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ABSTRACT

The ever growing number of videos on YouTube makes rec-
ommendation an important way to help users explore inter-
esting videos. Similar to general recommender systems, Y-
ouTube video recommendation suffers from typical problems
like new user, cold-start, data sparsity, etc. In this paper, we
propose a unified YouTube video recommendation solution
via cross-network collaboration: users’ auxiliary information
on Twitter are exploited to address the typical problem-
s in single network-based recommendation solutions. The
proposed two-stage solution first transfers user preferences
from auxiliary network by learning cross-network behavior
correlations, and then integrates the transferred preferences
with the observed behaviors on target network in an adap-
tive fashion. Experimental results show that the proposed
cross-network collaborative solution achieves superior per-
formance not only in term of accuracy, but also in improving
the diversity and novelty of the recommended videos.

Categories and Subject Descriptors

H.3.5 [Online Information Services|: Web-based services
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1. INTRODUCTION

With the emergence and popularity of social media, peo-
ple now usually engage in disparate Online Social Networks
(OSNs) simultaneously for different purposes [1]. For ex-
ample, the same individual may communicate with his/her
friends on Facebook, follow real-time hot events on Twitter,
subscribe and watch videos on YouTube, share and discuss
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favorite restaurants on Yelp, etc. These cross-network activ-
ities together record people’s integral online footprints and
reflect their demographics as well as interests from different
perspectives.

Typical social media services, however, are usually con-
ducted on one OSN. For example, the video recommenda-
tion service on YouTube, has been one of the most impor-
tant ways to lead users to their interested videos from the
huge repository [2]. The limitation of single network-based
solutions is that, the available user data on one OSN are usu-
ally not sufficient to understand user interests and capture
the ever-changing user preferences. The notorious cold-start
and sparsity issues have significantly hindered accurate user
modeling and practical personalized social media services [3].
Therefore, our work is motivated to exploit the scattered
user data in multiple OSNs towards improved personalized
services on the target OSN. In this paper, we aim to leverage
users’ rich cross-network activity data to help estimate their
video preferences on YouTube, and design a unified video
recommendation solution.

The unified YouTube video recommendation solution is
expected to address the following three problems: (1) New
user. When a user newly registers to YouTube and starts
using the recommender, the system has no knowledge of the
user’s interactions on the videos. In literatures, new users
are either modeled using the limited registration informa-
tion [4] or treated as the average users with recommenda-
tion of the most popular items [5]. (2) Cold-start. This is
related to situations in which the recommender is unable
to provide accurate recommendations due to an initial lack
of user preferences. We refer to the users with few histor-
ical behavior records as light user '. Current solutions to
facilitate the light users include relying on their content in-
formation (e.g., demographics and tagging) and resorting to
a content-based recommendation solution [6, 7], or exploit-
ing the available social relations as regularization to predict
user preferences and warm up the recommender [8]. (3) S-
parsity. In typical recommender systems, most users have
no chance to browse or rate most items and hence the user-
item interaction matrix is very sparse. This is especially the
case in systems with a very high item-to-user ratio, e.g., Y-
ouTube, which has hosted over 2 billion videos. Efforts have
been taken to alleviate the sparsity problem by filling the
missing user-item entries with default values [9], utilizing
latent factor models and projecting the users and items to
a low-dimension space to capture the salient structure [10],

1 Conversely, the users with a lot of behavior records are referred
to as heavy user.
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Figure 1: The proposed solution framework.

or discovering the high-order correlations between users by
means of spread or iterative models [11].

New user, cold-start, and sparsity have been the most chal-
lenging problems in the field of recommender systems. Al-
though received extensive attentions in the past decades,
these problems still remain open. While the existing work
propose to deal with one or two of the problems, a unified
solution framework addressing all the three problems is un-
explored. Moreover, most of the current efforts are devoted
to designing advanced models to better exploit the limit-
ed and possibly unpromising data within the target OSN 2,
but largely ignore the abundant user data available outside
on the auxiliary OSNs. Recent practices on big data [12]
have also suggested that “more data beats complex model-
s”. Therefore, in this work, we attempt to leverage more
user data from Twitter, introduce a simple solution frame-
work to simultaneously address all the mentioned problems,
and benefit three types of typical YouTube users. Specifi-
cally, for new users, we estimate their video preferences on
YouTube by analyzing the tweeting activities collected on
Twitter, based on which an initial recommendation list is
generated; for light users, we bootstrap the recommender by
integrating the auxiliary information transferred from Twit-
ter and the available information on YouTube; for heavy
users, their recommendation is benefitted as a result of the
reduced sparsity. The auxiliary information contributes to
the correlation calculation between users.

The challenge lies in two-fold. (1) User data on different
OSNs are heterogenous. There exist no explicit correlations
between these cross-network user data. We cannot directly
utilize the user tweeting data collected from Twitter to esti-
mate the YouTube video preference. (2) For light and heavy
users, the estimated preferences from Twitter and the ob-
served behaviors on YouTube may contradict each other.
It is critical to align the two potentially contradictory user
models, and balance the contribution of either model in the
final recommendation. To address the above challenges, as
illustrated in Fig. 1, the proposed solution framework con-
sists of two stages, i.e., auxiliary-network data transfer, and
cross-network data integration. At the first stage, the cor-
relations between the auxiliary-network and target-network
behaviors are embedded in a transfer matrix, by which the
users’ tweeting activities on Twitter can be mapped to a la-
tent user space on YouTube. With the derived transfer ma-
trix, we can estimate a user’s video preferences given his/her

2 Due to the privacy concerns, the user demographic information
obtained from registration is very sparse and sometimes not accu-
rate, which may negatively affect the quality of a content-based
recommender. Also, in many cases, the tagging behaviors are
not adequate to reflect the user’s preferences or customized need-
s. Using complex algorithms to complement these limitations in
data doesnot always pay off.

tweeting history. For new users, the recommender is ready to
exploit the transferred video preferences to generate recom-
mendations. At the second stage, viewing the transferred
preference as a priori, we introduce a regularization-based
formulation to integrate the two sources of user data. More-
over, a weighting matrix is added to adapt their contribu-
tions according to the amount of available YouTube data. In
this way, the obtained user models for the light and heavy
users consider both the Twitter tweeting activities and his-
torical interactions with YouTube videos. A straightforward
recommender can be designed to utilize the user model for
recommendation.
We summarize the contributions of this work as follows:

1. We introduce a novel personalized recommendation so-
lution by leveraging cross-network data. This is consis-
tent with users’ multi-OSN engagement phenomenon
and entails user modeling from versatile aspects.

2. A unified video recommendation framework is present-
ed, with goals to simultaneously address three long-
standing problems in recommender system, i.e., new
user, cold-start and sparsity.

3. Experimental results on the collected YouTube-Twitter
dataset validate the effectiveness of the proposed so-
lution on three kinds of typical users, in term of not
only accuracy, but also diversity and novelty.

2. RELATED WORK

Cross-network collaborative applications have recently at-
tracted attentions. One line is on cross-network user mod-
eling, which focuses on integrating various social media ac-
tivities. In [13], the authors introduced a cold-start recom-
mendation solution by aggregating user profiles in Flickr,
Twitter and Delicious. Deng et al. proposed a personal-
ized YouTube video recommendation solution by incorpo-
rating user information from Google+ [14]. Another line is
devoted to taking advantage of different OSNs’ character-
istics. Suman et al. exploited the real-time and socialized
characteristics of the Twitter tweets to facilitate video ap-
plications in YouTube [15]. In [16], Twitter event detection
is conducted by employing Wikipedia pages as the author-
itative references. Qi et al. proposed a cross-network link
prediction approach by borrowing links from another more
densely linked network [17]. Our work belongs to the first
line, where users’ auxiliary behaviors on Twitter are trans-
ferred to facilitate user modeling on YouTube, and a unified
solution is designed to address three problems of new user,
cold-start and data sparsity.

To conduct cross-network collaborative applications, one
important issue is the acquisition of cross-network user ac-
counts corresponding to the same individual. Currently



Table 1: Statistics of users who share accounts in

other OSNs within the 137,317 Google+ users.

YouTube Twitter Facebook Flickr
52,390 43,772 31,020 12,242
0.3815 0.3188 0.2259 0.0892

F#account
proportion

Table 2: % user overlap between four OSNs.
YouTube Twitter Facebook Flickr

YouTube 1 0.4253 0.3109 0.1294

Twitter 0.5090 1 0.5376 0.2223

Facebook 0.5251 0.7586 1 0.2207
Flickr 0.5537 0.7948 0.5591 1

there are three ways. (1) Increasing people are voluntary
to disclose their user accounts online, by filling in SNS reg-
istration information (such as Facebook, Google+) or main-
taining an aggregated profiles on services like About.me and
Friendfeed. (2) Many IT giants share identical account a-
mong their different OSNs, or allow third-party services to
access their user base, such as Google account for YouTube
and Google+, and Facebook’s open platform. (3) With the
trend that netizens are using a multitude of OSNs, many
researchers are devoted to the field of user account linkage
identification, which have achieved satisfied accuracies [18,
19]. In this work, we adopt the first way to construct our
cross-network dataset, which will be detailed in the next
section.

3. PROBLEM JUSTIFICATION
3.1 Data Set

Google+ encourages users to share their user accounts on
other OSNs in the Google profile. We collected Google pro-
files of 137,317 Google+ users, and obtained 22,279 users
who provide their user accounts on both YouTube and Twit-
ter. We further examined these users on YouTube and Twit-
ter via the respective APIs, and crawled data of 17,617 users
who are publicly accessible and have behaviors on the both
OSNs. These 17,617 users are recorded as the overlapped
users in the rest of this paper. Specifically, on YouTube,
for each of the overlapped users, we downloaded his/her up-
loaded videos, favorite videos and video playlists. For each
video, the video tags, titles and descriptions are also collect-
ed. On Twitter, for each user we downloaded his/her recent
1,000 tweets and the user profile. As a result, the collected
YouTube-Twitter dataset consists of 1,097,982 video-related
behaviors and 9,253,729 tweet-related behaviors.

3.2 Data Analysis

To justify our motivation and the practical feasibility of
cross-network collaborative solution, we conducted prelim-
inary data analysis to answer two questions: (1) Is it easy
to obtain the user accounts across different OSNs? (2) Are
user’s Twitter tweeting behaviors adequate to make up the
video-related data shortage on YouTube?

For the first question, within the total 137,317 Google+
users, we examined the number of available user accounts
on four popular OSNs: YouTube, Twitter, Facebook, and
Flickr. The results are shown in Table 1. We can see that
a noticeable portion of Google+ users disclose their user ac-

#tweeting behaviors on Twitter
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Figure 2: The heatmap of user behavior counts on
YouTube and Twitter. (best viewed in color)

counts on other OSNs, especially on YouTube and Twitter
(more than 30%). In Table 2, we also examined the user
overlap among the four OSNs. The user overlap proportion
between OSN A and B is calculated as overlap(A,B) =
‘Alg‘Bl , where |A] indicates the number of available user ac-
counts on OSN A. We can see that the user overlaps between
different OSNs are significant, which is consistent with a
Pew Internet study conducted over a global sample of on-
line adults [20]. This validates the fact that users are vol-
untary to disclose their multiple-OSN accounts, and opens
up opportunities for large-scale cross-network collaboration
practices.

For the second question, for each user, we counted the
number of his/her video-related behaviors on YouTube and
tweeting behaviors on Twitter. In Fig. 2, x-axis and y-axis
indicate the number of video-related and tweeting behaviors
in log scale, respectively. We marked each user on the co-
ordinate system and obtained a heatmap over all the 17,617
overlapped users. The depth of the red color is proportion-
al to the number of users having the corresponding behav-
ior count combination at this point. Two observations are
made. (1) The red-color points locate largely in the up-
per left of the diagonal line. This indicates that most users
have more tweeting behaviors on Twitter than video-related
behaviors on YouTube. (2) For users who have sparse video-
related behaviors, e.g., 10°-10" along x-axis, the number of
their available tweeting behaviors has a wide range from
10%-10°. This validates our motivation to address the cold-
start and sparsity problems on YouTube by leveraging the
auxiliary user data on Twitter.

4. A UNIFIED VIDEO RECOMMENDATION
FRAMEWORK

This section introduces the proposed video recommenda-
tion solution via cross-network collaboration. We first pro-
vide some key notations to formulate the problem.

Given a set of overlapped users U, each user u € U cor-
responds to a two-dimensional tuple [Ty, V], where T, in-
dicates his/her tweet collection on Twitter and V), indicates
the videos he/she has interacted with on YouTube. Each
v € V, is represented by its contained textual words and
visual keyframes [w,, f,]. We use R to denote the observed
user-video interaction matrix on YouTube, where the row



R;,. indicates the it user u;’s observed video interaction.
The goal is to make use of the users’ tweeting activity T,
and the video-related behaviors R, to design a unified video
recommendation solution that facilitates three kinds of users
whose R;,. is empty, sparse or dense.

4.1 Preliminaries

Our proposed solution is based on regularized matrix fac-
torization. In this subsection, we provide the necessary for-
mulation of standard regularized matrix factorization (MF)
model and introduce the preprocessing utilized in our work.

In recommender systems, MF model maps both users and
videos to a latent factor space, where user-video interactions
are modeled as the inner products. To avoid overfitting,
state-of-the-art MF models suggest discovering the latent
structure based only on the observed interactions [21, 10].
The standard formulation is as follows:

min ||y © (R~ UV + MU+ IVIE) (1)

jupy € RMXE v — fyy.. s vn) €
are the user and video representations in the K-
dimension latent space, and Y € RM*¥ is a binary mask
matrix recording the observed user-video entries. Given the
obtained latent factor representations U, V', we can directly
estimate the user u;’s preference on video v; as: r;; = u; VJT

In the context of our problem, we construct the user-video
interaction matrix R € RM™*Y by aggregating user’s three
kinds of video-related behaviors, i.e., upload, favorite and
adding to playlists. Therefore, each entry r;; € {0,1,2,3}.

To reduce the influence of sparsity, many existing recom-
mendation solutions also incorporate the content informa-
tion for regularization [22, 6]. The basic assumption is: the
videos with similar content should have close representations
in the derived latent factor space. Realizing this assumption,
the objective function in Eq. (1) is further regularized with
a Laplacian term and can be written as follows:

where U = {uy;---
RNXK

min ||Y © (R = UV +0Tr(VILV) + MU + [V][F)
(2)

where T'r(-) is the matrix trace, L is a Laplacian matrix
defined as L = D — S, 0 is the weighting parameter control-
ling the importance of the Laplacian regularization. Here
S € RV*N s the similarity matrix between videos and
D e RV*N is a diagonal matrix with D;; = Y si5.

J
In our work, a topic-based method is utilized to calcu-
late the video similarity matrix S. Specifically, for YouTube
video v : [wy,f], fo = {f1, -+, fn} is a collection of N
visual feature vectors associated with v’s keyframes, and
wy = {wi, -+ ,wa} is the collection of v’s M caption and
tag words. Viewing each video as one document, we modi-
fy a multi-modal topic model [23] to discover the YouTube
video topics. After topic modeling, each video v can be
represented as a topical distribution v € RY*¥ v, where K
is the dimension of the derived topic space. The similari-
ty between the i** and j** video is then calculated as the
histogram intersection of their topic distributions:

K'U

ok ok

Sij = Zmln(vi ,057)
k=1

where ©F is the 3" video’s distribution on the k** topic.

4.2 Auxiliary-network Data Transfer

The goal at the first stage of our solution is to estimate
the user’s preference on YouTube videos given his/her tweet-
ing activities on Twitter. Although user data on different
OSNss are heterogeneous which prevents from direct aggrega-
tion, for the same overlapped user, the behaviors on different
OSNs can be viewed as the reflections of his/her unique at-
tributes. For example, the preference on advertising videos
on YouTube and the interest to tweet news about the release
of new products on Twitter are both related to the occupa-
tion as a market strategist. Therefore, it is reasonable to
assume that the overlapped users’ cross-network behaviors
have some general association patterns.

We discover the association patterns by examining how
the overlapped users’ auxiliary data on Twitter can be trans-
ferred to their preferences on YouTube videos. Users’ prefer-
ences on YouTube videos are readily embedded in the user-
video interaction matrix R as mentioned above. To represen-
t users’ tweeting activities on Twitter, viewing each user’s
tweeting history as one document, we apply the standard
LDA to the corpus constituted by all the Twitter users. As
a result, each user can be represented as a topical distribu-
tion u’ € RIXKt, where K' is the number of topics in the
derived Twitter topic space.

For each overlapped user u € U, we assume that there

exists a transfer matrix W € REX <K entailing the map from
his/her Twitter topical distribution u* to his/her user repre-
sentation u in the YouTube latent space extracted from R.
This assumption is formulated as: u = u’ - W. Therefore,
the task of transferring auxiliary-network data changes to
learn the transfer matrix W with observations of the over-
lapped users’ Twitter and YouTube behaviors. We replace
the user latent factor matrix U in Eq. (2) to incorporate W,

and obtain the following objective function 3:

min [[Y©(R=U WY [F+0Tr(V LY 4+ W[+ V][3)

(3)
In the new formulation, instead of directly finding the op-
timal user representations, we change to optimize for the
transfer matrix, which captures the association between user-
s’ behaviors on the auxiliary and target networks.

Since we are only interested to reconstruct the observed
user-video entries in R, we define 2 as the collection of all the
observed user-video pairs, i.e., V(i,j) € Q,Y;; = 1. Eq. (3)
can be rewritten as:

. t T2
iny Z (rij —w;Wvy) + 9ZF(VJ')
(4,5)eR J
2 2
+AWIE 4+ (vsllF)
J
F(vj) 2 v;(VILy) + (VT L) V) = v;Ljjv; .

(4)

where v; is the ' row of V, L; is the j** column of L, L;;
is the entry located in the 5" column and j** row of L.
We can see that Eq. (4) is convex to v; and W respec-
tively with the other variables fixed. Therefore, we adopt s-
tochastic gradient descent for solution and alternatively loop

3 Since the goal is to learn the transfer matrix, at this stage,
we only keep the users who have sufficient behaviors on both
YouTube and Twitter as the training samples. A relative dense
R and accurate u? contribute to an improved inference of W.



users’ Twitter topical distribution Ut

7y e Zgt
new user A 9 mmm  eo—

lightuserB Q 0

heavy USer C & m  —

w Technology ~ Game Sports
[y B O E
2 3 0|0 0 0
o|(o0|3|2|0/|O0

Technology Game Sports
g W X X

2 x W ox Xy
& X X 4

‘ transferred user model U*W ‘

w §o (w

2 |oflofofo|1]2

transferred video preferences
RMW = ytwyT

Figure 3: Toy example illustrating the first stage.

through all the observed user-video pairs in Q *. Specifical-
ly, for (i,7) € £, let the prediction error e;; = r;; — uﬁWvJT,
then the partial derivatives of the objective function can be
derived as:

% = —26Z‘ju§W + QG(L;FV — ijVj) + 2)\Vj
J
d +T

Based on this, we update v; and W iteratively until conver-
gence or maximum iteration. The update rules are:

Vj &V —

where v denotes the learning rate.

With the derived transfer matrix W and video latent fac-
tor representations V, given a test user w; with his/her
tweeting activity and Twitter topical distribution uf, we can
estimate u;’s preferences on YouTube videos as:

RY =uwv" (5)

In Fig. 3, we show a toy example by simulating three typical
YouTube users. Transferred by W, we estimate the users’
interests on latent YouTube video topics indicating Technol-
ogy, Game, and Sports (x, v/, v'v'denote “not like”, “like”,
and “very like”, respectively). Further multiplied by V, we
can discover their preferences on specific videos. Therefore,
even no behavior records are available on the target network,
we can still build an initial user model by transferring the
data from auxiliary networks. This has actually addressed
the first scenario in our unified recommendation solution:
new user.

4.3 Cross-network Data Integration

For the light and heavy users, they already have some ob-
served behaviors on the target network. It is not practical
to directly aggregate the observed behaviors with the esti-
mated preference REP as they may contradict each other.
Therefore, at the second stage of our solution, we introduce

4The fact that each video latent representation vector v; can be
updated independently of other vectors provides opportunities
for parallel implementation. Distributed storing also allows for
processing large matrices with huge number of videos.

another formulation to update the user latent representa-
tion U for light and heavy users, by considering both the
observed YouTube user-video matrix R and the transferred
user model U'WV.

In the new formulation, we view the transferred user mod-
el U'W as a prior to the integrated user model U. This can
be interpreted in two-fold: (1) For users with few observed
behaviors on the target network, the transferred user model
serves as good indication of the integrated user model, i.e.,
U should resemble U'W. This actually corresponds to the
cold-start problem. (2) The obtained transfer matrix W de-
fines a latent space where the users are located. This helps to
measure the correlation between users, and can be employed
to alleviate the sparsity problem in the target user-video ma-
trix R. Based on these two interpretations, we introduce the

formulation for cross-network data integration as follows °:

min [[Y © (R = UV )% + ol [P(U - U'W)][i

+BIV' = VI[E + MU+ IV'IIF)

Two notations for the above objective function: (1) V is
known quantity as the output from the first stage. The rea-
son we also update the learnt video latent representations
V' is to better couple with the update of U in fitting the
observed user-video matrix R. (2) P = diag(p1,--- ,pu) is
a diagonal matrix to control the contribution of the trans-
ferred information. Different from the weighting parameters
a, B, and A which apply on all users, P works on micro-level
and defines adaptive weights for different users. To define
the user-specific weight p;, we expect that the user having
dense behaviors on YouTube deserves a small p;, which in-
dicates that more emphasis should be given on modeling of
his/her observed video interactions on YouTube to estimate
the integrated user model. Specifically, we employ the rela-
tive amount of behaviors each user has on YouTube to that
on Twitter to define p;, and the definition is:

Wu | 1Tyl -1
pi = (14 e®s (VD) ~ avg-(ITul) (7)

where |Ty,|, |Vu,| indicate the numbers of available tweets
and interacted videos of user w;, avg.(|Tu|), avg.(|Vu|) are
the corresponding numbers averaged over all the examined
users.

Similar to the manipulation of Eq. (3), we rewrite Eq. (6)
as follows:

I 2
min 3 (g —wv)™) a3 lpa(u — w3+

u;,v .
Y (,5)Een

52 lvi" = vill% + A(Z |l + Z vy’ IIF)
(8)

The stochastic gradient descent is again adopted to learn
the model parameters. For each observed user-video pair
(1,7) € 2, we can update the parameters with learning rate
v as:

w; — u; +v(eijv; —apf(u; — ulW) — Auy)

9
B(v;" —vj) = Av;’) )

’ /
Vi vy (e —

5Note that different from the training samples used at the first
stage (Eq. (3)), R and Y in this equation correspond to the test
light and heavy users.
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In this way, the user latent representation u; and video
latent representation v;’ are updated. For each test light or
heavy user u;, his/her preferences on YouTube videos can
be calculated as:

R? =wv" (10)

In Fig. 4, continuing the toy example in Fig. 3, we show how
the user models of light and heavy users are updated at the
second stage. It is shown that the transferred user model
and video representations are revised according to the ob-
served behaviors on YouTube (revised entries are highlighted
with red color). The obtained final video preferences consid-
er both the auxiliary information and well fit the observed
target-network information.

5. EXPERIMENT
5.1 Experimental Settings

5.1.1 Dataset Partition

To construct a dataset with adequate user behaviors for
model learning and performance evaluation, we filtered the
raw overlapped user set by keeping the ones who interacted
with over 10 YouTube videos and posted over 10 tweets on
Twitter. The YouTube videos interacted by less than three
users are also filtered out. This results in a dataset of 2,560
users and 4,414 YouTube videos. The resultant user-video
matrix has a sparsity score of 99.45%.

Within the experimental dataset, we first randomly select-
ed 1,060 active users who have more than 30 video-related
interactions and posted more than 200 tweets, to construc-
t the training dataset used at the first stage to learn the
transfer matrix W. Since the proposed solution is expected
to be evaluated on three kinds of users, we evenly separat-
ed the remaining 1,500 users into three subsets according to
the number of their video-related interactions in ascending
order, which are denoted as U™, U'9"  and UM™Y, For
user u € U™V, all the observed video-related interactions
are hidden in the training stage and taken as ground truth
for evaluation. For user u € U"9" 30% of the video-related
interactions are used to update the user model u, with the
rest 70% for evaluation. For user u € UMY 80% of the
video-related interactions are used as training data, with the
rest 20% for evaluation. We can see that the training parti-
tions from U'9"* and U"**Y actually constitute the dataset
used in in Eq. (6) at the second stage. The statistics of the
three user sets is summarized in Table 3.

Table 3: Statistics (per user) of video-related inter-

actions for three kinds of user sets.
Dataset Statistics umev yloht  yheav

min. 0 6 24
Train avg. 0 7.3 43.3
maz. 0 9 172
min. 10 10 11
Test avg. 10.8 12.1 19.2
maz. 12 15 74

5.1.2  Parameter Settings

In preprocessing, the topical distributions of YouTube videos
and Twitter users are derived from topic modeling. We re-
sorted to the standard perplexity measure [24] and selected
the topic number that leads to small perplexity and fast con-
vergence. As a result, the topic number is set as: K" = 70
and K = 60. The hyperparameters are fixed as arpa = 0.8
and Brpa = 0.1 according to the empirical expectation for
the output distribution.

In the proposed video recommendation solution, six pa-
rameters are involved: the dimension of latent factor space
K, regularization coefficient A, learning rate v, and weight-
ing parameters 0, a, 3. Considering the settings without
video Laplacian regularization, i.e., set § = 0, we firstly
jointly select K and A in Eq. (3) by grid search and 2-fold
cross validation. As a result, we set K = 40 and A = 0.1.
The learning rate ~y is fixed as a small value 0.005 to ensure
the convergence to the local minimum. With K, A and v
fixed, we finally select 0, o, 8 by the same grid search strat-
egy respectively, and set the parameters leading to the best
results, i.e., § = 0.45, o = 20,5 = 1.

5.2 Experimental Results and Analysis

To evaluate the effectiveness of the proposed two-stage
solution on addressing the mentioned three problems, we
implemented four single-network baselines and two different
settings of our solution. The six examined methods are listed
as follows:

e Popularity: recommending popular videos with the most
view count, which serves as a simple baseline to address
the new user problem;

e KNN: the typical item-based collaborative filtering rec-
ommendation algorithm [25];

e LFM: state-of-the-art Latent Factor Model [10], which
is mainly designed to address the sparsity problem;

e rPMF': probabilistic Matrix Factorization method incor-
porating video content Laplacian regularization [6], as
shown in Eq. (2);

e auzTransfer: the proposed solution that only considers
auxiliary-network data transfer, shown in Eq. (3);

e crossIntegration: the proposed solution considering both
auxiliary-network data transfer and cross-network data
integration, shown in Eq. (6).

We view personalized video recommendation as a top-k
recommendation task and adopt top-k precision, recall and
F-score as the evaluation metrics [26]. For each test user u;,
we recommend the top £ YouTube videos with the highest
entry score (rgjn for new users, rg.) for light and heavy users).
The evaluation metrics are calculated by examining whether
the recommended videos are included in u;’s interested video
set V,,. The final results are averaged over all the test users.



Table 4: Top-10 precision, recall and F-score for the examined methods on three test user sets.

Test set Metrics Popularity KNN LFM rPMF auxTransfer crossIntegration

precision 0.0108 - - - 0.0246 0.0246

new users recall 0.0101 - - - 0.0229 0.0229

F-score 0.0105 - - - 0.0237 0.0237

precision 0.0126 0.0160 0.0060 0.0190 0.0242 0.0274

light users recall 0.0105 0.0083 0.0050 0.0159 0.0201 0.0227

F-score 0.0115 0.0109 0.0055 0.0173 0.0220 0.0248

precision 0.0076 0.0286 0.0088  0.0300 0.0330 0.0436

heavy users recall 0.0047 0.0181 0.0045 0.0157 0.0170 0.0222

F-score 0.0058 0.0221 0.0060 0.0206 0.0224 0.0294
0.025 r reeene® recommendation performance. Different numbers of users
o 00 | A S are randomly sampled to construct the training set in E-
‘g q. (3). We utilize the obtained respective W and evaluate
¥ 0015 ¢ the performance on the auzTransfer setting. The top-10 F-
S Lol o new user score for the three test user sets is shown in Fig. 5, showing
g : =—d—light user a gradual improvement as the number of overlapped users
¥ 0005 | heavy user increases. This leads to a coarse conclusion that, more users
for training leads to more accurate estimation of W and thus
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Figure 5: Top-10 F-score as the number of over-
lapped users at the first stage changes.
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Figure 6: Top-10 F-score as the ratio of Twitter user

activities changes.

The evaluation results of the examined methods are shown
in Table 4. It is easy to find that the two settings of our so-
lution well address different kinds of users and obtain the
best performances. Other observations include: (1) Among
the four compared baselines, only Popularity can address
all three kinds of users. However, recommending the global
popular videos fails to capture users’ personalized needs and
thus achieves inferior performances (heavy users with even
lower F-score). (2) For light users, the fact that auzTrans-
fer outperforms the four single-network baselines validates
our motivation of exploiting auxiliary-network information.
crossIntegration performs slightly better than auxTransfer
by further incorporating the limited target-network infor-
mation. (3) For heavy users, single-network baselines (KN-
N, rPMF) achieve comparable results. The improvement
of crossIntegration ascribes to the prior from auxiliary user
model, where user-user correlations are pre-defined to help
alleviate the sparsity.

Influence of #overlapped users. We further exam-
ined how the number of overlapped users influence the in-
ference of transfer matrix and thus contributes to the final

Sensitivity to #auxiliary-network data. We also in-
vestigated whether the performance is sensitive to the num-
ber of available auxiliary activities at the cross-network data
integration stage. In Fig. 6 we show the top-10 F-score on
crossintegration setting by varying the test users’ ratio of
Twitter activities (i.e., 20%, 40%, 60%, 80%, 100%). It is
observed that the performance is not a monotonically in-
creasing function of the Twitter activities. We can under-
stand this result by looking into Eq. (6), that it is the Twit-
ter topical distribution u’ that directly relates to the update
of user model. As long as the scale of Twitter activities is
adequate to obtain an accurate topical distribution, more
activities will not much influence the final performance.

5.3 Discussion

The goal of cross-network collaboration is to complemen-
t the data shortage on target networks. A natural ques-
tion arises: compared with the case when users have ade-
quate target-network behaviors, will cross-network solution
on limited target-network behaviors with auxiliary-network
information beat single-network solution on adequate target-
network behaviors? will cross-network collaborative recom-
mendation have other advantages except for accuracy?

To investigate into this question, we considered the recom-
mendation to the heavy users U"***Y with two different data
settings: (1) using all their training interactions on YouTube
videos, and (2) keeping only 20% of the training YouTube
interactions with all the available Twitter activities. These
data settings simulate the case of adequate target-network
behaviors (adequate) and limited behaviors with auxiliary-
network information (limited), respectively. We employ the
single-network solutions of KNN and rPMF on the ade-
quate data setting, and the proposed crossintegration on
the limited data setting. The results of top-10 F-score in
Table 5 show that in term of accuracy, cross-network col-
laborative solution with limited target-network behaviors is
not so effective compared with single-network solutions with
adequate target-network behaviors.

In practical recommender systems, only considering the
accuracy is not sufficient to provide useful recommendation-



Table 5: Performance comparison in term of differ-
ent evaluation metrics.

Evaluation metrics

Methods/data setting

F-score  Similarity  Novelty

KNN/adequate 0.0221 0.4312 0.0142
rPMF/adequate 0.0206 0.3909 0.0139
crossIntegration/limited ~ 0.0211 0.3430  0.0159

s. Therefore, we also investigated into other advantages of
cross-network collaborative recommendation, by examining
evaluation metrics of diversity and novelty ©. From Table 5
we can see that, crossIntegration achieves improved diversity
and novelty over single-network solutions, even with much
fewer target-network behaviors. This shows the advantage
of cross-network collaborative recommendation in exploiting
users’ versatile interests in different domains and the poten-
tials in serendipity recommendation.

6. CONCLUSION AND FUTURE WORK

We have introduced a unified YouTube video recommen-
dation solution to address three typical problems in rec-
ommender systems, i.e., new user, cold-start, data sparsity.
The evaluation results on different metrics of accuracy, di-
versity and novelty suggest that, by incorporating auxiliary-
network information and employing a cross-network collab-
orative solution, novel recommenders may lead to a higher
satisfaction and utility for users.

To interpret the mechanism of proposed solution, we are
conducting some case studies to examine into the obtained
transfer matrix. An updated formulation is expected to al-
low for non-linear cross-network behavior correlation. More-
over, the selection of auxiliary network and auxiliary infor-
mation is critical to the performance of cross-network col-
laborative recommendation. Except for the user behavior
information, we are also very interested in exploiting the so-
cial relation information, e.g., to transfer user preferences
from Twitter friend network.
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