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Uniform Asymptotic Expansions of the Jacobi

Polynomials and an Associated Function

By David Elliott

Abstract. Asymptotic expansions have been obtained using two theorems due to Olver

for the Jacobi polynomials and an associated function. These expansions are uniformly

valid for complex arguments over certain regions, for large values of the order.

1. Introduction. In order to make realistic estimates of the truncation errors in

Gauss-Jacobi quadrature rules (see Donaldson and Elliott [1]), we have needed

asymptotic estimates for large n and z (£ [— 1, 1] of the Jacobi polynomial P{na,ß)(z)

and an associated function which we have denoted by n„a,i,(z), and which is de-

fined by

(1.1)
„<«.», ï        /" 0 - O'O + tfPla-ß)it) d:r    i   il
n„     (z) =   /-dt,       for   z $ [—1, 1].

J-l z  —  t

The function U(„a,ß)iz) is analytic in the complex plane cut along [— 1, 1] and is closely

related to the Jacobi function of the second kind, Q„a,ß)(z) as defined by Szegö [7].

In terms of the hypergeometric function we have,

„(«.«, , = 2"+tt^+1r(zz + a + l)Tjn + 0+1)

(1 2) "      (Z) T(2zz + a + ß + 2)iz - 1)"+1

7\n + l,n+a+ l;2n+a + ß + 2;

The problem of finding such asymptotic estimates for large zz and z, not in the

neighborhood of [—1, 1], has already received some attention in the literature.

Erdélyi [2, pp. 77-78] quotes results given by Watson for the hypergeometric function,

which will give the first term in the asymptotic expansions of P'na,ß\z) and Una,ß)(z).

Szegö [7, Theorem 8.21.7] also gives the first term for Pna,ß)(z) and, in Eq. (8.71.19)

of [7], gives the form of the first term of the asymptotic expansion of nna,i)(z).

In this paper, we have made use of two of the theorems developed by Olver [5],

[6] to obtain formal asymptotic expansions of both Pna,i>)(z) and Una,ß)(z) for large zz.

In Section 2, we shall obtain these expansions in tenns of elementary functions which

are valid in the complex z-plane cut along [—1, 1], with a neighborhood of the in-

terval [— 1, 1] being deleted. In Section 3, we shall derive expansions in terms of modi-

fied Bessel functions which again are valid in the cut plane, but also in the neigh-

borhood of the point z = 1 ; in fact, the expansions are valid in the complex plane

cut along [—1, 1] but with only a neighborhood of the point z = — 1 being deleted.
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310 DAVID ELLIOTT

The results of this section are believed to be new. Finally, in Section 4, we shall

give explicit relations between the coefficients which arise in the asymptotic expansions

of Sections 2 and 3.

In this paper, we shall obtain only the formal asymptotic expansions. It is pro-

posed to consider in a later paper the error bounds when the asymptotic expan-

sions are truncated.

2. Asymptotic Expansions when z is not in the Neighborhood of [— 1,  1]. The

starting point of all the subsequent analysis is the observation that the functions

P{na'ß\z) and (z - l)-"(z + l)-ßUl"-ß\z), where -x < arg (z - 1), arg (z + 1)< x,

are linearly independent solutions of the differential equation

(2.1)      (z2 - 1) ^ + [(a + ß + 2)z + (a - /?)] ^ - «(zz + a + ß + 1)8 = 0.
dz dz

We first reduce this equation to "normal form" by writing

(2.2) 8iz) = (z - l)-Co+1,/2(z + iy(ß+1)/2uiz),

which gives

n v\ — - I—JL— j_   g2 ~ *     i   I — a   — ß2   ,    ß2 — 1
{¿-i} dz2 * \(z2 - 1) + 4(z - l)2 +    4(z2 - 1)     + 4(z + I)'

The quantity k is defined by

(2.4) k = n + ia + ß + l)/2.

We are interested in the asymptotic expansions of the solutions of this equation for

large values of k. Following Olver [5], we make a simultaneous transformation of

both the dependent and independent variables. If we define

(2.5) z = cosh 2f,

and

(2.6) u = (sinh 2f)1/2w(f),

Eq. (2.3) becomes

(2.7) ~= {4k2 + fit)}w,

where the function /(f) is defined by

2«2 2ß2 1
(2.8) m =

cosh 2f - 1       cosh 2f + 1       (sinh 2f)2

We can now apply Olver's Theorem A (see [5]) to this equation. We note that Eq.

(2.5) maps the z-plane cut along [—1, 1] into the domain D in the f-plane defined by

(2.9) D = {f | Re f > 0, -zr/2 < Im f < tt/2}.

If we delete the neighborhoods of the points f = 0, ±z'x/2, we have immediately

from Olver's Theorem A, that in the domain D Eq. (2.7) possesses two linearly in-
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dependent solutions wx(£) and w2(f), say, which for large k are represented asymp-

totically by

a.(r)
>) wx(ij ~ e       ¿_,~

«-0

and

(2.10) w1(r)~eî*r ËOJ
ÍTo (2Ä)

(2.11) w2(f)~e        2^—JZ7Z,-

The coefficients a8(f) are defined recursively by

flo(f) = 1.

(2.12) fl.+i(f) =  -I«:(f) - \ f   Kt)a;it) dt,

for s = 0,1,2, • • • , where the constant of integration has been chosen so that ae+x(°°)

= 0 for s = 0, 1, 2, • • • . It now remains to relate the functions wx(Ç) and w2(f) to our

original functions Pna,ß\z) and Tl„a,ß)(z). This is a straightforward process done by

comparing these four functions, assuming k to be fixed, for large \z\, or large |f |.

We find, after some algebraic computation, that the required asymptotic expansions

are given by

(2.13)

and

»<-.i)n      _r(2zz + a + ß + 1)_
"      (z) ~ 2I2n+u+i,+1)/21r(zz + l)r(« + a + ß + 1)

(z + (z2 - 1)1/2)* ^ a,(f)

(z - l)(2a+1,/4(z + l)'2^1"4 ¿rS (2*)' '

„(«.«, v    2'2"+3(a+g+1)/21r(« + « + pro» + ß + i)
n„    (z) ~-

(2.14)
T(2zz + a + ß + 2)

(Z - 1)»"-"^(Z + i)»"-»/«   -   (-l)'a.(f)

X [z + (z2 - D1/2]' h      (2/c)*

3. Asymptotic Expansions Valid Near z = 1. We again start with Eq. (2.3). If

we introduce the same independent variable as before (see Eq. (2.5)), but define a new

dependent variable by

(3.1) . - (^"W).

Eq. (2.3) becomes,

,- «■. d2W      1 dW  .  J .,2   ,  a2 — 1   ,    „,,.,l„,

The function F(f) is defined by

(3.3)        F(t) - («* - D^ -p]-S¿r|+ 3^ - ¿J •
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312 DAVTD ELLIOTT

Equation (3.2) is now in a form suitable for the application of Olver's Theorem D

(see [6]). The asymptotic expansions will again be valid in the domain D (see Eq.

(2.9)) but only with the neighborhoods of the points ±/x/2 deleted. We note that

F(Ç) is an even and regular function off such that F(f) <~ 0(|f |"2) as [f | —> <*>, f G D.

By Olver's Theorem D, for a ^ 0, Eq. (3.2) possesses two linearly independent solu-

tions WX(Ç) and W2(i;), say, which have asymptotic expansions

(3.4) WM) ~ j-/a(2*r) ¿ 4tS + f /-i(2/cf) ¿ -Mlï ,
fr; (2zc) fr; (2/c)

and

(3.5)        iy2(f) ~ rff«(2*n Z áéfi - f ff.+i(2*n Z t^Sti-
8-0 v¿*.Z s-0 \ZK)

In these equations, Ia(z) and Ä"„(z) denote the modified Bessel functions of order

a (see for example, [3]). The functions A s(f ), Bs(0 are defined recursively by

Aoit) =  1.

(3.6)
2B,(n = - ¿:(r) + £ |f(í)/is(í) - ^l±í ^:(o| ¿?,

2i4.+i(f) = ^7^ B.(0 - Bi(f) +  (   F(i)B.(0 A + K+x,

for s = 0, 1, 2, • • • . The constants k,+x are chosen so that

(3.7) A,+xi0) = 0    for i = 0, 1, 2, ••• .

It is worth noting that A,(!;), BS(Ç) are even and odd functions of f respectively.

It now remains to identify the functions Wx(g) and W2Q;) with P„a,ß)(z) and

Mna,ß\z). This is done by taking k fixed, and considering the behavior of these func-

tions in the limit as z —> 1 or f —»• 0, f G D. Since

(3.8) ^(f) ~       * r+1[l + 0(f2)],
T(a + 1)

and

/i o^ d<«.0V ^ T(zz + a + 1)      r,    .    _, ,..
(3.9) Pn      (z) = r(„ + 1)r(a + 1} [1 + Oiz - 1)1,

we find that

(3.10)

2lo+p+1'"r(zz +a+ 1)

*"r(n + i)(z - i)(2"+1)/4(z + i)(2i+1)/4

x {r1/2/a(2*n £ ^¿p + fl/2/a+1(2fcf) £ ^Bï

This is the required asymptotic expansion for ^"'^(z), a ^ 0.

Finally, we must compare the functions Tlla,ß)(z) and JF2(f). This is algebraically

the most tedious of all the identifications so far considered. Suppose a > 0 and

not an integer; we note the following results. First, in the neighborhood of z = 1,

we obtain from Eq. (1.2) that
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I,        1W, 4-  1Y-*TT("''"rV» -_^n + g +  1)(z — I)    (z -+- 1)   11»      (z) —  —^7 777:;77^7    :
j r(zz + l)r(a + 1) sin M

x /, _ 2°r(a)r(i + g)r(« + pro» + <3 + i)Sin (TO)\?1 _    }

I xr(zz + a + l)r(zz + a + /3 + l)(z - 1)"    J

Next, near f = 0, since ¿.(f) = |f2^'(0) + 0(f4) and 5,(f) = f#(0) + 0(f3),we
have

s(a, K)     .!_„ k"
(3.12)      y,(f) ~     "    A,Z'      J     - vn\  , r + " H + o(ni,2 sin H U T(l — a) "(1 + a)

where the function s(a, zc) is defined by the asymptotic expansion

(3.13) s(«,*)~ 1 -7 ¿
#(0)

* frí i2k)2'+i'

On comparing Eqs. (3.11) and (3.12), we find the required asymptotic expansion for

n»a,w(z) given by

~(«+/S + 3)/2-p/      j_     ,      n

n«-»(z)~-( +   + u(z - i)(2"-,,/4(z + i)<2^-1)/4

(3.14) *"r<" + l)

i2k)2'+1
X if1'2*^) £ Mi - ïU2Ka + xi2kt) £

\ s-0  \ZK) s_o

In addition, our comparison gives the curious result

zc2"r(zz + l)r(n + ß + 1) ,      a f,   B'Mr,lfl zc2ar(zz + nix« + is + i) ,_^v
lJ,"J r(zz + a + l)r(zz + a + 0 + 1) ~ /c fr¿ (2z<r+1

Equation (3.14) has been obtained under the assumption that a > 0 and not an

integer. The cases, when a = 0 and a is a positive integer, must be treated separately

since the functions then have different behavior near z = 1 or f = 0 from that given

in Eqs. (3.11) and (3.12). However, it can be shown that the asymptotic expansion

given by Eq. (3.14) is in fact valid for all a it 0. The asymptotic expansion given by

Eqs. (3.10) and (3.14) are believed to be new. They are uniformly valid for all z in

the z-plane cut along the real axis from — °° to +1 with the neighborhood of the

point z = — 1 being deleted.

It may be noted that we can obtain similar expansions for P„a,i)(z) and II„a,i>(z)

which are valid in the neighborhood of the point z = — 1 but not in the neighborhood

of z = 1. These may be readily obtained from the above analysis by observing that

pla-ß)i-z) = i-\TPnß'a\z),

and

Hn-ß\-z)=   (-l)"+1n^ «>(*).

4. Relations Between the Coefficients as, A, and Bs. In this section, we shall

consider the purely algebraic relationships which exist between the coefficients a,(j"), as

defined by Eqs. (2.12), and the coefficients A,(r), B,(Q, as defined by Eqs. (3.6).
The Eqs. (2.12) are of a rather simpler form than Eqs. (3.6), thus, we shall assume
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314 DAVID ELLIOTT

that we know the coefficients a.(f) and shall show how the coefficients A,(If), 5,(f)

may be obtained recursively from them. Our starting point is the observation that

for f bounded away from f = 0, the asymptotic expansions of n„a,/S>(z), as given by

Eqs. (2.14) and (3.14), must be the same. (We could compare the expansions for

P„a,i)(z), but the same results would be obtained.)

Now, for f bounded away from zero, we have that |2fcf | is large when k is large.

Since |arg f | < x/2, we have (see for example Erdélyi et al. [3, p. 86]) that

(4.1) ?'2Kai2kt) ~ Ç/2 (z + (z2 - I)1«)"' £ g^-

Here, (a, zzz) denotes the "Hankel symbol" which is defined by

(4.2) ia, m) =     ^L*" + ^ ^ >    for zzz = 0, 1, 2, • • • .
zzi! r(f + a — m)

On substituting this asymptotic expansion for ?/2KJ/2kF) and f/2Ka+x(2kl;) in Eq.

(3.14) and comparing with Eq. (2.14), we find that

zc°+1/2r[fc + (ß_a+ l)/2]T[k - ja + ß - l)/2] y,(-l)'fl.(f)

Tik + |)r(/c +1) frí      Tk'
(4.3)

/y(«, «)V^ ¿.(n\ _ ( v («±_k_^V v   *■<» \
~\nkwrkmAh22ak2°)   \£a wnm A&f+w*1)'

We shall equate the coefficients of powers of 1/fc on each side of this equation.

First, we need a suitable expression for the ratio of the gamma functions appearing

on the left-hand side of this equation. From a result given by Tricomi and Erdélyi

[8] for the ratio of two gamma functions of large argument, we find

ía a^    /T+1/2r[/c + 03 - a + l)/2]T[k - (a + ß - l)/2]       ^ c,
(4-4) -v[k + mk +1]-S*1, forlarse*

where the coefficients c, are defined by

^ Tija + ß+ l)/2 + J]T[ja - j8)/2 + z - ;]

(4.5) C' "   U    jl il - j)\ T[ia + ß + l)/2]r[(a - ß)/2]

nHl-*-ß)/2),r.sz.il+iß-u)/2],is
•Hi [\})Bl_i (2)>

for / = 0, 1, 2, • • • . In this equation, B\'^(x) denotes the generalised Bernoulli poly-
nomial which is defined by

(4-6) t-rr)'*"'- ££*)"(*),        |i|<2r.

For properties of this polynomial, the reader is referred to Milne-Thomson [4].

On substituting the expansion (4.4) into Eq. (4.3), and equating powers of l/k on

each side of this equation, we find

(4.7) '-" 2

.   y- [ja, 21 - 2J + DA.jr) - 2fB,-(f)(« +1,2/- 2j)]

1-0 4 f
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for / = 0, 1, 2, • • ■ ; and

1  (-I)'«,«")

z
(4.8)

2>       ' c2i-

[4M,(r)(a, 2/ - 2j) - 2g,_1(r)(g + 1, 2/ - 2/ + 1)]
—    Z-< .2i-j+l,.2i-2)+l

)-0 'T i

for / = 0, 1, 2, • • • , where P_i(f) ■ 0. These two equations define recursively the

coefficients Afá), 5,-(f) in terms of a,(f). Starting with A0(£) = 1, Eq. (4.7) with

/ = 0 gives P0(f). With / = 1, Eq. (4.8) gives AX(Ç) whence, from Eq. (4.7) with / = 1,

we obtain Pn(j"), etc.
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