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Abstract: Face recognition has achieved great success due to the development of deep convolutional
neural networks (DCNNs) and loss functions based on margin. However, complex DCNNs bring
a large number of parameters as well as computational effort, which pose a significant challenge
to resource-constrained embedded devices. Meanwhile, the popular margin-based loss functions
all introduce only one type of margin and cannot further introduce a larger margin to achieve
tighter classification boundary. In contrast to the common approach, we believe that additive and
multiplicative margins should be used jointly to introduce larger margins from the margin perspective.
Therefore, we propose a new margin-based loss function called UnifiedFace. First, we introduce an
additive margin in the target angle activation function. Second, we add a multiplicative margin in
the non-target angle. UnifiedFace introduces both additive and multiplicative margins, allowing for
the introduction of large margins to achieve more compact intra-class variance and closer separated
inter-class variance. In addition, we specifically design efficient face recognition models called
GhostFaceNet for resource-constrained embedded devices. Experimental results demonstrate that
UnifiedFace achieves state-of-the-art performance or performance competed with popular methods
in training datasets of different sizes. UnifiedFace achieves optimal performance in models of varying
complexity. Moreover, competitive results are achieved in the large-scale test set IJBB/C, especially
the state-of-the-art performance achieved in TAR (FAR = 1e− 6). GhostFaceNet can significantly
improve operational efficiency without significantly degrading recognition performance, making it
ideal for embedded devices with limited resources.

Keywords: addition margin; multiplicative margin; loss function; face recognition; embedded devices

1. Introduction

In recent years, face recognition has achieved remarkable success due to the rapid
development of deep convolutional neural networks(DCNNs) [1–3] and loss functions,
especially the loss function based on margin [4–9]. Moreover, face recognition technology
has been widely used in the fields of finance, public security, 3D sensors in face recognition
applications [10], and Crowd counting models adapted to drone-assisted systems [11].
However, complex DCNNs generate a large number of parameters and computational
consumption, which is not friendly to resource-limited embedded or mobile devices. Mean-
while, these loss functions embed the face features into the hypersphere space and further
increase the intra-class compactness and inter-class separation by introducing margins.
Nevertheless, all these margin-based loss functions introduce only one type of margin and
cannot further introduce larger margins to achieve tighter classification bounds.

To alleviate the problem of the excessive number of parameters and computational
effort associated with complex DCCNs, a series of methods have been proposed to build effi-
cient and lightweight convolutional neural networks, such as knowledge distillation [12,13],
networks pruning [14,15], and quantization [16]. In addition, recent research has focused
on building efficient convolutional networks with fewer parameters and computational
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effort and has achieved great success. Several works [17–19] propose the construction of
efficient modules to design lightweight convolutional neural networks. Depthwise separa-
ble convolution operations and inverse residual structures are used to construct efficient
modules in MobileNet [17,20,21] and obtain competitive performance. To achieve state-of-
the-art performance, channel shuffle operation is utilized in ShuffleNet [18]. Although these
methods achieve lightweight convolutional neural networks with low computational cost
and a low number of parameters by designing efficient units, they do not take redundant
information in features into account. For example, as shown in Figure 1a,b, we mark similar
features with the same color. GhostNet [19] employs ordinary convolution to generate
intrinsic features, followed by inexpensive linear transformations to produce ghost features.
The ghost feature reveals sufficient information about the intrinsic features and is able to
reduce convolutional consumption with similar recognition performance. Nevertheless,
the direct use of the ghost module in face recognition can lead to a significant degradation
in model performance. We, therefore, reconstructed an efficient model called GhostFaceNet,
based on the ghost module, which significantly reduces the number of parameters and the
amount of computation without noticeably degrading performance.

(a) (b)

Figure 1. Visualization of the different layers of VGG-16, where similar features are annotated with
the boxes of the same color: (a) 5th layer of VGG-16 and (b) 10th layer of VGG-16.

Margin-based softmax loss functions are proposed to further reduce intra-class com-
pactness and increase inter-class dispersion. The margin-based loss function usually em-
beds the face features into the hypersphere space and introduces large margins. The core
idea is to redesign the target activation function cos(θy) in the softmax cross-entropy loss
function. θy denotes the angle between the sample x and the weight Wy, where y is the true
label of the sample x. The redesigned target activation function needs to be guaranteed to
be monotonically decreasing in [0, π], so that the angle θy can become smaller when cos(θy)
reaches the same value. The large margins include additive and multiplicative margins.
SphereFace [5] and SphereFaceR [7] further enhance intra-class compactness and inter-class
separation by introducing multiplicative margins. CosFace [6,8] and ArcFace [9] achieve
the same goal by introducing additive angle margins. Formally, the multiplicative margin
is multiplied directly on angle θy, and the additive margin is added to angle θy or acts
on cos(θy). Furthermore, both approaches have achieved significant performance. Multi-
plicative and additive margins share a common goal of improving intra-class compactness
and inter-class separability by introducing large margins to make decision boundaries
tighter. Intuitively, larger margins and stricter decision bounds result by introducing both
multiplicative and additive margins.
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To effectively unify the additive and multiplicative margins, we propose a unified
margin loss function called UnifiedFace. Specifically, the additive and multiplicative
margins jointly influence θy so that it becomes smaller while reaching the same value as
cos(θy). We introduce a multiplicative margin in the non-target angle activation function
and an additive margin in the target angle activation function. As far as we know, this is
the first time that both additive and multiplicative margins have been introduced in the
loss function with this idea. Meanwhile, the additive and multiplicative margins are no
longer independent but are related. We refer to this approach as UnifiedFace.

Our contributions are summarized as follows:
(1) We propose a new efficient and lightweight model called GhostFaceNet based on

ghost module, which significantly reduces the number of parameters and the amount of
computation without noticeably degrading performance.

(2) We propose the frame of a unified margin by introducing both additive and
multiplicative margins. This frame can effectively introduce larger margins and achieve
tighter decision bounds. Moreover, the additive and multiplicative margins are no longer
independent of each other but are related.

(3) In this framework, we design a new margin-based loss function called UnifiedFace.
UnifiedFace introduces a multiplicative margin in the non-target angle activation function
and an additive margin in the target angle activation function. UnifiedFace achieves
more stable training and superior generalization. Meanwhile, we give a clear geometric
interpretation of UnifiedFace.

The structure of the paper is as follows. Section 2 briefly reviews the work related
to deep face recognition and lightweight networks frameworks. Section 3 describes our
proposed approach in detail, including the GhostFaceNet and UnifiedFace. Experimental
results and related discussions are given in Section 4 and the conclusion is presented in
Section 5.

2. Related Works
2.1. Lightweight Networks Frameworks

The efficient networks structure is an important guarantee for achieving high-
performance face recognition. We mainly focus on lightweight networks structures and
lightweight face recognition algorithms proposed in recent years.

MobileNetV1 [20] proposes to replace the ordinary convolution with depthwise sepa-
rable convolution for the first time, which significantly reduces the computational effort and
ensures the performance of the model at the same time. In addition, MobileNetV2 [17] de-
signs the inverse residual structure and linear bottleneck layer to make the model structure
more reasonable and efficient. MobileNetV3 [21] utilizes complementary search techniques
to combine these modules into more efficient models. Group convolutions and channel con-
fusion operations are used in ShuffleNet [18,22] to communicate information from different
channels. Ref. [23] uses basic convolution and pooling operations to build a lightweight
face detection model and successfully applies it to the corresponding system. The system
also performs very well in hazardous situations such as underwater and in avalanches.
GhostNet [19] employs ordinary convolution to generate intrinsic features, followed by
inexpensive linear transformations to produce ghost features. The ghost feature reveals suf-
ficient information about the intrinsic features and can reduce convolutional consumption
with similar recognition performance.

Although excellent results have been achieved with lightweight models, there are
no lightweight convolutional neural networks specifically designed for face recognition,
especially for resource-constrained embedded devices. MobileFaceNet [24] and Shuffle-
FaceNet [25] are designed based on MobileNetV2 and ShuffleNetV2, respectively, and
achieve significant accuracy. MobileFaceNet designs a global depthwise convolution layer
and replaces global average pooling. The use of efficient convolution of variable groups
and equivalent angular distillation loss functions in VarGFaceNet [26] makes the model
more discriminative and explanatory. MobiFace [27] builds the model using a residual
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bottleneck layer with an extended layer and aims to maximize the information in the output
vector. It achieves an excellent performance of 99.73% in the LFW dataset. ELANet [2]
adds an efficient attention module to MobileNetV2 and applies a feature fusion strategy to
significantly improve the performance of lightweight models across postures and ages at a
very small computational cost.

2.2. Deep Face Recognition

Significant advances in deep face recognition are due to the rapid development of deep
convolutional neural networks [28–30]. Early studies consider open-set face recognition
to be essentially a multi-classification problem [28,29]. DeepID2 [31] elaborately designs
convolutional neural networks(CNNs) and trains CNNs with softmax loss and contrast
loss to achieve excellent performance. FaceNet [32] uses triplet loss for training and learns
the mapping of face images to Euclidean space directly. Furthermore, it has achieved
state-of-the-art results in large-scale face recognition tasks. Center loss [3] enhances the
discriminative ability of deep learning features by penalizing the distance between deep
features and their corresponding class centers and substantially improves the performance.
Other methods based on contrastive loss and triplet loss, such as [33,34], achieve excellent
performance and illustrate the importance of metric learning in open set validation.

Margin-based loss function is the main research direction of deep face recognition
in recent years and has been widely popular due to its simplicity and effectiveness. L-
softmax [4] introduces large angular margins in deep feature learning, and subsequent
margin-based loss functions follow this design idea. SphereFace [5] introduces multiplica-
tive margins to achieve tighter decision boundary and introduces weight normalization.
To learn large angular margin face embedding features, [35–37] introduce feature normal-
ization. SphereFace does not fully implement the multiplicative margin intuition within
[0, π] and its training process is unstable. Therefore, SphereFaceR [7] proposes a simpler
and more efficient approach. SphereFaceR can apply multiplicative margins in any of the
ranges [0, π], and SphereFaceR v2 applies margins in non-target angle activation functions
for the first time. CosFace [6,8] and ArcFace [9] achieve impressive results by using additive
margins instead of multiplicative margins. Specifically, CosFace adds the cosine margin
penalty directly to the target logit, and ArcFace adds an angular margin penalty to supervise
the network training. Although margin-based loss functions have achieved great success
in the field of face recognition, intuitively, introducing both multiplicative and additive
margins is more conducive to network training and obtaining superior performance. Other
margin-based loss functions achieved significant performance, such as Circle loss [38],
Adacos [39], AdaptiveFace [40], CurricularFace [41], and DiscFace [42].

3. Our Method

In this section, we first describe our proposed GhostFaceNet-Bottleneck (GF-
Bottleneck). The lightweight network framework called GhostFaceNet built from the
GF-Bottleneck module is presented in detail. Secondly, we review popular margin-
based loss functions in recent years, including additive and multiplicative margins.
Finally, we propose a uniform margin method called UnifiedFace and give its clear
geometric interpretation.

3.1. GhostFaceNet

Based on ghost module, we propose the GhostFaceNet with the configura-
tion shown in Table 1. GhostFaceNet mainly consists of a stack of GhostFaceNet-
Bottleneck (GF-Bottleneck).
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Table 1. The overall framework of GhostFaceNet. n represents the number of module rereads, and s
indicates the number of similar features generated by each intrinsic feature.

Input Operator n s Output

112× 112 Conv 3× 3 - 2 64
56× 56 GF-Bottleneck 1 2 64
28× 28 GF-Bottleneck 4 1 64
28× 28 GF-Bottleneck 1 2 128
14× 14 GF-Bottleneck 5 1 128
14× 14 GF-Bottleneck 1 2 256

7× 7 GF-Bottleneck 4 1 256
7× 7 Conv 1× 1 - 1 1024
7× 7 GDC - 1 1024
1× 1 Linear 1× 1 - 1 128

In the ghost module, the input features are first convolved by ordinary convolution to

generate a fixed number c
′

of intrinsic features Y ∈ Rw
′×h

′×c
′
:

Y = X ∗ f (1)

where X ∈ Rw×h×c is the input feature and f ∈ Rk×k×c×c
′

is the convolution kernel. The
bias terms are ignored for simplicity. Then, the intrinsic features generate ghost features yij,
i.e., features associated with the intrinsic features, by some series of linear operations (LO):

yij = φij(y
′
i), i = 1, 2, · · · , m, j = 1, 2, · · · , s (2)

where yij is the i-th feature in intrinsic feature Y and φij is the linear operation that generates
the j-th associated feature. m is the number of generated intrinsic features, and s represents
the number of ghost features generated for each intrinsic feature. The mathematical
relationship between m and s is as follows:

n = m× s (3)

where n is the number of channels of the final output feature. Feature information yij
and intrinsic features are connected together to output the final feature information. The
operation flow of the ghost module is shown in Figure 2.

Identity

1f

2f

c '
c

j
f

n

Figure 2. Framework of ghost modules. c, c
′
, and n represent the number of input feature channels,

the number of intrinsic features, and the number of output features, respectively.

GF-Bottleneck mainly consists of ghost modules, depthwise separable convolutions,
and 1× 1 convolutions, as shown in Figure 3. The input features X ∈ Rw×h×c are first
divided into two branches by normal convolution in DG module. A branch consists of LO in
DG modules, a depthwise separable convolution with a step size of 1, and 1× 1 convolution.
The other one acts as an identity. We define the output ratio input as the output expansion
ratio as follows:
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r =
n
c

(4)

According to ShuffleNetV2 [18], we set r = 1 for all modules, to reduce memory
access cost(MAC). The feature information of the two branches is connected by the concat
operation and finally output by the channel shuffle operation to allow the communication
of the different channel features.

We construct a new structure to increase the number of output features as well as
spatial downsampling, as illustrated in Figure 3b. Unlike the previous case with stride = 1,
in the identity branch, we add the depthwise separable convolution and 1× 1 convolution
to enrich feature expression. In addition, we set stride = 2.

(a) (b)

Figure 3. Structural design of GF-Bottleneck. Ghost module consists of normal convolution and
linear operations (LO). DWConv represents depthwise separable convolutions. (a) Stride = 1 and
(b) Stride = 2.

Based on GF-Bottleneck, we propose the GhostFaceNet with the configuration shown
in Table 1. GhostFaceNet mainly consists of s stack of GF-Bottleneck.

The first layer of the network is a standard 3× 3 convolution used for fast downsam-
pling. A series of GF-Bottleneck modules are applied, and the number of feature channels
is gradually increased. Global average pooling (GAP) treats each unit of the output fea-
tures with the same importance. However, it contradicts the theory that different units
contribute differently to the face feature vector. Refs. [9,43] show that GAP is inaccurate for
face recognition tasks. The global depthwise convolution (GDC) in [20] assigns different
weights to units with various degrees of importance. Meanwhile, the fully connected
(FC) layer generates more weight information and thus increases the size of the model. In
GhostFaceNet, GDC is used instead of GAP. PReLu [44] is chosen to be nonlinear to replace
ReLU [45]. Finally, a linear 1× 1 convolution is used to output compact 128-dimensional
face features. GhostFaceNet has 0.82 M parameters and 0.15 GFLOPs, far less than the
parameters and computations of other lightweight networks. Meanwhile, GhostFaceNet
can well verify the performance of UnifiedFace in lightweight networks.

3.2. Margin-Based Loss Functions

The traditional softmax loss function, which does not explicitly encourage enhanced
intra-class compactness and inter-class separation, is expressed as follows:
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Lso f tmax = − 1
N

N

∑
i

log(
eWT

y xi+by

∑n
j eWT

j xi+bj
) (5)

where N is batch size and n is the number of classes. by indicates the bias term for the
y-th class.

To effectively alleviate this problem, margin-based softmax loss functions are proposed
with great success. Commonly, the margin-based softmax constraint redefines logit as the
following equation:

WT
j xi =‖Wj ‖‖ xi ‖ cosθj (6)

where θj denotes the angle between the feature and the j-th weight vector. The feature
is normalized by L2 normalization and then re-specified as s. The weight is fixed to 1 by
L2 normalization.

In [7], cosθ is replaced by the target angle activation function (non-target angle activa-
tion function). The margin-based softmax is uniformly defined as follows

L = log(1 + ∑
i 6=y

eQ(θy ,θi ,s,m)) (7)

Q(θy, θi, s, m) = s · (η(θi)− η(θy) + ∆(θy) (8)

The m indicates the margin, including additive margin or multiplicative margin.
η(θi)− η(θy) denotes the confidence difference of various classes. ∆(θ) is the charac-
teristic function to describe angular margins, including the size of the margin and the
training stability. The characteristic function is defined as follows:

∆(θ) = η(θ)− ψ(θ) > 0 (9)

where η(θ) and ψ(θ) are defined as the target activation function and non-target activation
function, respectively. In particular, different η(θ) and ψ(θ) constitute various margin-
based loss functions, as shown in Table 2. A comparison of the different margin-based loss
functions for the characteristic functions is given in Figure 4a. Despite the great progress of
these margin-based loss functions, the problem of how to introduce margins more efficiently
remains a tricky one. That is, designing a simple and excellent performance angular margin
is still a problem. It is natural to think of unifying additive and multiplicative margins to
solve this problem.
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Figure 4. (a) Comparison between UnifiedFace and existing methods (b) Comparison of UnifiedFace
at different m.
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Table 2. Different margin−based loss functions for the characteristic functions.

Method Non-Target Function Target Function Characteristic Function

SphereFace cos(θ) (−1)kcos(mθ)− 2k cos(θ)− (−1)kcos(mθ) + 2k
SphereFaceR v1 cos(θ) cos(min(m, π

θ ) · θ) cos(θ)− cos(min(m, π
θ ) · θ)

SphereFaceR v2 cos( θ
m ) cos(θ) cos( θ

m )− cos(θ)
CosFace cos(θ) cos(θ)−m m
ArcFace cos(θ) cos(θ + m) cos(θ)− cos(θ + m)

UnifiedFace cos( θ+m
M ) cos(θ + m) cos( θ+m

M )− cos(θ + m)

3.3. UnifiedFace

To unify the additive and multiplicative margins, an additive margin is introduced
in the target angle activation function ψ(θ) and a multiplicative margin is added in the
non-target angle activation function η(θ). Following the conventional additive margin loss
function [9], we first designed ψ(θ), as follows:

ψ(θ) = cos(θ + m) (10)

where m is usually an additive margin penalty.
In addition, to design a reasonable loss function with multiplicative margin, we

construct ψ(θ) and η(θ) satisfying the following relation:

ψ(θ) = η(Mθ), θ ∈ [0, π] (11)

where M is usually the specified normal number. Therefore, we design a novel non-target
activation function η(θ):

η(θ) = cos(
θ + m

M
) (12)

where M = em.
From Figure 4b, we can observe the change in the trend of UnifiedFace at different m

in detail. The characteristic functions at different values of m all follow the angular margin
minimum for simple samples and maximum for medium hard samples. Meanwhile, a
sufficiently large angular margin is given for hard samples. Compared with other popular
loss functions of characteristic functions, UnifiedFace can obtain the maximum angular
margin for medium hardness samples. Furthermore, UnifiedFace does not give too much
angular margin to hard samples leading to an excessive focus on these hard samples during
training compare to SphereFaceR v2.

To facilitate understanding, the binary case is considered to illustrate intuitively the
uniform additive and multiplicative margins. Figure 5 intuitively compares the no angular
margin, multiplicative angular margin, additive angular margin, and uniform angular
margin. For a sample x, if no margin is introduced, cos(θ1) = cos(θ2) becomes the decision
boundary for class 1, i.e., the decision boundary is θ1 = θ2, as illustrated in Figure 5a. When
both additive and multiplicative margins are introduced, it also means that ψ(θ) = ψ1(θ)

and η(θ) = η1(θ). cos(θ1 + m) = cos( θ2+m
M ) is the decision boundary for class 1. When the

sample x belongs to class 1, it is required that cos(θ1 +m) > cos( θ2+m
M ). Correctly classifying

sample x into class 1 requires θ1 + m < θ2+m
M , while correctly classifying sample x into class

2 requires θ2 + m < θ1+m
M . As shown in Table 3, the decision boundary of UnifiedFace is

more stringent. That is when the sample x belonging to class 1 is correctly classified, θ1 is
smaller than the other loss functions of both additive margin and multiplicative margin.
The process of UnifiedFace supervise face recognition network is illustrated in Figure 6.
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Figure 5. (a) No angular margin; (b) is the multiplicative margin; (c) is the additive margin;
(d) is the uniform angular margin.
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Figure 6. Detailed supervision of DCNN by UnifiedFace loss function. After normalizing the features
x and weights Wy, we obtain the logit vector cosθ. After that, the angle θ between the weights and
the features is obtained. Unlike previous methods, the obtained target angle pinch angle is given
an additive margin, i.e., θ + m, and the obtained non-target angle is given a multiplicative margin,
i.e., θ

M . Our approach leads to features learning more compact intra-class similarity and inter-class
separability. Then, all logits are multiplied by the feature scale s. Finally, the logit contributes to the
cross-entropy loss through the softmax function.
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Table 3. Comparison of binary bounds for different loss functions.

Method Binary Boundary for Class 1

softmax θ1 < θ2
SphereFace mθ1 < θ2

CosFace cos(θ1)−m < θ2
ArcFace θ1 + m < θ2

UnifiedFace θ1 + m < θ2+m
M

4. Experiments

In this section, we first introduce the dataset used for the experiment, the network
structure, and the detailed setup of the experiment. In addition, we give a detailed descrip-
tion of the network structure. Secondly, we conducted ablation studies on different training
datasets separately to investigate the effect of their hyperparameters on UnifiedFace. Then,
we give the results of comparing UnifiedFace with other state-of-the-art methods. Mean-
while, we report the performance comparison results of UnifiedFace with popular loss
functions in networks of different complexity. Finally, we evaluate and compare with
state-of-the-art methods in the popular large-scale test IJBB/C.

4.1. Datasets

(1) Training datasets: We select VGGFace2 [46] and MS1M V3 as the training dataset.
To illustrate the generalization performance of our proposed method, we selected the
large-scale dataset MS1M V3 and the small-scale dataset VGGFace2 for model training,
respectively. VGGFace2 includes 3.14M images of faces in different poses, ages, and
ethnicities. The 5.1 million face images of 93K identities are included in MS1MV3, which is
a cleaned Ms-celeb-1m dataset [47]. No data enhancement is used in the training process.

(2) Validation and test datasets: We choose LFW [48], CPLFW [49], CALFW [50],
CFP [51], VGGFace2-FP [46] , IJB-B [52], and IJB-C [53] datasets to validate and evaluate
our method. Table 4 shows the statistics of the datasets.

Table 4. Statistical information on the datasets used.

Dataset ID Images

MS1M-RetinaFace 93 K 5.1 M
VGGFace2 8.6 K 3.1 M

LFW 5749 13,233
CPLFW 5749 12,174
CALFW 5749 11,652

CFP 500 7000
VGGFace2-FP 500 173 K

IJBB 1845 76.8 K
IJBC 3531 148.8 K

4.2. Implementation

We use PyTorch [54] to implement all the experiments. We use GhostFaceNet as the
backbone network to investigate the performance of the proposed new efficient lightweight
model in using UnifiedFace. In addition, we use ResNet-100 [30] as the backbone network.
The outputs of ResNet-100 are all 512 dimensions for a fair comparison. The batch size is set
to 256. A value of 0.1 is used as the initial learning rate and divided by 10 every 10 epochs.
The training ends at 25 epochs. The momentum and the weight decay are set to 0.9 and
5e− 5, respectively. In all experiments, we compare the accuracy of the loss function in
different datasets.
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4.3. Ablation Experiments
4.3.1. Effect of Hyperparameters M Furthermore, S

We use VGGFace2 and MS1M V3 as training datasets to explore the effect of
hyperparameters on the performance of UnifiedFace in training datasets of different
scales, respectively.

We first investigate the advantages and disadvantages of the performance of different
hyperparameters in the small-scale training dataset VGGFace2, and the experimental results
are shown in Table 5. The hyperparameter s is set to 64 and 40, and the hyperparameter m is
fixed from 0.35 to 0.5. Experimental results show that UnifiedFace performs well for values
of m ranging from 0.35 to 0.4 in small training datasets. In particular, when s = 64 and
m = 0.4, UnifiedFace achieves the optimal performance. Specifically, the optimal setting
for the additive margin of UnifiedFace is between 0.35 and 0.4. The optimal setting for the
multiplicative margin of UnifiedFace is between 1.4 and 1.5.

Then, we report the effect of hyperparameters on performance in the large-scale
training dataset MS1M V3, and the experimental results are presented in Table 6. The
hyperparameters s are set to 64 and 40, and the hyperparameters m are fixed from 0.35 to
0.5. In particular, the model performance is optimal when s = 50, m = 0.4. The experimental
results show that the optimal setting interval for the hyperparameter m is from 0.4 to
0.45, which means that the optimal setting range for the additive margin is from 0.4 to
0.45, and the optimal setting range for the multiplicative margin is from 1.5 to 1.6. The
results of hyperparametric experiments on training datasets of different sizes show that
UnifiedFace has excellent generalization ability.

In addition, we give the variation of loss values during UnifiedFace training with
different hyperparameters, as shown in Figure 7a,e. During the training process, different
hyperparameters lead to different values of the final convergence of the loss values. s = 64,
m = 0.5, the loss values fluctuate the most. In other cases, the loss value starts with a sharp
drop and then falls steadily. Although the loss value fluctuation during the training process
is smoothest and converges to a minimum value when m is taken as small as possible,
the performance is not the best. We select the best-performing hyperparameters as the
experimental parameters and compare the change of loss values during the training process
with the popular loss functions in recent years, as illustrated in Figure 7b,f.

Table 5. The ablation study on different hyperparameters s and m with ResNet-100. The VGGFace2
dataset, which is relatively small in size, is chosen for the training dataset.

s m LFW CALFW CPLFW VGG2_FP CFP
CFP_FF CFP_FP

64 0.5 99.55% 93.08% 91.92% 95.14% 99.34% 97.47%
64 0.45 99.52% 92.80% 92.23% 94.80% 99.26% 97.01%
64 0.4 99.73% 93.77% 92.58% 95.36% 99.37% 97.83%
40 0.35 99.67% 93.10% 92.48% 95.76% 99.26% 97.59%

Table 6. The ablation study on different hyperparameters s and m with ResNet-100. The large-scale
MS1M V3 dataset is chosen as the training dataset.

s m LFW CALFW CPLFW VGG2_FP CFP
CFP_FF CFP_FP

64 0.5 99.77% 96.00% 92.42% 95.00% 99.77% 97.09%
64 0.45 99.80% 96.00% 92.68% 95.34% 99.77% 97.30%
50 0.4 99.80% 96.17% 92.65% 96.52% 99.79% 97.77%
40 0.35 99.78% 95.90% 92.53% 96.02% 99.76% 97.83%
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Figure 7. (a,e) denotethe change in loss values of UnifiedFace using different training datasets with
various hyperparameters, respectively. (b,f) indicate the comparison of loss values of UnifiedFace
using different datasets with state-of-the-art methods. (c,g) represent the comparison of UnifiedFace
using various datasets with state-of-the-art methods in the LFW validation dataset. (d,h) show the
comparison of UnifiedFace using different datasets compared with popular methods in the CFPFP
validation dataset.

4.3.2. The Comparison with State-of-the-Art Methods

The performance comparisons of UnifiedFace with other state-of-the-art methods at
different scales of training datasets are given in Tables 7 and 8, respectively. UnifiedFace
outperforms other state-of-the-art methods when using small-scale datasets as training
datasets. Specifically, UnifiedFace achieves state-of-the-art performance in the validation
datasets LFW, CPLFW, and CFP_FP. The performance of UnifiedFace improves over the
optimal loss function by 0.08%, 0.08%, and 0.04% in these three validation datasets, respec-
tively. Competitive performance is also achieved in the remaining three validation datasets.
UnifiedFace also outperforms the current popular loss function when using MS1M V3 as the
training dataset. Specifically, UnifiedFace achieves state-of-the-art performance in CALFW,
VGG2_FP, and CFP_FF. UnifiedFace substantially improves the performance of the model
in the VGG2_FP validation dataset. Furthermore, UnifiedFace achieves suboptimal perfor-
mance in all other validation sets. A comparison of UnifiedFace with popular loss functions
in recent years in training sets of different sizes illustrates its excellent generalization ability.

Table 7. Performance comparison of UnifiedFace with state-of-the-art methods in using VGGFace2
as the training dataset.

Method s m LFW CALFW CPLFW VGG2_FP CFP
CFP_FF CFP_FP

SphereFace - 4 99.43% 91.18% 90.33% 95.46% 98.90% 96.99%
SphereFaceR v1 64 1.5 99.63% 93.70% 92.50% 95.08% 99.46% 97.79%
SphereFaceR v2 64 1.5 99.65% 93.37% 92.25% 95.30% 99.37% 97.50%

CosFace 64 0.45 99.63% 93.83% 92.37% 94.40% 99.37% 97.10%
ArcFace 64 0.45 99.62% 93.77% 92.33% 94.90% 99.40% 97.53%

CurricularFace 64 0.5 99.62% 93.90% 91.58% 94.46% 99.43% 96.90%
UnifiedFace 64 0.4 99.73% 93.77% 92.58% 95.36% 99.37% 97.83%
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Table 8. Performance comparison of UnifiedFace with state-of-the-art methods in using MS1M V3 as
the training dataset.

Method s m LFW CALFW CPLFW VGG2_FP CFP
CFP_FF CFP_FP

SphereFace - 3 99.80% 96.00% 92.42% 95.34% 99.73% 97.57%
SphereFaceR v1 64 1.5 99.78% 96.03% 92.55% 95.04% 99.78% 97.39%
SphereFaceR v2 64 1.5 99.82% 96.03% 92.97% 95.69% 99.77% 98.00%

CosFace 64 0.45 99.82% 96.08% 92.27% 94.38% 99.76% 96.89%
ArcFace 64 0.45 99.77% 96.12% 92.43% 94.66% 99.76% 97.13%

CurricularFace 64 0.5 99.80% 96.02% 92.05% 94.06% 99.77% 96.77%
UnifiedFace 50 0.4 99.80% 96.17% 92.65% 96.52% 99.79% 97.77%

In addition, the comparison of UnifiedFace with the popular loss function in recent
years in terms of loss value change during training is given. Both Figure 7b,f show that Uni-
fiedFace has the most stable loss value change process and the smallest convergence value
during the training process. Meanwhile, there is no large and drastic loss change during the
training process. The accuracy comparison of UnifiedFace with popular loss functions in
LFW and CFP_FP validation datasets during training is shown in Figure 7c,h, respectively.

4.4. Experiments in GhostFaceNet

We report on the performance of GhostFaceNet trained using UnifiedFace., as shown
in Table 9. Simultaneously, the performance comparison of UnifiedFace with popular loss
functions in lightweight networks is given.

The popular loss functions of recent years are used to train GhostFaceNet and compare
it with UnifiedFace. The margins of SphereFace, CosFace, and AirFace [55] are set to 4,
0.3, and 0.45, respectively. AirFace is a loss function specifically designed for lightweight
network models, and its linear target logit makes the training process very stable. The
margins of ArcFace are given as 0.15, 0.30, and 0.35, and are pre-trained by softmax before
using ArcFace. On LFW and CFP_FP, UnifiedFace is better than the other loss functions.
In particular, UnifiedFace substantially improves the performance of the model in the
cross-pose verification set CFP_FP. Furthermore, in CALFW, UnifiedFace achieves similarly
competitive results. The experimental results also demonstrate the degradation of model
performance caused by excessive margins in lightweight networks when using margin-
based loss functions for supervised training. For example, the performance for the case
of m = 0.45 is lower than that of m = 0.35 in UnifiedFace. Likewise, the performance
in ArcFace is similar. The fact that UnifiedFace still achieves optimal performance in
lightweight networks despite the introduction of large margins illustrates the advantage of
introducing both additive and multiplicative margins in UnifiedFace.

Table 9. Performance comparison between UnifiedFace and popular loss functions in
lightweight networks.

Loss m LFW CALFW CFP-FP

SphereFace 4 99.47% 94.97% 91.79%
CosFace 0.3 99.35% 94.27% 92.23%
ArcFace 0.15 99.53% 94.58% 94.21%
ArcFace 0.3 99.52% 94.63% 93.46%
ArcFace 0.35 99.50% 94.67% 93.10%
AirFace 0.45 99.48% 94.98% 92.73%

UnifiedFace 0.45 99.60% 94.53% 92.74%
UnifiedFace 0.4 99.63% 94.80% 93.70%
UnifiedFace 0.35 99.50% 94.63% 94.54%
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4.5. Comparison Experiments with Different Lightweight Network Models

We compared the performance of GhostFaceNet with popular models in recent years,
including the complex model ResNet-50 and other popular lightweight models. We used
UnifiedFace as the loss function.

The performance of GhostFaceNet is shown in Table 10. Although GhostFaceNet
achieves the best performance in the validation dataset LFW, it does not perform well in the
cross-pose and cross-age validation datasets. GhostFaceNet does not have a large enough
number of channels to learn richer features. Nevertheless, GhostFaceNet generates the
lowest number of parameters and computation, especially since it consumes only 0.15 G
of computation. Although GhostFaceNet does not perform well in the cross-pose and
cross-age validation datasets, its overall performance is still competitive. Meanwhile, it is
very computationally small and can significantly reduce the inference time of the model in
resource-constrained devices.

Table 10. Performance comparison of GhostFaceNet with other models. Results are in % and higher
number indicates better performance.

Model m LFW CALFW CFP-FP PARAM FLOPs

ResNet-50 0.45 99.61% 94.81% 95.17% 40.25 M 2.19 G
EfficientNet 0.45 99.52% 95.31% 96.55% 6.58 M 1.14 G

MobileNetV2 0.45 99.55% 94.87% 93.40% 2.26 M 0.43 G
MobileFaceNet 0.45 99.53% 94.95% 95.49% 1.0 M 0.45 G

GhostNet 0.45 99.58% 94.78% 95.40% 4.06 M 0.44 G
GhostFaceNet 0.45 99.60% 94.53% 92.74% 0.82 M 0.15 G
GhostFaceNet 0.4 99.63% 94.80% 93.70% 0.82 M 0.15 G
GhostFaceNet 0.35 99.50% 94.63% 94.54% 0.82 M 0.15 G

4.6. Experiments Evaluated on IJBB/C

In this section, we evaluate the performance of UnifiedFace on popular large-scale
benchmarks (i.e., IJB-B and IJB-C). A fair comparison with state-of-the-art methods is
provided. Specifically, we train UnifiedFace on MS1M V3. We compare UnifiedFace with
the current state-of-the-art approaches in recent years, i.e., SphereFace [5], SphereFaceR [7],
CosFace [6,8], ArcFace [9], and CurricularFace [41].

The experimental results in Table 11 show that the experimental results in the large-
scale test datasets are consistent with those in the validation datasets. This consistency also
indicates the validity of the selected test datasets and models. It is also well demonstrated
that the models that obtained good performance in the validation datasets can also achieve
correspondingly good results in the test datasets. From Table 11, we can observe that
although different types of margins produce similar performance, result in different results
at a low false acceptance rate (FAR). UnifiedFace can significantly improve the performance
on the IJBB and IJBC test datasets. In particular, at TAR (@FAR = 1e− 6), UnifiedFace
achieves state-of-the-art performance. Moreover, UnifiedFace performs particularly well at
other low FAR, which is of great interest for designing robust face recognition. The receiver
operating characteristic curves(ROC) of UnifiedFace with other loss functions are given in
Figure 8a,b, respectively.
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Table 11. Evaluation on IJB-B and IJB-C. We use ResNet-100 as the backbone architecture and
MS1MV3 as the training dataset for all the compared methods. Results are in % and higher number
indicates better performance.

Method m IJB-B IJB-C
1 × e−6 1 × e−5 1 × e−4 1 × e−6 1 × e−5 1 × e−4

SphereFace 3 42.00 85.84 93.90 78.77 92.18 95.68
SphereFaceR v1 1.5 34.56 88.88 94.47 88.39 93.69 95.97
SphereFaceR v2 1.5 37.22 88.45 94.51 87.79 93.34 95.99

CosFace 0.45 41.29 90.21 94.63 89.61 94.02 96.11
ArcFace 0.45 37.41 89.82 94.20 89.42 93.38 95.85

CurricularFace 0.45 36.38 90.06 94.37 89.58 93.83 95.85
UnifiedFace(MS1M V3) 0.4 42.51 88.52 94.03 88.50 93.12 95.62
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Figure 8. Comparison of the ROC curves of UnifiedFace and the popular loss function. (a) ROC for
IJBB; (b) ROC for IJBC.

4.7. Experiments in Embedded Devices

We conducted a 1:1 speed test on a computer platform (i9-12900K CPU). In addition,
we also performed accuracy test experiments on the computer platform with the LFW
dataset, as illustrated in Table 12. GhostFaceNet achieve the best performer in the LFW and
is 15.3ms faster than EfficientNet, MobileNetV2, and MobileFaceNet, 2.39 times, 1.67 times,
and 1.55 times, respectively.

Meanwhile, we conduct running speed comparison experiments in resource-
constrained embedded device to further illustrate the advantages of GhostFaceNet in
embedded devices. The embedded platform of choice is the ZYNQ 7020, which uses
ARM+FPGA SOC technology to integrate ARM Cortex-A9 and FPGA programmable
logic on a single chip. We use MTCNN [56] for face images detection and crop it to
112× 112. We use NCNN for PyTorch model transformation and implement the final run-
time test. We do not apply quantization to the model, so there is no degradation in the
model recognition capability.

Table 12. Lightweight model performance testing in computer platform.

Method Accuracy Speed

ResNet-50 99.64% -
EfficientNet 99.53% 36.5 ms

MobileNetV2 99.55% 25.67 ms
MobileFaceNet 99.53% 23.67 ms
GhostFaceNet 99.63% 15.3 ms
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The runtime results of GhostFaceNet and other methods for single-face image recogni-
tion in embedded devices are shown in Table 13. GhostFaceNet is 11.04 times, 8.57 times,
2.75 times, and 2.82 times faster than ResNet50, EfficientNet, MobileNetV2, and Mobile-
FaceNet, respectively. In general, GhostFaceNet outperforms other lightweight models in
embedded devices in terms of speed and is suitable for deployment in resource-limited
embedded devices. For example, in practical scenarios where system resources are limited,
such as time and attendance card punching, community access control, and surveillance de-
vices, it becomes very difficult to deploy complex models, and our proposed GhostFaceNet
can perform the relevant recognition tasks very easily.

Table 13. Speed comparison of GhostFaceNet with different models for single image recognition in
embedded devices.

Method Embedded Platform PARAM FLOPs

ResNet-50 3.09 s 40.29 M 2.19 G
EfficientNet 2.4 s 6.58 M 1.14 G

MobileNetV2 0.77 s 2.26 M 0.43 G
MobileFaceNet 0.79 s 1.0 M 0.45 G
GhostFaceNet 0.28 s 0.82 M 0.15 G

5. Conclusions

We propose an efficient lightweight convolutional neural network for embedded or
mobile devices, called GhostFaceNet, that drastically reduces the amount of computation
required by the model. In addition, our paper proposes a unified framework. In this frame-
work, the intuition of introducing larger margins is effectively achieved by introducing
both additive and multiplicative margins. We have conducted extensive experiments on
many validation datasets and popular benchmark tests to verify the effectiveness of our
proposed algorithm. Furthermore, during the actual training process and system testing,
we found that our proposed loss function can introduce larger margins without causing
training instability, as well as GhostFaceNet is able to effectively reduce the inference time
of the model in edge devices. In future work, we will also design more efficient lightweight
modules from the perspective of hardware system resources and take advantage of the
highly parallel nature of FPGAs to further accelerate the inference speed of the models in
edge devices. Moreover, we continue to explore the design of more efficient margins.
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