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Abstract— Learning-based video annotation is a promising
approach to facilitating video retrieval and it can avoid the
intensive labor costs of pure manual annotation. But it frequently
encounters several difficulties, such as insufficiency of training
data and the curse of dimensionality. In this paper, we propose
a method named optimized multigraph-based semi-supervised
learning (OMG-SSL), which aims to simultaneously tackle these
difficulties in a unified scheme. We show that various crucial fac-
tors in video annotation, including multiple modalities, multiple
distance functions, and temporal consistency, all correspond to
different relationships among video units, and hence they can
be represented by different graphs. Therefore, these factors can
be simultaneously dealt with by learning with multiple graphs,
namely, the proposed OMG-SSL approach. Different from the
existing graph-based semi-supervised learning methods that only
utilize one graph, OMG-SSL integrates multiple graphs into a
regularization framework in order to sufficiently explore their
complementation. We show that this scheme is equivalent to
first fusing multiple graphs and then conducting semi-supervised
learning on the fused graph. Through an optimization approach,
it is able to assign suitable weights to the graphs. Furthermore,
we show that the proposed method can be implemented through a
computationally efficient iterative process. Extensive experiments
on the TREC video retrieval evaluation (TRECVID) benchmark
have demonstrated the effectiveness and efficiency of our pro-
posed approach.

Index Terms— Multimodal fusion, semi-supervised learning,
video annotation.

I. INTRODUCTION

W ITH RAPID ADVANCES in storage devices, networks,
and compression techniques, large-scale video data

have become available to ordinary users. Content-based video
search thus has become an increasingly active field. It is well
known that a central problem of this field is the so-called
semantic gap, namely, the gap between low-level (signal-level)
features and high-level (semantic-level) queries. Recent studies
reveal that annotating a large set of semantic concepts for the
video data is a promising approach to bridging this gap [10],
[11], [18], [22]. As noted by Hauptmann [10], “this splits the
semantic gap between low level features and user information
needs into two, hopefully smaller gaps: (a) mapping the low-
level features into the intermediate semantic concepts and
(b) mapping these concepts into user needs.” Annotation is
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exactly the step to accomplish the first mapping. However,
manual annotation for a large video archive is labor intensive
and time consuming. For example, experiments in [20] prove
that typically annotating 1 h of video with 100 concepts
can take anywhere between 8 and 15 h. Therefore, efficient
automatic annotation methods are highly desirable.

Generally, automatic video annotation (also referred to as
“video concept detection” [25], “video semantic analysis”
[31], or “high-level feature extraction” [17]) can be accom-
plished by machine learning methods. A typical learning-based
video annotation method works as follows. First, videos are
segmented into short units such as shots and sub-shots. Then,
low-level features are extracted from each unit to describe
its content. Video annotation is then formalized to learn a
set of predefined concepts for each unit based on these low-
level features. Since the to-be-annotated concepts may not be
mutually exclusive (such as the concepts “street” and “out-
door”), a general scheme is to conduct a binary classification
procedure for each concept. Given a concept, each unit is then
annotated to be “positive” or “negative” according to whether
it is associated with this concept. The National Institute of
Standards and Technology (NIST) has also established “high-
level feature extraction” as a task in TREC video retrieval
evaluation (TRECVID) [1], [28], which aims to provide
a benchmark for evaluating video annotation technologies.
Naphade et al. [25] have presented a survey on the benchmark,
where a great deal of different algorithms applied to this task
can be found. Recent studies have demonstrated that video
annotation could benefit from the investigation of a diverse
set of features and learning methods. For example, Wang
et al. [38] have shown the effectiveness of combining different
features and Amir et al. [2] have integrated different learning
algorithms, including support vector machine, Gaussian mix-
ture model, maximum entropy methods, a modified nearest
neighbor method, and multiple-instance learning. Snoek et al.
have proposed a semantic pathfinder method which benefits
from the exploitation of the video authoring process [30].

Although many different methods have been proposed
for this task and several encouraging results have been
reported [2], [30], [38], [19], we still frequently encounter
the following difficulties which may result in the inaccurate
annotation results.

1) Insufficiency of training data. To guarantee reasonable
annotation accuracy, a large training set with enough
sample prototypes is required in order to bridge the gap
between low-level features and semantic concepts. How-
ever, this requirement is usually difficult to meet due to
the high labor costs of manual annotation [7], [20], [40].

2) Curse of Dimensionality. To differentiate or describe a
variety of semantic concepts, we have to extract a large

1051-8215/$25.00 © 2009 IEEE
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Fig. 1. Schematic illustration of the OMG-SSL-based video annotation process. It is equivalent to conducting semi-supervised learning on a graph fused
from the graphs that encode the knowledge from multiple modalities, multiple distance functions, and temporal consistency.

amount of low-level features. But a high-dimensional
feature space frequently leads to “curse of dimension-
ality” which may induce performance degradation [4],
[42].

3) Choice of distance Function. It is well known that many
learning methods heavily rely on the adopted distance
function. However, the optimal distance function varies
for different features and/or different semantic concepts.
On the other hand, complementarity may exist among
different distance functions [47]. However, the selection
of best distance function and the combination of multiple
distance functions are both challenging issues.

4) Neglect of temporal consistency. Temporal consistency
is a widely noted property in video data, which
means that the variation of semantic concepts within
a continuous video segment is usually much smaller
compared to that in different video segments [15], [45].
It indicates that adjacent video shots may share the
same semantic concepts with high probability. This
property can help improve annotation performance if it
is exploited appropriately, but in the existing works it
is often neglected or not sufficiently utilized.

Various methods have been proposed aiming to tackle the
above problems, such as applying semi-supervised learning to
deal with the training data insufficiency problem and utilizing
multimodal fusion to avoid dimensionality curse. However, to
the best of our knowledge, there is no unified scheme that
can simultaneously deal with the above four problems. In
this paper, we propose such an approach named optimized
multigraph-based semi-supervised learning (OMG-SSL). Dif-
ferent from the traditional graph-based semi-supervised learn-
ing algorithms that mainly focus on learning from a single
graph, OMG-SSL can handle multiple graphs simultaneously
by integrating them into a regularization framework (here a
graph can be simply understood as a similarity or correlation
matrix). We will show that actually our approach is equivalent

to fusing multiple graphs and then conducting semi-supervised
learning on the fused graph. Thus, when applying it to
integrate multiple modalities, the OMG-SSL scheme can also
be viewed as a novel graph-based fusion approach which is
different from the existing fusion strategies that perform fusion
on features or the results learned from individual modalities
[31].

Based on the proposed OMG-SSL algorithm, the video
annotation scheme is able to deal with multiple modalities,
multiple distance functions, and video temporal consistency in
a unified manner, as illustrated in Fig. 1. Given M modalities
and D distance functions, we can generate M × D graphs,
following from the fact that the affinity matrix under each
pair of modality and distance function corresponds to a graph.
Moreover, temporal consistency also indicates the relationship
of each sample with its adjacent ones, and it can thus be
represented by a certain graph as well. Therefore, OMG-
SSL is able to deal with the aforementioned four problems
simultaneously, in which the insufficiency of training data is
attacked by semi-supervised learning, curse of dimensionality
is solved by multimodality learning, and multiple distance
functions and temporal consistency are reflected in different
graphs. Additionally, we will show that the proposed scheme
is computationally more efficient compared with typical ex-
isting methods such as support vector machine (SVM), and
this advantage is particularly encouraging when annotating
a large lexicon of concepts, such as the large scale concept
ontology for multimedia (LSCOM) that includes hundreds of
concepts [23].

The main contributions of this paper can be summarized as
follows.

1) Propose the OMG-SSL algorithm. Different from the
existing graph-based learning techniques, which deal
with only one graph, the OMG-SSL method optimally
explores multiple complementary graphs in the manner
of semi-supervised learning.
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2) Apply the OMG-SSL algorithm to video annotation,
whereby a unified scheme is provided to simultaneously
handle large-scale unlabeled data, multiple modalities,
multiple distance functions, and video temporal consis-
tency.

3) We demonstrate that the OMG-SSL algorithm can be
viewed as a graph-based fusion approach when it is
applied to integrate multiple modalities, and it has been
demonstrated to be more effective than the existing
fusion schemes.

The OMG-SSL approach was first introduced in our pre-
vious work [39]. Compared to the preliminary version [39],
in this paper we have improvements in three aspects: 1) we
performed a more comprehensive survey of existing related
works; 2) we conducted more empirical evaluations; and
3) more discussions and analyses are provided. The organi-
zation of the rest of this paper is as follows. In Section II, we
provide a short review on the related works. In Section III, we
propose the OMG-SSL algorithm and its application in video
annotation. Experimental results are presented in Section IV.
Finally, we conclude this paper in Section V.

II. RELATED WORK

A. Semi-Supervised Learning

Over the recent years, the availability of large data col-
lections associated with only limited human annotation has
turned the attention of a growing community of researchers
to the topic of semi-supervised learning [5] and [50]. By
leveraging unlabeled data based on certain assumptions, semi-
supervised learning methods are expected to build more ac-
curate models than those that can be achieved by purely
supervised learning methods. Many different semi-supervised
learning algorithms have been proposed. Some often-applied
ones include self-training, co-training, transductive SVM, and
graph-based methods. Extensive reviews of these methods can
be found in [5] and [50]. Several of these methods have already
been applied in image/video annotation and search. In [36],
Tian et al. conducted a study on semi-supervised learning-
based image retrieval. In [32], co-training is adopted for video
annotation based on a careful splitting of visual features.
In [43], Yan et al. pointed out the weakness of co-training
in video annotation, and proposed an improved co-training-
style algorithm named semi-supervised cross-feature learning.
In [33], Song et al. adopted a semi-supervised ensemble
learning method for video annotation. Ewerth et al. have
proposed a semi-supervised video retrieval method that adapts
the model trained on labeled samples based on unlabeled
data [7]. More recently, graph-based semi-supervised methods
have attracted the interest of researchers in this community
due to their effectiveness and computational efficiency (most
graph-based methods can be implemented with an efficient
iterative process). Many works have demonstrated that the
graph-based methods are computationally efficient with rather
low computational costs. In [12] and [48], a graph-based
semi-supervised learning method named learning with local
and global consistency (LLGC) [49] is applied to image

retrieval and video annotation, respectively. Tang et al. pro-
posed a graph-based semi-supervised learning method named
kernel linear neighborhood propagation and demonstrated its
effectiveness in video annotation [35]. In [40], Wang et al.
proposed a semi-supervised kernel density estimation method
for video annotation and analyzed its relationship to graph-
based methods. In [37], Tong et al. proposed a scheme to deal
with two modalities in graph-based semi-supervised learning
scheme. This directly motivates our work in this paper. But
later we will show that, different from their approach that
adopts fixed weights, our proposed method obtains optimal
graph weights, and therefore it is capable of dealing with more
graphs.

B. Multimodal Fusion

Existing studies reveal that the distances between sample
pairs become increasingly similar when the dimension of
the adopted feature space is high [4], [42]. This may intro-
duce performance degradation if we directly apply the high-
dimensional features in distance (or similarity)-based learning
algorithms, such as the graph-based method adopted in this
paper. In the multimedia field, a widely applied approach
to addressing this issue is to replace the high-dimensional
learning task by multiple low-dimensional learning tasks, i.e.,
separately apply different modalities to learning algorithms
and then fuse the results [42]. Here, a modality can be viewed
as a description to video data, such as color, edge, texture, au-
dio, and text (Wu et al. [42] also proposed a statistical method
to generate modalities without using such prior knowledge).
This method is usually called “multimodal fusion” or “multi-
modality learning.” Sometimes it is also named “late fusion,”
whereas the approach of using concatenated high-dimensional
global feature vector is named “early fusion” [31]. Although
the multimodal fusion approach is heuristic, its effectiveness
has been empirically demonstrated in many works. With a la-
beled fusion set, the task of multimodal fusion can actually be
formulated as a learning issue. For example, Iyengar et al. [52]
and Snoek et al. [31] have accomplished the fusion with SVM
models. But Wang et al. [38] have reported that this approach
may suffer from the over-fitting problem due to the limited size
of fusion set (especially the limited positive samples). Thus
generally linear fusion is regarded as a simple yet effective
approach. Yan et al. have studied the theoretical upper bound
of linear fusion [53]. Snoek et al. have given an empirical
study to compare early fusion and late fusion [31]. Magalhães
et al. [21] proposed a method to transform multimodal features
based on the minimum description length criterion, and the
multimodal fusion performance can thus be improved.

We will show that the proposed OMG-SSL method amounts
to implementing semi-supervised learning on a fused graph,
and it can thus be viewed as a novel “graph-based fusion” ap-
proach. Fig. 2 illustrates the schemes of early, late, and graph-
based fusion for comparison. From the figure we can see that
the graph-based fusion approach is different from early and
late fusion in the sense that it explores the complementation of
multiple modalities during the learning process. Experimental
results will demonstrate the superiority of this approach.
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Fig. 2. Comparison of the early, late, and graph-based fusion schemes. We
can see that the fusion is performed at different phases in the three approaches.

C. Choice of Distance Function

It is well-known that the distance function plays an impor-
tant role in machine learning algorithms. In machine learning
community, many distance metric learning algorithms have
recently been proposed which aim to learn suitable distance
functions from training data [9], [14], [46]. However, these
methods are usually computationally intensive and prone to
overfitting, especially when the training samples are limited
and the dimension of feature space is high [46]. Therefore,
practically many works tend to select a good distance function
from the widely applied ones or combine them according to
certain criteria. In image/video annotation tasks, a common
sense is that L1 distance is superior to the others in the
Minkowski distance family, including the widely-applied L2
distance [12], [34]. An explanation is that L1 distance can
better approximate the perceptual difference of visual features
[34]. Sebe et al. [27] and Yu et al. [47] have studied this issue
in the maximum likelihood perspective, and they show that the
choice should depend on the data distribution. Yu et al. further
proposed a boosting approach to construct distance function
from multiple metrics [47]. This indicates that complemen-
tation may exist in different distance functions. Wang et al.
have proposed a distribution-based distance that incorporates
the structures around samples into the distance estimation [41].
In this paper we will explore the complementation of multi-
ple distance functions, including Minkowski and distribution-
based distances, in a graph-based learning scheme.

D. Temporal Consistency

It is usually believed that the temporal consistency property,
which indicates the structure of video data, can be utilized to

repeated  concept: Building

repeated c oncept: Face

shot  sequence

Fig. 3. Exemplary shot sequence from which we can see that semantic
concepts have large probability to repeat in continuous video clips.

improve annotation performance [15], [45]. It indicates that
a semantic concept has a large probability to repeat in a
continuous video segment, as illustrated in Fig. 3. However,
this property is not utilized in most of the previous works.
This is because many popular learning methods, such as SVM,
are based on i.i.d. assumption and they do not consider this
special sample relationship. Song et al. have utilized this
property for pre-clustering in home video annotation, whereby
manual effort can be reduced by only labeling one sample for
each cluster in the training set [32]. Kender et al. [15] and
Yang et al. [45] proposed to utilize the property to refine the
annotation results in a post-processing procedure. These works
have shown considerable improvements in different aspects.
In this paper, we will show that the relationship indicated by
temporal consistency can be naturally represented in graph
form, and therefore it can be directly explored in the OMG-
SSL scheme instead of in a post-processing step.

III. OPTIMIZED MULTIGRAPH-BASED

SEMI-SUPERVISED LEARNING

In this section, we present the formulation of OMG-SSL.
First, we introduce the traditional single-graph-based semi-
supervised learning methods developed on a regularization
framework. Then, we show that multiple graphs can be in-
tegrated into the regularization framework as well. Tong et al.
have shown the case of two graphs [37]. Here, we extend it
to a general case. We also show that this framework amounts
to firstly fusing graphs and then conducting semi-supervised
learning on the fused graph using traditional methods. Finally,
we further extend the framework to simultaneously optimize
fusion weights and the sample labels, namely, the OMG-SSL
method.

A. Single-Graph-Based Learning

Graph-based learning is a large family among the existing
semi-supervised methods [51]. They are conducted on a graph,
where the vertices are labeled and unlabeled samples and
the edges reflect the similarities between sample pairs. A
function is estimated on the graph based on a label smoothness
assumption. These methods have already been successfully
applied in image and video content analysis on account of
their effectiveness and efficiency [12], [37], [48]. We consider
the method proposed in [49]. Denote by W an affinity matrix
with Wij indicating the similarity between the i th and j th
sample. This similarity is often estimated based on a distance
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function d(., .) and a positive radius parameter σ , i.e.,

Wij =
⎧⎨
⎩exp

(
−d(xi , x j )

σ

)
, if i �= j

0, otherwise
(1)

then a regularization framework is formulated as follows [49]:

arg min f

⎧⎨
⎩

∑
i, j

Wi j

∣∣∣∣∣ fi√
Dii

− f j√
D j j

∣∣∣∣∣
2

+ μ
∑

i

∣∣ fi − Yi
∣∣2

⎫⎬
⎭
(2)

where D is a diagonal matrix with its (i, i) element equals
to the sum of the i th row of W, i.e., Dii = ∑

j Wi j , and
fi can be regarded as a relevance score. There are two items
in this regularization scheme, where the first item implies the
smoothness of the labels on the graph and the second term
indicates the constraint of training data. After obtaining fi ,
we can classify xi according to its sign, i.e., positive if fi > 0
and negative otherwise. A noteworthy issue here is the setting
of Yi . For general classification task, Yi is set to 1 if xi is
labeled positive, −1 if xi is negative, and 0 if xi is unlabeled.
But in our work we set Yi as follows:

Yi =
⎧⎨
⎩

0, if xi is unlabeled
1

f requency − 1, if xi is positive sample
−1, if xi is negative sample

(3)

where frequency = # of labeled positive samples/# of labeled
samples, i.e., the percentage of positive samples in labeled set.
This setting follows from the fact that positive samples are
usually less than negative ones, and the distribution of negative
samples are usually in a very broad domain. Therefore, posi-
tive samples are expected to contribute more in video concept
learning. In fact, this setting is equivalent to duplicating
(1/ f requency − 1) copies for each positive training sample,
so that they are balanced with negative ones. It modulates the
effect of positive samples and can yield better results.

Let L = D−1/2(D − W)D−1/2, which is usually named
normalized graph Laplacian. Equation (2) then has a closed-
form solution as

f =
(

I + 1

μ
L
)−1

Y. (4)

However, directly solving (4) involves the inversion of an
n × n matrix, where n is the number of all samples, and
the computational cost scales as O(n3). For computational
efficiency, the equation is usually solved by an iterative process
as shown in Fig. 4.

The convergence of the iterative process in Fig. 4 can be
easily proved based on the fact that the matrix (I − L), i.e.,
D−1/2WD−1/2, is symmetric and its eigenvalues are in [−1, 1].
This process is widely known as label propagation or manifold
ranking [49].

B. Intuitive Extension to Multiple Graphs

Suppose we have G graphs W1, W2, . . . , WG . Now our
problem is how to deal with multiple graphs in semi-
supervised learning. Analogous to the approach in [37], we

1: Initialize f (t) where t = 0.
2: Update f by

f (t+1) = 1

1 + μ
(I − L) f (t) + μ

1 + μ
Y.

3: Let t = t + 1, and then jump to step 2 until convergence.

Fig. 4. Iterative solution process of the single-graph-based semi-supervised
learning.

integrate the G graphs into the regularization framework in
(2), which thus turns to

arg min f

{ G∑
g=1

αg

(∑
i, j

Wg,ij

∣∣∣∣ fi√
Dg,ii

− f j√
Dg,jj

∣∣∣∣
2

+ μg

∑
i

∣∣ fi − Yi
∣∣2

)}
(5)

where α = [α1, α2, . . . , αG ] is a weight vector which satisfies
αg ≥ 0 and

∑G
g=1 αg = 1. From (5) we can easily derive that

f =
(

I +
∑G

g=1 αgLg∑G
g=1 αgμg

)−1

Y (6)

where Lg is the normalized graph Laplacian obtained from
Wg . Then we can see that (6) amounts to firstly fusing Lg

and μg as L0 = ∑G
g=1 αgLg and μ0 = ∑G

g=1 αgμg , and
then computing f according to (4) by replacing L and μ
with L0 and μ0, respectively. Thus, we can conclude that this
graph fusion actually amounts to combining normalized graph
Laplacians.

C. Formulation of OMG-SSL

Up to now we have shown that multiple graphs can be
integrated into a regularization framework, and its solution
is equivalent to implementing semi-supervised learning on a
fused graph. However, the decision of αg is not considered
in the above framework. This is crucial to the performance
of this framework. Since the discriminative abilities may vary
intensively among different modalities, αg should vary as well
according to their discriminative abilities. When G is small
(say, G = 2, as in [37]), we can decide αg by cross-validation.
But when G is large, the searching space for cross-validation
increases dramatically, and a more sophisticated strategy is
thus required to obtain optimal αg .

To decide αg , a most straightforward way is to also regard
αg as variables in (5) and then optimize the regularization
framework with respect to both f and α, i.e.,

Q( f, α) =
G∑

g=1

αg

( ∑
i, j

Wg,i j

∣∣∣∣ fi√
Dg,ii

− f j√
Dg, j j

∣∣∣∣
2

+ μg

∑
i

∣∣ fi − Yi
∣∣2

)

[ f, α] = arg min f,α Q( f, α), s.t .
G∑

g=1

αg = 1. (7)
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However, from (7) we can see that Q( f, α) is linear with
respect to α, and its solution is αg = 1 if g = arg ming f T Lg f
and otherwise αg = 0 (note that the optimal solution of linear
programming will always be the extreme points). In other
words, only one graph will be kept. Since f Lg f can be viewed
as the smoothness degree of f on the gth graph, it means that a
graph will be discarded even if it is merely a little less smooth
than another graph. If all the graphs have the same smoothness
degrees, i.e., f T L1 f = f T L2 f = · · · = f T LG f , then αg can
be set to arbitrary values, and of course this solution does not
fit our goal. To tackle this problem, we make a relaxation
by changing αg to αr

g , and we thus obtain the formulation of
OMG-SSL

Q( f, α) =
G∑

g=1

αr
g

( ∑
i, j

Wg,i j

∣∣∣∣ fi√
Dg,ii

− f j√
Dg, j j

∣∣∣∣
2

+ μg

∑
i

∣∣ fi − Yi
∣∣2

)

[ f, α] = arg min f,α Q( f, α), s.t .
G∑

g=1

αg = 1 (8)

where r > 1. Note that
∑G

g=1 αr
g achieves a minimum when

αg = 1/G with the constraint
∑G

g=1 αg = 1. Therefore, (8)
actually makes αg potentially to be close to each other. The
detailed effect of parameter r will be discussed later.

D. The Solution of OMG-SSL

We adopt a process that iteratively updates f and α to
minimize Q( f, α), and we will demonstrate the convergence
of the process based on the fact that Q is convex with respect
to both f and α. Based on (8), we can obtain the partial
derivative of Q with respect to f and α as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂ Q( f, α)

∂ f
= 2

G∑
g=1

αr
g

(
Lg f + μg( f − Y )

)
∂ Q( f, α)

∂αg
= rαr−1

g

(
f t Lg f + μg | f − Y |2

)
.

(9)

Thus, when f is fixed, (9) turns to arg minα Q( f, α),
s.t .

∑G
g=1 αg = 1, from which we can derive that

αg =
(

1
f T Lg f +μg | f −Y |2

) 1
r−1

∑G
g=1

(
1

f T Lg f +μg | f −Y |2
) 1

r−1

. (10)

On the other hand, if α is fixed, (8) turns to
arg min f Q( f, α), and f can be solved as

f =
(

I +
∑G

g=1 αr
gLg∑G

g=1 αr
gμg

)−1

Y. (11)

Now, we show that (11) can also be solved by the iterative
solution process in Fig. 4. This is nontrivial because in our
practical experiments we will apply the iterative process rather
than the closed-form solution for reducing computational cost.

1: Initialize f = Y .
2: Update α according to (10).
3: Based on the updated α, re-calculate f according to (11)
or the corresponding iterative solution method.
4: Repeat from step 2 until convergence.

Fig. 5. Iterative solution method for OMG-SSL.

To prove this, we let L0 = ∑G
g=1 αr

gLg/
∑G

g=1 αr
g and μ0 =∑G

g=1 αr
gμg/

∑G
g=1 αr

g , and (11) then turns to

f =
(

I + 1

μ0
L0

)−1

Y. (12)

We replace L and μ with L0 and μ0 in Fig. 4. Since L0 is
symmetric, to prove the convergence of the iterative process,
we only need to prove the following fact.

Theorem 1: The eigenvalues of (I − L0) are in [−1, 1].
Proof: Let βg = αr

g/
∑G

g=1 αr
g , and consequently we have

I − L0 = ∑G
g=1 βg(I − Lg) and

∑G
g=1 βg = 1.

Since (I − Lg) is symmetric and its eigenvalues are in [−1,
1], (I ± (I − Lg)) are positive semi-definite. Thus, we can
derive that (I ± (I − L0)) = ∑G

g=1(I ± (I − Lg)) are positive
semi-definite. Consequently, the eigenvalues of (I−L0) are in
[−1, 1].

From the above derivation, we can easily form an iterative
process to solve f and α by repeatedly updating them as in
Fig. 5.

Now, we prove the convergence of this iterative solution
process. Denote by f t and αt the values of f and α in tth
repetition in the process, then we have

Q( f t+1, αt+1) < Q( f t , αt+1) < Q( f t , αt ) (13)

which implies that the cost function Q( f, α) decreases
monotonically. Since Q( f, α) ≥ 0 and it is convex with respect
to both f and α, this process is guaranteed to converge to the
solution of (8).

We now observe the impact of parameter r . From (10)
we can find that r modulates the effect of the smoothness
difference of graphs. If r → 1, then the effect of this difference
is expanded and only αg of the smoothest graph is close to 1.
Contrarily, if r → ∞, the effect of this difference is reduced,
and αg are close to each other. Therefore, the optimal choice
of r should depend on the complementation of these graphs.
If rich complementation exists, then r should be large and
therefore all graphs can be comprehensively explored, and
otherwise r should be small to keep the performance of the
“best” graph. In practice, this parameter is decided by cross-
validation.

E. Video Annotation Based on OMG-SSL

In this section, we present the OMG-SSL-based video
annotation scheme, in which unlabeled data, multiple modali-
ties, multiple distance functions, and temporal consistency are
simultaneously taken into consideration. To this end, we show
that each modality with a distance function can be represented
by a graph, and the temporal consistency property can be
explored in graph form as well.
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Suppose we have M modalities, and each sample xi

is represented by xi1, xi2, . . . , xi M for these M modali-
ties, respectively. Consider we have D distance functions
d1(., .), d2(., .), . . . , dD(., .). Then from these M modalities
and D distance functions we can generate M × D graphs as
follows:

W(m−1)×D+k,i j =

⎧⎪⎨
⎪⎩

exp

(
− dk(xm

i , xm
j )

σ(m−1)×D+k

)
, if i �= j

0, otherwise
(14)

where W(m−1)×D+k is the graph generated by the mth modality
and kth distance function.

In this paper we adopt two distance functions: the well-
known L1 distance and the distribution-based distance in-
troduced in [41]. The distribution-based distance between
two samples is defined as the symmetric Kullback–Leibler
divergence of the neighborhood distributions around the cor-
responding samples. We use a multivariate normal distribution
with mean vector xi to model the neighbors around xi , i.e.,

pi(x) = 1

(2π)d/2
∣∣Ci

∣∣1/2 exp

(
−1

2
(x − xi )

T C−1
i (x − xi )

)
.

(15)
The covariance matrix Ci is estimated as

Ci = 1

N

∑
xk∈Ni

(xk − xi )(xk − xi )
T (16)

where Ni is the set of K neighbors of xi . The distribution-
based distance between xi and x j can thus be computed as

DKL(pi , p j ) = 1

2
tr(Ci − C j )(C

−1
j − C−1

i )

+ 1

2
(xi − x j )

T (C−1
i + C−1

j )(xi − x j ). (17)

From (17), we can see that the distribution-based distance
can simultaneously take into account the geometric distance
between samples and the structure difference around them, and
this makes them potentially superior to the traditional widely
applied distances, such as Minkowski distances.

In terms of temporal consistency, we can construct C
graphs. Here we use two graphs, i.e., C = 2. The first
graph simply considers the relationships between every two
adjacent units (can be shot or sub-shot [16]), i.e., a unit
has high probability to have the same concepts with the
previous and the next units. If the indices of these samples are
arranged according to temporal relationship, then this sample
relationship can be indicated in graph form as

WM×D+1,i j =
{

1, if i = j + 1 or i = j − 1
0, otherwise

(18)

the other graph considers the connections of each unit with
adjacent six units and assigns different weights to them
according to their positions. Specifically, it is defined as

TABLE I

SIX MODALITIES USED IN VIDEO ANNOTATION EXPERIMENTS

Modality 1 225D block-wise color moment

Modality 2 144D HSV correlogram

Modality 3 128D wavelet texture

Modality 4 64D HSV histogram

Modality 5 75D edge direction histogram

Modality 6 16D co-occurrence texture

WM×D+2,i j =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j + 1 or i = j − 1
0.5, if i = j + 2 or i = j − 2
0.25, if i = j + 3 or i = j − 3
0, otherwise

(19)

it is noteworthy that we can also design other graphs to
indicate temporal consistency, and all these graphs can be
easily integrated since OMG-SSL is a general scheme.

Therefore, the OMG-SSL-based video annotation process
consists of two steps: 1) construct M×D+C graphs, including
the M×D graphs generated from M modalities and D distance
metrics and the C graphs indicating temporal consistency; and
2) implement the OMG-SSL algorithm with these M × D +C
graphs.

IV. EXPERIMENTS

A. Experimental Settings

To evaluate the performance of the proposed approach,
we conduct experiments on the benchmark video corpus of
TRECVID 2005 [1], [28]. The dataset consists of 137 news
videos recorded from 13 different programs in English, Arabic,
and Chinese [1]. The videos are about 160 h in duration
and they are segmented into 49 532 shots and 61 901 sub-
shots (the results of shot segmentation have been provided
by Petersohn et al. [26]). We annotate 39 concepts in the
experiments, namely, the LSCOM-Lite concepts [24].

We regard sub-shot as the unit for annotation. A key-frame
is selected from each sub-shot, and from each key-frame we
extract the following feature sets: 1) block-wise color moment
based on 5 by 5 division of the image (225D); 2) HSV correl-
ogram (144D); 3) wavelet texture (128D); 4) HSV histogram
(64D); 5) lay-out edge direction histogram (75D); and 6) co-
occurrence texture. These six feature sets are regarded as six
different modalities, as illustrated in Table I.

As mentioned earlier, we adopt two distance functions, i.e.,
L1 distance and distribution-based distance. In the computa-
tion of distribution-based distance, we set the neighborhood
size K to 20, and the detailed implementations can found
in [41].

Following the guideline in [44], we separate the dataset
into four partitions, i.e., a “training set” with 90 videos, a
“validation set” with 16 videos, a “fusion set” with 16 videos
(the fusion set is only used for late fusion), and a “test set” with
15 videos. The four dataset contains 41 847, 7022, 6525 and
6507 sub-shots, respectively. Details about the data partition
can be found in [44].
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Fig. 6. Performance comparison of early fusion, late fusion, and graph-based fusion with six modalities (using L1 distance).

Compared with the existing graph-based semi-supervised
learning methods that all have parameters σ and μ, OMG-
SSL adds only one new parameter r . The parameters are tuned
on the validation set. We first decide σg and μg for each
graph, and then decide r for OMG-SSL. In all experiments
we adopt the iterative solutions rather than direct solutions.
We make matrices Lg sparse by only keeping N largest values
in each row. In our study the parameter N is empirically
set to 20. In fact, this parameter can also be further tuned
with the validation set such that better performance can be
achieved (of course, it will lead to larger computational cost).
This is a frequently used strategy in graph-based learning
methods, which significantly reduces the computational cost
while retaining comparable performance. For performance
evaluation, NIST has defined non-interpolated average preci-
sion (AP) over a set of retrieved shot as a measure of retrieval
effectiveness [23]. Let R be the number of true relevant shots
in a set of size S. At any given index j , let R j be the
number of relevant shots in the top j shots. Let I j = 1 if
the j th shot is relevant and 0 otherwise. Assuming R < S,
the AP is then defined as 1

R

∑S
j=1 I j R j /j . Mean average

precision (MAP) is the average of average precisions over all
concepts.

B. Experimental Results

1) OMG-SSL With Multiple Modalities: As previously men-
tioned, OMG-SSL can be viewed as a graph-based fusion
approach when dealing with multiple modalities. Thus, here
we compare its performance with traditional early and linear
late fusion methods (here we have only applied L1 distance
function). In late fusion, the linear weights are tuned on
the “fusion set.” The results are illustrated in Fig. 6. From
the figure we can see that the graph-based fusion approach
outperforms the other two fusion methods for most concepts,
and the superiority is evident in MAP. Fig. 7 further illustrates
the MAP results obtained by learning from six different
modalities and those achieved by early, late and graph-based
fusion approaches. From the figure we can see that all of the
three fusion methods outperform using only one modality, and
the graph-based fusion method performs the best.
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Fig. 7. MAP results obtained by learning from six modalities and early, late
and graph-based fusion.

2) OMG-SSL With Multiple Distance Functions: Table II
presents the results attained by OMG-SSL with each distance
function alone and with two functions together (with all the
six modalities). From the table we can see that the distribution-
based distance performs better than L1 distance, which is
consistent with the analysis in [41]. We can also see that
OMG-SSL with the two distance functions together performs
better than that with each individual distance, which indicates
that it successfully integrates the two functions to improve
performance.

3) Exploiting Temporal Consistency: Based on the results
of OMG-SSL with multiple modalities and multiple distance
functions, we now further investigate the effectiveness of tem-
poral consistency. Table III shows the performance comparison
of the following four methods:

1) OMG-SSL without considering temporal consistency;
2) OMG-SSL with 1st temporal graph, i.e., integrating the

graph generated by (18);
3) OMG-SSL with 2nd temporal graph, i.e., integrating the

graph generated by (19);
4) OMG-SSL with both two temporal graphs.

From the table it is clear that integrating temporal graphs
can improve annotation performance. Although for some



WANG et al.: UNIFIED VIDEO ANNOTATION VIA MULTIGRAPH LEARNING 741

TABLE II

PERFORMANCE COMPARISON OF OMG-SSL WITH DIFFERENT DISTANCE

FUNCTIONS. FROM THE TABLE WE CAN SEE THAT OMG-SSL CAN

SUCCESSFULLY INTEGRATE MULTIPLE DISTANCE MEASURES. THE BEST

RESULT FOR EACH CONCEPT IS SHOWN IN BOLDFACE

Concept L1 Distribution Two distance
-based functions

Airplane 0.325 0.307 0.331
Animal 0.530 0.513 0.520

Boat_Ship 0.182 0.169 0.183
Building 0.489 0.486 0.497

Bus 0.051 0.091 0.057
Car 0.525 0.556 0.558

Charts 0.139 0.144 0.146
Computer_TV-screen 0.472 0.459 0.468

Corporate-Leader 0.055 0.049 0.056
Court 0.129 0.228 0.221
Crowd 0.484 0.491 0.499
Desert 0.277 0.278 0.284

Entertainment 0.688 0.699 0.694
Explosion_Fire 0.414 0.385 0.424

Face 0.835 0.830 0.831
Flag-US 0.086 0.098 0.109

Government-leader 0.380 0.394 0.391
Maps 0.558 0.613 0.636

Meeting 0.331 0.340 0.338
Military 0.489 0.510 0.521

Mountain 0.390 0.428 0.439
Natural-Disaster 0.451 0.342 0.441

Office 0.261 0.337 0.329
Outdoor 0.799 0.810 0.808

People-Marching 0.198 0.206 0.206
Person 0.934 0.929 0.926

Police_Security 0.013 0.020 0.025
Prisoner 0.057 0.056 0.056

Road 0.489 0.505 0.506
Sky 0.637 0.667 0.660

Snow 0.520 0.508 0.522
Sports 0.418 0.443 0.451
Studio 0.780 0.788 0.782
Truck 0.063 0.050 0.069
Urban 0.309 0.341 0.345

Vegetation 0.457 0.461 0.462
Walking_Running 0.284 0.334 0.335

Waterscape_Waterfront 0.528 0.491 0.513
Weather 0.807 0.831 0.826

MAP 0.406 0.415 0.422

concepts the improvements are small in magnitude, they are
fairly consistent in sign. Note that the MAP measures obtained
by using 1st temporal graph and using 2nd temporal graph are
0.431 and 0.432, respectively, whereas the MAP obtained by
using two temporal graphs is 0.434. This indicates that the
complementation exists in the two temporal graphs as well.
To be clear, MAP of 0.434 is the final performance achieved
by OMG-SSL with all the 14 graphs on this video annotation
task.

To further demonstrate the effectiveness, we compare the
results obtained by OMG-SSL with the Columbia374 concept
detectors [44]. Columbia374 is a public baseline system1

1There are also several other such public baselines, such as VIREO-374
[13] and Mediamill-101 [29]. But in this paper we only compare our results
with Columbia374 since they are under the same experimental settings.

TABLE III

PERFORMANCE COMPARISON OF OMG-SSL WITHOUT TEMPORAL

GRAPH (NTG), USING 1ST TEMPORAL GRAPH (TG1), USING 2ND

TEMPORAL GRAPH (TG2), AND USING TWO TEMPORAL GRAPHS

(TG1+TG2). FROM THE RESULTS WE CAN SEE THAT OMG-SSL CAN

EXPLORE THE PROPERTY OF TEMPORAL CONSISTENCY TO IMPROVE

ANNOTATION PERFORMANCE. THE BEST RESULT FOR EACH CONCEPT IS

SHOWN IN BOLDFACE

Concept nTG TG1 TG2 TG1+TG2

Airplane 0.331 0.362 0.354 0.369
Animal 0.520 0.536 0.537 0.539

Boat_Ship 0.183 0.184 0.185 0.186
Building 0.497 0.496 0.499 0.501

Bus 0.057 0.057 0.057 0.057
Car 0.558 0.568 0.573 0.571

Charts 0.146 0.147 0.144 0.148
Computer_TV-screen 0.468 0.476 0.475 0.479

Corporate-Leader 0.056 0.057 0.058 0.060
Court 0.221 0.227 0.235 0.229
Crowd 0.499 0.501 0.501 0.502
Desert 0.284 0.303 0.302 0.306

Entertainment 0.694 0.707 0.718 0.711
Explosion_Fire 0.424 0.447 0.440 0.454

Face 0.831 0.828 0.829 0.827
Flag-US 0.109 0.098 0.098 0.097

Government-leader 0.391 0.431 0.429 0.435
Maps 0.636 0.621 0.624 0.628

Meeting 0.338 0.382 0.389 0.386
Military 0.521 0.534 0.545 0.536

Mountain 0.439 0.440 0.443 0.439
Natural-Disaster 0.441 0.481 0.478 0.483

Office 0.329 0.338 0.343 0.330
Outdoor 0.808 0.813 0.815 0.814

People-Marching 0.206 0.204 0.215 0.217
Person 0.926 0.925 0.926 0.930

Police_Security 0.025 0.026 0.025 0.025
Prisoner 0.056 0.054 0.055 0.054

Road 0.506 0.520 0.518 0.522
Sky 0.660 0.666 0.665 0.670

Snow 0.522 0.525 0.524 0.524
Sports 0.451 0.481 0.494 0.493
Studio 0.782 0.772 0.773 0.783
Truck 0.069 0.064 0.066 0.064
Urban 0.345 0.343 0.342 0.346

Vegetation 0.462 0.478 0.474 0.483
Walking_Running 0.335 0.341 0.340 0.349

Waterscape_Waterfront 0.513 0.513 0.517 0.515
Weather 0.826 0.869 0.867 0.867

MAP 0.422 0.431 0.432 0.434

that is developed using SVM with three visual feature sets,
including block-wise color moment, edge direction histogram,
and Gabor texture. To make a fair comparison, in OMG-SSL
we only apply the color moment and edge direction histogram,
features. We use the L1 distance and the distribution-based dis-
tance as well as the two temporal graphs, i.e., six graphs have
been used in all. The results are illustrated in Table IV. From
the table we can see that, even with fewer features, OMG-SSL
can outperform the Columbia374 for most concepts.

4) Impact of Parameter r: To investigate the effect of r ,
we illustrate the performance variations of OMG-SSL with
respect to r for several concepts in Fig. 8 (with all the 14
graphs). Here we have only illustrated the results of three
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TABLE IV

PERFORMANCE COMPARISON OF OMG-SSL AND COLUMBIA374. THE

BEST RESULT FOR EACH CONCEPT IS SHOWN IN BOLDFACE

Concept Columbia374 (SVM) OMG-SSL

Airplane 0.361 0.366
Animal 0.311 0.534

Boat_Ship 0.208 0.183
Building 0.454 0.459

Bus 0.092 0.029
Car 0.456 0.542

Charts 0.132 0.134
Computer_TV-screen 0.434 0.462

Corporate-Leader 0.029 0.052
Court 0.113 0.226
Crowd 0.481 0.475
Desert 0.277 0.307

Entertainment 0.630 0.699
Explosion_Fire 0.420 0.470

Face 0.795 0.806
Flag-US 0.080 0.074

Government-leader 0.412 0.421
Maps 0.699 0.560

Meeting 0.391 0.357
Military 0.392 0.515

Mountain 0.314 0.412
Natural-Disaster 0.248 0.483

Office 0.288 0.320
Outdoor 0.786 0.802

People-Marching 0.138 0.183
Person 0.936 0.911

Police_Security 0.014 0.015
Prisoner 0.004 0.054

Road 0.447 0.487
Sky 0.600 0.654

Snow 0.499 0.558
Sports 0.407 0.451
Studio 0.786 0.751
Truck 0.135 0.058
Urban 0.301 0.312

Vegetation 0.423 0.443
Walking_Running 0.280 0.345

Waterscape_Waterfront 0.494 0.494
Weather 0.763 0.860

MAP 0.388 0.418

concepts, namely, Airplane, Building, and Maps, but similar
phenomena can be observed for other concepts as well. From
the figure we can see that the optimal choice of r is concept-
dependent and the performance curves exhibit a “∧” shape
as r increases from 1 to ∞. As discussed in Section III-D,
this is because the complementation of graphs has not been
sufficiently explored when r is near 1, and contrarily the
graphs are nearly averagely fused when r is too large. Thus,
we have to tune the parameter r for each concept using cross-
validation in practical experiments.

5) Performance Variation in the Iterative Solution Process:
Fig. 9 presents the MAP results with different iterations in the
iterative process of OMG-SSL. From the figure we can see that
the performance consistently improves as the iteration number
increases. But the performance curve converges fast, and the
improvement becomes very limited after five iterations. In our
experiments, we set the iteration time to 6.
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6) Performance of OMG-SSL With Different Sizes of Labeled
Data: We also conduct experiments to study whether the effec-
tiveness of OMG-SSL will depend on the size of training data
and the relative percentages of labeled and unlabeled data. We
randomly select l labeled samples from the original training
set and the other samples are regarded as unlabeled. For the
consistency of comparison, we use the same experimental
settings of the other parts except that we have reduced the
number of labeled samples, i.e., we use the original validation
set, fusion set, and testing set to tune parameters, fuse multiple
modalities and evaluate performance, respectively. We set
different l and perform 10 trials for each l to obtain average
results. Fig. 10 illustrates the MAP curves of OMG-SSL
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Fig. 10. Performance variation of OMG-SSL with respect to the sizes of
labeled data and its comparison with early fusion and late fusion approaches.

TABLE V

PRACTICAL VALUES OF THE NOTATIONS IN THE EXPERIMENTS OF VIDEO

ANNOTATION

Notation Description Value

n Number of samples 61901
d Dimension of low-level feature space 652
D Number of modalities 6
G Number of graphs 14
N Nonzero entries in each row in Lg 20
T1 Iteration times in the process in Fig. 4 50
T2 Iteration times in the process in Fig. 5 6

with all the 14 graphs and the early fusion and late fusion
approaches with the six modalities. From the figure we can see
that the performance of the three approaches keep improving
as the labeled data increase, and the OMG-SSL consistently
outperforms the other two methods.

C. Computational Efficiency

The computational cost of OMG-SSL mainly consists of
two parts, one is for graph construction, and the other is for the
iterative solution of the regularization framework. In fact, these
two steps can be viewed as “construction” and “inference” pro-
cedures of OMG-SSL, respectively. We can easily derive that
the computational cost of graph construction is O(D×d ×n2),
where d is the dimension of global low-level feature vector
(including M modalities), and the cost of the iterative solution
method is O(G × T1 × T2 × n × N), where G is the number
of graphs, and T1 and T2 are the respective iteration times in
the processes in Figs. 4 and 5, respectively. We illustrate the
definitions of all these notations and their detailed values in
our video annotation experiments in Table V for clarity.

Obviously “inference” is much more rapid than the “con-
struction” procedure. But an encouraging property of OMG-
SSL is that the “construction” is a concept-independent step,
i.e., the graphs only have to be constructed once and then they
can be utilized for all concepts. Compared with traditional
methods those need to train a model for each individual
concept, such as SVM, OMG-SSL has great advantage in
terms of efficiency when dealing with multiple concepts. For
instance, the computational cost of training a SVM model
scales as nearly O(l3), where l is the size of training set.
Furthermore, the cost is proportional to the lexicon size, and

it would thus be prohibitive if we have to annotate a large
lexicon of concepts, such as the LSCOM [23]. Contrarily,
OMG-SSL only needs to repeat its efficient testing procedure
for different concepts, and thus its computational cost will
not increase dramatically. This property makes OMG-SSL
particularly appropriate for large-scale annotation, in terms of
both dataset size and lexicon size.

It is worth noting that OMG-SSL also has certain weakness
in terms of computation in comparison with the traditional
methods such as SVM. As a semi-supervised method, OMG-
SSL has mixed the training and testing phrases and it has
difficulty in dealing with newly coming data, i.e., out-of-
sample data, since it has to reconstruct graphs for modeling.
On the contrary, most supervised methods only have to test the
new samples with the existing model. However, recently sev-
eral semi-supervised induction methods have been investigated
which are able to directly induce the labels of out-of-sample
data without the model reconstruction process [6], and these
methods can be directly applied with OMG-SSL to address
the difficulty.

D. Generic Applicability

In this section, we apply it to another task, i.e., person
identification from webcam images. This test will demonstrate
that OMG-SSL is actually a general framework that can be
applied in many applications besides video annotation.

In [3], Balcan et al. have demonstrated the application of
graph-based semi-supervised learning in person identification
of webcam images. They have shown that the knowledge
from different domains should be sufficiently explored in the
designed graph. Here we conduct experiments on the same
dataset as used in [3], i.e., FreeFoodCam, to show that the
performance can be further improved if we develop multiple
graphs to encode knowledge from different domains and apply
OMG-SSL to integrate these graphs.

The FreeFoodCam dataset consists of 5254 images, which
are captured in a public lounge in the Carnegie Mellon
University. In each image there is one and only one person,
and there are 10 different persons in the whole image set in
all. Thus the person identification problem from these images
is naturally a 10-way classification task. More information
about the dataset can be found in [3]. Balcan et al. [3]
proposed to adopt graph-based semi-supervised learning in
this task, and the graph is designed based on the following
knowledge.

1) Time. Two images are connected if their time difference
is less than t1 (note that the capturing date and time of
each image have been recorded).

2) Color. The 100D color histogram is extracted from
each image. The cosine similarities between histograms
are estimated. Then two images are connected if their
time difference is less than t2 and one is in the kc-
neighborhood of the other.

3) Face. A square face image is extracted by a face detector
from each image. Then two images are connected if one
face image is in k f -neighborhood of the other (in terms
of pixel-wise Euclidean distance).
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neighbors in face graph

a random image

neighbors in time graph

neighbors in color graph

Fig. 11. Random image and its neighbors in three graphs. We can see that
a sample has different neighbors in different graphs and this indicates the
complementary nature of the graphs.
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Fig. 12. Performance comparison of six methods for person identification
from webcam images.

In [3], equal weights are assigned to all the edges in the
graph. But Balcan et al. also mentioned that appropriately
modulating the effect of different knowledge can further
improve performance. According to our previous analysis,
OMG-SSL is capable of dealing with this issue. To verify it,
we develop three graphs, i.e., time graph, color graph and face
graph, according to the corresponding domain knowledge, and
then apply OMG-SSL to integrate them. Fig. 11 illustrates an
image and its neighbors in three different graphs. From the
figure we can see that rich complementation exists in these
three graphs.

We compare the following six methods:

1) time graph only;
2) color graph only;
3) face graph only;
4) one global graph integrating all knowledge, i.e., the

method proposed in [3];
5) graph fusion with equal weights, i.e., αg = 1/3;
6) OMG-SSL.

The first three methods only utilize an individual graph,
and the other three methods are different knowledge fusion
approaches. In all experiments we adopt the similar settings

as those applied in [3], i.e., t1 = 2 s, t2 = 12 h, kc = 3,
k f = 3. The parameter μ is empirically set to 50 and
the parameter r is decided by 10-fold cross-validation. We
gradually increase the labeled set size from 20 to 200. For each
size, we perform 20 trials and in each trial we randomly select
labeled samples from the first day of a person’s appearance
only, which follows the guideline of [3]. It is worth mentioning
that in the previous discussion about OMG-SSL, we have only
considered the case of binary classification. This is because
video annotation is always formulated as a binary classification
task for each concept. But OMG-SSL is capable of dealing
with multiple classes as well. We only have to extend fi to
be a vector, and details can be found in [40].

Fig. 12 illustrates the classification performance of different
methods. Consistent with intuition, we can see that the last
three methods remarkably outperform the first three, i.e.,
integrating knowledge from different domains is beneficial.
Meanwhile, we can see that OMG-SSL performs much better
than the other two knowledge fusion methods. This indicates
that OMG-SSL is able to appropriately modulate the effects
of different knowledge sources and thus leads to much better
performance than fusing them equally.

V. CONCLUSION

In this paper we have proposed an OMG-SSL algorithm,
which is able to integrate multiple complementary graphs
into a regularization framework. We have proven that it
is equivalent to conducting semi-supervised learning on an
optimally fused graph. In this way, the complementation of
multiple graphs can be explored and the learning performance
can be thus improved. Based on this algorithm, we provided
a novel efficient video annotation scheme, in which large-
scale unlabeled data, multiple modalities, multiple distance
functions, and video temporal consistency could be simul-
taneously tackled in a unified manner. We have also shown
that the proposed method could be viewed as a graph-based
fusion approach when it is applied to fuse multiple modalities.
Extensive experiments have demonstrated the effectiveness of
the proposed approach.

It is worth noting that the OMG-SSL is actually a gen-
eral approach and can be applied in many domains besides
video annotation. In this paper we have also demonstrated
its application in a person identification task. Furthermore,
the proposed scheme is flexible and can be easily extended
through utilizing more graphs. For example, the demonstrated
video annotation performance can be easily improved by
extracting more features, integrating more distance functions,
and designing more graphs to explore temporal consistency.
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