g� C�0feM� I*I ��� ;<%i#L#��� W Ku��� � �	�#g�
�>�j	���/;<� ��� �� W Ku��� � �+#��T��A
���N�?|t������	�#g�Q;L����P/#<:N� I 	�� ! 7 @

1��4')6g1 E�0�b � �N&Mn
C�0�89���j	����xnfy~0M;<�N� I �	*�N C I �#���	����%r�>"o#�� 7 #g���H��K���8 � �+�	*�H��R����H#g%iKu#g�	��	�#g� � �
:
��N��	��jC�K�K I 	�� � �	�#g�

1��4')6N5 C�0feM� I*I ����n
yS0M;<��� I �	��N ���
	�h���:�|t�����	�#g��	��N i���N��# � g�ZbN� � � � ��S8k#� g	��
1��4')6gl P�0fy�# I : � K�Kkn���0My��#��+�+&�����n

yS0f;<�N� I �	*�N
| ��I 	�:�	���� � �N i�+#�"o�)� � ��� ����+�+� � �����+���?P/���g�+J<�+�+��%i�S: � ���T�
E��#� �� � %�; I 	*��	��N � ��: 7 #g����+� � 	�����;L# I �<	��N

1��4')6g3 7 0�89	��
:�	� Nn�yS0M;<�N� I �	��N P�#<: ��I*� ��	�U � �	�#g��#�"t8k�� � �HJ 7 #<:N�{� � �+��:/#g�QP � ��N��% � �	�� ��I
7 #g���H��K���C�� ��I JL�	*�

1��4')6-c m 0�C�:��� %i��&Mn m 0 V #g� I #��j�&L	�n
|�0�Ez# I�I�� � � n � 0u;L�+� � ��&L% � �
�

� #��&<��N#�KQR�#g% � 	*��� !! � E��#<�H����:�	��� g�T�

1��4')6g� b20 ' m 0My��#g����� C�;LJL��� � �H�	��{C�K�K���# � ���Z�+#D;<�+� � �H� � ���yX���N��� � �	��<	��)J
1��4')6g� @�0 O 0
C�0fyX��� , � � �T�(��n

� 0M;<�+� � �&<% � ���
e � ��RX	��+& � ���	�#g��� I ��%i����� � �����b � �N&L�	�#g�N��� ��� �
��I �#���	���
%r	���T�N����;<	��T�(�

1g��')6N5 C�0feM� I*I ��� |t�����	�#g�
	��N �;L#�"o�)� � ��S;LJ<�+�+��%r����N�# � g� 7 #g���H��K��
R�����H��	�K��	�#g���

