
Vol.:(0123456789)

Empirical Software Engineering (2022) 27:44
https://doi.org/10.1007/s10664-021-10102-5

1 3

Uniform and scalable sampling of highly configurable
systems

Ruben Heradio1 · David Fernandez‑Amoros1 · José A. Galindo2 · David Benavides2 ·
Don Batory3

Accepted: 9 December 2021 / Published online: 21 January 2022
© The Author(s) 2022, corrected publication 2022

Abstract
Many analyses on configurable software systems are intractable when confronted with
colossal and highly-constrained configuration spaces. These analyses could instead use
statistical inference, where a tractable sample accurately predicts results for the entire
space. To do so, the laws of statistical inference requires each member of the population
to be equally likely to be included in the sample, i.e., the sampling process needs to be
“uniform”. SAT-samplers have been developed to generate uniform random samples at a
reasonable computational cost. However, there is a lack of experimental validation over
colossal spaces to show whether the samplers indeed produce uniform samples or not. This
paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test
to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and five
other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our
experimental results show only BDDSampler satisfies both scalability and uniformity.

Keywords Uniform sampling · Configurable systems · Software product lines · Binary
decision diagrams · SAT-solvers

Communicated by: Philippe Collet, Sarah Nadi, Christoph Seidl, and Leopoldo Motta Teixeira

This article belongs to the Topical Collection: Software Product Lines and Variability-rich Systems (SPLC)

 * Ruben Heradio
 rheradio@issi.uned.es

 David Fernandez-Amoros

 david@issi.uned.es

 José A. Galindo
 jagalindo@us.es

 David Benavides
 benavides@us.es

 Don Batory
 batory@cs.utexas.edu

1 Universidad Nacional de Educación a Distancia, Madrid, Spain
2 University of Seville, Seville, Spain
3 University of Texas at Austin, Austin, Texas, USA

http://orcid.org/0000-0002-7131-0482
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10102-5&domain=pdf

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 2 of 34

1 Introduction

Generating random SAT-solutions is of critical importance in several domains: Software
Product Lines (SPLs) analysis and configuration (Krieter 2019; Muñoz et al. 2019; Oh
et al. 2017), software testing (Chakraborty and Meel 2019; Dutra et al. 2018; Plazar et al.
2019; Roy et al. 2018), and integrated circuit simulation and verification (Hëbner and
Becker 2011; Naveh et al. 2006; Yuan et al. 2002).

To get a sense of this problem’s relevancy and complexity, consider an example taken
from the SPL domain. BusyBox1 is a software tool that replaces many standard GNU/
Linux utilities with a single small executable, thus providing an environment customized
for a diversity of embedded systems. To achieve size-optimization, BusyBox is remarkably
modular, supporting the inclusion/exclusion of 613 features at compile time. These features
and their interrelationships are specified with a configuration language named Kconfig.2
To guarantee that every valid configuration satisfies all dependencies, the Kconfig model
of BusyBox is translated into a Boolean formula that is then processed with a logic engine
(Batory 2005; Fernandez-Amoros et al. 2019) (e.g., a SAT solver (Biere et al. 2009)). A
valid configuration corresponds to a satisfiable assignment of the formula, also called, a
SAT solution (Plazar et al. 2019) or a witness (Chakraborty and Meel 2019).

As a consequence of the inter-feature dependencies, the space of valid configurations
(7.428 ⋅ 10146) is a tiny portion of the whole configuration space (2613): only 2.185 ⋅ 10−36%
of the possible configurations are valid (Heradio et al. 2020). Nevertheless, the population
of valid configurations is still colossal. Those SPL analyses that examine every valid con-
figuration are unscalable.

For instance, Halin et al. (2019) adopted an exhaustive strategy to test the JHipster3
system, checking all its valid configurations. JHipster is a code generator for web applica-
tions with 45 selectable features that can produce a total of 26,256 valid configurations.
Checking this modest configuration space with the INRIA Grid’50004 required 4,376
hours of CPU time (∼ 182 days), and 5.2 terabytes of disk space.

Others have advocated approaching this and related problems via statistical inference
(Alférez et al. 2019; Alves Pereira et al. 2020; Guo et al. 2018; Kaltenecker et al. 2019;
Kolesnikov et al. 2019; Nair et al. 2017; Oh et al. 2017; Temple et al. 2016; Weckesser
et al. 2018); that is, working with a tractable sample that predicts the results for the entire
population. An essential requirement is that all samples be genuinely representative of the
population (Kaplan 2012). In other words, each member of the population must be equally
likely to be included in a sample. Authors often use the term uniform random sampling
(Oh et al. 2017; Plazar et al. 2019; Sharma et al. 2018) for this idea.

A naive approach to get such a sample would (i) generate a random configuration set
without considering feature dependencies, and then (ii) check with a logic engine if each
configuration conforms to those dependencies. Unfortunately, and as mentioned above, fea-
ture dependencies shrink the configuration space extraordinarily, and so getting a single
valid configuration randomly is extremely unlikely. As a result, more advanced algorithms
generate valid and uniform random samples at a reasonable computational cost.

1 https:// busyb ox. net/
2 https:// www. kernel. org/ doc/ Docum entat ion/ kbuild/ kconfi g- langu age. txt
3 https:// www. jhips ter. tech/
4 https:// www. grid5 000. fr/

https://busybox.net/
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.jhipster.tech/
https://www.grid5000.fr/

Empirical Software Engineering (2022) 27:44

1 3

Page 3 of 34 44

Verifying that these algorithms and their tools indeed generate genuine uniform sam-
ples is a challenge by itself, because it requires examining the consistency between sam-
ple statistics and their corresponding population parameters (e.g., how frequently a feature
appears in a sample compared to its probability of being included in every valid configura-
tion (Heradio et al. 2019)). As configuration spaces can be colossal, current procedures
that certify a sampler’s uniformity has the severe shortcoming of requiring gigantic sample
sizes to estimate reliable statistics (Dutra et al. 2018; Achlioptas et al. 2018; Chakraborty
and Meel 2019). Consequently, sampler uniformity has been checked only on miniature
models so far, which is not convincing. Also, most uniformity procedures compute popula-
tion parameters in a poorly scalable way (e.g., requiring calling a #SAT solver thousands of
times (Plazar et al. 2019)).

This paper extends our paper in SPLC’20 (Heradio et al. 2020), where (i) a statistical
test is formulated to reduce the sample size required for assessing a samplers’ uniform-
ity, and (ii) population parameters are computed with scalable algorithms we proposed in
Heradio et al. (2019). The additional contributions of this present paper are:

1. A new sampler called BDDSampler, which is built upon a Binary Decision Diagram
(BDD) (Bryant 1986) technology (see Section 3).

2. A new statistical test to validate a samplers’ uniformity, reducing the sample size
requirements even more than our previous test (see Section 4).

3. An experimental validation with our new test of BDDSampler and other five state-of-
the-art samplers (KUS (Sharma et al. 2018), QuickSampler (Dutra et al. 2018), Spur
(Achlioptas et al. 2018), Smarch (Oh et al. 2019), and Unigen2 (Chakraborty et al.
2013; Chakraborty 2015)) on configuration models with up to 18,570 variables (see
Section 5).

4. Experimental results show (i) our new statistical test needs the smallest sample size of
all existing uniformity validation methods, and (ii) BDDSampler is the only sampler
that satisfies both uniformity and scalability. Our software artifacts (BDDSampler, and
the data and code scripts for replicating the experiments) are freely available at public
repositories (see Section 8).

2 Related work

Before discussing related work, a terminological clarification is needed. In the machine
learning, the term sample usually refers to a single data point (Chollet and Allaire 2018).
However, in inferential statistics, a sample is typically a collection of cases, where the
number of cases in the sample is the sample size (Chihara and Hesterberg 2011; Kaplan
2012). This paper adopts this latter terminology, and consequently, a sample is a set of con-
figurations (i.e., a collection of SAT-solutions), whose cardinal is its sample size.

Here is additional standard statistical terminology that we will use in this paper. Inferen-
tial statistics aims to generalize the results obtained from a sample to the entire population.
To do so, the most widespread approach, called Null Hypothesis Significance Test (NHST),
quantifies the probability of obtaining the sample results conditioned on the assumption
that a given null hypothesis (H0) is true (NHST fundamentals are explained in Chapter 13
of Kaplan (2012) and Chapter 3 of Vasishth and Broe (2011)). If such probability (named
p-value) is less or equal than an established threshold (called the significance level (�))
then H0 is rejected, and thus its alternative hypothesis Ha accepted. Otherwise, H0 is kept.

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 4 of 34

As Table 1 shows, two mistakes under this framework can be made due to unusual random
samples: rejecting a true H0 (named Type 1 error), and failing to reject a false H0 (called
Type 2 error). The expression 1 − � is known as the test’s power. The experimenter can
adjust the Type 1 and 2 error probabilities through the thresholds � and � (see Chapter 4 of
Vasishth and Broe (2011)).

2.1 Uniform random samplers

The following sections summarize some of the most common strategies to generate uni-
form random samples for a model of a configuration space that is encoded as a Boolean
formula �.

2.1.1 Atomic mutations (QuickSampler)

QuickSampler5 (Dutra et al. 2018) uses a heuristic to gain scalability by minimizing the
number of calls to a constraint solver. It generates a random configuration without tak-
ing into account the formula constraints. This configuration often violates constraints and
thus is unsatisfiable. So, QuickSampler calls the Z3 solver (de Moura and Bjørner 2008)
to fix the configuration by finding a MAX-SAT-solution. Then, QuickSampler flips the
value of each variable and calls again Z3 to get another valid configuration. The differ-
ences between the variable values of the original and flipped SAT configurations are called
atomic mutations. By combining mutations, QuickSampler quickly generates new con-
figurations without calling the solver as those configurations are usually legal (Dutra et al.
2018).

2.1.2 Hashing‑based sampling (Unigen2)

Several techniques divide the space of SAT-solutions into small “cells” of approximately
the same size using r independent hash functions. Accordingly, sampling is done by choos-
ing a cell at random, and then getting a satisfying assignment for that cell using a SAT
solver. A critical point of these techniques is determining the “right” r value. For instance,
Bellare et al. (2000) showed that an r equal to the number of formula variables guarantees
uniformity. However, Chakraborty et al. (2013) reported that such r does not scale in prac-
tice; in contrast, r = 3 scales better and ensures near-uniformity. Unigen26 (Chakraborty
2015) develops these ideas further, giving stronger uniformity guarantees.

2.1.3 Counting‑based sampling (KUS, Smarch, and Spur)

In Section 7.1.4 of Knuth (2009), Knuth showed how to accomplish uniform random sam-
pling by subsequently partitioning the SAT-solution space on variable assignments, and
then counting the number of solutions of the resulting parts. Again, � be a Boolean for-
mula of v variables x1, x2,… , xv ; let #SAT(�) denote the number of solutions to � ; and let
r ∈ [0, 1] be a random number in the unit interval. Conceptually, the procedure works as
follows: The number of solutions where x1 is true is counted, namely #SAT(� ∧ x1) . x1

5 https:// github. com/ Rafae lTupy namba/ quick sampl er
6 https:// bitbu cket. org/ kulde epmeel/ unigen

https://github.com/RafaelTupynamba/quicksampler
https://bitbucket.org/kuldeepmeel/unigen

Empirical Software Engineering (2022) 27:44

1 3

Page 5 of 34 44

follows a Bernoulli distribution with probability p1 =
#SAT(�∧x1)

#SAT(�)
 . x1 is assigned false if

r ≤ p1 , true otherwise. Suppose x1 is assigned false. Then, x2 follows a Bernoulli distribu-
tion with probability p2 =

#SAT(𝜑∧x̄1∧x2)

#SAT(𝜑∧x̄1)
 , and it would be randomly assigned. The procedure

advances until the last variable xv is assigned, and thus the random solution is completed.
The original algorithm by Knuth is specified on BDDs, as the probabilities required for

all the possible SAT-solutions are computed just once with a single BDD traversal, and
then reused every time a random configuration is generated. Oh (2017) reinvented Knuth’s
algorithm and was the first to implement and apply it to SPL analyses. Since then, Knuth’s
algorithm has been adapted to other knowledge compilation and Davis-Putnam-Logemann-
Loveland (DPLL) (Davis et al. 1962) approaches. In particular, (i) the KUS7 sampler
(Sharma et al. 2018) substitutes BDDs with deterministic-Decomposable Negation Normal
Forms (d-DNNFs), and (ii) Spur8 (Achlioptas et al. 2018) and Smarch9 (Oh et al. 2019)
count SAT solutions with a #SAT-solver named sharpSAT (Thurley 2006).

2.1.4 New: BDDSampler, a scalable and uniform sampler

Section 3 describes a new sampler called BDDSampler, which is based on Knuth’s algo-
rithm and implemented on top of the CUDD10 library for BDDs.

According to the experimental results reported in Section 5, the only sampler that sat-
isfies both scalability and uniformity is BDDSampler. More specifically, evidence shows
that:

– BDDSampler, KUS, QuickSampler, and Spur are considerably faster than Smarch
and Unigen2.

– In terms of uniformity, there are three types of samplers: (i) those that mostly fail to
produce uniform samples (QuickSampler), (ii) those that usually work but from time
to time generate non-uniform samples (KUS and Spur), and (iii) those that always pro-
duce uniform samples (BDDSampler, Smarch, and Unigen2).

Table 1 Type 1 and 2 errors under the NHST framework

H0 is true in reality (H0) H0 is false in reality (¬H0)

The decision inferred Pr(R|H0) = � Pr(R|¬H0) = 1 − �

from the sample is Type 1 error Power
“reject H0 ” (R)
The decision inferred Pr(¬R|H0) = 1 − � Pr(¬R|¬H0) = �

from the sample is Type 2 error
“do not reject H0 ” (¬R)

7 https:// github. com/ meelg roup/ KUS
8 https:// github. com/ ZaydH/ spur
9 https:// github. com/ jeho- oh/ Kclau se_ Smarch
10 https:// github. com/ vscos ta/ cudd

https://github.com/meelgroup/KUS
https://github.com/ZaydH/spur
https://github.com/jeho-oh/Kclause_Smarch
https://github.com/vscosta/cudd

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 6 of 34

2.2 Prior work on testing sampler uniformity

The following sections summarize the methods that have been devised to test the uniform-
ity of a random sampler �.

2.2.1 Method 1: Generate a massive sample with � , and compare it with another one
obtained simulating an ideal uniform sampler

This is the most common technique in the literature (Achlioptas et al. 2018; Chakraborty
2015; Dutra et al. 2018; Plazar et al. 2019; Sharma et al. 2018). First, the total number n of
SAT-solutions is counted for the Boolean formula � , typically using a #SAT-solver. Hav-
ing n, the generation of a uniform sample with size s is simulated as follows: imagine that
numbers 1, 2,… , n are put into a box; then, s numbers are sampled with replacement from
the box, guaranteeing that the probability each number has to be extracted is 1

n
.

For example, JHipster encompasses 26,256 valid configurations (Halin et al. 2019).
Figure 1 shows the histogram of a sample ten times greater than the number of configura-
tions (s = 26, 256 ⋅ 10), which has been obtained sampling with replacement from the set
{1 , 2, … , 26256} . The x-axis depicts numbers’ occurrences, i.e., there are numbers that
appear 0, 1, … , 27 times in the sample; the y-axis shows how frequent are those occur-
rences in the sample. As expected, most numbers appear ten times (see the red vertical line
in Fig. 1), however, and due to randomness, some numbers appear more frequently than
others.

Another sample with size s (whose value is quantified shortly), is then generated with
sampler � . For this sample, a counterpart histogram to Fig. 1 is obtained, representing how
often solutions appear in that sample.

Finally, the uniformity of � is verified by measuring the distance between both histo-
grams, using, for instance, the Kullback-Leibler divergence (Achlioptas et al. 2018).

Unfortunately, this method has a severe limitation: it does not scale except for formulas
with a small number of SAT-solutions because, to produce reliable results, s needs to be
much larger than n (see Achlioptas et al. (2018); Dutra et al. (2018) for an explanation).
For example, Dutra et al. (2018) propose s ≥ 5n . As the number of solutions grows expo-
nentially with the number of variables of � , the method only works for the simplest models
with just a few features.

2.2.2 Method 2: Assume the existence of a uniform sampler � , and compare
the samples generated by both � and �

Chakraborty and Meel (2019) proposed this method and implementation called barbarik.11
The method makes a strong assumption: there is a sampler � that is known to be uniform.
Thus, two samples of the same size s are generated with � and � and, depending on the dis-
tance between the samples, i.e., on how similar they are, barbarik decides if � is approxi-
mately uniform.

The key of the method is how to define “approximately” for reaching a balance
between uniformity and sample size, i.e., for avoiding the large s that Method 1
requires. Two parameters, called tolerance � and intolerance � , adjust the definition of

11 https:// github. com/ meelg roup/ barba rik

https://github.com/meelgroup/barbarik

Empirical Software Engineering (2022) 27:44

1 3

Page 7 of 34 44

“uniformity” to avoid the above problems. A sampler is uniform whenever the prob-
ability p1, p2,… , pn of all n solutions is exactly 1

n
.

Barbarik relaxes this definition, proposing that a sampler is additive almost-uniform
if p1, p2,… , pn ∈

[
1−�

n
,
1+�

n

]
 . Moreover, a sampler is �-far from uniformity if

Chakraborty and Meel claim that s depends on � and � exclusively, but not on n. In par-
ticular, they state that a uniformity test with significance level � = 0.1 (i.e., 0.9 probability
of accepting the uniformity of a sampler when it is genuinely uniform) and Type 2 error
� = 0.1 (i.e., 0.9 probability of rejecting the uniformity of a sampler that is not uniform)
is accomplished when � = 0.6 and � = 0.9 , requiring a sample size of 1, 729, 750. Unfor-
tunately, they do not provide a detailed formal proof for these settings in Chakraborty and
Meel (2019).

An evident weakness of this method is the necessity of a sampler � with certified
uniformity as a support lever. It is worth noting that, although an algorithm can be
proven to generate uniform samples theoretically, some of its implementations may
have errors. In other words, every sampling program needs to be tested, and thus
Method 2 implicitly assumes the existence of another reliable uniformity testing
method.

2.2.3 Method 3: Measure the distance between the theoretical variable probabilities
with the empirical variable frequencies in a sample

Plazar et al.’s method (Plazar et al. 2019) begins computing the theoretical probability
each variable x has to appear in a SAT-solution. To do so, the procedure introduced in
Section 2.1.3 is adopted, calling a #SAT solver repeatedly, one time per variable.
#SAT(�) gives the total number of SAT-solutions, and #SAT(� ∧ x) calculates the num-
ber of solutions where x is true. Hence, the probability of x is p =

#SAT(�∧x)

#SAT(�)
 . Likewise,

if x is true t times in a sample of size s, its empirical frequency is f = t

s
 . Then, the

deviation between p and f is d = 100 ⋅
|p−f |

p
 . Finally, Plazar et al. propose two thresh-

olds for d: (i) when d ≤ 10 for all variables, the deviations are very low, and thus sam-
pler uniformity is accepted; (ii) when d ≥ 50 for some variables, they show very high
deviations, and so uniformity is rejected. Regarding the sample size, Plazar et al. pro-
pose always using s ∼ 106 , independently of the number of variables of � (no formal
justification is given for this specific value in Plazar et al. (2019)).

Regrettably, this method often throws false negatives for variables with low prob-
abilities. Suppose a variable has p = 0.01 . Then, a genuine uniform sampler might
easily generate a sample where f is slightly different just due to randomness, e.g.,
f = 0.015 . Therefore, d = 100 ⋅

|0.01−0.015|

0.01
= 50 , and thus the sampler uniformity would

be rejected. The chances that these types of wrong diagnoses happen increases with
the number of low-probability variables, and it is worth noting that real models with
numerous low-probability variables are not “corner cases”; for example, in three out
of the seven configuration models analyzed in Heradio et al. (2019), more than 46% of
their variables have p ≤ 0.05 : the open-source project Fiasco v2014092821, the Dell
laptop configurator, and the Automotive 02 system.

|
|
|

n∑

i=1

pi −
1

n

|
|
|
≥ �

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 8 of 34

2.2.4 Method 4: A statistical goodness‑of‑fit test that compares the theoretical
variable probabilities with the empirical variable frequencies in a sample

In the past (Heradio et al. 2020), we presented a procedure called Feature Probability (FP)
test, which compares the empirical feature frequencies in a sample with the theoretical fea-
ture probabilities in the whole population of SAT-solutions. Instead of using the limited
Method 3 deviation measure, our FP method (i) has a robust mathematical basis, (ii) esti-
mates the statistical significance of the results (i.e., how generalizable they are), and (iii)
supports adjusting the sample size according to precise statistical criteria (i.e., Type 1 and 2
errors, and effect size).

It is worth noting that a major shortcoming of Methods 1, 2, and 3 is the large sample
size they need. For instance, in Achlioptas et al. (2018) and Sharma et al. (2018), Method
1 is applied on a model called blasted_case110 with 287 variables, requiring s = 4 ⋅ 106
SAT-solutions. In Chakraborty and Meel (2019), Method 2 is used on blasted_case110
as well, needing this time 1, 729, 750 SAT-solutions to ensure probability errors of Type
1 � = 0.1 and Type 2 � = 0.1 . In contrast, our FP test provides stronger test guarantees
(� = 0.01 and � = 0.01) for blasted_case110 with a minimal sample size of 13,027 solu-
tions (i.e., a 99.25% sample size reduction with respect to Method 2).

2.2.5 New: an improved goodness‑of‑fit test

Section 4 presents a new procedure that improves Method 4 by, instead of examining the
variable probabilities, analyzing how the number of variables assigned to true distributes
along the SAT-solutions. We show in Section 5 that the new method requires even smaller
samples, thus widening the support for testing samplers’ uniformity on larger models. For
example, the sample size our new method requires for blasted_case110 with � = 0.01 and
� = 0.01 becomes 6,563 solutions.

2.2.6 Recap

Excluding the methods presented in this article and in our conference paper, there are seri-
ous practical problems in applying existing ways to test for sampler uniformity. We provide
experimental evidence in Section 5 that our improved goodness-of-fit test is superior to
prior work as it requires the smallest sample size of all existing tests, thus enabling the ver-
ification of samplers’ uniformity in large models. As we will see, this highly increases the
test sensitivity to detect samplers’ uniformity flaws. Moreover, results show that our test

Fig. 1 Simulated uniform
random sample of the JHipster
configuration model

0

1000

2000

3000

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Numbers' occurrences in the sample

ehtfo
ycneuqerF

secnerrucco'sreb
mun

Sample size = #SAT-Solutions x 10 = 262,560

Empirical Software Engineering (2022) 27:44

1 3

Page 9 of 34 44

provides (i) valid judgements, which are consistent with the verdicts given by the alterna-
tive methods proposed in the literature, and (ii) reliable judgements, which remain consist-
ent when the test is applied repeatedly to the same model and sampler.

3 The BDDSampler Tool

This section describes BDDSampler: a sampler that uses Binary Decision Diagrams
(BDDs). A practical example how configuration models can be translated into Boolean for-
mulas is presented in Section 3.1. Then, a BDD encoding of a Boolean formula is covered
in Section 3.2. Finally, how BDDSampler works is explained in Section 3.3.

3.1 From configuration models to Boolean formulas

Let us start with an example to help to explain BDDSampler and our samplers’ uniformity
test. As already mentioned in this paper’s introduction, BusyBox supports the inclusion/
exclusion of a number of features at compile time. These features and their interrelation-
ships are specified with a configuration language named Kconfig which is used in many
other relevant open-source projects (Berger et al. 2013), such as the Linux Kernel, axTLS,
EmbToolkit, Freetz, etc.

Figure 2 shows an excerpt of the Kconfig specification of BusyBox v1.23.2. There are
several configs encoding six features and their interdependencies. All features (STATIC,
PIE, ..., FEATURE_SHARED_BUSYBOX) are Boolean (see the bool keyword in
Lines 2, 4, ..., 15), meaning that they can be either selected or deselected. Configs trig-
ger a prompt to request the user for their Boolean feature value, e.g., Build BusyBox as
a static binary (no shared libs) in Line 2. Finally, some dependencies between features
are set, e.g., according to the depends sentence in Line 10, BUILD_LIBBUSYBOX can
only be selected if none of the following features are selected: FEATURE_PREFER_
APPLETS, PIE, neither STATIC.

The graph in Fig. 3 depicts the entire BusyBox configuration model, which includes
613 features and 530 inter-dependencies; nodes represent features, and edges depict
dependencies. The Kconfig excerpt in Fig. 2 is zoomed in Fig. 3.

Given the configuration models’ complexity, they are usually translated into Boolean
formulas that are then processed with logic engines. For instance, Eq. 1 is the Boolean
encoding of Fig. 2 (a detailed explanation of how to convert Kconfig specifications into
Boolean formulas is given in Fernandez-Amoros et al. (2019)). In this section and the fol-
lowing one, we explain how to use BDDs for (i) generating random samples from the for-
mulas, and (ii) testing the uniformity of an input sampler.

(1)

� ≡(¬STATIC ∨ ¬PIE)∧

(¬BUILD_LIBBUSYBOX ∨ ¬FEATURE_PREFER_APPLETS)∧

(¬BUILD_LIBBUSYBOX ∨ ¬PIE)∧

(¬BUILD_LIBBUSYBOX ∨ ¬STATIC)∧

(¬FEATURE_INDIVIDUAL ∨ BUILD_LIBBUSYBOX)∧

(¬FEATURE_SHARED_BUSYBOX ∨ BUILD_LIBBUSYBOX)

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 10 of 34

3.2 A brief introduction to BDDs

A BDD (Bryant 1986) encodes a Boolean formula as a rooted directed acyclic graph com-
posed of terminal and non-terminal nodes. Terminal nodes are represented as and , and
non-terminal nodes are labeled with the formula variables. Two edges, named low and
high, come out of every non-terminal node. Low is depicted with a dashed line (⤏), and
high with a solid line (→). A BDD encodes every possible assignment of the formula vari-
ables as a path that descends from the root to the terminal nodes, going through solid lines
when the corresponding variables are assigned to true and through dashed lines otherwise.
An assignment is satisfiable, i.e., it evaluates the formula to true, whenever the traversed
path ends at .

Figure 4 depicts a BDD that encodes the BusyBox excerpt specified by Eq. 1. A con-
figuration whose only activated features are BUILD_LIBBUSYBOX and FEATURE_
SHARED_BUSYBOX conforms with the constraints (i.e., it is valid) and so it corresponds
to the path BUILD_LIBBUSYBOX → FEATURE_INDIVI-DUAL ⤏ FEATURE_
SHARED_BUSYBOX → FEATURE_PREFER_APP-LETS ⤏ STATIC ⤏ PIE ⤏ . In
contrast, as STATIC and PIE are mutually exclusive, no configuration includes them simul-
taneously. Thus, all paths with solid lines coming out of both STATIC and PIE finish at .

BDDs are typically ordered and reduced. A BDD is ordered when its variables are in the
same position, called index, in every path from the root to the terminal nodes. For example,
in Fig. 4, STATIC (whose index is 4) always goes before PIE and after FEATURE_PRE-
FER_APPLETS (whose indices are 5 and 3, respectively). A BDD is reduced if it is free of
redundant information. For instance, every blue/dark-shaded node in Fig. 4 is superfluous
because both of its edges point to the same node and thus the formula evaluation is identi-
cal whether these variables are assigned to true or false. Consequently, these unnecessary
tests are avoided in the reduced BDD in Fig. 5 to save computer memory.

It is worth noting that the variable ordering chosen to build the BDD has a tremendous
impact on its size. Whereas a BDD can be reduced optimally (the reduction procedure was
presented in the seminal article (Bryant 1986)), obtaining the best variable arrangement
that minimizes its size is an NP-problem (Chapters 8 and 9 of Meinel and Theobald (1998)
provide a comprehensive discussion on this topic). Several variable ordering heuristics
(Fernandez-Amoros et al. 2020; Fernandez-Amoros et al. 2019; Mendonça 2009; Naro-
dytska and Walsh 2007) have been proposed for the specific case of configuration model
formulas. As reported in Section 5, we have been able to synthesize BDDs for large con-
figuration models, with up to 17,000 features, by using these heuristics.

3.3 How BDDSampler works

BDDSampler takes an ordered and reduced BDD as input and generates random configu-
rations in a two-step process described by Algorithms 1 and 2. Figure 5 summarizes Algo-
rithm 1 computations for our running example. The algorithm decorates each non-terminal
node with its probability of reaching the terminal if the associated variable is set to true.
Algorithm 1 proceeds in a bottom-up fashion, collecting the number of SAT solutions that
can be produced by its low and high children (solLO and solHI in Lines 8-9), adding them
up (sol in Line 10), and then computing the ratio corresponding to the high child (pr in Line
11). As the BDD is reduced, Algorithm 1 adjusts the solution counts in Lines 8-9 for the
removed nodes with the expression 2index(nLO|HI)−index(n)−1 . For traversing efficiently the BDD,

Empirical Software Engineering (2022) 27:44

1 3

Page 11 of 34 44

Fig. 2 Excerpt of the BusyBox Kconfig specification

ACPID

PLATFORM_LINUX

ADJTIMEX

ARP

ARPING

BEEP

BLKID

BRCTL

CHVT
DEALLOCVT

DEPMOD

DEVFSD

DMESG

DUMPKMAP

EJECT

ETHER_WAKE

FBSET

FBSPLASH

FDFLUSH

FDFORMAT

FDISK FEATURE_2_4_MODULES

FEATURE_CHECK_TAINTED_MODULE

FEATURE_DEVFS

FEATURE_IFUPDOWN_IP_BUILTIN

FEATURE_INSMOD_KSYMOOPS_SYMBOLS

FEATURE_INSMOD_LOADINKMEM

FEATURE_INSMOD_LOAD_MAP

FEATURE_INSMOD_LOAD_MAP_FULL

FEATURE_INSMOD_TRY_MMAP
FEATURE_INSMOD_VERSION_CHECKING

FEATURE_KLOGD_KLOGCTL

FEATURE_KMSG_SYSLOG

FEATURE_LSMOD_PRETTY_2_6_OUTPUT

FEATURE_MODPROBE_BLACKLIST

FEATURE_MODPROBE_SMALL_OPTIONS_ON_CMDLINE

FEATURE_MODUTILS_ALIAS

FEATURE_MODUTILS_SYMBOLS

FEATURE_PS_TIME

FEATURE_USE_SENDFILE

FGCONSOLE

FINDFS

FREE

FREERAMDISK

HDPARM

HWCLOCK

IFCONFIG

IFENSLAVE

IFPLUGD

INSMOD

IONICE

IP

IPCS

KBD_MODE
LOADFONT

LOADKMAP

LOSETUP

LSATTR

LSMODMKFS_EXT2

MKFS_MINIX

MKFS_REISER

MKFS_VFAT

MODPROBE

MODPROBE_SMALL

MONOTONIC_SYSCALL

MOUNT

NETSTAT

NTPD

OPENVT

PIVOT_ROOT

RAIDAUTORUN

READAHEAD

RMMOD

ROUTE

RTCWAKE

RX

SELINUX

SETARCH

SETCONSOLE

SETFONT

SETKEYCODES

SETLOGCONS

SHOWKEY

SLATTACH

STAT

SWAPONOFF

SWITCH_ROOT

TRACEROUTE

TUNCTL

UDHCPC

UDHCPD

UMOUNT

VCONFIG

WATCHDOG
ZCIP

FEATURE_BUFFERS_GO_ON_STACKFEATURE_BUFFERS_USE_MALLOC

FEATURE_BUFFERS_GO_IN_BSS

FEATURE_VERBOSE_USAGE

SHOW_USAGE

FEATURE_COMPRESS_USAGE

UNICODE_USING_LOCALE

UNICODE_SUPPORT

LOCALE_SUPPORT

FEATURE_CHECK_UNICODE_IN_ENV

UNICODE_COMBINING_WCHARS

UNICODE_WIDE_WCHARS

UNICODE_BIDI_SUPPORT

UNICODE_NEUTRAL_TABLE

UNICODE_PRESERVE_BROKEN

FEATURE_WTMP

FEATURE_UTMP

FEATURE_SUID_CONFIG

FEATURE_SUID

FEATURE_SUID_CONFIG_QUIET

FEATURE_SYSLOG

FAKEIDENTD

FEATURE_MOUNT_NFS

GETTY

INETD

LOGGER

LOGIN

PASSWD

SU

SULOGIN

TELNETD

FEATURE_INETD_RPC

FEATURE_HAVE_RPC

STATIC

PIE

BUILD_LIBBUSYBOX

FEATURE_PREFER_APPLETS

FEATURE_INDIVIDUAL

FEATURE_SHARED_BUSYBOX

DEBUG_PESSIMIZE

DEBUG

DMALLOC

NO_DEBUG_LIB

EFENCE

INSTALL_APPLET_HARDLINKS
INSTALL_APPLET_SYMLINKS

INSTALL_APPLET_SCRIPT_WRAPPERS

INSTALL_APPLET_DONT

INSTALL_SH_APPLET_HARDLINK

INSTALL_SH_APPLET_SYMLINK

INSTALL_SH_APPLET_SCRIPT_WRAPPER

FEATURE_USE_TERMIOSMORE

FEATURE_EDITING_VI

FEATURE_EDITING

FEATURE_EDITING_SAVEHISTORY
FEATURE_EDITING_SAVE_ON_EXIT

FEATURE_REVERSE_SEARCH

FEATURE_TAB_COMPLETION

FEATURE_USERNAME_COMPLETION FEATURE_EDITING_FANCY_PROMPT

FEATURE_EDITING_ASK_TERMINAL

FEATURE_CHOWN_LONG_OPTIONS

CHOWN

LONG_OPTS

FEATURE_CP_LONG_OPTIONS

CP

FEATURE_DD_SIGNAL_HANDLING

DD

FEATURE_DD_THIRD_STATUS_LINE

FEATURE_DD_IBS_OBS

FEATURE_DF_FANCY

DF

DOS2UNIX

UNIX2DOS

FEATURE_DU_DEFAULT_BLOCKSIZE_1K

DU

FEATURE_FANCY_ECHO

ECHO

FEATURE_ENV_LONG_OPTIONS

ENV

FEATURE_EXPAND_LONG_OPTIONS
EXPAND

EXPR_MATH_SUPPORT_64EXPR

FEATURE_FANCY_HEAD

HEAD

FEATURE_INSTALL_LONG_OPTIONS

INSTALL

FEATURE_LS_FILETYPES

LS
FEATURE_LS_FOLLOWLINKS

FEATURE_LS_RECURSIVE

FEATURE_LS_SORTFILES

FEATURE_LS_TIMESTAMPS

FEATURE_LS_USERNAME

FEATURE_LS_COLOR

FEATURE_LS_COLOR_IS_DEFAULT

FEATURE_MKDIR_LONG_OPTIONS
MKDIR

FEATURE_MV_LONG_OPTIONS

MV

FEATURE_READLINK_FOLLOW

READLINK

FEATURE_RMDIR_LONG_OPTIONS

RMDIR

FEATURE_FANCY_SLEEP
SLEEP

FEATURE_FLOAT_SLEEP

FEATURE_SORT_BIG
SORT

FEATURE_SPLIT_FANCY

SPLIT

FEATURE_STAT_FORMAT

FEATURE_FANCY_TAIL

TAIL

FEATURE_TEE_USE_BLOCK_IO

TEE

FEATURE_UNEXPAND_LONG_OPTIONS

UNEXPAND

FEATURE_WC_LARGE

WC

FEATURE_PRESERVE_HARDLINKS

FEATURE_AUTOWIDTH

TELNET

FEATURE_HUMAN_READABLE

FEATURE_MD5_SHA1_SUM_CHECK

MD5SUM

SHA1SUM

SHA256SUM

SHA512SUM

SHA3SUM

FEATURE_RESIZE_PRINT

RESIZE

FEATURE_SETCONSOLE_LONG_OPTIONS

FEATURE_SETFONT_TEXTUAL_MAP

FEATURE_LOADFONT_PSF2
FEATURE_LOADFONT_RAW

FEATURE_RUN_PARTS_LONG_OPTIONS

RUN_PARTS

FEATURE_RUN_PARTS_FANCY

FEATURE_START_STOP_DAEMON_FANCY

START_STOP_DAEMON

FEATURE_START_STOP_DAEMON_LONG_OPTIONS

USE_BB_SHADOW

USE_BB_PWD_GRP

FEATURE_SHADOWPASSWDS

USE_BB_CRYPT_SHA

USE_BB_CRYPT

FEATURE_ADDUSER_LONG_OPTIONS

ADDUSER

FEATURE_CHECK_NAMES

ADDGROUP

FEATURE_ADDGROUP_LONG_OPTIONS

FEATURE_ADDUSER_TO_GROUP

FEATURE_DEL_USER_FROM_GROUP

DELGROUP

LOGIN_SESSION_AS_CHILD

LOGIN_SCRIPTS

FEATURE_NOLOGIN

FEATURE_SECURETTY

FEATURE_PASSWD_WEAK_CHECK

FEATURE_SU_SYSLOG

FEATURE_SU_CHECKS_SHELLS

FEATURE_MODPROBE_SMALL_CHECK_ALREADY_LOADED

FEATURE_ACPID_COMPAT

FEATURE_BLKID_TYPE

FEATURE_DMESG_PRETTY

FEATURE_FBSET_FANCY

FEATURE_FBSET_READMODE

FDISK_SUPPORT_LARGE_DISKS

LFS

FEATURE_FDISK_WRITABLE

FEATURE_AIX_LABEL

FEATURE_SGI_LABEL

FEATURE_SUN_LABEL

FEATURE_OSF_LABEL

FEATURE_GPT_LABEL

FEATURE_FDISK_ADVANCED

FEATURE_MINIX2

FSCK_MINIX

FEATURE_GETOPT_LONG

GETOPT

FEATURE_HEXDUMP_REVERSEHEXDUMP

HD

FEATURE_HWCLOCK_LONG_OPTIONS

FEATURE_HWCLOCK_ADJTIME_FHS

FEATURE_MKSWAP_UUID

MKSWAP

FEATURE_MTAB_SUPPORT

FEATURE_MOUNT_FAKE

FEATURE_MOUNT_VERBOSE

FEATURE_MOUNT_HELPERS

FEATURE_MOUNT_LABEL

FEATURE_MOUNT_CIFS

FEATURE_MOUNT_FLAGS

FEATURE_MOUNT_FSTAB

FEATURE_SWAPON_DISCARD

FEATURE_SWAPON_PRI

FEATURE_UMOUNT_ALL

FEATURE_MOUNT_LOOP

FEATURE_MOUNT_LOOP_CREATE

VOLUMEID

FEATURE_COMPRESS_BBCONFIG

BBCONFIG

FEATURE_CHAT_NOFAIL

CHAT

FEATURE_CHAT_TTY_HIFI

FEATURE_CHAT_IMPLICIT_CR

FEATURE_CHAT_SWALLOW_OPTS

FEATURE_CHAT_SEND_ESCAPES

FEATURE_CHAT_VAR_ABORT_LEN

FEATURE_CHAT_CLR_ABORT

FEATURE_DC_LIBM

DC

DEVFSD_MODLOAD

DEVFSD_FG_NP

DEVFSD_VERBOSE

FEATURE_EJECT_SCSI

LAST

FEATURE_LAST_FANCY

FEATURE_LAST_SMALL

FEATURE_HDPARM_GET_IDENTITY

FEATURE_HDPARM_HDIO_SCAN_HWIF

FEATURE_HDPARM_HDIO_UNREGISTER_HWIF

FEATURE_HDPARM_HDIO_DRIVE_RESET

FEATURE_HDPARM_HDIO_TRISTATE_HWIF

FEATURE_HDPARM_HDIO_GETSET_DMA

MAKEDEVS

FEATURE_MAKEDEVS_TABLE

FEATURE_MAKEDEVS_LEAF

RUNLEVEL

FEATURE_PREFER_IPV4_ADDRESS

FEATURE_IPV6

FEATURE_BRCTL_FANCY

FEATURE_BRCTL_SHOW

FEATURE_FTP_WRITE

FTPD
FEATURE_FTPD_ACCEPT_BROKEN_LIST

FEATURE_FTP_AUTHENTICATION

FEATURE_FTPGETPUT_LONG_OPTIONS

FTPGETFTPPUT

FEATURE_HTTPD_RANGES

HTTPD

FEATURE_HTTPD_SETUID

FEATURE_HTTPD_BASIC_AUTH

FEATURE_HTTPD_AUTH_MD5
FEATURE_HTTPD_CGI

FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR

FEATURE_HTTPD_SET_REMOTE_PORT_TO_ENV

FEATURE_HTTPD_ENCODE_URL_STRFEATURE_HTTPD_ERROR_PAGES

FEATURE_HTTPD_PROXY

FEATURE_HTTPD_GZIP

FEATURE_IFUPDOWN_IFCONFIG_BUILTIN

FEATURE_IFCONFIG_STATUS

FEATURE_IFCONFIG_SLIP

FEATURE_IFCONFIG_MEMSTART_IOADDR_IRQ

FEATURE_IFCONFIG_HW

FEATURE_IFCONFIG_BROADCAST_PLUS

FEATURE_IFUPDOWN_IP

IFUPDOWN

FEATURE_IFUPDOWN_IPV4

FEATURE_IFUPDOWN_IPV6

FEATURE_IFUPDOWN_MAPPING

FEATURE_IFUPDOWN_EXTERNAL_DHCP

FEATURE_INETD_SUPPORT_BUILTIN_ECHO

FEATURE_INETD_SUPPORT_BUILTIN_DISCARD

FEATURE_INETD_SUPPORT_BUILTIN_TIME

FEATURE_INETD_SUPPORT_BUILTIN_DAYTIME

FEATURE_INETD_SUPPORT_BUILTIN_CHARGEN

FEATURE_IP_ADDRESS

FEATURE_IP_LINK

FEATURE_IP_ROUTE

FEATURE_IP_TUNNEL

FEATURE_IP_RULE

FEATURE_IP_SHORT_FORMS

FEATURE_IP_RARE_PROTOCOLS

IPADDR

IPLINK

IPROUTEIPTUNNEL

IPRULE
FEATURE_IPCALC_FANCYIPCALC

FEATURE_IPCALC_LONG_OPTIONS

FEATURE_NETSTAT_WIDE

FEATURE_NETSTAT_PRG

FEATURE_NTPD_SERVER

FEATURE_NTPD_CONF

FEATURE_TELNET_TTYPE

FEATURE_TELNET_AUTOLOGIN

FEATURE_TELNETD_STANDALONE

FEATURE_TELNETD_INETD_WAIT

FEATURE_TFTP_GET

TFTP

TFTPD

FEATURE_TFTP_PUT

FEATURE_TFTP_BLOCKSIZE

FEATURE_TFTP_PROGRESS_BAR

TFTP_DEBUG

TRACEROUTE6

FEATURE_TRACEROUTE_VERBOSE

FEATURE_TRACEROUTE_SOURCE_ROUTE

FEATURE_TRACEROUTE_USE_ICMP

FEATURE_TUNCTL_UG

DHCPRELAY

DUMPLEASES

FEATURE_UDHCPD_WRITE_LEASES_EARLY

FEATURE_UDHCPD_BASE_IP_ON_MAC

FEATURE_UDHCPC_ARPING

FEATURE_UDHCPC_SANITIZEOPT

FEATURE_UDHCP_PORT

FEATURE_UDHCP_RFC3397

FEATURE_UDHCP_8021Q

FEATURE_WGET_STATUSBAR

WGET

FEATURE_WGET_AUTHENTICATION

FEATURE_WGET_LONG_OPTIONS

FEATURE_WGET_TIMEOUT

FEATURE_POPMAILDIR_DELIVERY
POPMAILDIR

FEATURE_REFORMIME_COMPAT
REFORMIME

KILLALL

KILL
KILLALL5

FEATURE_PIDOF_SINGLE

PIDOF

FEATURE_PIDOF_OMIT

FEATURE_PS_WIDE

PS
DESKTOP

FEATURE_PS_LONG
FEATURE_PS_ADDITIONAL_COLUMNS

FEATURE_PS_UNUSUAL_SYSTEMS

FEATURE_SHOW_THREADS

FEATURE_RUNSVDIR_LOG

RUNSVDIR

CHCON

FEATURE_CHCON_LONG_OPTIONSGETENFORCE GETSEBOOL

LOAD_POLICY

MATCHPATHCON

RESTORECON

RUNCON

FEATURE_RUNCON_LONG_OPTIONS

SELINUXENABLED

SETENFORCE
SETFILES

FEATURE_SETFILES_CHECK_OPTION

SETSEBOOL

SESTATUS

FEATURE_SH_IS_ASH

NOMMU

FEATURE_SH_IS_HUSH

FEATURE_SH_IS_NONE

FEATURE_BASH_IS_ASH

FEATURE_BASH_IS_HUSH

FEATURE_BASH_IS_NONE

SH_MATH_SUPPORT_64

SH_MATH_SUPPORT

FEATURE_SH_STANDALONE

FEATURE_SH_NOFORK

FEATURE_ROTATE_LOGFILE

SYSLOGD

FEATURE_REMOTE_LOG

FEATURE_SYSLOGD_DUP

FEATURE_SYSLOGD_CFG

FEATURE_IPC_SYSLOG

LOGREAD

FEATURE_LOGREAD_REDUCED_LOCKING

KLOGD

Fig. 3 Graph-representation of the BusyBox Kconfig specification

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 12 of 34

Algorithm 1 uses Bryant’s method (Bryant 1986) as follows: the algorithm is called in Line 12
with the BDD root as argument and with a Boolean mark for every node being either all true
or all false; then, it explores all nodes by recursively visiting the low and high children (Lines
6 and 7). Whenever a node is visited, its mark value is complemented (Line 2). Comparing
the node with its children’s marks, it is decided if the children have already been visited. The
method ensures that each node is visited exactly once and that, when the traverse finishes, all
node marks have the same value.

Fig. 4 Non-reduced BDD encod-
ing of Eq. 1

Fig. 5 Reduced BDD encoding
of Eq. 1

Empirical Software Engineering (2022) 27:44

1 3

Page 13 of 34 44

Whereas Algorithm 1 is run once as an initialization method, Algorithm 2 needs to be run as
many times as configurations we want to generate. Algorithm 2 performs a random walk from
the root to the terminal . When a non-reduced node is visited, the path is selected randomly
according to its probability (Lines 11-16): if the node probability is p, then its low and high
edges are chosen with probabilities 1 − p and p, respectively. Regarding the reduced nodes, the
generated configuration will be valid no matter if their variables are set to true or false (that is
the reason why these nodes were removed). Thus their value is chosen randomly with a 1/2

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 14 of 34

probability by taking into account that a reduced node index may be less than the BDD root
index (Lines 6-7) or greater (Lines 17-18).

Algorithm 2 is remarkably fast since its time complexity is proportional to the number
of indices (i.e., of variables), not the number of nodes in the BDD. Moreover, multiple
instances of Algorithm 2 can be run in parallel over the same BDD, as the node probabili-
ties are read but not modified.

Finally, BDDSampler is built on top of CUDD 3.0.12 As other modern BDD libraries
like Sylvan (van Dijk 2016), CUDD uses a technique called complement edges (Brace et al.
1990) to save nodes. With this technique, edges are enriched with a complement attribute
that removes the need of having two terminal-nodes (basically, when an edge has the com-
plement attribute enabled, the only terminal node is interpreted as its negation). Accord-
ingly, BDDSampler tweaks Algorithms 1 and 2 to work with complement edges. We have
decided to show the algorithms for regular BDDs without complement arcs for simplicity.

The BDDs of 218 models, which will be used in Section 5 to perform our experimental
evaluation, are available at https:// doi. org/ 10. 5281/ zenodo. 45149 19 in the DDDMP format
that CUDD uses for complement edge BDDs.

4 Assessing the uniformity of SAT solution samplers

Figure 6 sketches our approach to verify that a sampler generates uniform random samples
of a model that is encoded as a Boolean formula. The method compares empirical infor-
mation about a sample with theoretical information about the whole population of SAT-
solutions that the model represents.

4.1 The SFpC goodness‑of‑fit test

In statistics, the procedures for examining how well a sample agrees with the population
distribution are known as goodness-of-fit tests (D’Agostino and Stephens 1986). They
require characterizing both the sample and the population in terms of a quantitative meas-
ure. In particular, we propose the distribution of the number of variables assigned to true
among all SAT-solutions, called the Selected Features per Configuration (SFpC) test. For
instance, Fig. 7 compares the theoretical distribution of all 7.428 ⋅ 10146 SAT-solutions of
the BusyBox model with the distribution of 17,738 configurations generated with the sam-
plers BDDSampler and QuickSampler, Fig. 7a,b respectively. The justification for this
sample size 17,738 is given in Section 4.2.

The distribution of the whole population of SAT-solutions of a model can be computed
with the Product Distribution (PD)13 algorithm we proposed in Heradio et al. (2019). PD
takes the BDD encoding of a model as input, and as explained in Section 3.D of Hera-
dio et al. (2019), its time complexity is O(nv2) , where n is the number of BDD nodes and
v the number of model variables. Accordingly, PD scales for large models. For instance,
on an Intel(R) Core(TM) i7-6700HQ, it took 2.74 minutes to compute the distribution of
the Automotive02 model (Krieter et al. 2018), which with 17,365 variables and 321,897
clauses encompasses 5.26 ⋅ 101,441 SAT-solutions.

12 https:// github. com/ vscos ta/ cudd
13 https:// github. com/ rhera dio/ VMSta tAnal

https://doi.org/10.5281/zenodo.4514919
https://github.com/vscosta/cudd
https://github.com/rheradio/VMStatAnal

Empirical Software Engineering (2022) 27:44

1 3

Page 15 of 34 44

As the theoretical histogram shows in Fig. 7a, the smallest and largest BusyBox con-
figurations have 6 and 571 features activated, respectively. 95% of the configurations have
between 277 and 327 variables assigned to true.

The BDDSampler histogram (Fig. 7a) agrees with the normally distributed population.
However, the QuickSampler histogram (Fig. 7b) is bimodal where most configurations
have 100 or 200 features approximately, quite different from the theoretical histogram.

After exploring the sample’s goodness-of-fit graphically, it is desirable to advance
towards a more formal test that provides an accurate numerical quantification. A good can-
didate to measure the distance/difference between the sample and population distributions
is the Kullback–Leibler divergence14 (Cover and Thomas 2006). For discrete probability
distributions P and F specified on the same probability space � , the Kullback–Leibler
divergence from F to P is defined as:

However, the Kullback–Leibler divergence is not symmetric, and thus it cannot rigorously
be considered a metric (Lin 1991). For this reason, we use its symmetrical and normalized
version, which is named Jensen-Shannon divergence (Cover and Thomas 2006; Lin 1991)
and defined as:

where M =
1

2
(P + F).

In our case, vectors F and P are defined as follows:

– F = [f0, f1,… , fn] stores the SAT-solution frequency distribution (i.e., the red histo-
grams in Fig. 7). That is,

– P = [p0, p1,… , pn] stores the theoretical SAT-solution probability distribution of Fig. 7.
That is,

(2)DKL(P||F) =
∑

x∈�

P(x)log2

(
P(x)

F(x)

)

(3)JSD(P||F) =
1

2
DKL(P||M) +

1

2
DKL(F||M)

f0 =
#SAT solutions in the sample with no variables assigned to true

sample size

f1 =
#SAT solutions in the sample with 1 variable assigned to true

sample size

…

fn =
#SAT solutions in the sample with all variables assigned to true

sample size

pi =
#SAT solutions in the population with i variables assigned to true

population size

14 The Kullback–Leibler divergence and especially one simplified version called cross-entropy are widely
used as loss functions to compare the neural network predicted output with the observations used to train
the network (see Chapter 3 of Goodfellow et al. (2016) for a summary of the Kullback–Leibler divergence
and cross-entropy applications to deep learning).

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 16 of 34

To avoid worthless comparisons, all i-elements with pi = 0 are removed from F and
P because, as all solutions in the sample are guaranteed to be valid, the corresponding
fi ’s are necessarily 0 as well. For instance, the BusyBox model has 613 variables, but
all valid configurations have between 6 and 571 variables assigned to true. Therefore,
{f0, f1,… , f5, f572, f573,… , f613} and {p0, p1,… , p5, p572, p573,… , p613} are deleted from F
and P, respectively.

The Jensen-Shannon divergence JSD(P||F) measures to what extent the difference
between F and P is greater than expected by chance if F corresponded to a uniform random
sample. In the extreme cases, JSD(P||F) = 0 when F totally matches P, and JSD(P||F) = 1
when the F completely disagrees with P.

Nevertheless, JSD is a mere distance/difference metric, i.e., we cannot tell if JSD is sig-
nificantly greater than expected due to randomness. Therefore, a statistical inference test
is needed to quantify how generalizable the obtained distance is, i.e., a test that estimates
the probability of a specific value of JSD(P||F) assuming that the sampler is genuinely
uniform. In the case that the estimated probability is excessively low (below a significance
level �), it is unlikely that the disagreement between F and P is due to chance, and so we
can conclude that the sampler is not uniform.

Let s be the sample size (whose value we compute in Section 4.2), and m the number
of elements in P after having removed those with pi = 0 . According to the proof given by
Grosse et al. in Section 4.C of Grosse et al. (2002), 2s(ln2)JSD(P||F) has a �2 distribution
with m − 1 degrees of freedom. As a result, a Chi-Squared goodness-of-fit test built upon
the statistic 2s(ln2)JSD(P||F) guides us to decide whether the sampler is uniform. In our
BusyBox running example, s = 17, 738 and m = 613 − 6 − 42 = 565 , hence if the sampler
is uniform then 2 ⋅ 17, 738(ln2)JSD(P||F) should follow a �2

565
 distribution.

In contrast to typical Null Hypothesis Significance Tests (NHSTs), where the null
hypothesis H0 states the opposite to what the researcher pursues to demonstrate, goodness-
of-fit tests are a special case of NHSTs where H0 is: “the sample agrees with the pop-
ulation” (see Chapter 3 of D’Agostino and Stephens (1986) for a detailed description of
Chi-Squared goodness-of-fit tests). Coming back to our case study, let us set the threshold
� = 0.01 to test the BusyBox samples generated with:

– BDDSampler:

JSD(P||F) = 0.001085388

2 ⋅ 17, 738(ln2)JSD(P||F) = 26.68979

p − value = Pr
(

getting a value ≥ 26.68979||H0

)

∼ 1 > 𝛼

⇒ Test result ∶ Do not reject H0

Fig. 6 Proposed method for
verifying if a sampler generates
uniform samples for a model

Model
Boolean
encoding

Population
characterization

Distribution of the
selected features
per configuration

Sample
characterizationSampler Sample

Goodness-of-fit
test

Accept/Reject
uniformity

Theoretical information

Empirical information

Distribution of the
selected features
per configuration

Empirical Software Engineering (2022) 27:44

1 3

Page 17 of 34 44

– QuickSampler:

To sum up, the test corroborates numerically the histogram comparison in Fig. 7:
BDDSampler generated a uniform sample, but QuickSampler did not.

4.2 Sample size estimation

The reliability of a Chi-Squared goodness-of-fit test depends on the following parameters
(see Table 1):

– The significance level � sets the probability of making a Type 1 error, i.e., the probabil-
ity of rejecting H0 when it is indeed true (false positive). It is worth noting that � is also
the threshold for rejecting H0 (i.e., H0 is rejected whenever the p-value ≤ �).

– � sets the probability of making a Type 2 error, i.e., the probability of accepting a false
H0 (false negative). The expression 1 − � is called the test’s power, i.e., the probability
of rejecting a false H0.

When H0 is false, it is false to some degree. That degree is measured by another parameter
called the effect size (Lakens 2013). In particular, Cohen (1988) proposes the index w for
measuring the effect size in Chi-Squared tests. As a rule of thumb, w values of 0.1, 0.3, and
0.5 correspond to small, medium, and large effect sizes, respectively.

JSD(P||F) ∼ 1

2 ⋅ 17, 738(ln2)JSD(P||F) = 12, 923.04

p − value = Pr
(

getting a value ≥ 12, 923.04||H0

)

∼ 0 ≤ �

⇒ Test result ∶ Reject H0

Fig. 7 Distribution of all Bus-
yBox SAT-solutions compared
with the distribution of 17,738
configurations generated with
BDDSampler and QuickSam-
pler

Theoretical
Em

pirical

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

0.00
0.01
0.02
0.03

0.00
0.01
0.02
0.03

#True variables per SAT−solution

Pr
ob

ab
ilit

y
BDDSampler

Theoretical
Em

pirical

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

0.000
0.025
0.050
0.075

0.000
0.025
0.050
0.075

#True variables per SAT−solution

Pr
ob

ab
ilit

y

Quick ampler

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 18 of 34

Interestingly, sample size, effect size, � , and � have an intimate relationship in NHSTs:
given any three of them, the fourth can be determined. In Section 7.3 of Cohen (1988),
Cohen provides different power tables to estimate the minimum sample size required to
ensure the reliability of a Chi-Squared test given the values of �, � , w, and �2 ’s degrees of
freedom. Nowadays, there is available statistical software that provides those tables, e.g.,
the R package pwr15 (see Chapter 10 of Kabacoff (2011)) and the G*Power16 tool (Faul
et al. 2007).

In the previous section, we saw that the goodness-of-fit of any sample from the Bus-
yBox configuration model can be undertaken with a Chi-Squared test with 565 degrees
of freedom. Then, according to Cohen’s power tables, the required sample size is 17,738
configurations when � = � = 0.01 , and w = 0.1.

5 Empirical evaluation

This section describes the experimental evaluation of our approach using the Goal/ Ques-
tion/Metric (GQM) method (van Solingen and Berghout 1999). As Fig. 8 shows, the evalu-
ation pursues two goals (G1 and G2), which are refined into five questions (Q1-Q5) that are
answered using different metrics.

The following points summarize our evaluation’s goals and questions:

G1: Samplers’ evaluation. The first goal G1 is to evaluate the scalability and uniform-
ity of BDDSampler and the following state-of-the-art samplers: KUS17 (Sharma et al.
2018), QuickSampler18 (Dutra et al. 2018), Smarch19 (Oh et al. 2019), Spur20 (Ach-
lioptas et al. 2018), and Unigen221 (Chakraborty et al. 2013; Chakraborty 2015). G1 is
broken down into Questions Q1 and Q2:

Q1: Samplers scalability. Are BDDSampler, KUS, QuickSampler, Smarch
Spur, or Unigen2 able to generate samples with 1,000 configurations for models of
all sizes within one hour?
Q2: Samplers’ uniformity. Do BDDSampler, KUS, QuickSampler, Smarch
Spur, or Unigen2 always generate uniform samples?

G2: SFpC’s evaluation The second goal G2 is to evaluate the scalability and quality, in
terms of validity and reliability, of our SFpC test. G2 is refined into Questions Q3-Q5:

Q3: SFpC’s scalability. How much time and how many configurations does SFpC
need to check the uniformity of a sampler on a model?
Q4: SFpC’s validity. Does SFpC produce results consistent with the results obtained
by other uniformity testing methods?
Q5: SFpC’s reliability. When SFpC is applied repeatedly to the same model and
sampler, are the results consistent?

15 https:// cran.r- proje ct. org/ web/ packa ges/ pwr
16 https:// www. psych ologie. hhu. de/ arbei tsgru ppen/ allge meine- psych ologie- und- arbei tspsy cholo gie/ gpower.
html
17 https:// github. com/ meelg roup/ KUS
18 https:// github. com/ Rafae lTupy namba/ quick sampl er
19 https:// github. com/ jeho- oh/ Smarch
20 https:// github. com/ ZaydH/ spur
21 https:// bitbu cket. org/ kulde epmeel/ unigen

https://cran.r-project.org/web/packages/pwr
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
https://github.com/meelgroup/KUS
https://github.com/RafaelTupynamba/quicksampler
https://github.com/jeho-oh/Smarch
https://github.com/ZaydH/spur
https://bitbucket.org/kuldeepmeel/unigen

Empirical Software Engineering (2022) 27:44

1 3

Page 19 of 34 44

Section 5.1 presents the experimental setup. As Fig. 9 shows, three experiments E1-E3
were performed to solve the questions (e.g., Experiment E2 supported answering Ques-
tions Q2, Q3, and Q5). Sections 5.2-5.6 describe these experiments and the specific met-
rics used to answer the questions. The detailed results and all the material needed to repli-
cate our experiments are available in the public repositories presented in Section 8.

5.1 Experimental setup

The samplers were tested against a suite of 218 models encoded as Boolean formulas in all
of the following formats:

1. DIMACS, which is the format QuickSampler, Smarch, Spur, and Unigen2 use as
input. These samplers rely on SAT technology, and DIMACS is the format for Conjunc-
tive Normal Form (CNF) formulas that SAT technology uses.

M
et

ric
s

 Q
ue

st
io

ns
G

oa
ls

G1: Samplers’ evaluation
Purpose: Evaluate
Issue: the scalability and uniformity of
Object: state-of-the-art samplers and
 BDDSampler

G2: SFpC’s evaluation
Purpose: Evaluate
Issue: the scalability and quality of
Object: the SFpC test

Q1: Samplers’
scalability

Are BDDSampler, KUS,
QuickSampler, Smarch,
Spur, or Unigen2 able to
generate samples with
1,000 configurations out
of any size models
within one hour?

Q2: Samplers’
uniformity

Do BDDSampler,
KUS, QuickSam-
pler, Smarch,
Spur, or Unigen2
generate uniform
SAT solutions?

Q4: SFpC’s
validity

Are SFpC results
consistent with
the results obtai-
ned by other
uniformity testing
methods?

Time to gene-
rate samples
with 1,000
configurations

Q3: SFpC’s
scalability

How much time and
how many configura-
tions does SFpC
need to check the
uniformity of a sam-
pler on a model?

% of samples
each sampler
is able to
generate

Cohen’s κ of
the uniformity
test verdicts
(reject/accept)

p-values
obtained
with SFpC

Sample size requi-
red for α=β=0.01
and w=0.1

Pearson’s ρ of
the p-values
obtained with
SFpC

% of samples
whose unifor-
mity is accep-
ted/rejected
per sampler

Q5: SFpC’s
reliability

When SFpC is
applied repeatedly
to the same model
and sampler, are
the results consis-
tent?

Time to com-
pute the SAT
solution distri-
bution of a
model

Fig. 8 Overview of the performed empirical evaluation with the GQM method

Ex
pe

rim
en

ts
 Q

ue
st

io
ns

Q1: Samplers’
scalability

E1: Generate a set S1
that includes a sample
with 1,000 configura-
tions for every sampler
and model in the ben-
chmark

E2: Generate a set S2 with a sample
for every sampler and model in the
benchmark. The sample size for each
model is determined for α=β=0.01 and
w=0.1. Then, test the samplers’ unifor-
mity analyzing S1 with SFpC

E3: Generate a set S3 with a sample for
every sampler and model in the bench-
mark. The sample size for each model
is determined for α=β=0.01 and w=0.1.
Then, test the samplers’ uniformity
analyzing S2 with SFpC and FP

Q2: Samplers’
uniformity

Q3: SFpC’s
scalability

Q4: SFpC’s
validity

Q5: SFpC’s
reliability

Fig. 9 Relationship between questions and experiments

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 20 of 34

2. DDDMP, which is the format BDDSampler and its underlying library CUDD use for
BDDs.

3. NNF, which is the format KUS uses for d-DNNFs.

In particular,

– The DIMACS files of the industrial SAT formulas and JHipster were retrieved from
Plazar et al. (2019).

– The DIMACS file of LargeAutomotive was gathered from Krieter et al. (2018).
– The DIMACS file of DellSPLOT was obtained from Nöhrer and Egyed (2013).
– We generated the DIMACS files of axTLS, Fiasco, uClibc, ToyBox, BusyBox, and

EmbToolkit by processing their Kconfig specifications with our tool Kconfig2Logic22
(Fernandez-Amoros et al. 2019).

– We generated all DDDMP files from their corresponding DIMACS files with our tool
Logic2BDD23 (Fernandez-Amoros et al. 2020).

– We generated all NNF files from their respective DIMACS files with the d-DNNF com-
piler d4 (Lagniez and Marquis 2017) that is embedded in KUS.

 In total, 209 are industrial SAT formulas (mostly modeling integrated circuits) that are
typically used as a benchmark in the SAT-sampling literature (Achlioptas et al. 2018;
Chakraborty 2015; Plazar et al. 2019). The remaining nine models represent configur-
able software systems. Table 2 describes the nine configuration models (the largest
model is also referred as Automotive02 in the SPL literature (Krieter et al. 2018)).

The histogram in Fig. 10 shows the model size distribution according to their
number of variables. Since there is a wide range from the smallest model in
the benchmark to the largest one (from 14 to 18,570 variables), the scale has
been logarithmically transformed to shrink the range and thus facilitate the fig-
ure interpretation (see Chapter 5 of Winter (2020) for an explanation on loga-
rithmic scale transformations). The scatter plot in Fig. 10 represents the model
sizes in terms of their variables and clauses. The grey regression line shows that
Log2(#Clauses) depends on 1.35 + 1.03 ⋅ Log2(#Variables) . Points corresponding to
configuration models are labeled, and models with more and fewer clauses than
those predicted by the linear regression are colored red and blue, respectively.
Note that in the interval [9.88, 11.2] of Log2(#Variables) there are only 5 models,
and all of them have fewer clauses than predicted. As these models are simpler in
terms of clauses, processing them requires less time than expected for their vari-
able number, and thus regression curves in Figs. 12, 17, and 16 will show posi-
tive convexity in that interval.

The experiments were run on an Intel(R) Core(TM) i7-6700HQ, 2.60GHz, 16GB
RAM, operating Linux Ubuntu 19.10. Samplers were executed on a single thread (i.e.,
with no parallelization), and without considering any Boolean formula preprocessing,
such as Minimal Independent Support (MIS) (Ivrii et al. 2016).

22 https:// github. com/ david fa71/ Exten ding- Logic/ tree/ master/ code/ Kconfi g2Lo gic
23 https:// github. com/ david fa71/ Exten ding- Logic/ tree/ master/ code/ Logic 2BDD

https://github.com/davidfa71/Extending-Logic/tree/master/code/Kconfig2Logic
https://github.com/davidfa71/Extending-Logic/tree/master/code/Logic2BDD

Empirical Software Engineering (2022) 27:44

1 3

Page 21 of 34 44

5.2 Q1: Scalability of samplers

The following experiment E1 was undertaken to obtain a sample set S1 for answering
Q1. Each sampler generated a sample with one thousand configurations for every model
in the benchmark. The timeout for each sample generation was set to one hour. Table 3

Table 2 Software configuration models included in the benchmark

Model #Variables #Clauses #SAT-Solutions

JHipster (Halin et al. 2019) 45 104 26,256
axTLS 1.5.3 64 96 3.924 ⋅ 1012

(http:// axtls. sourc eforge. net/)
Fiasco 2014092821 113 4,717 5.144 ⋅ 109

(https:// os. inf. tu- dresd en. de/ fiasco/)
DellSPLOT (Nöhrer and Egyed 2013) 118 2,181 7.440 ⋅ 106

uClibc 201 50420 298 903 7.503 ⋅ 1050

(https:// www. uclibc. org/)
ToyBox 0.5.2 544 1,020 1.450 ⋅ 1017

(http:// landl ey. net/ toybox/)
BusyBox 1.23.2 613 530 7.428 ⋅ 10146

(https:// busyb ox. net/)
EmbToolkit 1.7.0 2,331 6,437 3.961 ⋅ 10334

(https:// www. embto olkit. org/)
LargeAutomotive (Krieter et al. 2018) 17,365 321,897 5.260 ⋅ 101,441

Fig. 10 Size of the benchmark
models in terms of the number of
variables and clauses

0

20

40

4 6 8 10 12 14
Log2 #Variables

#M
od

el
s

85% of the models have between 52 and 928
variables (5.70 and 9.86 in logarithmic scale)

axTLS BusyBox

DellSPLOT

EmbToolkitFiasco

JHipster

LargeAutomotive
ToyBox

uClibc

8

12

16

4 6 8 10 12 14
Log2 #Variables

Lo
g 2

#C
la

us
es

The number of variables and clauses are
highly correlated (Pearsons' r=0.97)

http://axtls.sourceforge.net/
https://os.inf.tu-dresden.de/fiasco/
https://www.uclibc.org/
http://landley.net/toybox/
https://busybox.net/
https://www.embtoolkit.org/

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 22 of 34

summarizes the generation times for the configuration models. The histogram in Fig. 11
shows the percentage of samples that each sampler was able to generate. In total, 257.92
hours (10.75 days) of CPU time were needed for generating the samples (or reaching
the timeout).

5.3 Q2: Uniformity of samplers

The following experiment E2 was carried out to obtain a sample set S2 for answer-
ing Q2, Q3, and Q5. Each sampler was run to generate a sample for every model in
the benchmark. As Section 5.4 will explain in detail, the number of configurations per
sample was estimated for � = 0.01, � = 0.01 , and w = 0.1 . The timeout for each sample
generation was set to one hour. In total, 373.5 hours (15.56 days) of CPU time were
needed for generating the samples (or reaching the timeout). The histogram in Fig. 13
summarizes the results. Nearly all samples produced by BDDSampler, Smarch, Spur,
and Unigen2 obtained high p-values in the range (0.9, 1]. In contrast, KUS and Quick-
Sampler generated many samples with p-values in the interval [0, 0.1]. Since � is set
to 0.01, remember from Section 4.2 that a p-value less or equal to 0.01 means rejecting
the uniformity hypothesis. Likewise, a p-value close to 1 reflects that the sample greatly
supports the uniformity hypothesis. Table 4 summarizes the p-values for the configura-
tion models in detail.

Fig. 11 Percentage of samples that each sampler was able to generate (sample size = 1,000 configurations;
timeout = 1 hour)

Table 3 Sample generation time in seconds for the configuration models (sample size = 1,000 configura-
tions; timeout = 1 hour)

Model BDD Sampler KUS Quick Sampler Smarch Spur Unigen2

JHipster 0.04 0.27 0.07 911.08 0.03 3.59
axTLS 0.04 0.34 0.20 1,993.90 0.03 timeout
Fiasco 0.07 0.45 1.47 timeout 0.06 timeout
DellSPLOT 0.08 0.44 0.44 3,278.09 0.07 187.58
uClibc 0.14 0.99 0.50 timeout 0.23 timeout
ToyBox 0.25 1.25 0.78 timeout 0.09 timeout
BusyBox 0.26 1.87 0.67 timeout 0.17 timeout
EmbToolkit 2.61 timeout 4.62 timeout 9.15 timeout
LargeAutomotive 12.07 119.26 77.06 timeout 24.57 timeout

Empirical Software Engineering (2022) 27:44

1 3

Page 23 of 34 44

KUS and Spur implement Knuth’s sampling procedure (see Section 2.1.3). Accordingly,
they should be uniform “by design”. Moreover, the KUS and Spur empirical validations in
Sharma et al. (2018) and Achlioptas et al. (2018), respectively, did not detect any problem
(though only small models with a few hundred variables were used). However, our inspec-
tion using more varied and larger models revealed the following uniformity flaws:

– As Fig. 13 shows, 16.4% of the KUS samples got a p-value in [0, 0.1]. Furthermore,
in 15.89% of the cases, the p-values were less than � = 0.01 , and thus rejected the uni-

Fig. 12 Time the samplers
needed to generate 1,000 con-
figurations for each model in the
benchmark

Smarch Spur Unigen2

BDDSampler KUS QuickSampler

4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14

-5

0

5

10

-5

0

5

10

Log2 #Variables

Lo
g 2

sdnoces
ni

e
miT

Time for generating samples with 1,000 configurations
(timeout = 1 hour)

BDDSampler

KUS
QuickSampler

Smarch

Spur

Unigen2

QuickSampler

SmarchSmarch

-5

0

5

10

4 6 8 10 12 14
Log2 #Variables

Lo
g 2

sdnoces
ni

e
miT

Comparing the regression curves, Smarch and Unigen2
are considerably slower than the other samplers

Fig. 13 Goodness-of-fit test
results for the whole benchmark
(� = � = 0.01 and w = 0.1)

0% rejected

0% rejected

15.89% rejected

0.46% rejected

75.23% rejected

0% rejected

Smarch Spur Unigen2

BDDSampler KUS QuickSampler

[0
,0

.1
]

(0
.1

,0
.2

]
(0

.2
,0

.3
]

(0
.3

,0
.4

]
(0

.5
,0

.6
]

(0
.6

,0
.7

]
(0

.7
,0

.8
]

(0
.8

,0
.9

]
(0

.9
,1

]
[0

,0
.1

]
(0

.1
,0

.2
]

(0
.2

,0
.3

]
(0

.3
,0

.4
]

(0
.5

,0
.6

]
(0

.6
,0

.7
]

(0
.7

,0
.8

]
(0

.8
,0

.9
]

(0
.9

,1
]

[0
,0

.1
]

(0
.1

,0
.2

]
(0

.2
,0

.3
]

(0
.3

,0
.4

]
(0

.5
,0

.6
]

(0
.6

,0
.7

]
(0

.7
,0

.8
]

(0
.8

,0
.9

]
(0

.9
,1

]

0

25

50

75

100

0

25

50

75

100

p−value

%
Sa

m
pl

es

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 24 of 34

formity hypothesis. Figure 14 shows four examples were KUS uniformity was rejected.
Each subfigure compares, for a particular model, the histogram of the SAT-solution
distribution of the whole population (in blue) with the distribution of the generated
sample (in red). Unfortunately, the rejected samples do not show any clear pattern that
explains the causes of KUS failures. For instance, KUS exhibits difficulties with small
models (blasted_case63) but also with large ones (blasted_squaring26), with nor-
mal distributions (blasted_case63 and s1238a_7_4) and non-normal distributions
(s526_15_7 and blasted_squaring26), with left-skewed distributions (s1238a_7_4)
and right-skewed distributions (blas-ted_case63), etc.

– In our previous evaluation (Heradio et al. 2020), we detected that Spur generated uniform
samples for all models except for EmbToolkit. We thought our test was making a Type 1
error, misjudging the sampler uniformity because an extremely low p-value happened due
to randomness. However, when we checked the samplers’ uniformity with our new test, we
obtained exactly the same results for this particular model, which raised our suspicions. We
repeated the experiment one thousand times and Spur never generated a uniform sample
for EmbToolkit. Figure 15 shows the results for two of those experiment repetitions. In this
case, Spur’s error always displays the same pattern: the solutions in the sample have more
variables assigned to true than in the population.

Table 4 Goodness-of-fit p-values for the configuration models (� = � = 0.01 and w = 0.1 ; timeout = 1
hour)

Model BDD Sampler KUS Quick Sampler Smarch Spur Unigen2

JHipster ∼ 1 0.99 ∼ 0 ∼ 1 ∼ 1 ∼ 1

axTLS ∼ 1 ∼ 1 ∼ 0 timeout ∼ 1 timeout
Fiasco ∼ 1 ∼ 1 0.30 timeout ∼ 1 timeout
DellSPLOT ∼ 1 0.99 0.85 timeout ∼ 1 0.96
uClibc ∼ 1 ∼ 1 ∼ 1 timeout ∼ 1 timeout
ToyBox ∼ 1 ∼ 1 ∼ 0 timeout ∼ 1 timeout
BusyBox ∼ 1 ∼ 1 ∼ 0 timeout ∼ 1 timeout
EmbToolkit ∼ 1 timeout ∼ 1 timeout ∼ 0 timeout
LargeAutomotive ∼ 1 timeout ∼ 0 timeout ∼ 1 timeout

0.00

0.05

0.10

250 300 350 400 450 500
0.00

0.02

0.04

0.06

270 300 330 360

0.00

0.01

0.02

0.03

052002
0.000

0.025

0.050

0.075

0.100

40 50 60

blasted_case63
(96 variables)

s1238a_7_4
(704 variables)

blasted_squaring26
(894 variables)

s526_15_7
(453 variables)

Distribution Theoretical Empirical

#Variables assigned to true per SAT-solution

ytilibaborP

Fig. 14 Example of KUS samples rejected with the goodness-of-fit test

Empirical Software Engineering (2022) 27:44

1 3

Page 25 of 34 44

5.4 Q3: Scalability of the SFpC test

Two factors influence the scalability of a uniformity test when applied to a particular model
and sampler: (i) the number of configurations the test needs to consider, and (ii) the time
the test invests in analyzing those configurations.

Concerning the first factor, and as discussed in Section 2, the methods proposed in the
literature to verify samplers’ uniformity require colossal sample sizes with millions of con-
figurations. Thus uniformity had been tested on trivial models so far, with a few hundred
variables. To support evaluating uniformity over more complex models, in Heradio et al.
(2020) we proposed the FP test, which compares the variable frequency distribution of a
sample with the variable probability distribution of the entire population. With this test, we
could validate samplers’ uniformity on models with more than seventeen thousand vari-
ables (Heradio et al. 2020). Figure 16 compares the sample sizes that the FP test needs
(in red) with the sample sizes our new SFpC test requires (in blue), showing that the latter
needs fewer configurations in most cases.

In Fig. 16, each model’s sample size was determined with the procedure described
in Section 4.2. In particular, the R package pwr24 (Kabacoff 2011) was used to perform
Cohen’s power tables calculations. To ensure the highest reliability of the samplers’ uni-
formity tests (see Section 5.4), we set � = 0.01, � = 0.01 , and w = 0.1 . That is, the �2 test
confidence level was fixed to 99%, the power to 99%, and the effect size to small. Table 5
compares in detail the samples sizes obtained for the configuration models.

The sample size depends on the model’s degrees of freedom in both the FP and the
SFpC tests. Nevertheless, each test defines degrees of freedom in a different way. The

Fig. 15 Two samples Spur
generated for EmbToolkit Distribution Theoretical Empirical

#Variables assigned to true per SAT-solution

Pr
ob

ab
ilit

y

0.000

0.005

0.010

0.015

00010050

0.000

0.005

0.010

0.015

00010050

24 https:// cran.r- proje ct. org/ web/ packa ges/ pwr

https://cran.r-project.org/web/packages/pwr

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 26 of 34

degrees of freedom of the FP test dfFP are the number of variables (minus one) whose
probability is neither zero nor one (see Section 3 of Heradio et al. (2020)). The degrees
of freedom of the SFpC test dfSFpC are the number cases (minus one) for which there is
at least one valid configuration with a particular number of variables assigned to true (see
Section 4.1). As Fig. 16 shows, in practice, dfSFpC ≤ dfFP and therefore the SFpC test con-
sumes fewer configurations.

Regarding the time SFpC requires to analyze the generated configurations, once the
theoretical distribution of SAT solutions is known, the remaining computations can be
performed extremely fast (see Section 4.1). So, the SFpC’s potential bottleneck is getting
such distribution with the algorithm PD. Figure 17 shows the time it took to compute the
theoretical distribution for each model in the benchmark, ranging from 0.02 seconds to
14.14 minutes. Table 6 details the times for the configuration models. It is worth noting
that the model which needed the longest time was s1196a_3_2, which is an industrial
SAT formula (thus not included in Table 2). This illustrates the dependency that BDDs
have on variable ordering heuristics. Whereas this model has a medium-size CNF formula
(690 variables and 1,805 clauses), the BDD we synthesized was huge (2,284,697 nodes).
In contrast, for LargeAutomotive (17,365 variables and 321,897) a more reduced BDD
was obtained (30,432 nodes), and hence computing its theoretical SAT-solution distribu-
tion just took 2.74 minutes.

Fig. 16 Comparison of the
sample sizes consumed by the
FP and SFpC tests (� = � = 0.01
and w = 0.1)

axTLS

BusyBox

DellSPLOT

EmbToolkit

Fiasco

JHipster

LargeAutomotive

ToyBox

uClibc

axTLS

BusyBox

DellSPLOT

EmbToolkit

FiascoJHipster

LargeAutomotive

ToyBox
uClibc

12

13

14

15

16

4 6 8 10 12 14
Log2(#Variables)

Lo
g 2
(S

am
pl

e
si

ze
)

FP test
SFpC test

The SFpC test requires smaller samples than the FP test

Table 5 Sample sizes the
SFpC and FP tests required
for the configuration models
(� = � = 0.01 and w = 0.1)

Model Sample size for the
SFpC test

Sample size
for the FP
test

JHipster 4,664 5,994
axTLS 6,314 7,198
Fiasco 5,460 7,646
DellSPLOT 3,889 9,131
uClibc 10,987 13,047
ToyBox 8,517 10,739
BusyBox 17,738 18,041
EmbToolkit 26,482 28,866
LargeAutomotive 37,626 84,522

Empirical Software Engineering (2022) 27:44

1 3

Page 27 of 34 44

5.5 Q4: Validity of SFpC

Two criteria are typically used for assessing measurement quality (Trochim et al. 2015):
validity and reliability. Since we are interested in the quality of SFpC measurements, valid-
ity will refer to what extent SFpC actually measures uniformity, and reliability will refer to
repeatability, i.e., to the consistency of the results obtained when SFpC is applied several
times to the same sampler and model. This section examines SFpC’s validity, and the next
section deals with SFpC’s reliability.

To evaluate SFpC’s validity, we followed a convergent strategy (Trochim et al. 2015)
by examining the degree to which SFpC results are similar to those obtained by other uni-
formity tests. Table 7 summarizes the uniformity verdicts reported in the literature. There
is a total consensus that Unigen2 is uniform and QuickSampler is not. SFpC results are
consistent with this consensus.

As we mentioned in Section 5.4, before the publication of FP in Heradio et al. (2019),
the literature relied on limited tests that only could handle the simplest models with a few
hundred variables. As more complex are considered, the chances to detect samplers’ addi-
tional flaws increases. In other words, the sensitivity of FP and SFpC is higher than their
predecessors. Accordingly, we performed a new Experiment E3 focused on checking the
convergent validity of FP and SFpC in detail. A new sample set S3 was procured by asking
each sampler to generate a sample for every model in the benchmark. Then, the uniformity
of the samples was analyzed with both FP and SFpC. Since FP generally needs larger sam-
ples than SFpC (see Section 5.4), the sample sizes were set according to FP requirements.

Fig. 17 Time it took to compute
the distribution of SAT-solutions
for all models in the benchmark

axTLS

BusyBox

DellSPLOT EmbToolkit

Fiasco

JHipster

LargeAutomotive

ToyBox
uClibc

−6

−4

−2

0

2

4

6

8

10

4 6 8 10 12 14
Log2(#Variables)

Lo
g 2
(

sdnoces
ni

e
miT

)

Table 6 Seconds it took to
compute the distribution of SAT-
solutions for the configuration
models

Model Time

JHipster 0.03
axTLS 0.07
Fiasco 0.03
DellSPLOT 0.10
uClibc 0.38
ToyBox 0.16
BusyBox 0.41
EmbToolkit 567.93
LargeAutomotive 164.35

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 28 of 34

Pearson’s correlation coefficient � of the p-values obtained with FP and SFpC was
� = 0.953 , and Cohen’s kappa � of the test verdicts (i.e., rejection/acceptance of sampler’s
uniformity) was � = 0.942 . As FP and SFpC results were numerically highly correlated,
and their final judgments were remarkably consistent, convergent validity was successfully
confirmed.

5.6 Q5: Reliability of SFpC

SFpC’s reliability was evaluated with a test-retest strategy (Trochim et al. 2015) by com-
paring its results with the sample sets S2 and S3. Pearson’s correlation coefficient of the
p-values calculated with SFpC in S2 and S3 was � = 0.950 , and Cohen’s kappa of the
corresponding final judgments (i.e., rejection/acceptance of sampler’s uniformity) was
� = 0.939 . As a result, SFpC’s reliability was positively evaluated.

6 Discussion

The experimental results indicate that SFpC supports testing samplers’ uniformity on
complex models with thousands of variables and constraints, providing valid and reliable
judgments. The results show that the only sampler that satisfies both scalability and uni-
formity is BDDSampler. The following points summarize the key findings per research
question:

Q1: Samplers’ scalability. BDDSampler, KUS, QuickSampler, and Spur are by
far faster than Smarch and Unigen2. This finding agrees with the prior evaluations
reported by Plazar et al. (2019) and Heradio et al. (2020).
Q2: Samplers’ uniformity. Three categories of samplers can be distinguished: (i) those
that mostly fail to produce uniform samples (QuickSampler), (ii) those that usually
work but from time to time generate non-uniform samples (KUS and Spur), and (iii)
those that always produce uniform samples (BDDSampler, Smarch, and Unigen2).
QuickSampler’s incapacity to generate uniform samples was previously reported by
Chakraborty et al. (2019), Plazar et al. (2019), and Heradio et al. (2020). However, this

Table 7 Samplers’ uniformity judgments reported in the literature

Due to its higher sensitivity compared to prior tests, SFpC detects that KUS and Spur sometimes behave
non-uniformly

Article Uniform Non-Uniform

Achlioptas et al. (2018) Spur and Unigen2 –
Chakraborty et al. (2015) Unigen2 –
Chakraborty et al. (2019) Unigen2 QuickSampler

Oh et al. (2019) Smarch and Unigen2 –
Plazar et al. (2019) Unigen QuickSampler

Sharma et al. (2018) KUS and Spur –
This present paper BDDSampler, Smarch KUS, QuickSampler

(SFpC) and Unigen2 and Spur

Empirical Software Engineering (2022) 27:44

1 3

Page 29 of 34 44

paper is the first one that detects problems with KUS and Spur. We think this finding is
due to SFpC’s ability to test samplers’ uniformity on considerably more complex mod-
els than previous tests.
Q3: SFpC’s scalability. SFpC is the most scalable uniformity test to date. It requires
the smallest sample size of all existing tests, enabling the verification of samplers’ uni-
formity in large models even for the most strict quality settings (� = 0.01, � = 0.01 , and
w = 0.1).
Q4: SFpC’s validity. According to the results, SFpC judgments are consistent with the
verdicts given by the alternative methods proposed in the literature.
Q5: SFpC’s reliability. The results show that SFpC judgments are reliable, i.e., when
SFpC is applied repeatedly to the same model and sampler, the reached conclusions are
notably consistent.

The implications of our research are twofold:

1. As uniform random sampling is a strong requirement for many relevant analyses on
configurable systems, BDDSampler’s positive impact may be considerable, e.g., to
test SPLs (Halin et al. 2019; Plazar et al. 2019), to support predicting and optimizing
the performance of configurable systems (Oh et al. 2017; Kaltenecker et al. 2020), etc.
As an illustrative example of the importance that sampling has to SPL practitioners,
in the SPLC 23rd edition, there was a challenge dedicated specifically to this topic and
entitled “Product Sampling for Product Lines: The Scalability Challenge” (Pett et al.
2019). Moreover, different papers have been recently published on uniform random
sampling, and other sorts of sampling such as t-wise, in SPLC (Varshosaz et al. 2018; Oh
et al. 2019; Muñoz et al. 2019) and the International Working Conference on Variability
Modelling of Software-Intensive Systems (VaMoS) (Krieter et al. 2020). Furthermore,
the applicability of BDDSampler goes beyond the SPL domain since sampling is also
needed in artificial intelligence (Chakraborty and Meel 2019; Dutra et al. 2018; Roy
et al. 2018), integrated circuit simulation and verification (Hëbner and Becker 2011;
Naveh et al. 2006; Yuan et al. 2002), etc.

2. SFpC can be used to debug and thus improve existing samplers (see Figs. 14 and 15), or
to validate future samplers. The importance of samplers’ validation is well recognized by
the SPL community. Recently, in the SPLC 25th edition, there was a session dedicated to
“Sampling, variability analysis and visualization”, where two tools for samplers’ evalua-
tion were presented: BURST (Acher et al. 2021) and AutoSMP (Pett et al. 2021). Those
tools could be enhanced by integrating SFpC; e.g., BURST relies on Barbarik, which
has inferior performance than SFpC (see Section 2.2.2). Again, the interest in samplers’
validation is not restricted to SPLs. In fact, most uniformity tests have been proposed by
artificial intelligence researchers, mainly from the SAT community (Achlioptas et al.
2018; Chakraborty 2015; Dutra et al. 2018; Sharma et al. 2018; Chakraborty and Meel
2019).

It is worth noting that our work has the following limitation: both BDDSampler and
SFpC rely on BDD technology. Synthesizing the BDD encoding of a variability model
is sometimes unattainable. This is because the variable ordering chosen to build a BDD
dramatically impacts its size, and finding the optimal ordering is an NP-problem. So the
search is approached heuristically without guarantees. This problem principally affects
BDDSampler, but not much SFpC.

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 30 of 34

1. BDDSampler receives a model’s BDD encoding as input. If the available heuristics fail
to find an adequate variable ordering, BDDSampler becomes useless, and an alternative
technology (e.g., SAT) must be used.

2. SFpC can evaluate any sampler, independently of the technology in which it is
built. Indeed, Section 5 reports the SFpC use for samplers implemented with BDDs
(BDDSampler), #SAT-solvers (QuickSampler, Smarch, Spur, and Unigen2), and
d-DNNFs (KUS). The impossibility of creating a BDD for a particular model only
prevents SFpC from using it as part of the benchmark presented in Section 5.1. Cur-
rently, the benchmark includes 218 models with their respective BDDs. In our opinion,
the models’ great variety in terms of size (from 14 to 18,570 variables) and application
domain (automotive industry, embedded systems, a laptop customization system, a web
application generator, integrated circuits, etc.) is adequate to ensure samplers’ verifica-
tion to a great degree.

Finally, the following threats to our study’s validity should be taken into account:

1. There is no absolute guarantee that the samplers we have certified as uniform behave
non-uniformly in models not included in the benchmark.

2. Our experimental design discards two potential confounders for evaluating the scal-
ability of samplers:

– Sampling parallelization. Although any sampler can be run in a multi-core fashion,
thus producing samples concurrently, only Unigen2 and Smarch were specifically
designed for that. The focus of our evaluation is on the sampling techniques, not on
how those techniques can be parallelized efficiently. Therefore, all samplers were
run on a single thread.

– Use of preprocessing techniques. There are some methods to preprocess the model
Boolean formulas for speeding up further computations. For example, Ivrri et al.
(2016) claim that sampling with the formulas’ MIS produces 2-3 orders of mag-
nitude performance improvement. Nevertheless, Plazar et al. (2019) empirical
results contradict that, showing no running time difference between sampling from
the whole formula or the MIS. Anyway, we decided to focus on the sampling tech-
niques, not on how any additional preprocessing methods may impact those tech-
niques.

7 Conclusions

The number of SAT solutions that configuration models encompass can be so large that
most analyses cannot be performed neither examining every valid configuration, nor call-
ing a SAT solver massively. Statistical inference opens an alternative way to address these
problems by working with a tractable sample accurately predicts results for the entire
space. However, the laws of statistical inference impose an indispensable requirement that
samples must be collected at random, i.e., the configuration space needs to be covered
uniformly.

Two major research challenges on SAT-solution random sampling have been
addressed in this paper: we (i) developed a new random sampler, called BDDSampler,
and (ii) proposed a goodness-of-fit test to verify samplers’ uniformity. Our new test

Empirical Software Engineering (2022) 27:44

1 3

Page 31 of 34 44

requires the least sample size of all existing methods, in the literature, supporting the
samplers’ uniformity assessment even on colossal models and the most strict reliabil-
ity arrangements. Using this test, we have undertaken the empirical evaluation of six
state-of-the-art samplers, revealing that only BDDSampler satisfies both uniformity
and scalability.

It is worth remarking that BDDSampler works with a BDD encoding of a configu-
ration model as input, and synthesizing such BDD is not always feasible as it depends
on finding an adequate variable order heuristically. Our work deals with this limitation
by exposing uniformity bugs on two scalable samplers based on alternative technologies
(KUS on d-DNNFs and Spur on #SAT), thus facilitating their fixing. Having available all
these samplers would support coping with the variated difficulties that the Boolean encod-
ing of configuration models poses (e.g., large intractable CNFs, enormous BDDs, etc.).

8 Material

Following open science’s good practices, our software artifacts are available publicly.

– BDDSampler is available at https:// github. com/ david fa71/ BDDSa mpler
– The code scripts to replicate our experimental validation (i.e., to calculate each model’s

sample size, run the samplers, and test the scalability/uniformity of the samplers) are
available at https:// github. com/ rhera dio/ ConfS ystSa mpling

– A detailed report on every research question in Section 5 is available at: https:// rhera
dio. github. io/ ConfS ystSa mpling

– The data of Experiments E1 and E2 (including the benchmark models in DIMACS/
DDDMP/NNF formats, the generated samples, the goodness-of-fit test results, etc.) are
available at https:// doi. org/ 10. 5281/ zenodo. 45149 19

– The data of Experiment E3 are available at https:// doi. org/ 10. 5281/ zenodo. 55099 47

Acknowledgements This work has been partially funded by the Universidad Nacional de Educacion a Dis-
tancia (project OPTIVAC 096-034091 2021V/PUNED/008); the Spanish Ministry of Science, Innovation
and Universities (project OPHELIA RTI2018-101204-B-C22); the Community of Madrid (research net-
work ROBOCITY2030-DIH-CM S2018/NMT-4331); the TASOVA network (MCIU-AEI TIN2017-90644-
REDT); and the Junta de Andalucia (METAMORFOSIS project).

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations

Conflicts of interest The authors have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

https://github.com/davidfa71/BDDSampler
https://github.com/rheradio/ConfSystSampling
https://rheradio.github.io/ConfSystSampling
https://rheradio.github.io/ConfSystSampling
https://doi.org/10.5281/zenodo.4514919
https://doi.org/10.5281/zenodo.5509947
http://creativecommons.org/licenses/by/4.0/

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 32 of 34

References

Acher M, Perrouin G, Cordy M (2021) BUrst: a benchmarking platform for uniform random sampling tech-
niques. In: 25th systems and software product line conference (SPLC). Leicester, United Kingdom

Achlioptas D, Hammoudeh ZS, Theodoropoulos P (2018) Fast sampling of perfectly uniform satisfy-
ing assignments. In: 21st International conference on theory and applications of satisfiability testing
(SAT). Oxford, UK, pp 135–147

Alférez M, Acher M, Galindo J, Baudry B, Benavides D (2019) Modeling variability in the video domain:
language and experience report. Software Quality Journal 27(1):307–347

Alves Pereira J, Acher M, Martin H, Jézéquel JM (2020) Sampling effect on performance prediction of con-
figurable systems: A case study. In: ACM/SPEC international conference on performance engineering
(ICPE). Edmonton AB, Canada, pp 277–288

Batory DS (2005) Feature models, grammars, and propositional formulas. In: 9th software product line con-
ference (SPLC). Rennes, France, pp 7–20

Bellare M, Goldreich O, Petrank E (2000) Uniform generation of NP-witnesses using an NP-oracle. Infor-
mation and Computation 163(2):510–526

Berger T, She S, Lotufo R, Wasowski A, Czarnecki K (2013) A study of variability models and languages in
the systems software domain. IEEE Transactions on Software Engineering 39(12):1611–1640

Biere A, Heule M, van Maaren H, Walsh T (2009) Handbook of satisfiability: Volume 185 frontiers in artifi-
cial intelligence and applications. IOS Press, Amsterdam

Brace KS, Rudell RL, Bryant E (1990) Variability modeling in the real: a perspective from the operat-
ing systems domain. In: IEEE/ACM design automation conference (DAC). Orlando, Florida, USA, pp
40–45

Bryant RE (1986) Graph-based algorithms for boolean function manipulation. IEEE Transactions on Com-
puters C–35(8):677–691

Chakraborty S, Fremont DJ, Meel KS, Seshia SA, Vardi MY (2015) On parallel scalable uniform SAT wit-
ness generation. In: 21st international conference on tools and algorithms for the construction and
analysis of systems (TACAS). London, UK, pp 304–319

Chakraborty S, Meel KS (2019) On testing of uniform samplers. In: 33rd conference on artificial intelli-
gence (AAAI). Honolulu, Hawaii, USA, pp 7777–7784

Chakraborty S, Meel KS, Vardi MY (2013) A scalable and nearly uniform generator of SAT witnesses.
In: 25th international conference on computer aided verification (CAV). Saint Petersburg, Russia, pp
608–623

Chihara LM, Hesterberg TC (2011) Mathematical statistics with Resampling and R. Wiley, New York
Chollet F, Allaire J (2018) Deep learning with R. Manning Publications
Cohen J (1988) Statistical power analysis for the behavioral sciences. Routledge, Evanston
Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New York
D’Agostino RB, Stephens MA (1986) Goodness-of-fit-techniques. CRC Press, Boca Raton
Davis M, Logemann G, Loveland D (1962) A machine program for Theorem-proving. Communications of

the ACM 5(7):394–397
van Dijk, T (2016) Sylvan: multi-core decision diagrams. Ph.D. thesis, University of Twente
Dutra R, Laeufer K, Bachrach J, Sen K (2018) Efficient sampling of SAT solutions for testing. In: 40th inter-

national conference on software engineering (ICSE). ACM, New York, NY, USA, pp 549–559
Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: A flexible statistical power analysis program

for the social, behavioral, and biomedical sciences. Behavior Research Methods 2(39):175–191
Fernandez-Amoros D, Bra S, Aranda-Escolastico E, Heradio R (2020) Using extended logical primitives for

efficient BDD building. Mathematics 8(8):1–17
Fernandez-Amoros D, Heradio R, Mayr-Dorn C, Egyed A (2019) A Kconfig translation to logic with one-

way validation system. In: 23rd international systems and software product line conference (SPLC).
Paris, France, pp 303–308

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press, Cambridge
Grosse I, Bernaola-Galvan P, Carpena P, Roman-Roldan R, Oliver J, Stanley HE (2002) Analysis of symbolic

sequences using the Jensen-Shannon divergence. Physical Review E 65(2):041,905/1-0419,051/16
Guo J, Yang D, Siegmund N, Apel S, Sarkar A, Valov P, Czarnecki K, Wasowski A, Yu H (2018)

Data-efficient performance learning for configurable systems. Empirical Software Engineering
23(3):1826–1867

Halin A, Nuttinck A, Acher M, Devroey X, Perrouin G, Baudry B (2019) Test them all, is it worth it?
Assessing configuration sampling on the JHipster Web development stack. Empirical Software Engi-
neering 24(2):674–717

Empirical Software Engineering (2022) 27:44

1 3

Page 33 of 34 44

Heradio R, Fernandez-Amoros D, Galindo JA, Benavides D (2020) Uniform and scalable SAT-sampling
for configurable systems. In: 24th systems and software product line conference (SPLC). Montréal,
Canada, pp 1–11

Heradio R, Fernandez-Amoros D, Mayr-Dorn C, Egyed A (2019) Supporting the statistical analysis of vari-
ability models. In: 41st international conference on software engineering (ICSE). Montréal, Canada,
pp 843–853

Hëbner M, Becker J (2011) Multiprocessor system-on-Chip: Hardware design and tool integration. Springer,
New York

Ivrii A, Malik S, Meel KS, Vardi MY (2016) On computing minimal independent support and its applica-
tions to sampling and counting. Constraints 21(1):41–58

Kabacoff R (2011) R in Action: Data analysis and graphics with R. Manning Publications
Kaltenecker C, Grebhahn A, Siegmund N, Apel S (2020) The interplay of sampling and machine learning

for software performance prediction. IEEE Software 37(4):58–66
Kaltenecker C, Grebhahn A, Siegmund N, Guo J, Apel S (2019) Distance-based sampling of software con-

figuration spaces. In: 41st international conference on software engineering (ICSE). Montreal, Canada,
pp 1084–1094

Kaplan D (2012) Statistical modeling: A fresh approach. Project Mosaic
Knuth DE (2009) The art of computer programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques;

Binary Decision Diagrams. Addison-Wesley Professional
Kolesnikov S, Siegmund N, Kästner C, Grebhahn A, Apel S (2019) Tradeoffs in modeling performance of

highly configurable software systems. Software & Systems Modeling 18(3):2265–2283
Krieter S (2019) Enabling efficient automated configuration generation and management. In: 23rd interna-

tional systems and software product line conference (SPLC). Paris, France, pp 215–221
Krieter S, Thüm T, Schulze S, Saake G, Leich T (2020) Yasa: Yet another sampling algorithm. In: 14th

international working conference on variability modelling of software-intensive system (VaMoS).
Magdeburg, Germany, pp 1–10

Krieter S, Thüm T, Schulze S, Schröter R, Saake G (2018) Propagating configuration decisions with modal
implication graphs. In: 40th international conference on software engineering (ICSE). Gothenburg,
Sweden, pp 898–909

Lagniez JM, Marquis P (2017) An improved decision-DNNF compiler. In: 26th International joint confer-
ence on artificial intelligence (IJCAI). Melbourne, Australia

Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer
for t-tests and ANOVAs. Frontiers in Psychology 4(863):1–12

Lin J (1991) Divergence measures based on the shannon entropy. IEEE Transactions on Information Theory
37(1):145–151

Meinel C, Theobald T (1998) Algorithms and data structures in VLSI design: OBDD - foundations and
applications. Springer, New York

Mendonça, M (2009) Efficient reasoning techniques for large scale feature models. Ph.D. thesis, University
of Waterloo

de Moura L, Bjørner N (2008) Z3: An Efficient SMT Solver. In: 14th International conference on tools and
algorithms for the construction and analysis of systems (TACAS). Budapest, Hungary, pp 337–340

Muñoz DJ, Oh J, Pinto M, Fuentes L, Batory D (2019) Uniform random sampling product configurations of
feature models that have numerical features. In: 23rd international systems and software product line
conference (SPLC). Paris, France, pp 289–301

Nair V, Menzies T, Siegmund N, Apel S (2017) Using bad learners to find good configurations. In: 11th
joint meeting on foundations of software engineering (ESEC/FSE). Paderborn, Germany, pp 257–267

Narodytska N, Walsh T (2007) Constraint and variable ordering heuristics for compiling configuration
problems. In: International joint conference on artificial intelligence (IJCAI). Hyderabad, India, pp
149–154

Naveh Y, Rimon M, Jaeger I, Katz Y, Vinov M, Marcus E, Shurek G (2006) Constraint-based random stim-
uli generation for hardware verification. In: 18th innovative applications of artificial intelligence con-
ference (IAAI). Boston, Massachusetts, USA, pp 1720–1727

Nöhrer A, Egyed A (2013) C2O configurator: a tool for guided decision-making. Automated Software Engi-
neering 20(2):265–296

Oh J, Batory D, Myers M, Siegmund N (2017) Finding near-optimal configurations in product lines by ran-
dom sampling. In: 11th joint meeting on foundations of software engineering (ESEC/FSE). New York,
NY, USA, pp 61–71

Oh J, Gazzillo P, Batory DS (2019) t-wise coverage by uniform sampling. In: 23rd international systems and
software product line conference (SPLC). Paris, France, pp 84–87

 Empirical Software Engineering (2022) 27:44

1 3

44 Page 34 of 34

Pett T, Krieter S, Thüm T, Lochau M, Schaefer I (2021) AutoSMP: An evaluation platform for sampling
algorithms. In: 25th systems and software product line conference (SPLC). Leicester, United Kingdom

Pett T, Thüm T, Runge T, Krieter S, Lochau M, Schaefer I (2019) Product sampling for product lines: The
scalability challenge. In: 23rd international systems and software product line conference (SPLC).
Paris, France, pp 78–83

Plazar Q, Acher M, Perrouin G, Devroey X, Cordy M (2019) Uniform sampling of SAT solutions for con-
figurable systems: Are We There Yet? In: 12th IEEE conference on software testing, validation and
verification (ICST). Xian, China, pp 240–251

Roy S, Pandey A, Dolan-Gavitt B, Hu Y (2018) Bug synthesis: Challenging bug-finding tools with deep
faults. In: 26th ACM joint meeting on european software engineering conference and symposium on
the foundations of software engineering (ESEC/FSE). Lake Buena Vista, Florida, USA, pp 224–234

Sharma S, Gupta R, Roy S, Meel KS (2018) Knowledge compilation meets uniform sampling. In: 22nd
international conference on logic for programming, artificial intelligence and reasoning (LPAR).
Awassa, Ethiopia, pp 620–636

van Solingen R, Berghout E (1999) The goal/question/metric method: A practical guide for quality improve-
ment of software development. McGraw-Hill, New York

Temple P, Galindo JA, Acher M, Jézéquel JM (2016) Using machine learning to infer constraints for product lines.
In: 20th international systems and software product line conference (SPLC). Beijing, China, pp 209–218

Thurley M (2006) sharpSAT - Counting models with advanced component caching and implicit BCP. In:
9th international conference on theory and applications of satisfiability testing (SAT). Seattle, WA,
USA, pp 424–429

Trochim WM, Donnelly JP, Arora K (2015) Research methods: the essential knowledge base. Wadsworth
Publishing

Varshosaz M, Al-Hajjaji M, Thüm T, Runge T, Mousavi MR, Schaefer I (2018) A classification of product
sampling for software product lines. In: 22md International Systems and Software Product Line Con-
ference (SPLC). Gothenburg, Sweden, pp 1–13

Vasishth S, Broe M (2011) The foundations of statistics: a simulation-based approach. Springer, New York
Weckesser M, Kluge R, Pfannemüller M, Matthé M, Schürr A, Becker C (2018) Optimal reconfiguration of

dynamic software product lines based on performance-influence models. In: 22nd international sys-
tems and software product line conference (SPLC). Gothenburg, Sweden, pp 98–109

Winter B (2020) Statistics for linguists: an introduction using R. Routledge, Evanston
Yuan J, Albin K, Aziz A, Pixley C (2002) Simplifying constraint solving in random simulation generation.

In: 11th IEEE/ACM international workshop on logic & synthesis (IWLS). New Orleans, Louisiana,
USA, pp 185–190

	Uniform and scalable sampling of highly configurable systems
	Abstract
	1 Introduction
	2 Related work
	2.1 Uniform random samplers
	2.1.1 Atomic mutations (QuickSampler)
	2.1.2 Hashing-based sampling (Unigen2)
	2.1.3 Counting-based sampling (KUS, Smarch, and Spur)
	2.1.4 New: BDDSampler, a scalable and uniform sampler

	2.2 Prior work on testing sampler uniformity
	2.2.1 Method 1: Generate a massive sample with  , and compare it with another one obtained simulating an ideal uniform sampler
	2.2.2 Method 2: Assume the existence of a uniform sampler  , and compare the samples generated by both and
	2.2.3 Method 3: Measure the distance between the theoretical variable probabilities with the empirical variable frequencies in a sample
	2.2.4 Method 4: A statistical goodness-of-fit test that compares the theoretical variable probabilities with the empirical variable frequencies in a sample
	2.2.5 New: an improved goodness-of-fit test
	2.2.6 Recap

	3 The BDDSampler Tool
	3.1 From configuration models to Boolean formulas
	3.2 A brief introduction to BDDs
	3.3 How BDDSampler works

	4 Assessing the uniformity of SAT solution samplers
	4.1 The SFpC goodness-of-fit test
	4.2 Sample size estimation

	5 Empirical evaluation
	5.1 Experimental setup
	5.2 Q1: Scalability of samplers
	5.3 Q2: Uniformity of samplers
	5.4 Q3: Scalability of the SFpC test
	5.5 Q4: Validity of SFpC
	5.6 Q5: Reliability of SFpC

	6 Discussion
	7 Conclusions
	8 Material
	Acknowledgements
	References

