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Abstract
Many analyses on configurable software systems are intractable when confronted with 
colossal and highly-constrained configuration spaces. These analyses could instead use 
statistical inference, where a tractable sample accurately predicts results for the entire 
space. To do so, the laws of statistical inference requires each member of the population 
to be equally likely to be included in the sample, i.e., the sampling process needs to be 
“uniform”. SAT-samplers have been developed to generate uniform random samples at a 
reasonable computational cost. However, there is a lack of experimental validation over 
colossal spaces to show whether the samplers indeed produce uniform samples or not. This 
paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test 
to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and five 
other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our 
experimental results show only BDDSampler satisfies both scalability and uniformity.
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1 Introduction

Generating random SAT-solutions is of critical importance in several domains: Software 
Product Lines (SPLs) analysis and configuration (Krieter 2019; Muñoz et  al. 2019; Oh 
et al. 2017), software testing (Chakraborty and Meel 2019; Dutra et al. 2018; Plazar et al. 
2019; Roy et  al. 2018), and integrated circuit simulation and verification (Hëbner and 
Becker 2011; Naveh et al. 2006; Yuan et al. 2002).

To get a sense of this problem’s relevancy and complexity, consider an example taken 
from the SPL domain. BusyBox1 is a software tool that replaces many standard GNU/
Linux utilities with a single small executable, thus providing an environment customized 
for a diversity of embedded systems. To achieve size-optimization, BusyBox is remarkably 
modular, supporting the inclusion/exclusion of 613 features at compile time. These features 
and their interrelationships are specified with a configuration language named Kconfig.2 
To guarantee that every valid configuration satisfies all dependencies, the Kconfig model 
of BusyBox is translated into a Boolean formula that is then processed with a logic engine 
(Batory 2005; Fernandez-Amoros et al. 2019) (e.g., a SAT solver (Biere et al. 2009)). A 
valid configuration corresponds to a satisfiable assignment of the formula, also called, a 
SAT solution (Plazar et al. 2019) or a witness (Chakraborty and Meel 2019).

As a consequence of the inter-feature dependencies, the space of valid configurations 
( 7.428 ⋅ 10146 ) is a tiny portion of the whole configuration space ( 2613 ): only 2.185 ⋅ 10−36% 
of the possible configurations are valid (Heradio et al. 2020). Nevertheless, the population 
of valid configurations is still colossal. Those SPL analyses that examine every valid con-
figuration are unscalable.

For instance, Halin et  al. (2019) adopted an exhaustive strategy to test the JHipster3 
system, checking all its valid configurations. JHipster is a code generator for web applica-
tions with 45 selectable features that can produce a total of 26,256 valid configurations. 
Checking this modest configuration space with the INRIA Grid’50004 required 4,376 
hours of CPU time ( ∼ 182 days), and 5.2 terabytes of disk space.

Others have advocated approaching this and related problems via statistical inference 
(Alférez et al. 2019; Alves Pereira et al. 2020; Guo et al. 2018; Kaltenecker et al. 2019; 
Kolesnikov et al. 2019; Nair et  al. 2017; Oh et al. 2017; Temple et  al. 2016; Weckesser 
et al. 2018); that is, working with a tractable sample that predicts the results for the entire 
population. An essential requirement is that all samples be genuinely representative of the 
population (Kaplan 2012). In other words, each member of the population must be equally 
likely to be included in a sample. Authors often use the term uniform random sampling 
(Oh et al. 2017; Plazar et al. 2019; Sharma et al. 2018) for this idea.

A naive approach to get such a sample would (i) generate a random configuration set 
without considering feature dependencies, and then (ii) check with a logic engine if each 
configuration conforms to those dependencies. Unfortunately, and as mentioned above, fea-
ture dependencies shrink the configuration space extraordinarily, and so getting a single 
valid configuration randomly is extremely unlikely. As a result, more advanced algorithms 
generate valid and uniform random samples at a reasonable computational cost.

1 https:// busyb ox. net/
2 https:// www. kernel. org/ doc/ Docum entat ion/ kbuild/ kconfi g- langu age. txt
3 https:// www. jhips ter. tech/
4 https:// www. grid5 000. fr/

https://busybox.net/
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.jhipster.tech/
https://www.grid5000.fr/
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Verifying that these algorithms and their tools indeed generate genuine uniform sam-
ples is a challenge by itself, because it requires examining the consistency between sam-
ple statistics and their corresponding population parameters (e.g., how frequently a feature 
appears in a sample compared to its probability of being included in every valid configura-
tion (Heradio et  al. 2019)). As configuration spaces can be colossal, current procedures 
that certify a sampler’s uniformity has the severe shortcoming of requiring gigantic sample 
sizes to estimate reliable statistics (Dutra et al. 2018; Achlioptas et al. 2018; Chakraborty 
and Meel 2019). Consequently, sampler uniformity has been checked only on miniature 
models so far, which is not convincing. Also, most uniformity procedures compute popula-
tion parameters in a poorly scalable way (e.g., requiring calling a #SAT solver thousands of 
times (Plazar et al. 2019)).

This paper extends our paper in SPLC’20 (Heradio et al. 2020), where (i) a statistical 
test is formulated to reduce the sample size required for assessing a samplers’ uniform-
ity, and (ii) population parameters are computed with scalable algorithms we proposed in 
Heradio et al. (2019). The additional contributions of this present paper are: 

1. A new sampler called BDDSampler, which is built upon a Binary Decision Diagram 
(BDD) (Bryant 1986) technology (see Section 3).

2. A new statistical test to validate a samplers’ uniformity, reducing the sample size 
requirements even more than our previous test (see Section 4).

3. An experimental validation with our new test of BDDSampler and other five state-of-
the-art samplers (KUS (Sharma et al. 2018), QuickSampler (Dutra et al. 2018), Spur 
(Achlioptas et al. 2018), Smarch (Oh et al. 2019), and Unigen2 (Chakraborty et al. 
2013; Chakraborty 2015)) on configuration models with up to 18,570 variables (see 
Section 5).

4. Experimental results show (i) our new statistical test needs the smallest sample size of 
all existing uniformity validation methods, and (ii) BDDSampler is the only sampler 
that satisfies both uniformity and scalability. Our software artifacts (BDDSampler, and 
the data and code scripts for replicating the experiments) are freely available at public 
repositories (see Section 8).

2  Related work

Before discussing related work, a terminological clarification is needed. In the machine 
learning, the term sample usually refers to a single data point (Chollet and Allaire 2018). 
However, in inferential statistics, a sample is typically a collection of cases, where the 
number of cases in the sample is the sample size (Chihara and Hesterberg 2011; Kaplan 
2012). This paper adopts this latter terminology, and consequently, a sample is a set of con-
figurations (i.e., a collection of SAT-solutions), whose cardinal is its sample size.

Here is additional standard statistical terminology that we will use in this paper. Inferen-
tial statistics aims to generalize the results obtained from a sample to the entire population. 
To do so, the most widespread approach, called Null Hypothesis Significance Test (NHST), 
quantifies the probability of obtaining the sample results conditioned on the assumption 
that a given null hypothesis ( H0 ) is true (NHST fundamentals are explained in Chapter 13 
of Kaplan (2012) and Chapter 3 of Vasishth and Broe (2011)). If such probability (named 
p-value) is less or equal than an established threshold (called the significance level ( � )) 
then H0 is rejected, and thus its alternative hypothesis Ha accepted. Otherwise, H0 is kept. 
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As Table 1 shows, two mistakes under this framework can be made due to unusual random 
samples: rejecting a true H0 (named Type 1 error), and failing to reject a false H0 (called 
Type 2 error). The expression 1 − � is known as the test’s power. The experimenter can 
adjust the Type 1 and 2 error probabilities through the thresholds � and � (see Chapter 4 of 
Vasishth and Broe (2011)).

2.1  Uniform random samplers

The following sections summarize some of the most common strategies to generate uni-
form random samples for a model of a configuration space that is encoded as a Boolean 
formula �.

2.1.1  Atomic mutations (QuickSampler)

QuickSampler5 (Dutra et al. 2018) uses a heuristic to gain scalability by minimizing the 
number of calls to a constraint solver. It generates a random configuration without tak-
ing into account the formula constraints. This configuration often violates constraints and 
thus is unsatisfiable. So, QuickSampler calls the Z3 solver (de Moura and Bjørner 2008) 
to fix the configuration by finding a MAX-SAT-solution. Then, QuickSampler flips the 
value of each variable and calls again Z3 to get another valid configuration. The differ-
ences between the variable values of the original and flipped SAT configurations are called 
atomic mutations. By combining mutations, QuickSampler quickly generates new con-
figurations without calling the solver as those configurations are usually legal (Dutra et al. 
2018).

2.1.2  Hashing‑based sampling (Unigen2)

Several techniques divide the space of SAT-solutions into small “cells” of approximately 
the same size using r independent hash functions. Accordingly, sampling is done by choos-
ing a cell at random, and then getting a satisfying assignment for that cell using a SAT 
solver. A critical point of these techniques is determining the “right” r value. For instance, 
Bellare et al. (2000) showed that an r equal to the number of formula variables guarantees 
uniformity. However, Chakraborty et al. (2013) reported that such r does not scale in prac-
tice; in contrast, r = 3 scales better and ensures near-uniformity. Unigen26 (Chakraborty 
2015) develops these ideas further, giving stronger uniformity guarantees.

2.1.3  Counting‑based sampling (KUS, Smarch, and Spur)

In Section 7.1.4 of Knuth (2009), Knuth showed how to accomplish uniform random sam-
pling by subsequently partitioning the SAT-solution space on variable assignments, and 
then counting the number of solutions of the resulting parts. Again, � be a Boolean for-
mula of v variables x1, x2,… , xv ; let #SAT(�) denote the number of solutions to � ; and let 
r ∈ [0, 1] be a random number in the unit interval. Conceptually, the procedure works as 
follows: The number of solutions where x1 is true is counted, namely #SAT(� ∧ x1) . x1 

5 https:// github. com/ Rafae lTupy namba/ quick sampl er
6 https:// bitbu cket. org/ kulde epmeel/ unigen

https://github.com/RafaelTupynamba/quicksampler
https://bitbucket.org/kuldeepmeel/unigen
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follows a Bernoulli distribution with probability p1 =
#SAT(�∧x1)

#SAT(�)
 . x1 is assigned false if 

r ≤ p1 , true otherwise. Suppose x1 is assigned false. Then, x2 follows a Bernoulli distribu-
tion with probability p2 =

#SAT(𝜑∧x̄1∧x2)

#SAT(𝜑∧x̄1)
 , and it would be randomly assigned. The procedure 

advances until the last variable xv is assigned, and thus the random solution is completed.
The original algorithm by Knuth is specified on BDDs, as the probabilities required for 

all the possible SAT-solutions are computed just once with a single BDD traversal, and 
then reused every time a random configuration is generated. Oh (2017) reinvented Knuth’s 
algorithm and was the first to implement and apply it to SPL analyses. Since then, Knuth’s 
algorithm has been adapted to other knowledge compilation and Davis-Putnam-Logemann-
Loveland (DPLL) (Davis et  al. 1962) approaches. In particular, (i) the KUS7 sampler 
(Sharma et al. 2018) substitutes BDDs with deterministic-Decomposable Negation Normal 
Forms (d-DNNFs), and (ii) Spur8 (Achlioptas et al. 2018) and Smarch9 (Oh et al. 2019) 
count SAT solutions with a #SAT-solver named sharpSAT (Thurley 2006).

2.1.4  New: BDDSampler, a scalable and uniform sampler

Section 3 describes a new sampler called BDDSampler, which is based on Knuth’s algo-
rithm and implemented on top of the CUDD10 library for BDDs.

According to the experimental results reported in Section 5, the only sampler that sat-
isfies both scalability and uniformity is BDDSampler. More specifically, evidence shows 
that:

– BDDSampler, KUS, QuickSampler, and Spur are considerably faster than Smarch 
and Unigen2.

– In terms of uniformity, there are three types of samplers: (i) those that mostly fail to 
produce uniform samples (QuickSampler), (ii) those that usually work but from time 
to time generate non-uniform samples (KUS and Spur), and (iii) those that always pro-
duce uniform samples (BDDSampler, Smarch, and Unigen2).

Table 1  Type 1 and 2 errors under the NHST framework

H0 is true in reality ( H0) H0 is false in reality ( ¬H0)

The decision inferred Pr(R|H0) = � Pr(R|¬H0) = 1 − �

from the sample is Type 1 error Power
“reject H0 ” (R)
The decision inferred Pr(¬R|H0) = 1 − � Pr(¬R|¬H0) = �

from the sample is Type 2 error
“do not reject H0 ” ( ¬R)

7 https:// github. com/ meelg roup/ KUS
8 https:// github. com/ ZaydH/ spur
9 https:// github. com/ jeho- oh/ Kclau se_ Smarch
10 https:// github. com/ vscos ta/ cudd

https://github.com/meelgroup/KUS
https://github.com/ZaydH/spur
https://github.com/jeho-oh/Kclause_Smarch
https://github.com/vscosta/cudd
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2.2  Prior work on testing sampler uniformity

The following sections summarize the methods that have been devised to test the uniform-
ity of a random sampler �.

2.2.1  Method 1: Generate a massive sample with � , and compare it with another one 
obtained simulating an ideal uniform sampler

This is the most common technique in the literature (Achlioptas et al. 2018; Chakraborty 
2015; Dutra et al. 2018; Plazar et al. 2019; Sharma et al. 2018). First, the total number n of 
SAT-solutions is counted for the Boolean formula � , typically using a #SAT-solver. Hav-
ing n, the generation of a uniform sample with size s is simulated as follows: imagine that 
numbers 1, 2,… , n are put into a box; then, s numbers are sampled with replacement from 
the box, guaranteeing that the probability each number has to be extracted is 1

n
.

For example, JHipster encompasses 26,256 valid configurations (Halin et  al. 2019). 
Figure 1 shows the histogram of a sample ten times greater than the number of configura-
tions ( s = 26, 256 ⋅ 10 ), which has been obtained sampling with replacement from the set 
{1 , 2, … , 26256} . The x-axis depicts numbers’ occurrences, i.e., there are numbers that 
appear 0, 1, … , 27 times in the sample; the y-axis shows how frequent are those occur-
rences in the sample. As expected, most numbers appear ten times (see the red vertical line 
in Fig. 1), however, and due to randomness, some numbers appear more frequently than 
others.

Another sample with size s (whose value is quantified shortly), is then generated with 
sampler � . For this sample, a counterpart histogram to Fig. 1 is obtained, representing how 
often solutions appear in that sample.

Finally, the uniformity of � is verified by measuring the distance between both histo-
grams, using, for instance, the Kullback-Leibler divergence (Achlioptas et al. 2018).

Unfortunately, this method has a severe limitation: it does not scale except for formulas 
with a small number of SAT-solutions because, to produce reliable results, s needs to be 
much larger than n (see Achlioptas et al. (2018); Dutra et al. (2018) for an explanation). 
For example, Dutra et al. (2018) propose s ≥ 5n . As the number of solutions grows expo-
nentially with the number of variables of � , the method only works for the simplest models 
with just a few features.

2.2.2  Method 2: Assume the existence of a uniform sampler � , and compare 
the samples generated by both � and �

Chakraborty and Meel (2019) proposed this method and implementation called barbarik.11 
The method makes a strong assumption: there is a sampler � that is known to be uniform. 
Thus, two samples of the same size s are generated with � and � and, depending on the dis-
tance between the samples, i.e., on how similar they are, barbarik decides if � is approxi-
mately uniform.

The key of the method is how to define “approximately” for reaching a balance 
between uniformity and sample size, i.e., for avoiding the large s that Method 1 
requires. Two parameters, called tolerance � and intolerance � , adjust the definition of 

11 https:// github. com/ meelg roup/ barba rik

https://github.com/meelgroup/barbarik
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“uniformity” to avoid the above problems. A sampler is uniform whenever the prob-
ability p1, p2,… , pn of all n solutions is exactly 1

n
.

Barbarik relaxes this definition, proposing that a sampler is additive almost-uniform 
if p1, p2,… , pn ∈

[
1−�

n
,
1+�

n

]
 . Moreover, a sampler is �-far from uniformity if

Chakraborty and Meel claim that s depends on � and � exclusively, but not on n. In par-
ticular, they state that a uniformity test with significance level � = 0.1 (i.e., 0.9 probability 
of accepting the uniformity of a sampler when it is genuinely uniform) and Type 2 error 
� = 0.1 (i.e., 0.9 probability of rejecting the uniformity of a sampler that is not uniform) 
is accomplished when � = 0.6 and � = 0.9 , requiring a sample size of 1, 729, 750. Unfor-
tunately, they do not provide a detailed formal proof for these settings in Chakraborty and 
Meel (2019).

An evident weakness of this method is the necessity of a sampler � with certified 
uniformity as a support lever. It is worth noting that, although an algorithm can be 
proven to generate uniform samples theoretically, some of its implementations may 
have errors. In other words, every sampling program needs to be tested, and thus 
Method 2 implicitly assumes the existence of another reliable uniformity testing 
method.

2.2.3  Method 3: Measure the distance between the theoretical variable probabilities 
with the empirical variable frequencies in a sample

Plazar et al.’s method (Plazar et al. 2019) begins computing the theoretical probability 
each variable x has to appear in a SAT-solution. To do so, the procedure introduced in 
Section  2.1.3 is adopted, calling a #SAT solver repeatedly, one time per variable. 
#SAT(�) gives the total number of SAT-solutions, and #SAT(� ∧ x) calculates the num-
ber of solutions where x is true. Hence, the probability of x is p =

#SAT(�∧x)

#SAT(�)
 . Likewise, 

if x is true t times in a sample of size s, its empirical frequency is f = t

s
 . Then, the 

deviation between p and f is d = 100 ⋅
|p−f |

p
 . Finally, Plazar et al. propose two thresh-

olds for d: (i) when d ≤ 10 for all variables, the deviations are very low, and thus sam-
pler uniformity is accepted; (ii) when d ≥ 50 for some variables, they show very high 
deviations, and so uniformity is rejected. Regarding the sample size, Plazar et al. pro-
pose always using s ∼ 106 , independently of the number of variables of � (no formal 
justification is given for this specific value in Plazar et al. (2019)).

Regrettably, this method often throws false negatives for variables with low prob-
abilities. Suppose a variable has p = 0.01 . Then, a genuine uniform sampler might 
easily generate a sample where f is slightly different just due to randomness, e.g., 
f = 0.015 . Therefore, d = 100 ⋅

|0.01−0.015|

0.01
= 50 , and thus the sampler uniformity would 

be rejected. The chances that these types of wrong diagnoses happen increases with 
the number of low-probability variables, and it is worth noting that real models with 
numerous low-probability variables are not “corner cases”; for example, in three out 
of the seven configuration models analyzed in Heradio et al. (2019), more than 46% of 
their variables have p ≤ 0.05 : the open-source project Fiasco v2014092821, the Dell 
laptop configurator, and the Automotive 02 system.

|
|
|

n∑

i=1

pi −
1

n

|
|
|
≥ �



 Empirical Software Engineering (2022) 27:44

1 3

44 Page 8 of 34

2.2.4  Method 4: A statistical goodness‑of‑fit test that compares the theoretical 
variable probabilities with the empirical variable frequencies in a sample

In the past (Heradio et al. 2020), we presented a procedure called Feature Probability (FP) 
test, which compares the empirical feature frequencies in a sample with the theoretical fea-
ture probabilities in the whole population of SAT-solutions. Instead of using the limited 
Method 3 deviation measure, our FP method (i) has a robust mathematical basis, (ii) esti-
mates the statistical significance of the results (i.e., how generalizable they are), and (iii) 
supports adjusting the sample size according to precise statistical criteria (i.e., Type 1 and 2 
errors, and effect size).

It is worth noting that a major shortcoming of Methods 1, 2, and 3 is the large sample 
size they need. For instance, in Achlioptas et al. (2018) and Sharma et al. (2018), Method 
1 is applied on a model called blasted_case110 with 287 variables, requiring s = 4 ⋅ 106 
SAT-solutions. In Chakraborty and Meel (2019), Method 2 is used on blasted_case110 
as well, needing this time 1, 729, 750 SAT-solutions to ensure probability errors of Type 
1 � = 0.1 and Type 2 � = 0.1 . In contrast, our FP test provides stronger test guarantees 
( � = 0.01 and � = 0.01 ) for blasted_case110 with a minimal sample size of 13,027 solu-
tions (i.e., a 99.25% sample size reduction with respect to Method 2).

2.2.5  New: an improved goodness‑of‑fit test

Section 4 presents a new procedure that improves Method 4 by, instead of examining the 
variable probabilities, analyzing how the number of variables assigned to true distributes 
along the SAT-solutions. We show in Section 5 that the new method requires even smaller 
samples, thus widening the support for testing samplers’ uniformity on larger models. For 
example, the sample size our new method requires for blasted_case110 with � = 0.01 and 
� = 0.01 becomes 6,563 solutions.

2.2.6  Recap

Excluding the methods presented in this article and in our conference paper, there are seri-
ous practical problems in applying existing ways to test for sampler uniformity. We provide 
experimental evidence in Section  5 that our improved goodness-of-fit test is superior to 
prior work as it requires the smallest sample size of all existing tests, thus enabling the ver-
ification of samplers’ uniformity in large models. As we will see, this highly increases the 
test sensitivity to detect samplers’ uniformity flaws. Moreover, results show that our test 

Fig. 1  Simulated uniform 
random sample of the JHipster 
configuration model
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provides (i) valid judgements, which are consistent with the verdicts given by the alterna-
tive methods proposed in the literature, and (ii) reliable judgements, which remain consist-
ent when the test is applied repeatedly to the same model and sampler.

3  The BDDSampler Tool

This section describes BDDSampler: a sampler that uses Binary Decision Diagrams 
(BDDs). A practical example how configuration models can be translated into Boolean for-
mulas is presented in Section 3.1. Then, a BDD encoding of a Boolean formula is covered 
in Section 3.2. Finally, how BDDSampler works is explained in Section 3.3.

3.1  From configuration models to Boolean formulas

Let us start with an example to help to explain BDDSampler and our samplers’ uniformity 
test. As already mentioned in this paper’s introduction, BusyBox supports the inclusion/
exclusion of a number of features at compile time. These features and their interrelation-
ships are specified with a configuration language named Kconfig which is used in many 
other relevant open-source projects (Berger et al. 2013), such as the Linux Kernel, axTLS, 
EmbToolkit, Freetz, etc.

Figure 2 shows an excerpt of the Kconfig specification of BusyBox v1.23.2. There are 
several configs encoding six features and their interdependencies. All features (STATIC, 
PIE, ..., FEATURE_SHARED_BUSYBOX) are Boolean (see the bool keyword in 
Lines 2, 4, ..., 15), meaning that they can be either selected or deselected. Configs trig-
ger a prompt to request the user for their Boolean feature value, e.g., Build BusyBox as 
a static binary (no shared libs) in Line 2. Finally, some dependencies between features 
are set, e.g., according to the depends sentence in Line 10, BUILD_LIBBUSYBOX can 
only be selected if none of the following features are selected: FEATURE_PREFER_
APPLETS, PIE, neither STATIC.

The graph in Fig. 3 depicts the entire BusyBox configuration model, which includes 
613 features and 530 inter-dependencies; nodes represent features, and edges depict 
dependencies. The Kconfig excerpt in Fig. 2 is zoomed in Fig. 3.

Given the configuration models’ complexity, they are usually translated into Boolean 
formulas that are then processed with logic engines. For instance, Eq.  1 is the Boolean 
encoding of Fig. 2 (a detailed explanation of how to convert Kconfig specifications into 
Boolean formulas is given in Fernandez-Amoros et al. (2019)). In this section and the fol-
lowing one, we explain how to use BDDs for (i) generating random samples from the for-
mulas, and (ii) testing the uniformity of an input sampler.

(1)

� ≡(¬STATIC ∨ ¬PIE)∧

(¬BUILD_LIBBUSYBOX ∨ ¬FEATURE_PREFER_APPLETS)∧

(¬BUILD_LIBBUSYBOX ∨ ¬PIE)∧

(¬BUILD_LIBBUSYBOX ∨ ¬STATIC)∧

(¬FEATURE_INDIVIDUAL ∨ BUILD_LIBBUSYBOX)∧

(¬FEATURE_SHARED_BUSYBOX ∨ BUILD_LIBBUSYBOX)
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3.2  A brief introduction to BDDs

A BDD (Bryant 1986) encodes a Boolean formula as a rooted directed acyclic graph com-
posed of terminal and non-terminal nodes. Terminal nodes are represented as  and , and 
non-terminal nodes are labeled with the formula variables. Two edges, named low and 
high, come out of every non-terminal node. Low is depicted with a dashed line ( ⤏ ), and 
high with a solid line ( → ). A BDD encodes every possible assignment of the formula vari-
ables as a path that descends from the root to the terminal nodes, going through solid lines 
when the corresponding variables are assigned to true and through dashed lines otherwise. 
An assignment is satisfiable, i.e., it evaluates the formula to true, whenever the traversed 
path ends at .

Figure 4 depicts a BDD that encodes the BusyBox excerpt specified by Eq. 1. A con-
figuration whose only activated features are BUILD_LIBBUSYBOX and FEATURE_
SHARED_BUSYBOX conforms with the constraints (i.e., it is valid) and so it corresponds 
to the path BUILD_LIBBUSYBOX → FEATURE_INDIVI-DUAL ⤏ FEATURE_
SHARED_BUSYBOX → FEATURE_PREFER_APP-LETS ⤏ STATIC ⤏ PIE ⤏ . In 
contrast, as STATIC and PIE are mutually exclusive, no configuration includes them simul-
taneously. Thus, all paths with solid lines coming out of both STATIC and PIE finish at .

BDDs are typically ordered and reduced. A BDD is ordered when its variables are in the 
same position, called index, in every path from the root to the terminal nodes. For example, 
in Fig. 4, STATIC (whose index is 4) always goes before PIE and after FEATURE_PRE-
FER_APPLETS (whose indices are 5 and 3, respectively). A BDD is reduced if it is free of 
redundant information. For instance, every blue/dark-shaded node in Fig. 4 is superfluous 
because both of its edges point to the same node and thus the formula evaluation is identi-
cal whether these variables are assigned to true or false. Consequently, these unnecessary 
tests are avoided in the reduced BDD in Fig. 5 to save computer memory.

It is worth noting that the variable ordering chosen to build the BDD has a tremendous 
impact on its size. Whereas a BDD can be reduced optimally (the reduction procedure was 
presented in the seminal article (Bryant 1986)), obtaining the best variable arrangement 
that minimizes its size is an NP-problem (Chapters 8 and 9 of Meinel and Theobald (1998) 
provide a comprehensive discussion on this topic). Several variable ordering heuristics 
(Fernandez-Amoros et  al. 2020; Fernandez-Amoros et  al. 2019; Mendonça 2009; Naro-
dytska and Walsh 2007) have been proposed for the specific case of configuration model 
formulas. As reported in Section 5, we have been able to synthesize BDDs for large con-
figuration models, with up to 17,000 features, by using these heuristics.

3.3  How BDDSampler works

BDDSampler takes an ordered and reduced BDD as input and generates random configu-
rations in a two-step process described by Algorithms 1 and 2. Figure 5 summarizes Algo-
rithm 1 computations for our running example. The algorithm decorates each non-terminal 
node with its probability of reaching the terminal  if the associated variable is set to true. 
Algorithm 1 proceeds in a bottom-up fashion, collecting the number of SAT solutions that 
can be produced by its low and high children (solLO and solHI in Lines 8-9), adding them 
up (sol in Line 10), and then computing the ratio corresponding to the high child (pr in Line 
11). As the BDD is reduced, Algorithm  1 adjusts the solution counts in Lines 8-9 for the 
removed nodes with the expression 2index(nLO|HI)−index(n)−1 . For traversing efficiently the BDD, 
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Fig. 2  Excerpt of the BusyBox Kconfig specification
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Fig. 3  Graph-representation of the BusyBox Kconfig specification
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Algorithm 1 uses Bryant’s method (Bryant 1986) as follows: the algorithm is called in Line 12 
with the BDD root as argument and with a Boolean mark for every node being either all true 
or all false; then, it explores all nodes by recursively visiting the low and high children (Lines 
6 and 7). Whenever a node is visited, its mark value is complemented (Line 2). Comparing 
the node with its children’s marks, it is decided if the children have already been visited. The 
method ensures that each node is visited exactly once and that, when the traverse finishes, all 
node marks have the same value.

Fig. 4  Non-reduced BDD encod-
ing of Eq. 1

Fig. 5  Reduced BDD encoding 
of Eq. 1
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Whereas Algorithm 1 is run once as an initialization method, Algorithm 2 needs to be run as 
many times as configurations we want to generate. Algorithm 2 performs a random walk from 
the root to the terminal . When a non-reduced node is visited, the path is selected randomly 
according to its probability (Lines 11-16): if the node probability is p, then its low and high 
edges are chosen with probabilities 1 − p and p, respectively. Regarding the reduced nodes, the 
generated configuration will be valid no matter if their variables are set to true or false (that is 
the reason why these nodes were removed). Thus their value is chosen randomly with a 1/2 
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probability by taking into account that a reduced node index may be less than the BDD root 
index (Lines 6-7) or greater (Lines 17-18).

Algorithm 2 is remarkably fast since its time complexity is proportional to the number 
of indices (i.e., of variables), not the number of nodes in the BDD. Moreover, multiple 
instances of Algorithm 2 can be run in parallel over the same BDD, as the node probabili-
ties are read but not modified.

Finally, BDDSampler is built on top of CUDD 3.0.12 As other modern BDD libraries 
like Sylvan (van Dijk 2016), CUDD uses a technique called complement edges (Brace et al. 
1990) to save nodes. With this technique, edges are enriched with a complement attribute 
that removes the need of having two terminal-nodes (basically, when an edge has the com-
plement attribute enabled, the only terminal node is interpreted as its negation). Accord-
ingly, BDDSampler tweaks Algorithms 1 and 2 to work with complement edges. We have 
decided to show the algorithms for regular BDDs without complement arcs for simplicity.

The BDDs of 218 models, which will be used in Section 5 to perform our experimental 
evaluation, are available at https:// doi. org/ 10. 5281/ zenodo. 45149 19 in the DDDMP format 
that CUDD uses for complement edge BDDs.

4  Assessing the uniformity of SAT solution samplers

Figure 6 sketches our approach to verify that a sampler generates uniform random samples 
of a model that is encoded as a Boolean formula. The method compares empirical infor-
mation about a sample with theoretical information about the whole population of SAT-
solutions that the model represents.

4.1  The SFpC goodness‑of‑fit test

In statistics, the procedures for examining how well a sample agrees with the population 
distribution are known as goodness-of-fit tests (D’Agostino and Stephens 1986). They 
require characterizing both the sample and the population in terms of a quantitative meas-
ure. In particular, we propose the distribution of the number of variables assigned to true 
among all SAT-solutions, called the Selected Features per Configuration (SFpC) test. For 
instance, Fig. 7 compares the theoretical distribution of all 7.428 ⋅ 10146 SAT-solutions of 
the BusyBox model with the distribution of 17,738 configurations generated with the sam-
plers BDDSampler and QuickSampler, Fig. 7a,b respectively. The justification for this 
sample size 17,738 is given in Section 4.2.

The distribution of the whole population of SAT-solutions of a model can be computed 
with the Product Distribution (PD)13 algorithm we proposed in Heradio et al. (2019). PD 
takes the BDD encoding of a model as input, and as explained in Section 3.D of Hera-
dio et al. (2019), its time complexity is O(nv2) , where n is the number of BDD nodes and 
v the number of model variables. Accordingly, PD scales for large models. For instance, 
on an Intel(R) Core(TM) i7-6700HQ, it took 2.74 minutes to compute the distribution of 
the Automotive02 model (Krieter et al. 2018), which with 17,365 variables and 321,897 
clauses encompasses 5.26 ⋅ 101,441 SAT-solutions.

12 https:// github. com/ vscos ta/ cudd
13 https:// github. com/ rhera dio/ VMSta tAnal

https://doi.org/10.5281/zenodo.4514919
https://github.com/vscosta/cudd
https://github.com/rheradio/VMStatAnal
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As the theoretical histogram shows in Fig. 7a, the smallest and largest BusyBox con-
figurations have 6 and 571 features activated, respectively. 95% of the configurations have 
between 277 and 327 variables assigned to true.

The BDDSampler histogram (Fig. 7a) agrees with the normally distributed population. 
However, the QuickSampler histogram (Fig.  7b) is bimodal where most configurations 
have 100 or 200 features approximately, quite different from the theoretical histogram.

After exploring the sample’s goodness-of-fit graphically, it is desirable to advance 
towards a more formal test that provides an accurate numerical quantification. A good can-
didate to measure the distance/difference between the sample and population distributions 
is the Kullback–Leibler divergence14 (Cover and Thomas 2006). For discrete probability 
distributions P and F specified on the same probability space � , the Kullback–Leibler 
divergence from F to P is defined as:

However, the Kullback–Leibler divergence is not symmetric, and thus it cannot rigorously 
be considered a metric (Lin 1991). For this reason, we use its symmetrical and normalized 
version, which is named Jensen-Shannon divergence (Cover and Thomas 2006; Lin 1991) 
and defined as:

where M =
1

2
(P + F).

In our case, vectors F and P are defined as follows:

– F = [f0, f1,… , fn] stores the SAT-solution frequency distribution (i.e., the red histo-
grams in Fig. 7). That is, 

– P = [p0, p1,… , pn] stores the theoretical SAT-solution probability distribution of Fig. 7. 
That is, 

(2)DKL(P||F) =
∑

x∈�

P(x)log2

(
P(x)

F(x)

)

(3)JSD(P||F) =
1

2
DKL(P||M) +

1

2
DKL(F||M)

f0 =
#SAT solutions in the sample with no variables assigned to true

sample size

f1 =
#SAT solutions in the sample with 1 variable assigned to true

sample size

…

fn =
#SAT solutions in the sample with all variables assigned to true

sample size

pi =
#SAT solutions in the population with i variables assigned to true

population size

14 The Kullback–Leibler divergence and especially one simplified version called cross-entropy are widely 
used as loss functions to compare the neural network predicted output with the observations used to train 
the network (see Chapter 3 of Goodfellow et al. (2016) for a summary of the Kullback–Leibler divergence 
and cross-entropy applications to deep learning).
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To avoid worthless comparisons, all i-elements with pi = 0 are removed from F and 
P because, as all solutions in the sample are guaranteed to be valid, the corresponding 
fi ’s are necessarily 0 as well. For instance, the BusyBox model has 613 variables, but 
all valid configurations have between 6 and 571 variables assigned to true. Therefore, 
{f0, f1,… , f5, f572, f573,… , f613} and {p0, p1,… , p5, p572, p573,… , p613} are deleted from F 
and P, respectively.

The Jensen-Shannon divergence JSD(P||F) measures to what extent the difference 
between F and P is greater than expected by chance if F corresponded to a uniform random 
sample. In the extreme cases, JSD(P||F) = 0 when F totally matches P, and JSD(P||F) = 1 
when the F completely disagrees with P.

Nevertheless, JSD is a mere distance/difference metric, i.e., we cannot tell if JSD is sig-
nificantly greater than expected due to randomness. Therefore, a statistical inference test 
is needed to quantify how generalizable the obtained distance is, i.e., a test that estimates 
the probability of a specific value of JSD(P||F) assuming that the sampler is genuinely 
uniform. In the case that the estimated probability is excessively low (below a significance 
level � ), it is unlikely that the disagreement between F and P is due to chance, and so we 
can conclude that the sampler is not uniform.

Let s be the sample size (whose value we compute in Section 4.2), and m the number 
of elements in P after having removed those with pi = 0 . According to the proof given by 
Grosse et al. in Section 4.C of Grosse et al. (2002), 2s(ln2)JSD(P||F) has a �2 distribution 
with m − 1 degrees of freedom. As a result, a Chi-Squared goodness-of-fit test built upon 
the statistic 2s(ln2)JSD(P||F) guides us to decide whether the sampler is uniform. In our 
BusyBox running example, s = 17, 738 and m = 613 − 6 − 42 = 565 , hence if the sampler 
is uniform then 2 ⋅ 17, 738(ln2)JSD(P||F) should follow a �2

565
 distribution.

In contrast to typical Null Hypothesis Significance Tests (NHSTs), where the null 
hypothesis H0 states the opposite to what the researcher pursues to demonstrate, goodness-
of-fit tests are a special case of NHSTs where H0 is: “the sample agrees with the pop-
ulation” (see Chapter 3 of D’Agostino and Stephens (1986) for a detailed description of 
Chi-Squared goodness-of-fit tests). Coming back to our case study, let us set the threshold 
� = 0.01 to test the BusyBox samples generated with:

– BDDSampler: 

JSD(P||F) = 0.001085388

2 ⋅ 17, 738(ln2)JSD(P||F) = 26.68979

p − value = Pr
(

getting a value ≥ 26.68979||H0

)

∼ 1 > 𝛼

⇒ Test result ∶ Do not reject H0

Fig. 6  Proposed method for 
verifying if a sampler generates 
uniform samples for a model
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– QuickSampler: 

To sum up, the test corroborates numerically the histogram comparison in Fig.  7: 
BDDSampler generated a uniform sample, but QuickSampler did not.

4.2  Sample size estimation

The reliability of a Chi-Squared goodness-of-fit test depends on the following parameters 
(see Table 1):

– The significance level � sets the probability of making a Type 1 error, i.e., the probabil-
ity of rejecting H0 when it is indeed true (false positive). It is worth noting that � is also 
the threshold for rejecting H0 (i.e., H0 is rejected whenever the p-value ≤ �).

– � sets the probability of making a Type 2 error, i.e., the probability of accepting a false 
H0 (false negative). The expression 1 − � is called the test’s power, i.e., the probability 
of rejecting a false H0.

When H0 is false, it is false to some degree. That degree is measured by another parameter 
called the effect size (Lakens 2013). In particular, Cohen (1988) proposes the index w for 
measuring the effect size in Chi-Squared tests. As a rule of thumb, w values of 0.1, 0.3, and 
0.5 correspond to small, medium, and large effect sizes, respectively.

JSD(P||F) ∼ 1

2 ⋅ 17, 738(ln2)JSD(P||F) = 12, 923.04

p − value = Pr
(

getting a value ≥ 12, 923.04||H0

)

∼ 0 ≤ �

⇒ Test result ∶ Reject H0

Fig. 7  Distribution of all Bus-
yBox SAT-solutions compared 
with the distribution of 17,738 
configurations generated with 
BDDSampler and QuickSam-
pler 
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Interestingly, sample size, effect size, � , and � have an intimate relationship in NHSTs: 
given any three of them, the fourth can be determined. In Section 7.3 of Cohen (1988), 
Cohen provides different power tables to estimate the minimum sample size required to 
ensure the reliability of a Chi-Squared test given the values of �, � , w, and �2 ’s degrees of 
freedom. Nowadays, there is available statistical software that provides those tables, e.g., 
the R package pwr15 (see Chapter 10 of Kabacoff (2011)) and the G*Power16 tool (Faul 
et al. 2007).

In the previous section, we saw that the goodness-of-fit of any sample from the Bus-
yBox configuration model can be undertaken with a Chi-Squared test with 565 degrees 
of freedom. Then, according to Cohen’s power tables, the required sample size is 17,738 
configurations when � = � = 0.01 , and w = 0.1.

5  Empirical evaluation

This section describes the experimental evaluation of our approach using the Goal/ Ques-
tion/Metric (GQM) method (van Solingen and Berghout 1999). As Fig. 8 shows, the evalu-
ation pursues two goals (G1 and G2), which are refined into five questions (Q1-Q5) that are 
answered using different metrics.

The following points summarize our evaluation’s goals and questions:

G1: Samplers’ evaluation. The first goal G1 is to evaluate the scalability and uniform-
ity of BDDSampler and the following state-of-the-art samplers: KUS17 (Sharma et al. 
2018), QuickSampler18 (Dutra et al. 2018), Smarch19 (Oh et al. 2019), Spur20 (Ach-
lioptas et al. 2018), and Unigen221 (Chakraborty et al. 2013; Chakraborty 2015). G1 is 
broken down into Questions Q1 and Q2:

Q1: Samplers scalability. Are BDDSampler, KUS, QuickSampler, Smarch 
Spur, or Unigen2 able to generate samples with 1,000 configurations for models of 
all sizes within one hour?
Q2: Samplers’ uniformity. Do BDDSampler, KUS, QuickSampler, Smarch 
Spur, or Unigen2 always generate uniform samples?

G2: SFpC’s evaluation The second goal G2 is to evaluate the scalability and quality, in 
terms of validity and reliability, of our SFpC test. G2 is refined into Questions Q3-Q5:

Q3: SFpC’s scalability. How much time and how many configurations does SFpC 
need to check the uniformity of a sampler on a model?
Q4: SFpC’s validity. Does SFpC produce results consistent with the results obtained 
by other uniformity testing methods?
Q5: SFpC’s reliability. When SFpC is applied repeatedly to the same model and 
sampler, are the results consistent?

15 https:// cran.r- proje ct. org/ web/ packa ges/ pwr
16 https:// www. psych ologie. hhu. de/ arbei tsgru ppen/ allge meine- psych ologie- und- arbei tspsy cholo gie/ gpower. 
html
17 https:// github. com/ meelg roup/ KUS
18 https:// github. com/ Rafae lTupy namba/ quick sampl er
19 https:// github. com/ jeho- oh/ Smarch
20 https:// github. com/ ZaydH/ spur
21 https:// bitbu cket. org/ kulde epmeel/ unigen

https://cran.r-project.org/web/packages/pwr
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
https://github.com/meelgroup/KUS
https://github.com/RafaelTupynamba/quicksampler
https://github.com/jeho-oh/Smarch
https://github.com/ZaydH/spur
https://bitbucket.org/kuldeepmeel/unigen
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Section  5.1 presents the experimental setup. As Fig.  9 shows, three experiments E1-E3 
were performed to solve the questions (e.g., Experiment E2 supported answering Ques-
tions Q2, Q3, and Q5). Sections 5.2-5.6 describe these experiments and the specific met-
rics used to answer the questions. The detailed results and all the material needed to repli-
cate our experiments are available in the public repositories presented in Section 8.

5.1  Experimental setup

The samplers were tested against a suite of 218 models encoded as Boolean formulas in all 
of the following formats: 

1. DIMACS, which is the format QuickSampler, Smarch, Spur, and Unigen2 use as 
input. These samplers rely on SAT technology, and DIMACS is the format for Conjunc-
tive Normal Form (CNF) formulas that SAT technology uses.
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2. DDDMP, which is the format BDDSampler and its underlying library CUDD use for 
BDDs.

3. NNF, which is the format KUS uses for d-DNNFs.

In particular,

– The DIMACS files of the industrial SAT formulas and JHipster were retrieved from 
Plazar et al. (2019).

– The DIMACS file of LargeAutomotive was gathered from Krieter et al. (2018).
– The DIMACS file of DellSPLOT was obtained from Nöhrer and Egyed (2013).
– We generated the DIMACS files of axTLS, Fiasco, uClibc, ToyBox, BusyBox, and 

EmbToolkit by processing their Kconfig specifications with our tool Kconfig2Logic22 
(Fernandez-Amoros et al. 2019).

– We generated all DDDMP files from their corresponding DIMACS files with our tool 
Logic2BDD23 (Fernandez-Amoros et al. 2020).

– We generated all NNF files from their respective DIMACS files with the d-DNNF com-
piler d4 (Lagniez and Marquis 2017) that is embedded in KUS.

 In total, 209 are industrial SAT formulas (mostly modeling integrated circuits) that are 
typically used as a benchmark in the SAT-sampling literature (Achlioptas et al. 2018; 
Chakraborty 2015; Plazar et al. 2019). The remaining nine models represent configur-
able software systems. Table  2 describes the nine configuration models (the largest 
model is also referred as Automotive02 in the SPL literature (Krieter et al. 2018)).

The histogram in Fig. 10 shows the model size distribution according to their 
number of variables. Since there is a wide range from the smallest model in 
the benchmark to the largest one (from 14 to 18,570 variables), the scale has 
been logarithmically transformed to shrink the range and thus facilitate the fig-
ure interpretation (see Chapter  5 of Winter (2020) for an explanation on loga-
rithmic scale transformations). The scatter plot in Fig.  10 represents the model 
sizes in terms of their variables and clauses. The grey regression line shows that 
Log2(#Clauses) depends on 1.35 + 1.03 ⋅ Log2(#Variables) . Points corresponding to 
configuration models are labeled, and models with more and fewer clauses than 
those predicted by the linear regression are colored red and blue, respectively. 
Note that in the interval [9.88, 11.2] of Log2(#Variables) there are only 5 models, 
and all of them have fewer clauses than predicted. As these models are simpler in 
terms of clauses, processing them requires less time than expected for their vari-
able number, and thus regression curves in Figs. 12, 17, and 16 will show posi-
tive convexity in that interval.

The experiments were run on an Intel(R) Core(TM) i7-6700HQ, 2.60GHz, 16GB 
RAM, operating Linux Ubuntu 19.10. Samplers were executed on a single thread (i.e., 
with no parallelization), and without considering any Boolean formula preprocessing, 
such as Minimal Independent Support (MIS) (Ivrii et al. 2016).

22 https:// github. com/ david fa71/ Exten ding- Logic/ tree/ master/ code/ Kconfi g2Lo gic
23 https:// github. com/ david fa71/ Exten ding- Logic/ tree/ master/ code/ Logic 2BDD

https://github.com/davidfa71/Extending-Logic/tree/master/code/Kconfig2Logic
https://github.com/davidfa71/Extending-Logic/tree/master/code/Logic2BDD
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5.2  Q1: Scalability of samplers

The following experiment E1 was undertaken to obtain a sample set S1 for answering 
Q1. Each sampler generated a sample with one thousand configurations for every model 
in the benchmark. The timeout for each sample generation was set to one hour. Table 3 

Table 2  Software configuration models included in the benchmark

Model #Variables #Clauses #SAT-Solutions

JHipster (Halin et al. 2019) 45 104 26,256
axTLS 1.5.3 64 96 3.924 ⋅ 1012

(http:// axtls. sourc eforge. net/)
Fiasco 2014092821 113 4,717 5.144 ⋅ 109

(https:// os. inf. tu- dresd en. de/ fiasco/)
DellSPLOT (Nöhrer and Egyed 2013) 118 2,181 7.440 ⋅ 106

uClibc 201 50420 298 903 7.503 ⋅ 1050

(https:// www. uclibc. org/)
ToyBox 0.5.2 544 1,020 1.450 ⋅ 1017

(http:// landl ey. net/ toybox/)
BusyBox 1.23.2 613 530 7.428 ⋅ 10146

(https:// busyb ox. net/)
EmbToolkit 1.7.0 2,331 6,437 3.961 ⋅ 10334

(https:// www. embto olkit. org/)
LargeAutomotive (Krieter et al. 2018) 17,365 321,897 5.260 ⋅ 101,441

Fig. 10  Size of the benchmark 
models in terms of the number of 
variables and clauses
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summarizes the generation times for the configuration models. The histogram in Fig. 11 
shows the percentage of samples that each sampler was able to generate. In total, 257.92 
hours (10.75 days) of CPU time were needed for generating the samples (or reaching 
the timeout).

5.3  Q2: Uniformity of samplers

The following experiment E2 was carried out to obtain a sample set S2 for answer-
ing Q2, Q3, and Q5. Each sampler was run to generate a sample for every model in 
the benchmark. As Section 5.4 will explain in detail, the number of configurations per 
sample was estimated for � = 0.01, � = 0.01 , and w = 0.1 . The timeout for each sample 
generation was set to one hour. In total, 373.5 hours (15.56 days) of CPU time were 
needed for generating the samples (or reaching the timeout). The histogram in Fig. 13 
summarizes the results. Nearly all samples produced by BDDSampler, Smarch, Spur, 
and Unigen2 obtained high p-values in the range (0.9, 1]. In contrast, KUS and Quick-
Sampler generated many samples with p-values in the interval [0, 0.1]. Since � is set 
to 0.01, remember from Section 4.2 that a p-value less or equal to 0.01 means rejecting 
the uniformity hypothesis. Likewise, a p-value close to 1 reflects that the sample greatly 
supports the uniformity hypothesis. Table 4 summarizes the p-values for the configura-
tion models in detail.

Fig. 11  Percentage of samples that each sampler was able to generate (sample size = 1,000 configurations; 
timeout = 1 hour)

Table 3  Sample generation time in seconds for the configuration models (sample size = 1,000 configura-
tions; timeout = 1 hour)

Model BDD Sampler KUS Quick Sampler Smarch Spur Unigen2

JHipster 0.04 0.27 0.07 911.08 0.03 3.59
axTLS 0.04 0.34 0.20 1,993.90 0.03 timeout
Fiasco 0.07 0.45 1.47 timeout 0.06 timeout
DellSPLOT 0.08 0.44 0.44 3,278.09 0.07 187.58
uClibc 0.14 0.99 0.50 timeout 0.23 timeout
ToyBox 0.25 1.25 0.78 timeout 0.09 timeout
BusyBox 0.26 1.87 0.67 timeout 0.17 timeout
EmbToolkit 2.61 timeout 4.62 timeout 9.15 timeout
LargeAutomotive 12.07 119.26 77.06 timeout 24.57 timeout
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KUS and Spur implement Knuth’s sampling procedure (see Section 2.1.3). Accordingly, 
they should be uniform “by design”. Moreover, the KUS and Spur empirical validations in 
Sharma et al. (2018) and Achlioptas et al. (2018), respectively, did not detect any problem 
(though only small models with a few hundred variables were used). However, our inspec-
tion using more varied and larger models revealed the following uniformity flaws:

– As Fig. 13 shows, 16.4% of the KUS samples got a p-value in [0, 0.1]. Furthermore, 
in 15.89% of the cases, the p-values were less than � = 0.01 , and thus rejected the uni-

Fig. 12  Time the samplers 
needed to generate 1,000 con-
figurations for each model in the 
benchmark
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formity hypothesis. Figure 14 shows four examples were KUS uniformity was rejected. 
Each subfigure compares, for a particular model, the histogram of the SAT-solution 
distribution of the whole population (in blue) with the distribution of the generated 
sample (in red). Unfortunately, the rejected samples do not show any clear pattern that 
explains the causes of KUS failures. For instance, KUS exhibits difficulties with small 
models (blasted_case63) but also with large ones (blasted_squaring26), with nor-
mal distributions (blasted_case63 and s1238a_7_4) and non-normal distributions 
(s526_15_7 and blasted_squaring26), with left-skewed distributions (s1238a_7_4) 
and right-skewed distributions (blas-ted_case63), etc.

– In our previous evaluation (Heradio et al. 2020), we detected that Spur generated uniform 
samples for all models except for EmbToolkit. We thought our test was making a Type 1 
error, misjudging the sampler uniformity because an extremely low p-value happened due 
to randomness. However, when we checked the samplers’ uniformity with our new test, we 
obtained exactly the same results for this particular model, which raised our suspicions. We 
repeated the experiment one thousand times and Spur never generated a uniform sample 
for EmbToolkit. Figure 15 shows the results for two of those experiment repetitions. In this 
case, Spur’s error always displays the same pattern: the solutions in the sample have more 
variables assigned to true than in the population.

Table 4  Goodness-of-fit p-values for the configuration models ( � = � = 0.01 and w = 0.1 ; timeout = 1 
hour)

Model BDD Sampler KUS Quick Sampler Smarch Spur Unigen2

JHipster ∼ 1 0.99 ∼ 0 ∼ 1 ∼ 1 ∼ 1

axTLS ∼ 1 ∼ 1 ∼ 0 timeout ∼ 1 timeout
Fiasco ∼ 1 ∼ 1 0.30 timeout ∼ 1 timeout
DellSPLOT ∼ 1 0.99 0.85 timeout ∼ 1 0.96
uClibc ∼ 1 ∼ 1 ∼ 1 timeout ∼ 1 timeout
ToyBox ∼ 1 ∼ 1 ∼ 0 timeout ∼ 1 timeout
BusyBox ∼ 1 ∼ 1 ∼ 0 timeout ∼ 1 timeout
EmbToolkit ∼ 1 timeout ∼ 1 timeout ∼ 0 timeout
LargeAutomotive ∼ 1 timeout ∼ 0 timeout ∼ 1 timeout
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Fig. 14  Example of KUS samples rejected with the goodness-of-fit test
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5.4  Q3: Scalability of the SFpC test

Two factors influence the scalability of a uniformity test when applied to a particular model 
and sampler: (i) the number of configurations the test needs to consider, and (ii) the time 
the test invests in analyzing those configurations.

Concerning the first factor, and as discussed in Section 2, the methods proposed in the 
literature to verify samplers’ uniformity require colossal sample sizes with millions of con-
figurations. Thus uniformity had been tested on trivial models so far, with a few hundred 
variables. To support evaluating uniformity over more complex models, in Heradio et al. 
(2020) we proposed the FP test, which compares the variable frequency distribution of a 
sample with the variable probability distribution of the entire population. With this test, we 
could validate samplers’ uniformity on models with more than seventeen thousand vari-
ables (Heradio et  al. 2020). Figure 16 compares the sample sizes that the FP test needs 
(in red) with the sample sizes our new SFpC test requires (in blue), showing that the latter 
needs fewer configurations in most cases.

In Fig.  16, each model’s sample size was determined with the procedure described 
in Section 4.2. In particular, the R package pwr24 (Kabacoff 2011) was used to perform 
Cohen’s power tables calculations. To ensure the highest reliability of the samplers’ uni-
formity tests (see Section 5.4), we set � = 0.01, � = 0.01 , and w = 0.1 . That is, the �2 test 
confidence level was fixed to 99%, the power to 99%, and the effect size to small. Table 5 
compares in detail the samples sizes obtained for the configuration models.

The sample size depends on the model’s degrees of freedom in both the FP and the 
SFpC tests. Nevertheless, each test defines degrees of freedom in a different way. The 

Fig. 15  Two samples Spur 
generated for EmbToolkit Distribution Theoretical Empirical
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degrees of freedom of the FP test dfFP are the number of variables (minus one) whose 
probability is neither zero nor one (see Section 3 of Heradio et al. (2020)). The degrees 
of freedom of the SFpC test dfSFpC are the number cases (minus one) for which there is 
at least one valid configuration with a particular number of variables assigned to true (see 
Section 4.1). As Fig. 16 shows, in practice, dfSFpC ≤ dfFP and therefore the SFpC test con-
sumes fewer configurations.

Regarding the time SFpC requires to analyze the generated configurations, once the 
theoretical distribution of SAT solutions is known, the remaining computations can be 
performed extremely fast (see Section 4.1). So, the SFpC’s potential bottleneck is getting 
such distribution with the algorithm PD. Figure 17 shows the time it took to compute the 
theoretical distribution for each model in the benchmark, ranging from 0.02 seconds to 
14.14 minutes. Table 6 details the times for the configuration models. It is worth noting 
that the model which needed the longest time was s1196a_3_2, which is an industrial 
SAT formula (thus not included in Table  2). This illustrates the dependency that BDDs 
have on variable ordering heuristics. Whereas this model has a medium-size CNF formula 
(690 variables and 1,805 clauses), the BDD we synthesized was huge (2,284,697 nodes). 
In contrast, for LargeAutomotive (17,365 variables and 321,897) a more reduced BDD 
was obtained (30,432 nodes), and hence computing its theoretical SAT-solution distribu-
tion just took 2.74 minutes.

Fig. 16  Comparison of the 
sample sizes consumed by the 
FP and SFpC tests ( � = � = 0.01 
and w = 0.1)
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The SFpC test requires smaller samples than the FP test

Table 5  Sample sizes the 
SFpC and FP tests required 
for the configuration models 
( � = � = 0.01 and w = 0.1)

Model Sample size for the 
SFpC test

Sample size 
for the FP 
test

JHipster 4,664 5,994
axTLS 6,314 7,198
Fiasco 5,460 7,646
DellSPLOT 3,889 9,131
uClibc 10,987 13,047
ToyBox 8,517 10,739
BusyBox 17,738 18,041
EmbToolkit 26,482 28,866
LargeAutomotive 37,626 84,522
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5.5  Q4: Validity of SFpC

Two criteria are typically used for assessing measurement quality (Trochim et al. 2015): 
validity and reliability. Since we are interested in the quality of SFpC measurements, valid-
ity will refer to what extent SFpC actually measures uniformity, and reliability will refer to 
repeatability, i.e., to the consistency of the results obtained when SFpC is applied several 
times to the same sampler and model. This section examines SFpC’s validity, and the next 
section deals with SFpC’s reliability.

To evaluate SFpC’s validity, we followed a convergent strategy (Trochim et al. 2015) 
by examining the degree to which SFpC results are similar to those obtained by other uni-
formity tests. Table 7 summarizes the uniformity verdicts reported in the literature. There 
is a total consensus that Unigen2 is uniform and QuickSampler is not. SFpC results are 
consistent with this consensus.

As we mentioned in Section 5.4, before the publication of FP in Heradio et al. (2019), 
the literature relied on limited tests that only could handle the simplest models with a few 
hundred variables. As more complex are considered, the chances to detect samplers’ addi-
tional flaws increases. In other words, the sensitivity of FP and SFpC is higher than their 
predecessors. Accordingly, we performed a new Experiment E3 focused on checking the 
convergent validity of FP and SFpC in detail. A new sample set S3 was procured by asking 
each sampler to generate a sample for every model in the benchmark. Then, the uniformity 
of the samples was analyzed with both FP and SFpC. Since FP generally needs larger sam-
ples than SFpC (see Section 5.4), the sample sizes were set according to FP requirements.

Fig. 17  Time it took to compute 
the distribution of SAT-solutions 
for all models in the benchmark
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Table 6  Seconds it took to 
compute the distribution of SAT-
solutions for the configuration 
models

Model Time

JHipster 0.03
axTLS 0.07
Fiasco 0.03
DellSPLOT 0.10
uClibc 0.38
ToyBox 0.16
BusyBox 0.41
EmbToolkit 567.93
LargeAutomotive 164.35
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Pearson’s correlation coefficient � of the p-values obtained with FP and SFpC was 
� = 0.953 , and Cohen’s kappa � of the test verdicts (i.e., rejection/acceptance of sampler’s 
uniformity) was � = 0.942 . As FP and SFpC results were numerically highly correlated, 
and their final judgments were remarkably consistent, convergent validity was successfully 
confirmed.

5.6  Q5: Reliability of SFpC

SFpC’s reliability was evaluated with a test-retest strategy (Trochim et al. 2015) by com-
paring its results with the sample sets S2 and S3. Pearson’s correlation coefficient of the 
p-values calculated with SFpC in S2 and S3 was � = 0.950 , and Cohen’s kappa of the 
corresponding final judgments (i.e., rejection/acceptance of sampler’s uniformity) was 
� = 0.939 . As a result, SFpC’s reliability was positively evaluated.

6  Discussion

The experimental results indicate that SFpC supports testing samplers’ uniformity on 
complex models with thousands of variables and constraints, providing valid and reliable 
judgments. The results show that the only sampler that satisfies both scalability and uni-
formity is BDDSampler. The following points summarize the key findings per research 
question:

Q1: Samplers’ scalability. BDDSampler, KUS, QuickSampler, and Spur are by 
far faster than Smarch and Unigen2. This finding agrees with the prior evaluations 
reported by Plazar et al. (2019) and Heradio et al. (2020).
Q2: Samplers’ uniformity. Three categories of samplers can be distinguished: (i) those 
that mostly fail to produce uniform samples (QuickSampler), (ii) those that usually 
work but from time to time generate non-uniform samples (KUS and Spur), and (iii) 
those that always produce uniform samples (BDDSampler, Smarch, and Unigen2). 
QuickSampler’s incapacity to generate uniform samples was previously reported by 
Chakraborty et al. (2019), Plazar et al. (2019), and Heradio et al. (2020). However, this 

Table 7  Samplers’ uniformity judgments reported in the literature

Due to its higher sensitivity compared to prior tests, SFpC detects that KUS and Spur sometimes behave 
non-uniformly

Article Uniform Non-Uniform

Achlioptas et al. (2018) Spur and Unigen2 –
Chakraborty et al. (2015) Unigen2 –
Chakraborty et al. (2019) Unigen2 QuickSampler

Oh et al. (2019) Smarch and Unigen2 –
Plazar et al. (2019) Unigen QuickSampler

Sharma et al. (2018) KUS and Spur –
This present paper BDDSampler, Smarch KUS, QuickSampler

(SFpC) and Unigen2 and Spur
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paper is the first one that detects problems with KUS and Spur. We think this finding is 
due to SFpC’s ability to test samplers’ uniformity on considerably more complex mod-
els than previous tests.
Q3: SFpC’s scalability. SFpC is the most scalable uniformity test to date. It requires 
the smallest sample size of all existing tests, enabling the verification of samplers’ uni-
formity in large models even for the most strict quality settings ( � = 0.01, � = 0.01 , and 
w = 0.1).
Q4: SFpC’s validity. According to the results, SFpC judgments are consistent with the 
verdicts given by the alternative methods proposed in the literature.
Q5: SFpC’s reliability. The results show that SFpC judgments are reliable, i.e., when 
SFpC is applied repeatedly to the same model and sampler, the reached conclusions are 
notably consistent.

The implications of our research are twofold: 

1. As uniform random sampling is a strong requirement for many relevant analyses on 
configurable systems, BDDSampler’s positive impact may be considerable, e.g., to 
test SPLs (Halin et al. 2019; Plazar et al. 2019), to support predicting and optimizing 
the performance of configurable systems (Oh et al. 2017; Kaltenecker et al. 2020), etc. 
As an illustrative example of the importance that sampling has to SPL practitioners, 
in the SPLC 23rd edition, there was a challenge dedicated specifically to this topic and 
entitled “Product Sampling for Product Lines: The Scalability Challenge” (Pett et al. 
2019). Moreover, different papers have been recently published on uniform random 
sampling, and other sorts of sampling such as t-wise, in SPLC (Varshosaz et al. 2018; Oh 
et al. 2019; Muñoz et al. 2019) and the International Working Conference on Variability 
Modelling of Software-Intensive Systems (VaMoS) (Krieter et al. 2020). Furthermore, 
the applicability of BDDSampler goes beyond the SPL domain since sampling is also 
needed in artificial intelligence (Chakraborty and Meel 2019; Dutra et al. 2018; Roy 
et al. 2018), integrated circuit simulation and verification (Hëbner and Becker 2011; 
Naveh et al. 2006; Yuan et al. 2002), etc.

2. SFpC can be used to debug and thus improve existing samplers (see Figs. 14 and 15), or 
to validate future samplers. The importance of samplers’ validation is well recognized by 
the SPL community. Recently, in the SPLC 25th edition, there was a session dedicated to 
“Sampling, variability analysis and visualization”, where two tools for samplers’ evalua-
tion were presented: BURST (Acher et al. 2021) and AutoSMP (Pett et al. 2021). Those 
tools could be enhanced by integrating SFpC; e.g., BURST relies on Barbarik, which 
has inferior performance than SFpC (see Section 2.2.2). Again, the interest in samplers’ 
validation is not restricted to SPLs. In fact, most uniformity tests have been proposed by 
artificial intelligence researchers, mainly from the SAT community (Achlioptas et al. 
2018; Chakraborty 2015; Dutra et al. 2018; Sharma et al. 2018; Chakraborty and Meel 
2019).

It is worth noting that our work has the following limitation: both BDDSampler and 
SFpC rely on BDD technology. Synthesizing the BDD encoding of a variability model 
is sometimes unattainable. This is because the variable ordering chosen to build a BDD 
dramatically impacts its size, and finding the optimal ordering is an NP-problem. So the 
search is approached heuristically without guarantees. This problem principally affects 
BDDSampler, but not much SFpC. 
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1. BDDSampler receives a model’s BDD encoding as input. If the available heuristics fail 
to find an adequate variable ordering, BDDSampler becomes useless, and an alternative 
technology (e.g., SAT) must be used.

2. SFpC can evaluate any sampler, independently of the technology in which it is 
built. Indeed, Section 5 reports the SFpC use for samplers implemented with BDDs 
(BDDSampler), #SAT-solvers (QuickSampler, Smarch, Spur, and Unigen2), and 
d-DNNFs (KUS). The impossibility of creating a BDD for a particular model only 
prevents SFpC from using it as part of the benchmark presented in Section 5.1. Cur-
rently, the benchmark includes 218 models with their respective BDDs. In our opinion, 
the models’ great variety in terms of size (from 14 to 18,570 variables) and application 
domain (automotive industry, embedded systems, a laptop customization system, a web 
application generator, integrated circuits, etc.) is adequate to ensure samplers’ verifica-
tion to a great degree.

Finally, the following threats to our study’s validity should be taken into account: 

1. There is no absolute guarantee that the samplers we have certified as uniform behave 
non-uniformly in models not included in the benchmark.

2. Our experimental design discards two potential confounders for evaluating the scal-
ability of samplers:

– Sampling parallelization. Although any sampler can be run in a multi-core fashion, 
thus producing samples concurrently, only Unigen2 and Smarch were specifically 
designed for that. The focus of our evaluation is on the sampling techniques, not on 
how those techniques can be parallelized efficiently. Therefore, all samplers were 
run on a single thread.

– Use of preprocessing techniques. There are some methods to preprocess the model 
Boolean formulas for speeding up further computations. For example, Ivrri et  al. 
(2016) claim that sampling with the formulas’ MIS produces 2-3 orders of mag-
nitude performance improvement. Nevertheless, Plazar et  al. (2019) empirical 
results contradict that, showing no running time difference between sampling from 
the whole formula or the MIS. Anyway, we decided to focus on the sampling tech-
niques, not on how any additional preprocessing methods may impact those tech-
niques.

7  Conclusions

The number of SAT solutions that configuration models encompass can be so large that 
most analyses cannot be performed neither examining every valid configuration, nor call-
ing a SAT solver massively. Statistical inference opens an alternative way to address these 
problems by working with a tractable sample accurately predicts results for the entire 
space. However, the laws of statistical inference impose an indispensable requirement that 
samples must be collected at random, i.e., the configuration space needs to be covered 
uniformly.

Two major research challenges on SAT-solution random sampling have been 
addressed in this paper: we (i) developed a new random sampler, called BDDSampler, 
and (ii) proposed a goodness-of-fit test to verify samplers’ uniformity. Our new test 
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requires the least sample size of all existing methods, in the literature, supporting the 
samplers’ uniformity assessment even on colossal models and the most strict reliabil-
ity arrangements. Using this test, we have undertaken the empirical evaluation of six 
state-of-the-art samplers, revealing that only BDDSampler satisfies both uniformity 
and scalability.

It is worth remarking that BDDSampler works with a BDD encoding of a configu-
ration model as input, and synthesizing such BDD is not always feasible as it depends 
on finding an adequate variable order heuristically. Our work deals with this limitation 
by exposing uniformity bugs on two scalable samplers based on alternative technologies 
(KUS on d-DNNFs and Spur on #SAT), thus facilitating their fixing. Having available all 
these samplers would support coping with the variated difficulties that the Boolean encod-
ing of configuration models poses (e.g., large intractable CNFs, enormous BDDs, etc.).

8  Material

Following open science’s good practices, our software artifacts are available publicly.

– BDDSampler is available at https:// github. com/ david fa71/ BDDSa mpler
– The code scripts to replicate our experimental validation (i.e., to calculate each model’s 

sample size, run the samplers, and test the scalability/uniformity of the samplers) are 
available at https:// github. com/ rhera dio/ ConfS ystSa mpling

– A detailed report on every research question in Section 5 is available at: https:// rhera 
dio. github. io/ ConfS ystSa mpling

– The data of Experiments E1 and E2 (including the benchmark models in DIMACS/
DDDMP/NNF formats, the generated samples, the goodness-of-fit test results, etc.) are 
available at https:// doi. org/ 10. 5281/ zenodo. 45149 19

– The data of Experiment E3 are available at https:// doi. org/ 10. 5281/ zenodo. 55099 47
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