
Uniform Application-level Access Control Enforcement of Organizationwide

Policies

Tine Verhanneman Frank Piessens Bart De Win Wouter Joosen

Katholieke Universiteit Leuven, Department of Computer Science

Celestijnenlaan 200A, 3001 Leuven

{tine,frank,bartd,wouter}@cs.kuleuven.be

Abstract

Fine-grained and expressive access control policies on

application resources need to be enforced in application-

level code. Uniformly enforcing a single policy (referred to

as the organizationwide policy) in diverse applications is

challenging with current technologies. This is due to a poor

delimitation of the responsibilities of application deployer

and security officer, which hampers a centralized manage-

ment of a policy and therefore compromises the uniformity

of its enforcement.

To address this problem, the concept of an access inter-

face is introduced as a contract between an organization-

wide authorization engine and the various applications that

need its services. The access interface provides support for

the central management of the policy by the security officer.

By means of a view connector, the application deployer en-

sures that each application complies with this contract, so

that the policy can be enforced.

1. Introduction

Many applications require the enforcement of an expres-

sive access control policy, which, for example, takes into

consideration application state. In the context of an organi-

zation, where one single organizationwide policy needs to

be enforced, support should be provided to administer the

policy centrally and to enforce it uniformly in the various

applications deployed within the organization.

Various stakeholders are involved in the enforcement of

an access policy. The security officer manages the policy

centrally. The application deployer tunes the access con-

trol enforcement for each application so that the policy can

be enforced. The access control decision itself can be del-

egated to an organizationwide authorization engine, which

may be developed independently of a particular application

setting and provided by an authorization engine provider.

The application developer provides the application logic.

In this paper, the observation is made that the delimita-

tion of the responsibilities between the security officer and

application deployer, is poorly supported by current tech-

nologies: In reality, the application deployer bears complete

responsibility for the uniform enforcement of the policy.

This renders it hard to manage the policy centrally, espe-

cially if this policy is liable to frequent changes.

The contribution of the paper consists in providing an ab-

straction layer, named access interface, which captures the

requirements an application needs to fulfill so that the orga-

nizationwide policy can be enforced. This access interface,

for example, includes explicitly the additional information

that is needed to evaluate an access request. The access

interface abstracts from application-specific details by in-

cluding only information that is relevant for access control.

It can therefore be specified by the security officer, who is

responsible for the definition and centralized management

of the policy.

The application deployer binds the access interface to

each application by means of application-specific view con-

nectors. A view connector specifies (1) how the application

fulfills the requirements that are put forward in the access

interface, and (2) how access requests within the applica-

tion are translated to the access interface. A prototype has

been implemented as an extension of an aspect-oriented ap-

plication container, whereby the view connector acts as a

deployment descriptor.

The remainder of the paper is organized as follows. Sec-

tion 2 motivates the need for an intermediary abstraction

layer, illustrated by a case in the health care application do-

main. In Section 3 the access interface approach is pre-

sented, followed by a discussion in Section 4. The proto-

type is discussed in Section 5. Section 6 gives an overview

of related work and conclusions are drawn in Section 7.

2. Detailed motivation

In this section, the challenge of implementing an access

control policy in an application with state-of-the-art tech-

nologies will be illustrated by means of a case in the health

care application domain. After having identified the short-

comings of current technologies, we list the requirements

our approach should meet.

2.1. High­level policy

Health care organizations must ensure that appropriate

technical and organizational measures are in place to pro-

tect patient data: Based on the principles of least privilege

and minimum necessary [24], the disclosure of health care

information should be limited to the minimum necessary to

accomplish the intended purpose.

We discuss a subset of the security policy of an academic

hospital in Belgium [28, 18]. These rules are typical for

access control policies in a medical context [24, 25, 3, 1].

Our setting is a hospital with a large number of physicians

and associated general practitioners. The following rules

deal with accesses to a contact, which is a logical unit of

medical data.

Rule 1 A physician will be granted access to a patient’s

data if a contact exists to which he was assigned. The ac-

cess rights are only valid until 30 days after the contact was

closed.

The policy allows to overrule the access decision, for ex-

ample for emergency access, provided that it is possible to

hold physicians accountable for any access granted on the

basis of this rule.

Rule 2 The system provides the possibility to overrule the

access decision, on condition that the user requesting ac-

cess, specifies a reason. The reason, the requesting user’s

and the patient’s name, along with some context informa-

tion (time, place) are logged.

To improve communication between the patient, his gen-

eral practitioner (GP) and the team of caregivers, view ac-

cess is granted to the patient’s GP.

Rule 3 The patient’s general practitioner has view access

to all the patient’s contacts, whether these contacts have

been closed or not.

These three rules will serve as the basis for further dis-

cussion. In the following paragraphs, roles and permis-

sions (objects and operations) are identified (conforming to

RBAC [12]) as a first step towards an implementation of the

policy.

Roles. Two roles can be distinguished: A physician, who

is a staffmember and a licensed medical practitioner (e.g. a

specialist), and the general practitioner, who maintains the

overview of the patient’s social background, medical history

and current health condition and acts as a confidant for the

patient.

Permissions. This policy only concerns objects which

represent identifiable medical data. The status of medical

data can be open or closed, depending on whether the con-

tact, the data is part of, has been closed or not. The oper-

ations that can be carried out on a medical data object are

restricted to view, append and close. The latter is invoked

by the patient’s responsible physician to close the contact.

Pure RBAC lacks granularity to enforce the rules men-

tioned earlier: For an access decision, the relationship be-

tween the user requesting access and the patient whose

data is about to be accessed, should also be taken into ac-

count [3]. Table 1 summarizes the policy rules and illus-

trates that only the responsible physician is allowed to close

the medical data of his patient.

2.2. Enforcing the policy in applications

The organizationwide policy specified above must now

be enforced in all applications running in the hospital, such

as for example an appointment and prescription system

[28]. Given the increased use of information technology in

health care, this number of applications can be quite high.

We describe a simplified model of one example appli-

cation: an Integrated Care Pathways (ICP) application. An

Integrated Care Pathway [19] is a predefined plan for care

relating to a certain diagnosis, which serves as a guideline

to organize care more effectively and efficiently; e.g. to

shorten hospital stays, to raise resource utilization and to

reduce unnecessary variations in patient care and outcomes.

In short, an ICP constitutes a workflow, which guides the

health care provider through the different steps in the health

care process by providing a template, indicating the health

care services which should be provided at a certain point in

the treatment. Upon commencing the treatment, the respon-

sible physician instantiates an ICP for his patient, and plans

and executes the steps as the treatment proceeds. These

steps are, for example, examinations, medication prescrip-

tions and notes. Figure 1 shows a simplified classdiagram

for the ICP application. The medical data to protect is con-

tained within the Integrated Care Pathway (ICP) and its as-

sociated steps (Step). The application keeps a reference to

both the GP of the patient and the responsible physician.

Table 1. Medical data
Roles/status (Medical Data) open < 30 days closed >30 days closed

Physician if responsible view,append,close view -

Physician if in overrule mode view view view

GP if patient’s GP view view view

Figure 1. ICP­application

ICP

-patient: Patient

-responsiblePhysician: Physician

-creationTime: Date

-closingTime: Date

-step: ComposedStep

+getPatient(): Patient

+getResponsiblePhysician(): Physician

+close(): void

+getICPStep(): ComposedStep

+getCreationTime(): Date

+getClosingTime(): Date

+isClosed(): boolean

Patient

-name: String

-ssn: SSN

-GeneralPractioner: GP

+getGP(): GP

+getName(): String

+getSSN(): SSN

GP

-licenseID: LicenseID

+getLicenseID(): LicenseID

Personnel

-name: String

-department: String

+getDepartment()

+getName()

Physician

-licenseID: LicenseID

+getLicenseID(): LicenseID

Technician

Step

-responsiblePhysician: Physician

-parentStep: ComposedStep

+planNextStep(): void

+getParentStep(): ComposedStep

+getResponsiblePhysician(): Physician

ActionStep

+execute(pers:Personnel)

ComposedStep

-steps: Arraylist

+getStepAt(index:int)

*

1

1

*

*

1

responsible

1

*
1

1

2.3. Problems when implementing and managing
the policy

Before elaborating on the challenges of the application-

level enforcement of a policy, two important stakeholders

are introduced:

• The security officer draws up and manages the policy

without needing to have extensive knowledge of the

internal operation of the different applications.

• The application deployer tunes the access control en-

forcement by the application, ensuring that it conforms

to the policy.

How should an organizationwide policy, like the policy

presented in Section 2.1, be enforced in the application?

The deployer has to translate the high-level, organization-

wide policy into application terms, by providing for ex-

ample deployment descriptors, configuration files or code.

This typically results in a series of lower-level rules, indicat-

ing for each type of object which methods may be invoked

by whom. An example of such a low-level rule might be

that a physician is allowed to invoke getPatient() on

all objects of the class ICP. This means that once the high-

level policy has been defined by the security officer, the bur-

den is placed entirely on the application deployer to uni-

formly translate this policy into application terms for each

of the applications deployed within the organization, which

is a very intricate job.

This lack of an abstraction layer between an applica-

tion and the security logic also becomes apparent if a

common organizationwide authorization engine is used:

Application-specific access requests need to be translated

in terms understood by the engine. A rather ad hoc ap-

proach consists in conveying labels to the authorization en-

gine, which abstract the action and/or object that is being

accessed.

Uniformly enforcing an access policy tends to get harder

as policy rules are frequently updated, added or removed.

The application deployer has to translate the high-level pol-

icy once again and has to ensure that the access control en-

forcement points and the information passed to the autho-

rization engine (if an engine is used) are adapted to reflect

the updated policy. Consider, for illustration purposes, the

following two additional rules:

Rule 4 Each time the GP accesses his patient’s medical

data, the responsible physician is notified of this access.

Rule 5 Psychiatric - and human heredity records are clas-

sified as highly sensitive, and cannot be viewed by the

GP [18].

For Rule 4 the responsible physician and for Rule 5 the

sensitivity level of the data need to be conveyed to the au-

thorization engine. The deployer also faces similar prob-

lems when the application itself changes, e.g. due to code

refactoring.

2.4. The requirements

We now define the major requirements that we took into

account when developing our approach for the integration

of access control enforcement in applications. These re-

quirements are mainly based on [4].

1. The expressiveness of the policies that can be enforced,

should not be constrained [3]. In practice, in order

to enforce application-level security, the granularity

of the policy that can be specified, should be small

enough to encompass the application resources to be

protected. Likewise, the variety (richness) and the

amount of information serves as a criterion of the ex-

pressiveness of the supported policies. For example,

the state a workflow process is in, the time or other

contextual information may be relevant when making

an access control decision.

2. Separation of concerns must be supported by clearly

delimiting responsibilities of the stakeholders identi-

fied in Section 2.3. Separation of concerns is the key to

support evolution, which encompasses both manage-

ability and extensibility.

3. Multiple applications that obey the same security pol-

icy, must be treated and described uniformly. Unifor-

mity requires support for the central management of an

organizationwide policy, as well as the enforcement of

a single policy in diverse applications. In short, what

we aim for is to write the policy once and to enforce it

everywhere.

Of course, any proposed design should also have no ad-

verse effects on other important properties of an access con-

trol infrastructure (such as performance and scalability). We

return to this point in the discussion section 4.

3. Proposed solution

In this section, our solution is described. In the overview

shown in Figure 2, an organizationwide authorization en-

gine is used to evaluate access requests.

Two new concepts are introduced as part of this solution.

The access interface describes explicitly what the autho-

rization engine expects from applications in order to make

access decisions. Such an access interface should be rel-

atively constant within one organization and its specifica-

tion may be application domain specific, as it is driven by

the high-level policy rules of the organization. For exam-

ple, in a financial organization, the value of a transaction

might be important information to decide about an access

request. In a hospital, on the other hand, it is important to

know whether this is an overrule access or not. Through this

access interface, a centrally managed and configured au-

thorization engine receives notifications of access attempts

from applications, and can query applications for applica-

tion state to decide whether these accesses should be al-

lowed or not. The authorization engine can be configured

by means of declarative policy rules that specify the access

control policy in terms of the access interface.

View connectors realize the application-side of the con-

tract. There is a separate view connector per application,

mapping application-specific concepts to the concepts rep-

resented in the access interface. An important contribu-

tion of this paper is that we show that a view connector

can be realized as a kind of deployment descriptor on an

aspect-oriented application container. This allows to set

the mapping declaratively, without needing to apply inva-

sive changes to the application code. We elaborate on both

concepts in the next sections.

3.1. Access interface

The access interface is an explicit representation of the

contract between the authorization engine and applications.

As such, it specifies the provided and expected functional-

ity and data for both these parties. The authorization en-

gine provides decisions on access requests and expects the

applications to (1) notify the engine of relevant accesses,

(2) provide the necessary information about these accesses,

and (3) enforce the decision on the access request. So in

particular, an access interface must specify what “relevant

accesses” are, and what information must be provided for

each of these accesses.

Any access request is a request by a subject to perform

some action on an object. Our design starts from the as-

sumption that objects are classified by the policy in domains

(such as the medical data domain in our example policy),

and that subjects are classified in roles (such as the physi-

cian role), and that the information needed to decide on an

access request, can differ depending on the domain and role

of respectively, the object and subject involved.

This leads to the following formalization: an access in-

terface A consists of a set O of object interfaces (one per

domain) and a set S of subject interfaces (one per role).

Object interfaces. An object interface O for a given do-

main is a pair (attr, act), whereby:

1. attr denotes a set of attribute names, specifying the

information that the authorization engine needs about

objects, and V alues(a) denotes the set of possible val-

ues for a given attribute a ∈ O.attr

2. act denotes the set of relevant actions, about which the

authorization engine expects to be notified.

Figure 2. Overview

Domain Specific Policy DB

(containing rules)

Central

Authorization

Engine

application Bapplication A

Domain Specific

Access Interface

Domains

Wrapper

view-connector

configuration

Application

Deployer

Security Officer

Authorization Engine

Provider

Application

Developer

View Connector
View Connector

An example of an object interface for the domain of med-

ical data in our example policy is shown below. Note that

the object interface is application-independent: actions and

attributes are specified at an appropriate level of abstrac-

tion for making access control decisions. Binding these at-

tributes and actions to actual application concepts, will be

the task of the view connector.

ObjectInterface MedicalData{

attribute: {open, closed} status;

attribute: Date closingTime;

attribute: LicenseID ResponsiblePhysician;

attribute: LicenseID GP;

action: view;

action: append;

action: close;

}

Subject interfaces. A subject interface S for a given role

specifies the information that the authorization engine needs

about subjects in that role in the form of a set of attributes

attr. As for the object interface, V alues(a) denotes the set

of possible values for a given attribute a ∈ S.attr

In our example policy, there is a rule that checks whether

a physician is the responsible physician for a given piece of

medical data. Hence, subjects of role physician need an at-

tribute (licenseID) that can be matched with the correspond-

ing attribute on the MedicalData object interface.

SubjectInterface Physician{

attribute: LicenseID licenseID;

attribute: {normal,overrule} accessmode;

}

The access control view on an application consists of

a set O of security objects and a set S of security sub-

jects. Each security object o ∈ O has one associated ob-

ject interface objectinterface(o) and likewise, each se-

curity subject s ∈ S has one associated subject inter-

face subjectinterface(s). As will be explained in the

next section, the view connector defines the security state

of each security object and subject. The security state

of a security object or subject is determined by the val-

ues of the attributes, specified in their associated object

interface and subject interface respectively. The security

state of a security object o can be written as σ(o) =
(va)a∈objectinterface(o).attr , where each va ∈ V alues(a).
Similarly, the security state of a security subject can be writ-

ten as σ(s) = (va)a∈subjectinterface(s).attr , where each

va ∈ V alues(a).

Implementing the policy. An access request is a triple

(s, o, a) consisting of a security subject s, a security ob-

ject o and an action name a in the action name set act of

objectinterface(o). The access policy is the function that,

given an access request (s, o, a) and the security states σ(o)
and σ(s) returns whether the access is allowed or not.

The particular choice of authorization engine, which re-

alizes this function, is irrelevant for the discussion in this

paper, and many good designs of authorization engines are

available (e.g. FAF [15]). Typically, such an authorization

engine will interpret a set of declarative policy rules. In our

example, we use the Ponder [10] policy language to formu-

late the rules in. The following rule states that the responsi-

ble physician for a piece of medical data can view, append

or close that data, as long as its status is open.

inst

auth+ openMedicalDataAccess {
subject <Physician> s=/Physician;

target <MedicalData> t=/MedicalData;

action view, append, close;

when t.status.equals(‘‘open’’) and

t.ResponsiblePhysician.equals

(s.licenseID);

}

Ponder does not only provide a policy language, but also

a deployment model for instantiating and distributing poli-

cies. The view connector concept, which is discussed next,

is complementary to this model as it provides a means to

integrate access control enforcement into each application.

3.2. View connectors

The access interface specifies access requests at an ab-

stract level. At some point, this needs to be translated down

to actual application concepts. This is the role of the view

connector. We say that a view connector binds an applica-

tion to the access interface. Each application will need its

own view connector.

To implement a view connector one must:

• Decide how application objects map to security objects

and subjects. In our example, we will have to identify

all medical data that the application handles.

• Identify all operations on such data and map these op-

erations to the corresponding actions in the object in-

terface. This also determines all places where an ac-

cess check needs to be performed. In our example, we

will have to map all application operations on medical

data to one of the three actions: view, append or close.

• Determine how to compute the necessary attributes for

security objects and subjects.

An example view connector is shown in Table 2. We first

discuss the computation of attributes.

Attribute computation. The view connector will need to

specify how each of the access interface attributes is com-

puted for the given application. For instance, an ICP ob-

ject in our example application (Figure 1) is clearly medical

data. The responsible physician for that object can be com-

puted via a getter on the ICP class. The patient’s GP must

be computed by first getting the patient associated with the

medical data, and then getting the GP of that patient.

The part of the view connector that computes these

attributes, is very similar to Beznosov’s attribute func-

tions [5], or to the DynamicAttributeService in CORBA’s

Resource Access Decision (RAD) service [6].

view-connector

type ICP

object-interface MedicalData

(a) attribute computation

attributes

ResponsiblePhysician → getResponsiblePhysician().get-

LicenseID()

GP → getPatient().getGP().get-

LicenseID()

status → if(isClosed()) closed

else open

closingTime → getClosingTime()

(b) access enforcement points

actions

view → get*

. . .

Table 2. View connector for medical data

Access enforcement points. The access enforcement

points in the applications are the points in the execution,

where an access check needs to be done. The insertion

of access checks at all these points, is technology depen-

dent. This can be done, for example, by inserting the nec-

essary calls to the authorization engine in the application

code. Adding such calls to the application code during de-

ployment/integration of an application, is not straightfor-

ward on typical application platforms such as J2EE, .NET

or CORBA, as it requires access to the application source

code. However, the technology of aspect-orientation makes

it possible to provide an implementation of view connectors

that can be configured at deployment time.

Our prototype is built on top of an aspect-oriented appli-

cation container. An aspect-oriented application container

offers the concept of pointcuts, expressions that denote sets

of execution points in an application. The container also al-

lows the injection of new code at each point identified by

such a pointcut. The use of pointcuts by itself, does not

improve the security of the overall system. However, due

to a modular description of the access enforcement points

it is easier to assess the security of the system than would

be possible if these points were spread all over the code.

Given such support, each action in an object interface can be

mapped on such a pointcut, and the relevant access checks

can be inserted at each point identified by that pointcut.

In our prototype, an extensible application container is

extended with a so-called aspect component, which is con-

figured with a view connector. An example of such a view

connector is shown in Table 2. Part (a) configures how at-

tribute computation should be done. Part (b) shows how

actions are mapped to pointcuts. Based on this configu-

ration file, the right access checks are injected at each of

these points. In Section 5 our implementation is discussed

in more detail.

4. Discussion

In this section, we discuss the presented approach by

evaluating to what extent it fulfills the requirements men-

tioned in Section 2.4. In addition, we will show that our ap-

proach does not negatively influence other important prop-

erties of an access control infrastructure for distributed ob-

ject systems. The discussion is based on the enumeration of

typical requirements for these systems in [4].

Expressiveness. We found that for practical policies, the

access interface does not impose restrictions on the expres-

siveness of the policies that can be enforced. A trade-off

may need to be made between expressiveness and other re-

quirements. E.g., defining a large number of object and sub-

ject interfaces should be avoided in order to keep the policy

manageable.

The definition of the subject interface should be extended

to support more complex principals, as for example pre-

sented in [17]. This would allow, for instance, to take into

consideration the access path of a request.

The access interface is based on the high-level policy.

Further research is required to develop techniques to de-

termine an appropriate access interface for an application

domain.

Separation of concerns and evolution. The responsibil-

ities of security officer and application deployer are clearly

separated. The former specifies the access interface, the lat-

ter the view connector.

Evolution of the policy is more straightforwardly sup-

ported. Consider for this purpose the additional rules in

Section 2.3: Since Rule 4 fully complies to the access in-

terface introduced in Section 3.1, adding the rule suffices to

enforce it uniformly.

Rule 5 requires an extension of the medical data access

interface to support a sensitivity attribute and the definition

of the necessary attribute mappings in the corresponding

view connectors. Our approach provides better support to

apply this extension, as the view connector specifies ex-

plicitly which application objects represent medical data.

A limited consistency check can be carried out to verify

whether mappings have been defined for each attribute in

the access interface.

If the policy changes more radically, new object and/or

subject interfaces might need to be introduced with corre-

sponding view connectors.

In case the application or its setting changes (e.g. due

to code refactoring), only adapting the corresponding view

connectors suffices.

Uniformity. The introduction of the access interface sup-

ports a central management of an organizationwide policy.

View connectors support its enforcement in diverse applica-

tions.

Performance- and administration scalability. The per-

formance overhead incurred by adding support for view

connectors, depends on how they are implemented. An im-

plementation with centralized management but distributed

enforcement will likely achieve good performance.

The good support for separation of concerns between ad-

ministrators and developers/deployers positively influences

administration scalability.

Requirements that stem from the object paradigm.

These requirements are subdivided in the following

classes [4]:

1. Objects: The access control technology should shield

complex semantics of the diverse methods from the se-

curity officer. This is one of the main goals of the

access interface, so our approach fulfills this require-

ment.

Secondly, the technology should scale on large num-

ber of objects and methods. As the access interface al-

lows for grouping of objects (in policy domains with

the same object interface) and methods (in actions),

scalability is assured.

2. Collections: Flexibility is required when grouping ob-

jects into collections for security purposes; solely pro-

viding grouping based on names or location is not suf-

ficient. Moreover, collocation or similar names should

not imply membership of the same security collections.

Our approach provides for grouping of objects inde-

pendent of any existing structure on the application.

Our current prototype implementation imposes the re-

striction that all objects of the same class should be-

long to the same object interface, but making this more

flexible is just an implementation effort.

3. Names: No human intervention should be required to

enforce access control on transient objects.

Our approach is neutral with respect to this require-

ment: whether human intervention is required or not,

depends on the implementation of the view connector.

The security officer is not required to be aware of ob-

ject names to roll out the policy.

View connectors shield the security officer from

application-specific object names.

5. Prototype

We have developed a prototype implementation for

access interfaces and view connectors on top of the

aspect-oriented application container Java Aspect Compo-

nents (JAC). First, Aspect-Oriented Software Development

(AOSD) is shortly described in Section 5.1. Subsequently,

in Section 5.2, the prototype itself is discussed.

5.1. AOSD

Aspect-orientation is based on the observation that cur-

rent paradigms, such as for example object orientation, fall

short in encapsulating so-called crosscutting concerns into

separated modules and therefore provide poor support for

the separation of concerns principle. An example of a cross-

cutting concern is application-level access control logic: it

is spread all over the application and is often entangled with

application logic [11].

The additional concept that aspect-oriented software de-

velopment offers us to improve the modularization of the

so-called aspects (concerns) is quantification [13]. Quan-

tification enables us to formulate statements which have an

impact on various points in the code. An example statement

is “each time a method is invoked on an object, it should be

verified whether the invoker has authorization to do so”.

The second characteristic of AOSD (Aspect-Oriented

Software Development) is obliviousness [13] of the

application-logic developer regarding the applied aspect, re-

sulting in a better separation of concerns between applica-

tion deployer and application developer. The latter provides

the application logic and, ideally, does not have to be aware

of the security logic imposed on the application logic.

The construct with which this is realized, is called a join-

point. A joinpoint is a place in the execution where the (in

our case) access logic is superimposed on the application.

Typical joinpoints are method invocations, exception han-

dling, execution flows So-called pointcuts allow us to

select a set of joinpoints based on one or more of their char-

acteristics; e.g. the name of the method invoked or the target

object. Advice is the logic injected into the application at the

join point; in this case we would like to inject access con-

trol enforcement checks. For a good overview of AOSD, we

refer the reader to [9, p 29-97].

5.2. Implementation

In this section, we describe an implementation based on

aspect-oriented programming. We opted to implement the

prototype on top of Java Aspect Components (JAC), which

will be elaborated on in the next paragraph.

Java Aspect Components. JAC [23] is in essence an ex-

tensible application container. This platform provides an

aspect-oriented middleware layer, which allows dynamic

(un)loading of aspect components. These aspect com-

ponents allow to weave (transparently to the application)

wrappers around the target (java) objects, called wrappees.

These wrappers intercept method invocations at execution

points specified by pointcuts, and can add extra function-

ality by means of role-methods. JAC, moreover, provides

support for contextual information by means of collabora-

tion flows, which allow to attach attributes to an execution

thread.

Architecture. In this paragraph, a broad overview is

given of the architecture of the prototype (displayed in Fig-

ure 3). The ICP application runs on top of the aspect-

oriented middleware layer provided by JAC, i.e. the JAC

container. The latter acts as a kind of reference monitor,

as shown in Figure 3: The wrapper first intercepts the ac-

cess request at the points in the execution conforming to

the view connector configuration file, as explained in Sec-

tion 3.2. The wrapper then literally connects the view to the

application by mapping the access request onto the access

interface. Hereto, the view connector executes the follow-

ing actions:

1. Mapping: Based on the view connector the

application-specific access request is projected onto

the access interface by:

• retrieving the object and subject interfaces appli-

cable to respectively the subject and the callee

• determining to which action in the object access

interface, the access request corresponds

• retrieving the attribute values needed by the au-

thorization engine

2. Access Decision: The request is subsequently sent to

the authorization engine, which is discussed below, for

evaluation.

3. Access Enforcement: The access decision is enforced.

The Authorization Engine evaluates the access request

based on the access rules. In the above mentioned approach,

no knowledge of the internals of the specific application is

required, since the access request is translated into terms

of the access interface. In the prototype implementation,

we opted to push the attributes to the authorization engine.

The drawback is that more attributes are retrieved than may

be necessary for the access decision. The advantage is that

roundtrips are saved, if the attributes can be retrieved locally

and the access decision function is deployed on a different

node. Alternatively, a lazy evaluation strategy can be used,

in which attributes are pulled by the authorization by means

of callbacks. More experiments are needed to evaluate the

performance of the prototype.

Figure 3. Architecture

caller callee

Application

JAC-Container

Authorization

Aspect

Component

Access

Enforcement

Access

Decision

Request

View Connector Implementation

Mapping &

Attribute

Retrieval

View Connector

object-

interface

Authorization

Engine

policy

rules

wrapper

interception
1

2

3

6. Related work

The presented work is related with several research do-

mains, which are discussed below:

Middleware infrastructures for application-level access

control. Tivoli Access Manager [16] supports consistent

and centralized management across heterogeneous systems

by introducing a hierarchical protected object namespace

to abstract resources. URL mappings specify how a dy-

namic URL should be resolved into a namespace object, and

can be regarded as (limited) view connectors. The CORBA

Resource Access Decision (RAD) service [6] abstracts re-

spectively the asset and request, by conveying a protected

resource name and access operation to the access decision

function. It remains the responsibility of the application de-

veloper to apply these abstractions consistently. Additional

attributes can be retrieved by means of DynamicAttribute-

Services. OSA [5], Object Security Attributes, are generic

representations for application-specific factors. Java Au-

thorization Contract for Containers [27] (JACC) specifies

contracts between the application container (e.g. J2EE) and

so-called policy providers. Policy Context Handlers allow

providers to obtain additional context, such as for example

the enterprise bean involved in the access request. These

infrastructures do not capture explicitly the requirements of

the authorization engine to enforce the access control pol-

icy, such as the necessary application-specific information.

View Policy Language [8] aggregates access rights in a

type-safe manner into views, which can be assigned to a

role. To construct these views, VPL starts from the appli-

cation’s use-cases, whereby the actors are directly mapped

onto the roles. VPL aims at a better separation of concerns

so that access control is manageable. VPL focusses on the

design, specification and management of security policies

rather than on the integration and uniform enforcement of

access control.

The access interface groups methods, to which the same

policy rule apply. In J2EE [7], methods are grouped accord-

ing to the role, allowed to invoke that method.

Access control frameworks. The prototype (Figure 3)

exhibits a similar architecture as the ISO/IEC 10181-3 Ac-

cess Control Framework [14] and the XACML dataflow

model [20]. The authorization engine is essentially the

Policy Decision Point (PDP). The view connector acts as

both Policy Enforcement Point (PEP) and Policy Informa-

tion Point (PIP).

Policy languages and authorization engines. The access

interface and view connector approach benefits from and

complements the extensive research carried out in the field

of policy languages, such as for example XACML [20] and

Ponder [10], and authorization engines, such as for example

the Flexible Authorization Framework (FAF) [15].

Model Driven Engineering. Our approach relates

to Model Driven Architecture [21] (MDA) and Se-

cureUML [2]. The difference is that MDA focusses at a

(semi-)automatic translation of a high-level model into a

platform dependent model and implementation for a spe-

cific application, whereas in the access interface approach,

we aim at a uniform translation of requirements across the

various applications.

Aspect-Oriented Software Development. The access in-

terface approach is related to Multidimensional Separation

of Concerns (MDSOC) [22] as it provides a view on the

application from the viewpoint of access control. The use

of Aspect-Oriented Software Development (AOSD) tech-

niques has already been proven useful in the separation of

the access control concern [11]. Song et al. [26] apply an

Aspect-Oriented Modeling approach to compose the access

control concern and the application in a verifiable manner.

7. Conclusion

Enforcing an expressive policy is hard due to a poor sup-

port of the separation of concerns principle. An access in-

terface, makes explicit the contract between the authoriza-

tion engine and the applications, for which the policy should

be enforced. For each application, a view connector en-

sures that the contract is fulfilled by binding the particular

application to the access interface. This approach naturally

supports a centralized management of an expressive policy,

as well as the enforcement of a single policy in diverse ap-

plications. Therefore it also enforces uniformity of access

control enforcement in the applications, deployed within the

organization. A prototype has been implemented on top of

an aspect-oriented application platform.

Acknowledgements. This research is funded by a Ph.D

grant of the Institute for the Promotion of Innova-

tion through Science and Technology in Flanders (IWT-

Vlaanderen). The authors would like to thank Professor

Konstantin Beznosov and the anonymous reviewers for their

helpful comments and suggestions.

References

[1] R. J. Anderson. A security policy model for clinical infor-

mation systems. In SP ’96: Proceedings of the 1996 IEEE

Symposium on Security and Privacy, page 30, Washington,

DC, USA, 1996. IEEE Computer Society.

[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven se-

curity for process-oriented systems. In SACMAT ’03: Pro-

ceedings of the eighth ACM symposium on Access control

models and technologies, pages 100–109, New York, NY,

USA, 2003. ACM Press.

[3] K. Beznosov. Engineering Access Control for Distributed

Enterprise Applications. PhD thesis, Florida International

University, July 2000.

[4] K. Beznosov. Access Control Mechanisms in Commercial

Middleware, June 2002. tutorial at SACMAT’02.

[5] K. Beznosov. Object Security Attributes: Enabling

Application-Specific Access Control in Middleware. In

DOA’02: 4th International Symposium on Distributed Ob-

jects & Applications, pages 693–710, London, UK, October

2002. Springer-Verlag.

[6] K. Beznosov, Y. Deng, B. Blakley, C. Burt, and J. Barkley. A

Resource Access Decision Service for CORBA-based Dis-

tributed Systems. In ACSAC ’99: 15th Annual Computer

Security Applications Conference, pages 310–319, 1999.

[7] S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan, and

B. Stearns. The J2EE tutorial. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002.

[8] G. Brose. Manageable access control for CORBA. Journal

of Computer Security, 10(4):301–337, 2002.

[9] D. Crawford. Communications of the ACM, volume 44.

ACM Press, New York, NY, USA.

[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The

Ponder Policy Specification Language. LNCS, 1995:18–28,

2001.
[11] B. De Win, W. Joosen, and F. Piessens. Developing secure

applications through aspect-oriented programming. In R. E.

Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-

Oriented Software Development, pages 633–650. Addison-

Wesley, Boston, 2005.
[12] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli. Proposed NIST standard for role-based

access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274,

2001.
[13] R. E. Filman and D. P. Friedman. Aspect-Oriented Program-

ming is Quantification and Obliviousness, October 2000.

Workshop on Advanced Separation of Concerns, OOPSLA

2000.
[14] ISO. Information technology - open systems interconnec-

tion - security framework for open systems: access control

framework. ISO/IEC 10181-3 (ITU-T X.812).
[15] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahma-

nian. Flexible support for multiple access control policies.

ACM Trans. Database Syst., 26(2):214–260, 2001.
[16] G. Karjoth. Access control with IBM Tivoli access manager.

ACM Trans. Inf. Syst. Secur., 6(2):232–257, 2003.
[17] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-

thentication in distributed systems: theory and practice.

ACM Trans. Comput. Syst., 10(4):265–310, 1992.
[18] U. Z. Leuven. Leuvense Internet Samenwerking Artsen

(LISA). www.uzleuven.be/UZroot/content/Zorgverleners

/login/lisa/ (dutch).
[19] S. Middleton, J. Barnett, and D. Reeves. What

is an integrated care pathway? What is . . . ?

series, 3(3), 2003. http://www.evidence-based-

medicine.co.uk/What is series.html.
[20] OASIS. Core Specification: eXtensible Access Control

Markup Language (XACML) Version 2.0.
[21] Object Management Group. OMG Model Driven Architec-

ture. http://www.omg.org/mda/.
[22] H. Ossher and P. Tarr. Using multidimensional separation

of concerns to (re)shape evolving software. Commun. ACM,

44(10):43–50, 2001.
[23] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC:

A Flexible Framework for AOP in Java. In Reflection’01,

volume 2192 of Lecture Notes in Computer Science, pages

1–24. Springer-Verlag, September 2001.
[24] Secretary of the Department of Health and Human Services.

Final Privacy Rule, August 2002.
[25] Secretary of the Department of Health and Human Services.

Final Security Rule, February 2002.
[26] E. Song, R. Reddy, R. France, I. Ray, G. Georg, and

R. Alexander. Verifiable composition of access control and

application features. In SACMAT ’05: Proceedings of the

tenth ACM symposium on Access control models and tech-

nologies, pages 120–129, New York, NY, USA, 2005. ACM

Press.
[27] Sun Microsystems. Java Authorization Contract for Con-

tainers, final release, November 2003. JSR-115.
[28] B. Van den Bosch. The design and the development of the

hospital information system of the U.Z. Leuven. PhD thesis,

Katholieke Universiteit Leuven, 1996.

