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UNIFORM ALGEBRA ISOMORPHISMS
AND PERIPHERAL MULTIPLICATIVITY

AARON LUTTMAN AND THOMAS TONEV

(Communicated by N. Tomczak-Jaegermann)

Abstract. Let ϕ : A → B be a surjective operator between two uniform alge-
bras with ϕ(1) = 1. We show that if ϕ satisfies the peripheral multiplicativity
condition σπ

(
ϕ(f) ϕ(g)

)
= σπ(fg) for all f, g ∈ A, where σπ(f) is the pe-

ripheral spectrum of f , then ϕ is an isometric algebra isomorphism from A
onto B. One of the consequences of this result is that any surjective, unital,
and multiplicative operator that preserves the peripheral ranges of algebra el-
ements is an isometric algebra isomorphism. We describe also the structure
of general, not necessarily unital, surjective and peripherally multiplicative
operators between uniform algebras.

An important question in Banach algebra theory, which still lacks a satisfactory
answer, is to find criteria for an operator between two Banach algebras to be linear
and multiplicative. For linear operators between semisimple algebras an answer
is suggested by the theorem of Gleason–Kahane–Żelazko (e.g., [11]) in terms of
spectra of algebra elements. A theorem by Kowalski and S�lodkowski [6] considers
alternative spectral conditions for not necessarily linear operators. N. V. Rao and
A. K. Roy [9] have introduced an interesting spectral multiplicativity condition that
contributes to the matter. In particular for unital, that is Φ(1) = 1, operators Φ
they have proven the following:

If A is a uniform algebra on X and Φ : A → A is a surjective unital operator
such that

(1) σ (Φ(f) Φ(g)) = σ(fg)

for every f, g ∈ A, where σ(f) is the spectrum of f , then Φ is an isometric algebra
isomorphism.

In the case when A = C(X) this result was proven previously by Molnár [8].
More recently, Hatori, Miura and Takagi [4] have replaced (1) by the weaker range
multiplicativity condition

Ran
(
Φ(f) Φ(g)

)
= Ran (fg),

where Ran (f) = f(X) is the range of f . N. V. Rao, T. Tonev and E. Toneva
[10] (see also [2]) considered a spectral additivity condition related to the peripheral
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3590 AARON LUTTMAN AND THOMAS TONEV

spectra of algebra elements and gave alternative conditions for an operator to be
an algebra isomorphism.

In this paper we show that a surjective and unital operator between two uniform
algebras is an isometric algebra isomorphism if it satisfies a multiplicativity condi-
tion that is weaker than (1) and related to the peripheral spectra. As a corollary
we obtain that any surjective, unital, and multiplicative operator that preserves the
peripheral ranges of algebra elements is an isometric algebra isomorphism.

1. Peripheral spectra of algebra elements

Let A be a commutative Banach algebra with maximal ideal space MA and
Shilov boundary ∂A. Recall that the peripheral spectrum, σπ(f), of an element
f ∈ A is the maximum modulus set of the spectrum of f , that is, σπ(f) =

{
z ∈

σ(f) : |z| = maxw∈σ(f) |w|
}

(see e.g. [2]). If A is a uniform algebra on X, then
σπ(f) = σ(f) ∩ T‖f‖, where T‖f‖ is the circle in C centered at 0 with radius ‖f‖.
The spectrum, σ(f), of an element f ∈ A and its range, Ran (f), are not equal in
general. As the following lemma shows, however, the peripheral spectrum σπ(f)
and peripheral range of f , that is, the set Ran π(f) = f(X)∩

{
z ∈ C : |z| = ‖f‖

}
=

f(X) ∩ T‖f‖, do, in fact, always coincide.

Lemma 1. Let A be a uniform algebra on a compact Hausdorff space X. Then
σπ(f) = Ran π(f) for all f ∈ A.

Proof. Clearly, Ran π(f) ⊂ σπ(f), since the Gelfand transform of f , f̂ , is an isom-
etry and Ran (f) = f(X) ⊂ f̂(MA) = σ(f). Recall that bσ(f) ⊂ f̂(∂A), where
bσ(f) is the topological boundary of σ(f) (cf. [1, 7]). The converse inclusion follows
from σπ(f) = bσ(f) ∩ T‖f‖ ⊂ f(∂A) ∩ T‖f‖ ⊂ f(X) ∩ T‖f‖ ⊂ Ran π(f). �

In the sequel the terms peripheral range and peripheral spectrum will be used
interchangeably.

Theorem 1 (Main Theorem). Let A and B be uniform algebras. If a surjective
and unital operator Φ : A → B satisfies the condition
(∗) Ran π

(
Φ(f) Φ(g)

)
= Ran π(fg),

or, equivalently,
(∗∗) σπ

(
Φ(f) Φ(g)

)
= σπ(fg),

for all f, g ∈ A, then Φ is an isometric algebra isomorphism between A and B.

Note that in this theorem and elsewhere in this paper we do not assume the
linearity of Φ, unless specifically mentioned. Operators that satisfy the equivalent
conditions (∗) and (∗∗) for all f, g ∈ A will be called peripherally multiplicative
operators. Note that while Ran π(f) is often easier to determine, σπ(f) and (∗∗)
are more convenient for use in the proofs that follow.

Peripherally multiplicative operators are not necessarily range-multiplicative. In-
deed, let A(D) be the disk algebra of continuous functions on the closed unit disk
in C that are analytic on the interior of the disk. Define Φ : A(D) → C(D) by
(Φ(f))(z) = f(z) · |z|. For any z ∈ T we have

(
Φ(f) Φ(g)

)
(z) =(

f(z) · |z|
)(

g(z) · |z|
)

= f(z) g(z). Since any function f ∈ A(D) attains all of
its maximal modulus values on T, it follows that σπ

(
Φ(f) Φ(g)

)
= σπ(fg), i.e., Φ

is peripherally multiplicative. However, Φ is not range-multiplicative, since, for
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instance, Ran (Φ(1)2) = Ran (|z|2) = D �= 1 = Ran (12). While Φ is an isometry, it
is neither surjective, nor unital, nor an algebra isomorphism.

Let A be a uniform algebra on a compact Hausdorff space X. Recall that an
element h ∈ A is a peaking function of A if ‖h‖ = 1, and |h(x)| < 1 whenever
h(x) �= 1, x ∈ X. In this case P (h) =

{
x ∈ X : h(x) = 1

}
= h−1{1} is the peak set

(or, peaking set) of h. Observe that h ∈ A is a peaking function of A if and only if
σπ(h) = {1}. If K ⊂ X is such that K = P (h) for some peaking function h, we say
that h peaks on K. A point x ∈ X is a generalized peak point, or a p-point, of A, if it
equals the intersection of a family of peak sets of A. Equivalently, x is a generalized
peak point of A if for every neighborhood V of x there is a peaking function h of
A with x ∈ P (h) ⊂ V . The set δA of all generalized peak points of A ⊂ C(X)
is called the Choquet boundary, or strong boundary, of A. It is known that δA is
a boundary of A, and its closure coincides with the Shilov boundary ∂A of A, i.e.
δA = ∂A. Recall that an x ∈ X is a peak point of A if there is an h ∈ A with
h(x) = 1 such that |h(x)| < 1 for any y ∈ X \ {x}. Unlike generalized peak points,
the set of peak points of A is not necessarily dense in ∂A if X is not metrizable.

Denote the set of all peaking functions of A by F(A). For a fixed x ∈ X denote
by Fx(A) the set of all peaking functions of A with x ∈ P (h), i.e. with h(x) = 1.

Lemma 2. Let A be a uniform algebra on X, and let f, g ∈ A. If ‖fh‖ ≤ ‖gh‖
for all peaking functions h ∈ F(A), then |f(x)| ≤ |g(x)| on ∂A.

Proof. Assume that ‖fh‖ ≤ ‖gh‖ for every h ∈ F(A), but |f(x0)| > |g(x0)| for
some x0 ∈ ∂A. Without loss of generality we may assume that x0 ∈ δA. Choose a
γ > 0 such that |g(x0)| < γ < |f(x0)|, and an open neighborhood V of x0 in X so
that |g(x)| < γ on V . Let h ∈ Fx0(A) be a peaking function of A with P (h) ⊂ V .
By choosing a sufficiently high power of h, we can assume from the beginning that∣∣(gh)(x)

∣∣ < γ for every x ∈ X \ V . Since this inequality obviously holds also on V ,
we deduce that ‖gh‖ < γ. Hence,

‖gh‖ < γ <
∣∣f(x0) h(x0)

∣∣ ≤ ‖fh‖,
which contradicts the hypothesis. Consequently, |f(x)| ≤ |g(x)| on ∂A. �

Corollary 1. Let f, g ∈ A. If ‖fh‖ = ‖gh‖ for all peaking functions h of A, then
|f(x)| = |g(x)| on ∂A.

If, moreover, σπ(fh) = σπ(gh) for all h ∈ F(A), then we have the following
identification lemma.

Lemma 3 (Identification Lemma). If f, g ∈ A satisfy the condition

(2) σπ(fh) = σπ(gh)

for every peaking function h ∈ A, then f = g, i.e. f(x) = g(x) for all x ∈ X.

Proof. Clearly, ‖fh‖ = ‖gh‖, since |z| = ‖f‖ for every z ∈ σπ(f). It follows
from Corollary 1 that |f(x)| = |g(x)| on ∂A. Let x0 ∈ δA. If f(x0) = 0, then
|g(x0)| = |f(x0)| = 0 implies that also g(x0) = 0. Therefore, we can assume
without loss of generality that f(x0) �= 0. Choose an open neighborhood V of
x0 in X, and a peaking function k ∈ Fx0(A) with P (k) ⊂ V . Let xV ∈ P (k)
be such that |f(xV )| = maxξ∈P (k) |f(ξ)|. Bishop’s Lemma for uniform algebras
(cf. [1, Theorem 2.4.1]) implies that there is a peaking function h of A with the
same peaking set as k, so that the function fh attains its maximum modulus

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3592 AARON LUTTMAN AND THOMAS TONEV

exclusively within P (h). In fact, we can choose h so that both functions fh and
gh attain the maxima of their modulus exclusively within P (h). Therefore, by (2),
f(xV ) = f(xV ) k(xV ) = f(xV ) h(xV ) ∈ σπ(fh) = σπ(gh). Hence, there is a zV ∈ X
so that f(xV ) = (gh)(zV ) and

∣∣(gh)(zV )
∣∣ = ‖gh‖ = maxξ∈X

∣∣(gh)(ξ)
∣∣. Every such

zV belongs to P (h) by the choice of h. Therefore, f(xV ) = (gh)(zV ) = g(zV ).
Since in every neighborhood V of x0 there are points xV and zV in V such that
f(xV ) = g(zV ), then f(x0) = g(x0) by the continuity of f and g. Consequently,
f(x) = g(x) on δA, and therefore, f = g. �

2. Peripherally multiplicative operators

Let A and B be uniform algebras on X and Y , respectively.

Lemma 4. If an operator Φ : A → B is peripherally multiplicative, then for all
f, g ∈ A the following hold:

(a)
∥∥Φ(f) Φ(g)

∥∥ = ‖fg‖, i.e. Φ is norm-multiplicative;
(b) ‖Φ(f)‖ = ‖f‖, i.e. Φ preserves the norms.

If, in addition, Φ is unital, then
(c) σπ(Φ(f)) = σπ(f), i.e. Φ preserves the peripheral spectra;
(d) σπ

(
Φ(f) Φ(g)

)
= σπ

(
Φ(fg)

)
.

Proof. Equality (a) follows directly from (∗∗), since |z| = ‖f‖ for every z ∈ σπ(f).
In a uniform algebra ‖f2‖ = ‖f‖2, and hence ‖f‖2 = ‖f2‖ =

∥∥Φ(f)2
∥∥ = ‖Φ(f)‖2 by

(a), which implies that ‖Φ(f)‖ = ‖f‖, i.e. (b) holds. Letting g = 1 in (∗∗) implies
(c), while (d) follows from (c) and (∗∗) by σπ

(
Φ(fg)

)
= σπ(fg) = σπ

(
Φ(f) Φ(g)

)
.

�
It is straightforward to see that if Φ is unital, then the peripheral multiplicativity

property (∗∗) is equivalent to both (c) and (d).

Proposition 1. Every peripherally multiplicative operator Φ : A → B is injective.

Proof. If Φ(f) = Φ(g) for some f, g ∈ A, then for any peaking function h ∈ F(A)
we have Φ(f) Φ(h) = Φ(g) Φ(h); thus σπ

(
Φ(f) Φ(h)

)
= σπ

(
Φ(g) Φ(h)

)
. Hence

σπ(fh) = σπ

(
Φ(f) Φ(h)

)
= σπ

(
Φ(g) Φ(h)

)
= σπ(gh),

where we have used twice the peripheral multiplicativity of Φ. The Identification
Lemma 3 now implies that f = g. Thus Φ is injective. �
Lemma 5. If Φ : A → B is a surjective and peripherally multiplicative operator,
then Φ(1)2 = 1.

This result is due to O. Hatori [5]. The proof presented here is due to S. Lambert.

Proof. Lemma 4 (c) yields {1} = σπ

(
12

)
= σπ

(
Φ(1)2

)
. Consequently, Φ(1)2 is a

peaking function of B. Let k be a peaking function of B and h = Φ−1(k). Then,
invoking Lemma 4 (a), (b),

‖1 · k‖ = ‖k‖ = ‖Φ(h)‖ = ‖h‖ = ‖1 · h‖ =
∥∥Φ(1) · Φ(h)

∥∥ =
∥∥Φ(1) · k

∥∥.

Corollary 1 implies that |Φ(1)| = 1, and therefore,
∣∣Φ(1)2

∣∣ = 1 on ∂B. Hence
Φ(1)2 = 1 on ∂B, since, as noted above, Φ(1)2 is a peaking function of B. Conse-
quently, Φ(1)2 ≡ 1.1 �

1Thanks are due to Scott Lambert for permitting the publication of this proof.
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Lemma 5 implies that Φ(1) does not take values other than −1 and 1, it is an
invertible element of B, and Φ(1)−1 = Φ(1). If Y is connected, then Φ(1) ≡ 1 or
Φ(1) ≡ −1.

Lemma 6. If Φ : A → B is a surjective operator that preserves the peripheral
spectra of algebra elements, then Φ

(
F(A)

)
= F(B).

Proof. The inclusion Φ
(
F(A)

)
⊂ F(B) follows from the preservation by Φ of periph-

eral spectra of algebra elements. Given k ∈ F(B), there exists h ∈ A with k = Φ(h),
by the surjectivity of Φ. Clearly, h ∈ F(A) since σπ(h) = σπ(Φ(h)) = σπ(k) = {1}.
Hence k = Φ(h) ∈ Φ

(
F(A)

)
, and therefore F(B) ⊂ Φ

(
F(A)

)
. Consequently,

Φ
(
F(A)

)
= F(B), as claimed. �

Definition 1 ([2, 10]). An operator Φ : A → B is called monotone increasing in
modulus if |f(x)| ≤ |g(x)| on ∂A implies

∣∣(Φ(f))(y)
∣∣ ≤ ∣∣(Φ(g))(y)

∣∣ on ∂B for every
f, g ∈ A.

Lemma 7. If a surjective operator Φ : A → B is norm-multiplicative, i.e. if

(3)
∥∥Φ(f) Φ(g)

∥∥ = ‖fg‖
for every f, g ∈ A, then it is monotone increasing in modulus.

Proof. If |f(x)| ≤ |g(x)| on ∂A, then clearly ‖fh‖ ≤ ‖gh‖ for any h ∈ A. Since Φ
is surjective, for any k ∈ F(B) there is an h ∈ A such that k = Φ(h). Applying
(3) twice we obtain

∥∥Φ(f) · k
∥∥ =

∥∥Φ(f) Φ(h)
∥∥ = ‖fh‖ ≤ ‖gh‖ =

∥∥Φ(g) Φ(h)
∥∥ =∥∥Φ(g) ·k

∥∥ for every k ∈ F(B). Now Lemma 2 implies that
∣∣(Φ(f))(y)

∣∣ ≤ ∣∣(Φ(g))(y)
∣∣

on ∂B. �

To prove the Main Theorem we will show that under its assumptions the mapping
τ : δA → δB considered in [9] is well defined, and the equality (Φ(f))(τ (x)) = f(x)
holds for all f ∈ A and x ∈ X.

Lemma 8. If Φ : A → B is a surjective and monotone increasing in modulus
operator that preserves the peripheral spectra of algebra elements, then for every
generalized peak point x ∈ δA the set

(4) Ex =
⋂

h∈Fx(A)

P (Φ(h))

is nonempty.

Proof. Let x be a generalized peak point of A. We will show that the family{
P (Φ(h)) : h ∈ Fx(A)

}
has the finite intersection property. If h1, h2, . . . , hn belong

to Fx(A), then the function g = h1 ·h2 · · ·hn also belongs to Fx(A). Since |hj(x)| ≤
1, j = 1, . . . , n, we have |g(ξ)| = |h1(ξ)| · |h2(ξ)| · · · |hn(ξ)| ≤ |hk(ξ)| for every
ξ ∈ ∂A and any fixed k = 1, . . . , n. According to Lemma 6, Φ(g) and Φ(hk) are
peaking functions of B. Since Φ is monotone increasing in modulus, it follows that∣∣(Φ(g))(η)

∣∣ ≤ ∣∣(Φ(hk))(η)| for every η ∈ ∂B. Consequently, for every y ∈ Y with
(Φ(g))(y) = 1 we must have

∣∣(Φ(hk))(y)
∣∣ = 1; thus (Φ(hk))(y) = 1, which implies

P
(
Φ(g)

)
⊂ P

(
Φ(hk)

)
. Since this holds for every k = 1, . . . , n, we deduce that

P
(
Φ(g)

)
⊂

⋂n
k=1 P

(
Φ(hk)

)
. Consequently, the family

{
P

(
Φ(h)

)
: h ∈ Fx(A)

}
has

the finite intersection property, as claimed. Hence it has a nonempty intersection,
since all of its members are closed subsets of the compact set Y . �
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Lemma 9. If Φ : A → B is a surjective, unital and peripherally multiplicative
operator, then for any generalized peak point x ∈ δA the set Ex defined in (4) is a
singleton that belongs to δB.

Proof. Let x ∈ δA be a generalized peak point of A. According to Lemma 4 (a), Φ is
norm-multiplicative and, according to Lemma 7, monotone increasing in modulus.
Since, in addition, Φ is unital, it preserves the peripheral ranges of algebra elements
by Lemma 4 (c). Thus Φ satisfies the hypotheses of Lemma 8. Consequently,
the family of peak sets

{
P (Φ(f)) : f ∈ Fx(A)

}
has a nonempty intersection, and

therefore it meets δB (cf. [7, Ex. 3,9, p.165]), i.e. Ex ∩ δB �= ∅.
Since Φ preserves the peripheral spectra of algebra elements, Lemma 6 yields

Φ−1
(
F(B)

)
= F(A). We claim that

(5) Φ−1
(
Fy(B)

)
⊂ Fx(A)

for any y ∈ Ex ∩ δB. Let y0 ∈ Ex ∩ δB, k ∈ Fy0(B), and let h = Φ−1(k) ∈ F(A).
Since, by Proposition 1, Φ is injective, the function h is uniquely defined. To show
that h ∈ Fx(A) it is enough to see that h(x) = 1. Take an open neighborhood
V of x and a peaking function g ∈ Fx(A) with P (g) ⊂ V . By Lemma 6 we have
Φ(g) ∈ F(B). Since g ∈ Fx(A) and y0 ∈ Ex ⊂ P (Φ(g)), we have Φ(g)(y0) = 1;
hence Φ(g) ∈ Fy0(B). Note that k · Φ(g) ∈ Fy0(B). Lemma 4 (a) yields 1 =∥∥k · Φ(g)

∥∥ =
∥∥Φ(h) Φ(g)

∥∥ = ‖hg‖ ≤ 1. Hence ‖hg‖ = 1, and there exists xV ∈ ∂A
with h(xV ) = g(xV ) = 1. Therefore, xV ∈ P (g) ⊂ V . We deduce that any
neighborhood V of x contains a point xV with h(xV ) = 1. The continuity of h
implies that h(x) = 1, so h ∈ Fx(A). Consequently, Φ−1

(
Fy(B)

)
⊂ Fx(A), as

claimed.
Let y0 ∈ Ex ∩ δB, and suppose that there exists a y ∈ Ex \ {y0}. Then there

is a peaking function k ∈ Fy0(B) with |k(y)| < 1. By (5), if h = Φ−1(k), then
h ∈ Fx(A). Hence Ex ⊂ P (Φ(h)) = P (k), which implies k(y) = 1, contradicting
|k(y)| < 1. This shows that the set Ex contains exactly one point. �

Let Φ : A → B be a surjective, unital, and peripherally multiplicative operator,
and let x ∈ δA. If τ (x) is the single element of the set Ex, i.e.,

(6) {τ (x)} = Ex =
⋂

f∈Fx(A)

P (Φ(f)),

then, as in [9], we can consider the mapping τ : x �−→ τ (x) from δA into δB. If
h ∈ Fx(A), then, due to (4), τ (x) ∈ P (Φ(h)). Thus (Φ(h))(τ (x)) = 1 = h(x), and
the equality

(7) (Φ(h))(τ (x)) = h(x)

holds for every peaking function h ∈ Fx(A). In the next section it will be shown
that, under rather general conditions, equality (7) in fact holds for every f ∈ A and
any x ∈ δA.

Let Φ be a unital surjective and peripherally multiplicative operator. Let
k ∈ Fτ(x)(B) for some x ∈ δA, and let Φ−1(k) = h ∈ F(A). According
to (5), Φ−1

(
Fτ(x)(B)

)
⊂ Fx(A); hence h ∈ Fx(A) and by (7) we have k(τ (x)) =

(Φ(h))(τ (x)) = h(x) =
(
Φ−1(k)

)
(x). Therefore, for every x ∈ δA and any peaking

function k ∈ Fτ(x)(B) we have

(8)
(
Φ−1(k)

)
(x) = k(τ (x)).
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Lemma 10. Let Φ : A → B be a surjective, unital, and peripherally multiplicative
operator, and let f ∈ A. If (Φ(f))(τ (x0)) = 0 for some x0 ∈ δA, then also
f(x0) = 0.

Proof. Let x0 be a generalized peak point of A and let f ∈ A. Choose an open
neighborhood U of τ (x0) in Y , such that

∣∣(Φ(f))(y)
∣∣ < ε on U . Let k ∈ Fτ(x0)(B) be

a peaking function of B with P (k) ⊂ U . By taking a high enough power of k, we may
assume from the beginning that

∣∣(Φ(f))(y) · k(y)
∣∣ < maxη∈U

∣∣(Φ(f))(η) · k(η)
∣∣ < ε

for all y ∈ Y \ U . Consequently,
∥∥Φ(f) · k

∥∥ < ε, and according to Lemma 4 (a),∥∥f · Φ−1(k)
∥∥ =

∥∥Φ(f) · k
∥∥ < ε. Hence by (8) we have |f(x0)| =

∣∣f(x0) k(τ (x0))
∣∣ =∣∣f(x0) ·

(
Φ−1(k)

)
(x0)

∣∣ < ε. Thus, |f(x0)| < ε, and consequently, f(x0) = 0 by the
liberty of choice of ε. �

Lemma 11. If Φ : A → B is a surjective, unital, and peripherally multiplicative
operator, then |f(x)| ≤

∣∣(Φ(f))(τ (x))
∣∣ for every x ∈ δA and all f ∈ A.

Proof. Since Φ is peripherally multiplicative, then, according to Lemma 4 (a),(b),∥∥Φ(f) Φ(g)
∥∥ = ‖fg‖ and ‖Φ(f)‖ = ‖f‖ for all f, g ∈ A. Let x ∈ δA, f ∈ A, and let

g = Φ(f) ∈ B. Without loss of generality we can assume that g(τ (x)) �= 0, since,
if g(τ (x)) = (Φ(f))(τ (x)) = 0, then, by Lemma 10, also f(x) = 0, and the result
carries. If U is an open neighborhood of τ (x) in Y , then Bishop’s Lemma allows us
to choose a peaking function k ∈ Fτ(x)(B) with P (k) ⊂ U , such that the function
(gk)(y) attains its maximum modulus within P (k) ⊂ U exclusively. Let ηU ∈ P (k)
be such that |g(ηU )| = maxη∈P (k) |g(η)|, and denote h = Φ−1(k) ∈ Fx(A). The
norm-multiplicativity of Φ implies that

|f(x)| =
∣∣f(x)

(
Φ−1(k)

)
(x)

∣∣ =
∣∣(f · Φ−1(k)

)
(x)

∣∣
≤

∥∥f · Φ−1(k)
∥∥ =

∥∥Φ(f) · k
∥∥ =

∥∥g k‖ = |g(ηU )|.
We have obtained that any neighborhood U of τ (x) contains a point ηU such
that |f(x)| ≤

∣∣g(ηU )
∣∣. The continuity of g implies that |f(x)| ≤

∣∣g(τ (x))
∣∣ =∣∣(Φ(f))(τ (x))

∣∣. �

Lemma 12. If Φ : A → B is a surjective, unital, and peripherally multiplicative
operator, then the mapping τ from (6) is a homeomorphism from δA onto δB.

Proof. According to Proposition 1, the operator Φ is bijective. Since the periph-
eral multiplicativity property (∗∗) is symmetric with respect to f and Φ(f), it
holds also for the inverse operator Φ−1. According to Lemma 9, there arises a
corresponding map ψ : δB → δA such that the equality (7), which in this case
reduces to

(
Φ−1(k)

)
(ψ(η)) = k(η), holds on δB for any k ∈ Fη(B). Let x ∈ δA

and y = τ (x) ∈ δB. Then h(ψ(y)) =
(
Φ−1(k)

)
(ψ(y)) = k(y) = (Φ(h))(y) =

(Φ(h))(τ (x)) = h(x) = 1, and therefore ψ(y) ∈ P (h). Since this holds for every
h ∈ Fx(A) and

⋂
h∈Fx(A) P (h) = {x}, we deduce that ψ(y) = x; thus ψ(τ (x)) = x

for every x ∈ δA. By similar arguments one can see also that τ (ψ(y)) = y for any
y ∈ δB. Consequently, τ and ψ are injective mappings, and ψ = τ−1.

Let x ∈ δA be a generalized peak point of A, and let r ∈ (0, 1). Choose an
open neighborhood V of τ (x) in δB, and a peaking function k ∈ Fτ(x)(B) with
P (k) ⊂ V and |k(y)| < r on δB \ V . If h = Φ−1(k), then h ∈ Fx(A). Note that
since h(x) = 1 > r, the open set W =

{
ξ ∈ δA : |h(ξ)| > r

}
contains x. According

to Lemma 11, for every ξ ∈ W we have
∣∣k(τ (ξ))

∣∣ =
∣∣(Φ(h))(τ (ξ))

∣∣ ≥ |h(ξ)| > r, and
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therefore, τ (ξ) ∈ V , since on δB \ V we have |k(η)| < r. Consequently, τ (W ) ⊂ V ,
which proves the continuity of τ . If we consider the operator Φ−1 : B → A and
the mapping τ−1 : δB → δA, the same arguments imply that τ−1 = ψ is also
continuous, which completes the proof. �

When applied to the operator Φ−1 : B → A and the mapping τ−1 : δB → δA,
Lemma 11 implies that |g(y)| ≤

∣∣(Φ−1(g)
)
(τ−1(y))

∣∣ for any y ∈ δB and every g ∈ B.
By letting g = Φ(f), f ∈ A, and y = τ (x), x ∈ δA, we obtain

∣∣(Φ(f))(τ (x))
∣∣ ≤

|f(x)|. Together with Lemma 11, this inequality implies the following:

Corollary 2. If Φ : A → B is a surjective, unital, and peripherally multiplicative
operator, then

∣∣(Φ(f))(τ (x))
∣∣ = |f(x)| for any x ∈ δA and every f ∈ A.

3. The Main Theorem

Here we prove the Main Theorem, stated in the first section. First we will show
that, under its assumptions, equality (7) holds for every x ∈ δA and any f ∈ A.

Proposition 2. If Φ : A → B is a surjective, unital, and peripherally multiplicative
operator between two uniform algebras, then for every generalized peak point x ∈ δA
the equality

(9) (Φ(f))(τ (x)) = f(x)

holds for all f ∈ A and x ∈ δA.

Proof. By Lemma 9 the mapping τ from (6) is well defined, and according to (7),
for a fixed x ∈ δA, all peaking functions h ∈ Fx(A) satisfy equality (9). Let x0

be a generalized peak point of A, and let f ∈ A. Without loss of generality we
can assume that f(x0) �= 0, since if f(x0) = 0, then also (Φ(f))(τ (x0)) = 0 by
Lemma 10, if applied to the operator Φ−1 : B → A, the function Φ(f) ∈ B and
the mapping τ−1 : δB → δA. Let V be an open neighborhood of x0. Bishop’s
Lemma implies that there is a peaking function h ∈ Fx0(A) so that P (h) ⊂ V
and such that the function (fh)(x) attains its maximum modulus within P (h) ⊂ V
exclusively. Let zV be a point in δB so that |(Φ(f)Φ(h))(zV )| = ‖Φ(f)Φ(h)‖. Hence
(Φ(f)Φ(h))(zV ) ∈ σπ(Φ(f)Φ(h)) = σπ(fh) by the peripheral multiplicativity of Φ.
Consequently, (Φ(f)Φ(h))(zV ) = (fh)(ξV ) for some ξV ∈ X. Then ξV ∈ P (h) by
the choice of h, since |(fh)(ξV )| = ‖fh‖. Hence we have found points zV ∈ δB and
ξV ∈ P (h) so that

(10) f(ξV ) = (fh)(ξV ) = (Φ(f)Φ(h))(zV ).

The surjectivity of τ implies that zV = τ (xV ) for some xV ∈ δA. Equality (10),
Corollary 2 and (7) imply

|f(ξV )| =
∣∣(Φ(f) Φ(h)

)
(zV )

∣∣ =
∣∣(Φ(f))(τ (xV ))

∣∣∣∣(Φ(h))(τ (xV ))
∣∣

= |f(xV )||h(xV )| =
∣∣(fh)(xV )

∣∣ ≤ ‖fh‖ = |f(ξV )|;

thus
∣∣(fh)(xV )

∣∣ = |f(ξV )| = ‖fh‖ = maxξ∈X

∣∣(fh)(ξ)
∣∣. Since this maximum

is attained only within P (h), xV ∈ P (h), and according to (7), (Φ(h))(zV ) =
(Φ(h))(τ (xV )) = h(xV ) = 1. Now equality (10) becomes f(ξV ) = (Φ(f))(zV ) =
(Φ(f))(τ (xV )). Therefore any neighborhood V of x0 contains points ξV and xV

such that f(ξV ) = (Φ(f))(τ (xV )). The continuity of f, Φ(f), and τ yields f(x0) =
(Φ(f))(τ (x0)). �
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Note that since τ is a homeomorphism, we can rewrite (9) as (Φ(f))(y) =
f

(
τ−1(y)

)
, y ∈ δB. We see that, in fact, Φ is the composition operator on A

determined by τ−1.
The Main Theorem. A surjective, unital, and peripherally multiplicative oper-

ator Φ : A → B between two uniform algebras is an isometric algebra isomorphism.

Proof. Proposition 2 implies that the equality (Φ(f))(τ (x)) = f(x) holds for every
x ∈ δA and all f ∈ A. Therefore, the operator Φ′ : A|δA → B|δB defined by
Φ′(f |δA) = Φ(f)|δB, f ∈ A, is an algebra isomorphism from A|δA onto B|δB . Since
the Choquet boundary of an algebra is in fact an algebra boundary, A|δA

∼= A and
B|δB

∼= B, while Φ is uniquely determined by Φ′. Consequently, Φ is an algebra
isomorphism between A and B. �

4. Non-unital operators

The assumption that Φ is unital is not too restrictive. In fact, if Φ is not unital,
then, instead of being a composition operator as before, Φ is a weighted composition
operator on A.

Proposition 3. Any surjective and peripherally multiplicative operator Φ : A → B
between two uniform algebras is the product of a function in B and an algebra
isomorphism from A onto B. More precisely, there exists an isometric algebra
isomorphism Φ̃ : A → B, such that

Φ(f) = κ · Φ̃(f)

for all f ∈ A, where κ = Φ(1) ∈ B and Ran (κ) ⊂ {±1}.

Proof. Define Φ̃ : A → B by Φ̃(f) = Φ(1) · Φ(f). Then Φ̃ is a surjective operator.
Since, by Lemma 5, Φ̃(1) = Φ(1)2 = 1, we have

σπ

(
Φ̃(f) Φ̃(g)

)
= σπ

(
Φ(1)2 · Φ(f) Φ(g)

)
= σπ

(
Φ(f) Φ(g)

)
= σπ(fg).

Thus Φ̃ is a surjective, unital, and peripherally multiplicative operator from A onto
B. By the Main Theorem, it is an isometric algebra isomorphism. This proves the
proposition, since Φ(f) = Φ(1)−1·Φ̃(f) = Φ(1)·Φ̃(f). The inclusion Ran (κ) ⊂ {±1}
follows from Lemma 5. �

If Y is connected, then κ ≡ 1 or κ ≡ −1. Therefore, in this case, either Φ or its
negative is an isometric algebra isomorphism.

Let X = MA and Y = MB . Since Φ̃ is an isometric algebra isomorphism, there
exists a homeomorphism ψ : Y → X such that (Φ̃(f))(y) = f(ψ(y)) for all f ∈ A
and all y ∈ Y . Hence,

(Φ(f))(y) = (Φ(1))(y) · (Φ̃(f))(y) = (Φ(1))(y) · f(ψ(y)).

We have obtained the following:

Corollary 3. Let A and B be uniform algebras on their maximal ideal spaces X
and Y , respectively. If Φ : A → B is a surjective and peripherally multiplicative
operator, then there exists a homeomorphism ψ : Y → X, such that

(11) (Φ(f))(y) = κ(y) · f(ψ(y))

for all f ∈ A and all y ∈ Y , where κ = Φ(1) is as in Proposition 3. In particular,
Φ is automatically a linear operator.
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Since every multiplicative operator that preserves the peripheral ranges of alge-
bra elements is peripherally multiplicative, we obtain the following:

Proposition 4. Any surjective and multiplicative operator Φ between two uniform
algebras that preserves the peripheral ranges of algebra elements is of the form (11).

If, in addition, Φ is unital, then it is an algebra isomorphism. Namely,

Corollary 4. Any surjective, unital, and multiplicative operator between two uni-
form algebras that preserves the peripheral ranges of algebra elements is an isometric
algebra isomorphism.

Note that any operator Φ : A → B that preserves the spectra or the ranges of
algebra elements preserves also their peripheral spectra and is unital. Consequently,

Corollary 5. Any surjective and multiplicative operator between two uniform al-
gebras that preserves the spectra or the ranges of algebra elements is an isometric
algebra isomorphism.

Observe that elements with equal spectra or ranges have equal peripheral spectra.
Therefore, Corollary 3 implies the results obtained by N. V. Rao and A. K. Roy in
[9], and by Hatori, Miura, and Takagi in [4]. Namely,

Corollary 6. Any surjective operator Φ : A → B between two uniform algebras
that satisfies the spectral multiplicativity condition σ

(
Φ(f) Φ(g)

)
= σ(fg), or, the

range-multiplicativity condition Ran
(
Φ(f) Φ(g)

)
= Ran (fg) for all f, g ∈ A, is of

the form (11).
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