
UNIFORM ASYMPTOTIC FORMULAE FOR FUNCTIONS
WITH TRANSITION POINTS

BY
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1. Introduction. Let g(z, w) be an analytic function, regular at z = 0, w = 0.
We are to investigate asymptotic formulae for the solutions of the differential
equation

(1.1) ^+y{-»h + g(z,v-2)} =0,
dz2

where v is a large parameter. More, precisely, we desire approximations whose
error is 0(v~m), uniformly for z in a closed region, independent of v, having the
point z = 0 in its interior or on its boundary, m being an arbitrarily large integer.

The investigation will cover the solutions, in the neighbourhood of x = 0,
of the more general equation

d2Y dY
(1.2) — + R(x, v-2) —- + Y{ -**/(*) + Q(x, v-2) ] = 0,

dx¿ dx

in which R(x, w), Q(x, w) are regular at x = 0, w = 0 and f(x) has a simple
zero at x = 0; for (see §2) this may be reduced to the form (1.1) by a change
of variables, regular at x = z = 0. When all the symbols denote real numbers,
the solutions of (1.2) are monotonie or oscillating according as v2f—Q
+4-1T?2 + 2_1¿T?/¿x is positive or negative; and when v is large, this quantity
changes sign at a point near x = 0, on account of the simple zero of f(x) at x = 0.
Thus as x passes through 0 the solutions change from monotonie to oscillating,
and we may call x = 0 a transition point(l). It is this transition which dis-
tinguishes our problem from the simpler one in which the x-region includes no
zero of f(x).

The guiding idea of the investigation is familiar: "approximately identical
differential equations have approximately identical solutions." A significant
approximation to (1.1) will be an equation having the same features when z
is near 0. Accordingly the project stated in the first paragraph is crystallized:
the approximations to solutions of (1.1) are to be solutions of a differential equa-
tion of the same form as (1.1).

The simplest equation of this form is the Airy equation
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P) In the nature of the case there is no single point at which a solution changes character,
and there is no definition of "transition point" which is invariant under change of variables.
Our use of the term will be essentially descriptive, to emphasize that such and such a point is
about the centre of the neighbourhood which is of primary interest.

224

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FUNCTIONS WITH TRANSITION POINTS 225

d2V
(1.3) —-„3f„ = 0,dr
whose general solution is(2)

(1.4) v = C Ai (v2^) + D Ai (i^»e±*»*/*j-).

It is a significant approximation to (1.1) if we take f = z; and it is on the basis
of this approximation that R. E. Langer [3] has established (under precisely
defined conditions) approximations to solutions of (1.1), in the form(3)

(1.5) y(z) = C, Ai (v2'h) { X + 0(v~l)} + D„ Ai (y*«***"*) { X + O^"1)}.

The Airy functions are not elementary, but they are acceptable as approxima-
tions since their properties are well known and they are tabulated [2].

In the present paper a procedure is given for finding approximations which
resemble (1.5), but in which the error is 0(v~2n~l), where « is as large as we
please. The underlying idea is that we must first find a differential equation,
with a known solution, whose discrepancy from (1.1) is of order v~2ny. This is
obtained (see §3) from (1.3) by means of a transformation,

(1.6) f = 4>(z) = z + í--^i(z) + *-**s(s) + • • • ,    v = y(<t>'(z))l<2,

in which the functions <pi, <pi, ■ ■ ■ are successively determined by elementary
processes, and all are regular at z = 0. By a familiar process we then (§4) com-
pare the solutions of this transform of (1.3) with those of (1.1).

The results may be presented in two forms, (i) and (ii). Examples are:

(i)
.       /   2   V'2 z1'4 Ai {**"*(*)}  ,

(1.7) si'V,{Kl-i,)1/î} =(-rrr)-m {1 + O^-2-1)},
\<b'(z)/ v1'3

where z= {(3/2) (arctanh s — s)}2/3 and <p(z) is given by a series (1.6) in which
<pi, <pi, ■ ■ ■ are determined by one rule as far as <pn, and thence onwards by a
different rule (see §3.2). For largi'l Sw/2 and | arg (1 — s2)1/2| ^7r/2 this gives
uniform approximation to sV2Jv except in small neighbourhoods of the zeros
of the function, where a slightly modified formula is required.

sltsJ,{v(l - s2)112} = 21/V-1/V4[Ai (v2liz){X + q2v~2 + • • •

+ q*nv-2n + 0(v~2"-2)}

+ v-ii\\ï(v2lh){qiv-l+ ■ ■ ■

+ q2n~xv-2n+1+0(V-2»-1)}],

(2) The notation here used for Airy functions was introduced by H. Jeffreys [l]; the defini-
tion of Ai(:c) in terms of Bessel functions of order 1/3 is given in equations (4.8), (4.23) of the
present paper. For tables of the functions, and an account of their properties, see [2], Numbers
in brackets refer to the references cited at the end of the paper.

(*) Langer's results are here expressed in Airy-function notation.
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226 T. M. CHERRY [March

where gi, q2, ■ • • are determined by one rule throughout. This is analogous to
familiar elementary asymptotic series; its region of validity includes the zeros
of Jy, but 5 must be so restricted that z is bounded.

The general results are reached in §§4.6, 4.7, and the Bessel-function
formulae, from which the preceding have been quoted, are in §§4.8, 4.9.

In §5 are indicated the formulae for approximating to certain hyper-
geometric functions F(a„ bv; v-\-l; r) of large order v by means of Bessel
functions of order v. This type of approximation is chosen for reasons of func-
tional similarity, and for both theoretical and practical purposes is as accept-
able as the Airy-function approximation. Here we find a single formula,
(5.11), which covers all large values of v (without restriction on arg v) and all
values of r apart from a neighbourhood of the cut láT<+°°, and small
neighbourhoods of the zeros of F(a„ b,; v+1; r).

The theory has not been carried to the point of evaluating the constants
of the error-terms, so numerical comparisons of exact against approximate
values are of interest. Such checks are referred to in §4.8; suffice it here to
say that, for the purposes of (1.7), 2 is a "large number," for the formula
(with ra = 2) gives J2(x) from x = 0.6 to 20 (the range examined) correct to 1
in 30000. The formulae of §5 are not so spectacular; for | v\ ^8.5 the accuracy
(with n = 2) is about 1 in a million.

To economize space it has been necessary to suppress a good deal of
detail: and algebraic detail merges into logical detail; it is hoped however
that no logical point of any substance has been treated too summarily.

Notation. As usual, certain symbols are used generically, namely, A
(constants), 0 (Landau's order symbol), Í3 (power series, convergent when
the arguments are sufficiently small), e (positive number, arbitrarily small).
Certain other symbols have different significations in different transient
contexts. For a given choice of datum-functions the A's and O's are absolute,
except as stated in the context; and except that, throughout, the constant
implied by 0(v~2n~1) depends on». \v\ is usually supposed, and on key occa-
sions is stated, to be "sufficiently large." Arguments of functional symbols are
often suppressed, or only the one which is at the moment important may be
shown.

2. The canonic forms of differential equation. Consider a linear differential
equation of the second order, in the normal form (2.1) below. We can make
an arbitrary change of independent variable, and shall preserve the normal
form provided we make also a suitable change of dependent variable:

Lemma 1. The transformation z = <p(u), y = w(<p'(w))1/2, applied to the dif-
ferential equation

d2y
(2.1) ~^+y7(z) = 0,

dz2
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1950] FUNCTIONS WITH TRANSITION POINTS 227

gives

d2w ( 0"'(w)        3 /<t>"(u)\2)
(2.2) +w)F(fau))(fa(u))2+-^----(^-)\ =0.

du2 { 20'(w)        4 \ 4>'(u)/ )

This result is well known, and its proof is trivial.
If in (1.2) we replace F by y exp ( — 2"1fRdx) we obtain a similar equation

with R, Q replaced by 0, Q — R2/A — 2~1dR/dx; and the latter function has the
form <P(x, v~2) since R, Q have this form. Now put x=fa(u), y = w(<p'(u))112,
with fau) so chosen that (<p'(u))2f(x) =1, with w = 0 for x = 0. Since, by hy-
pothesis, f(x) =aiX+a2X2-r- • • ■ with ai^O, we obtain

2    1/2   3/2( »m = - ai   x    {1 + xcP(x)   .
3

Thence x=<p(u) is a power series in u2ß, and an easy calculation of the terms
in (2.2) gives the form

d2w ( 5 ")
(2.3) —+™\-v>+-—+W(u,v-2)\=0,

du2 \ 36m- j

with

W(«, v-2) = u-2i3iP(u2'\ v~2).

Converselv, the substitution
2

(2.4) « = faz) = -z3'2,        w = yep'1'2 = yz1¡i

converts (2.3) into

(2.5) ^l+y{-^8+fatir*y} -0,

with

g(z, v-2) = zW = <P(z, v'2).

Our problem concerning approximations to the solutions of (1.2) is thus
reduced to a similar problem concerning solutions of (2.3) or (2.5), in the
neighbourhood of the transition-point « = 0 or z = 0. We describe (2.3) as in
canonic form B and (2.5) as in canonic form A(4). In view of the transforma-
tion (2.4), we can at pleasure work with either. Near the transition-point the
A-form is simpler, and we shall use it in the transformation theory of §3. But
the B-form is simpler when z, u are not small, and we shall use it for the
asymptotic theory of §4. It appears moreover (Examples 2, 3 below) that for
equations of the hypergeometric family, and others (for example, Mathieu's

(<■) B = Bessel, cf. (2.6); A = Airy.
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228 T. M. CHERRY |March

equation), the canonic A-form is further removed from the original dif-
ferential equation than is the B-form, and that the latter is analytically the
simpler. When such equations are in question it may therefore be preferable
to use the B-form throughout; this procedure is illustrated in §5 and in
Cherry [4].

Example 1. The Airy equation (1.3) is in canonic form A. The corre-
sponding B-form is

/ 5  \+ w[ -v2-\-) = 0,
\ 36«V

d2w / 5

du2

and the general solution of this is

(2.6) w - CL(vu) + DL(vueri),

where

L(x) = x"2Knz(x),

Ki/z being the Bessel function so denoted.
Example 2. Bessel's equation of order v and argument \(X—s2)112. The re-

duction indicated at the beginning of this section gives the differential equa-
tion

d2w / 5 \
(2.7) -+w(-v2-\-+W) = 0,

du2 \ 36u2 )

where

(2.8) u = arctanh s — s,

(2.9) W = (-1)(-hX'-v2)-,
V2        /\4s4       4s2 /      36w2

has the general solution

(2.10) w = Csl'2Jv{\(X - j2)1'2} +7»s1'2F,{X(l - 52)1'2}.

So far as concerns approximations to Bessel functions of large order and argu-
ment we can put X = j', but the wider assumption X2 — v2= ^(v2) leads, as will
be seen in §5, to useful generality. By reversing the expansion « = (l/3)53
•(l + 3s2/5+ • • • ) for the neighbourhood of « = 0 we find

/ 1 \ /     1 3        2
W = (X2- v2-)(-1-(3m)2'3 +

\ 35/ \(3«)2'3       5       35

/ 23 36 \-(-+-(3«)2'3+ •••),
\525      25-49-11 /

and the form (2.3) is verified.
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1950] FUNCTIONS WITH TRANSITION POINTS 229

The Riemann surface for IF as a function of u has infinitely many sheets,
of which we need consider only the three which are cyclically connected round
w = 0. The fundamental unit (Fig. 1 (iii)) is the sector O^arg u^3tt/2 with a
cut from u=iir to i«o, and by reflections in the boundary rays through m = 0
we get in all four such units which together form the three sheets. We con-
vert (2.7) into form A by putting u = 2zil2/3, w = yz1,i, and to the part of the
«-surface for which | arg u\ ^3ir/2 corresponds a schlicht z-plane with three
cuts (Fig. 1 (iv)); but since g = zIFand W(ue3Ti) = W(u), g is regular across
the cut from z = 0 to — « , and this cut can be sealed up. In Fig. 1 we see also
that in sealing this cut we seal also a cut in the plane of x = (l— s2)1/2 from
X = 1  tO  + » .

GH

c>^ IB'

iy
(ii) f-plane

x=(l-s*)i'*
(iii) «-plane;      f|v) Jpkne. f- ( 3   V"
= arctanhi—I \*   /«

Fig. 1

«= + «>,       a= + «.
u = 0, z = 0.
u = oo e3ri!2.   z =

Black area: Sealed-up cuts.
Point A: x=0, s—1,

C: x = l, i = 0,
D : x = + °°,    5 = i «,,      u = co eZwil\   z — — °o.
B: # =—i°o,   5 = 4-°°,   u— <*>eTi,      2=ooe2,ri/3i

C: u=ri,        2 = (3îr/2)2'3e'i«.

Note: In the «-plane, the reflection in CA has been omitted.

For later reference we note the forms of IF, g in the two infinite sectors of
the cut z-plane; these are easily found from the appropriate local approxima-
tions to the SM-relation (2.8): For larg z\ ^ir/3 — t,

(2.XX)

W = -
36u''

+ 4(1 + X2 - i>2)e-2-2" +

=-h e-2"V(e-2", v~2),
36u2

g = zW = 0(z~2).

For |arg ( — z)   ^2ir/3,

(2.12)

IF = v2 - X2 + (- - X2 - v2)u~2 +

g = zW = (x2 - X2)z + 0(z-2).

X2 + u-2<P(u~v),
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230 T. M. CHERRY [March

Example 3. A hypergeometric equation. The equation

(2.U)     fi+/±._JL)* + ,.¿_¿-i-V-o
¿r2       \ r        1-T/dr \2t(1 - r) 4r2/

has as its general solution

y = Cr^T^r) + Dt~''2F^(t),

where 7"„(t) denotes the hypergeometric function

7„(t) =7(a„, br;v+ 1; r),
(2.14) a, + ¿», = x + |8,        aA = - 0j<(v - l)/2.

This and related functions are of importance in the theory of compressible-
fluid flow, where, when the fluid is air, the value of ß is about 2.5. When v is
real F,(r) is monotonie for 0<r<r, and oscillating for r,<r<l, where

t, = 1/(1 + 2/3).

By putting

/l - r/rA1'2 _i„ i/2
(2.15) t = I-I    ,        u = arctanh t — t,      arctanh (¿ts   ),

(2.16) w - (1 - ryiH'l'y = (1 - 7)^V2{Cr"/27,(r) + DT-'I2F^(t) ],

we convert (2.13) into

¿2w / 5

¿M2
(2.17) 1 - ¿2      í 5       1 + 6r„      3 - 4r.

IFi

+ w(-v2-\-h JFi) =
\ 36m2 /

I-l¿64(1 - re)2 (¿6 Í4 ¿2

+ (1 - 2r.)(l - 4r5)
}- 36m2

and this is readily verified to be in canonic form B. Considering Wi as a func-
tion of u, the fundamental unit of the Riemann surface is the same as for W
(Example 2), except that there is an additional branch point on CD, at
w = 2_17t(t,~1/2— l)e3Ti/2, and the ray thence to u= »eîri,s must be taken as a
cut. The correspondence between r, ¿, u, z is shown in Fig. 2.

The form-A equation corresponding to (2.17) involves a function gi = zW\
which is regular in the same domain as g (Example 2), except for a new cut
from z= — zi to — =o, z1= { (37t/4)(t,~i/2 — 1) }2/3; at z= — Zi, gi= oo. Near 00,1,

(2.18) Wi= - 5/36u2 + e-2>"P(e-2»),       gx = 0(z~2);

near °o Bl
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(1 - r.)2 5
IFi =

4ts 36m2

(1 - r.)2

+ e2"^/2F(e2"^2),

4t.
z + 0(s-2).

231

~A   C E  ¡B

(i) T-plane (ii) /-plane

A     D

(iv) z-plane

Fig. 2

Black area
Point A

C
E
B

Sealed-up cuts.
T=0, t = l, «= + », S=+».
T=T8, / = 0, M = 0, 2 = 0.
r=l,        <=oo,      u-UitPrtt*, z=-(3«l/2)2'3;   «i = 2-17r(T,-"2-l).
T = 00 ,      / = T8~1^2, M = oo gTÍ( z = oo e2T1'3.

JVoíe: In the «-plane, the region C.4.B.E corresponds to the half-plane Im t <0; the reflection
in CA has been omitted.

3. Approximate reduction of a canonic equation to the Airy equation. Let
the transformation

(3.1) r =  0(Z)   =  Z +  Z "-2r*r(z),
1

be applied to the Airy equation

(3.2)

v = yWW2,

d2v
-v^r, = 0.
df2

By Lemma 1, the resulting equation would coincide exactlv with the equation
(2.5):

(3.3)

provided

d2y

"aV
+ y{-v2z+ g(z, v-2)) =0

<p'"(z)      3 r*"(z)-i2
(3.4) v24>(z)[<b'(z)]2 - —y- + -   —)±   = ,2z - g(z, v-2).

2<p'(z)        4 L <p(z) J
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This is a differential equation for 0(z), for which it is easy (see §3.2) to find a
series-solution in the form (3.1). It appears that this formal series is usually
divergent, so we do not pursue it; but if we curtail it at the term in v~2n
(n arbitrary) we obtain a regular function faz) which makes the two members
of (3.4) coincident up to terms of order v~2n+2. Moreover, the coincidence to
this order will not be affected if, to the polynomial in v~2 so determined:
z-\-^2"v~2rfa-(z), we add additional terms i>_2"~20n+i(z) + • • -which are
arbitrary apart from convergence requirements. We shall choose these terms
so as to make the two members of (3.4) as nearly as possible coincident when
\z\ is large. Thereby we shall in §4 secure that our asymptotic formulae re-
main uniform up to z = =o, provided g satisfies suitable hypotheses.

3.1. Hypotheses. The following hypotheses are rather more general than
are needed to cover Examples 2, 3 of §2, and at the same time are sufficiently
precise to lead to clear-cut results.

Hypothesis 1. There is a domain <Dz in the z-plane, enclosing z = 0, in which
g (equation (3.3)) has an expansion

(3.5) g(z, v-2) = ¿*-*'*r(s),
o

the gr(z) are regular, and

\gr(z)\íkMkr /or |*l SI.
\gr(z)\ £Mk'\z\ for \z\ è 1,

M, k being positive constants.
Hypothesis 2. Dz is a (schlicht) star-domain relative to the centre z = 0;

it contains sectors of nonzero angles, extending to infinity, centred on the rays
arg z = 0, +2-7T/3; and it may contain other infinite sectors of nonzero angles.
Thus in Example 2, Fig. l(iv), Dz is the whole plane, less the sector
|arg z—7r/3| ¿e, \z\ è (3ir/2)2/3 —e (e arbitrary, greater than 0) and the con-
jugate sector.

This hypothesis will become of full effect only in §4. In the present section
the essential part of it is "any point z of D2 can be joined to the origin by a
path whose length is less than .4|z|," and this would be sufficient for the
most vital part of §4 provided the exposition were suitably elaborated.

' Hypothesis 3. 7« any sector of <DX which extends to infinity,

g(z, v-2) = a,z + ß, + 0(z~i),

(3 7) °° °°
a, = S aTv-2\ ß„=J2 ßrv~2r,

o o

uniformly for arg z belonging to the sector and \ v \ sufficiently large ; the series
for av, ßv being convergent. (There may, of course, be sectors reaching arbitrarily
near to oo, in which (3.7) is not satisfied.)
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1950] FUNCTIONS WITH TRANSITION POINTS 233

As an immediate consequence we have, for any finite set of the coefficients
in (3.5)

(3.8) gr(z) = arz + ßr + 0(z-1),

uniformly for arg z in the sector, and this is consistent with (3.6)2. Hence
follows gr(z)=ar-\-0(z~2), g'/(z)=0(z~3), and so on. If (3.8) is uniform in
#i=iarg z^92, each derived relation is uniform in 0i+e=jarg z^92 — e. In the
sequel we shall have to perform a finite number of differentiations of poly-
nomial combinations of the gr, so one contraction e in the sector will suffice
for all; and we shall reduce the verbiage by supposing that this contraction
has already been made in defining Oz: that is, (3.7) is actually valid in sectors
whose angles are somewhat larger than those of D*. In each sector of Examples
2, 3 the right-hand member of (3.7) is a convergent series, and no contraction
of the sector is involved on differentiation.

From these hypotheses we shall deduce (§§3.2-3.4):

Theorem. A transformation (3.1) may be defined which is in D* regular,
reversible, and arbitrarily near the identity for  \ v \   sufficiently large, whereby
(3.2) is converted into a differential equation (3.9) below, in which G is regular
and satisfies inequalities of the form

\G\ ^An\v\-2" for\z\SX,

\G\ úAn\v\-2"\z\-1>2 for |*}ä 1,

where the constant An depends only on the arbitrary integer n.

3.2. Definition of the transformation. Consider the transform of the Airy
equation (3.2) by (3.1). With a view to comparing the resulting equation with
(3.3) we write it as

(3.9) -^ + y(~v2z + g - G) = 0,
dz-

where by Lemma 1

(3.10) G = G(z, v2) = v2(U" - z) + E v~2rgr - — + T ( — ) •
o 2(f>        4 \ <j> /

Substitute here <p = z-\- ^2îv~2r(f>r, so that <£' = 1+ ^2îv~2r<p'r, and so on, and
we can develop formally in powers of v~2. The term in v2 cancels, and equat-
ing to zero the coefficients of v°, v~2, ■ • • , we get

2z<#>i + 4>i = — go,

(3. XX) 2z<t>'2 + fa = — gi — z<t>'i   — 2<t>i<t>'i + <p["/2,
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which can be successively solved for fa, fa, ■ • ■ .
The general solution for fa is

z1/20i= -   f'2-lgo(x)x-1'2dx+C,
Jo

and since go(x) = <P(x) there is one solution fa, and only one, which is regular
at z = 0, namely, the one for which C = 0. We choose this solution; it is regular
in Dj since go is regular there. The right-hand member of (3.11)2 now becomes
a known function, regular in Gz, so for a similar reason there is one solution
02 which is regular in D2; and so on.

We suppose that the successive solution of (3.11) is terminated after <pn
has been found, for some chosen integer n. We then choose 0n+i, 0n+2, • • • so
that, in the expansion of

v2(Un -z) + g,

the coefficients of v~2n, v~2n~2, ■ ■ ■ may vanish; they are given, therefore, by
equations derived from (3.11) by striking out the terms involving second or
third derivatives of the fa.

For formal convenience, let functions g*(z), ■ • • , g*-i(z) be defined by

(3.12) g*(z) = gr(z) + K(z) (r = 0, •••,«- 1),

where hr is the coefficient of v~2r in the expansion of

_0^      3 /f\*
20'       4 \ 0' / '

Thus ho = 0, and (for r = l, 2, • ■ • , w — 1) hr is a polynomial in derivatives of
0i, • ■ • , fa, of the form

(3.13) hr = £ 0,-"íJ(0Í) + £ 0,'V/<P(0Í) ;
and the h„ g* are determinate functions of z, regular in <DZ, since 0i, ■ • • , 0n_i
are regular and already determined. In consequence of this definition, the
equations (3.11) for fa, ■ ■ ■ , fa take the form

g? + [coefficient of v~2r in expansion of v2(4>4>'2 — z)] = 0 (r = 0, • • • , « — 1);

so if we define

(3.14) g* = gr (r è «),       g* = ¿ v-2'g*,
o

the equations determining all the fa are comprised in

(3.15) k2(00'2 - z) + g*(z, v-2) = 0.

This is a differential equation for 0(z), in which the variables are separable.
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We have to pick the solution which answers to the values of </>i, • • • , <j>n
already determined, to demonstrate that this solution can be convergently
expanded in powers of v~2—which will validate the previous formal develop-
ments—and to determine the character of the solution in the infinite sectors
of <Dt.

3.3. Properties of the <pr(z) and of the series z+ ^v~2r<pr(z). We have to
discuss (i) <pi, • ■ ■ , <pn, (ii) hi, ■ ■ ■ , hn-i and g*, (iii) the solution of the
differential equation (3.15); in this order.

(i) <j>i, • ■ ■ , 4>n have already been proved to be regular in <DZ. Consider
their behaviour in the typical infinite sector. For any z in the sector we have,
by (3.8), go(z)=aoz+ßo + 0(z-i), so (3.11)! gives

1
z1'2^) =-aoz3'2 - ftz1'2 - Co + CXz-1'2),

1 (•"
Co = — I     (go — ctoz — ßo)z~ll2dz.

2 J o

Hence

4n - - a0z/3 - ßo- coz'1'2 + CXz-1), <b\ = - «0/3 + CoZ-3/2/2 + 0(z~2),

4>i" = 0(z-i>2),

and

z<bi' + 24>i<t>\ + (¡>'i'/2   = alz/3 + 2a0^o/3 + 0(z~1),

where the term in z~1/2 cancels. Since also gi=a;iz+ßi + 0(z-1), (3.11)2 gives
the form 02 = a2z+è2+c2z_1/2 + O(zr1). An inductive proof that

(3.16) <br = arz + br+ crz~112 + O(z^) (r = 1, 2, • • • , n)

is easily given; the essential point is that, if <pi, ■ • ■ , <pT-i have this form,
then the equation (3.1 l)r for <j>r has its right-hand member of the form
Cz+D+0(z-1) with no term in z~1/2.

(ii) From the form (3.13) for hr along with the form (3.16) just demon-
strated, we have

(3.17) hr = 0(z-ii2),

and thence from (3.12) and (3.8)

(3.18) g* = gr + 0(z--'2) = arz + ft. + 0(z~l).

It follows that, throughout Oz, |g*(z)/z| is bounded for |z| èl. Also
g*(z), being regular in Oz, is bounded for |z|^l. So for the finite
set g*, ■ • ■ , gn-i> we can assert inequalities of the form

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



236 T. M. CHERRY [March

\gr*\ ^ M*k" for lil á 1,(3 19) il-'
| g*| g 7l7*¿r| zj for j«| gï 1,

where k is the same constant as in (3.6). And since g* = gr for rS:«, and we
can take M*^M, (3.19) are valid for all r.

(iii) From (3.19) it follows that, in the differential equation (3.15), g*
is an analytic function of the two variables z, v~2, regular for z in Oz and
\v2\ >k. There is no difficulty in proving that there is just one solution 0
which is regular in <DZ, and in establishing the expansibility of this solution
in powers of v~2. The steps are:

(a) In 02, z — v~2g* has just one zero zo = v~2(Pi(v~2); and

(3.20) - V~Y = (z - zn) |l + ¿ v-2'fr(z)\ , with | /„| á Miki

(b) The only solution 0 which is regular in <DZ is given by

2

° " zo

(c) In Oz, 0 is expansible in the form

- 03'2 = r {x - v-2g*(x, v-2) \ u*dx.
J zn

(3.21) 0 = (z - zo) jl + ¿ v-2'fr*(z)\ with j /*(z) | á M»*«;

in deducing these inequalities from (3.20) we appeal to hypothesis 2 of §3.1.
(d) By substituting from (3.20), (3.21) in (3.15) we get a development

00

0'   =   1   +   Z "-2r4>r*'(z), With    | 0*'(Z) |   ̂    Mzkz.
1

An integral of this,
00

(3.22) 0 = z + E "-2^*(z),
i

must agree with the series obtained from (3.21) by substituting for z0 its value
v~2cPi(v~2) and rearranging; and

\4>?(z)\SMz*k\ for|i|ál,
|0r*(z)| ^ Mz*k\\z\   ■ for jz| ^ 1.

(e) The series for 0", 0'" obtained by differentiating (3.22) converge
uniformly in Dz, apart from a strip round its boundary (Weierstrass), but it
is not necessary to remove such a strip since the series can be obtained from
derivatives of the differential equation (3.15).
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Substituting this solution <b in (3.10), G becomes an analytic function of
z and v, regular for z in <DZ and | v\ sufficiently large. The expansion leading to
the equations (3.11) is justified, and the 4>i, ■ ■ ■ , <fin thence determined must
agree with <p*, ■ ■ ■ , <b* in (3.22) since the solutions which are regular in <DZ
are unique.

In the typical infinite sector of <DZ we have, from (3.14), (3.18), and (3.7),
n-l

z - v-2g* = z - v~2g + Z "~'lr-2(gr - gr*) = z - v~2{a,z + ft + 0(z~1)},
1

uniformly as to v and arg z. Substituting in (3.15) we obtain, uniformly,

2^/2/3 = (2(1 _ v-2aJ 1/2/3)z3'2 + ^2ft(l - v-'ar)-1'^1'2
(3.24)]

+ v~2c, + 0(v-2z-^2),

where

(3.24)2  »-2c = lim {203'2/3 - (2(1 - v-2a,yi2/3)zw - i>-2ft(l - y-2a„)-1/2z1/2}..
z—.»

Also

W2
(3.25) lim-= 1 - v~2av.

z->»       Z

3.4. Inequalities for G. It has been proved that, with <p(z) determined as
in §3.2, (3.10) gives G regular for z in CDZ and \v\ sufficiently large; and when
we expand G in powers of v~2, the terms in v°, ■ ■ ■ , v~2n+2 vanish on account
of the choice of (pi, • • • , <pn- Hence v2nG is regular.

Now if we substitute (3.15) in (3.10) and take note of (3.14), (3.12) we get

<b"'       3 /4>"\2      "

2<b'       4

'       3/¿"\2       -

In the typical infinite sector of <DZ, (3.17) gives hr = 0(z-712), while (3.24)
gives <p' = X +0(v-2),<p" = 0(p-2z-u2), <p'" = 0(v-2z~-"2). Hence G = O^-2*-"2)
uniformly as to v and arg z.

Hence for \v\ Wvo, say, and z in <DZ, there are inequalities of the form

\G\£A„     for     l*| Sil, |G| ^^n|z|-'/2     for     |s|¿l;

and since v2nG is regular, the maximum modulus theorem gives

. \G\^AnvT\v\-'2n for J.i jail,
(■'■ ¿U) .        . in .       ,_2n .       ,_7/2 .       .

\G\ ^Anvo  M        z foi Mèl.
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This completes the proof of the theorem stated at the end of §3.1.
3.5. On the value of c, equation (3.24), in a special case. Consider the case

in which (i) the function g(z, v~2) in (3.3) is real when z, v2 are real, and (ii)
one of the infinite sectors of <DZ encloses the ray arg z = ir. From (i), when z, v2
are real all the fa. are real, so 0(z) is real; and on the ray arg z = 7r, faz) has the
principal part z and so is real negative. It follows that in (3.24)

c must be pure-imaginary when v2 is real;
more precisely, if 03/2, z1/2 are to stand for principal values, there are two
forms of (3.24) in the sector:

203/2/3 = (2(1 - v-2aryi2/3)z3'2+v-%(l - y-2«,)-1'^1'2 ± idrv~2+ 0(v-2zr1'2),

one of which must be used for arg z^7r and the other for arg s^-t; and ¿„
is real when v2 is real.

4. Airy-function approximations to the solutions of (3.3). For this part of
the investigation we start from the differential equation (3.3) for the "un-
known" functions and the almost coincident equation (3.9) into which we
have transformed the Airy equation (3.2). For comparing the solutions of
these it is convenient to work with a variable in which the approximation-
functions are as simple as possible, and moreover to work with equations in
canonic form B. We therefore reconvert (3.9) into (3.2) by reversing the
transformation^) f = 0(z), and by then putting f = (3z»/2)2/3, rj =wÇ~lli we get

d2w / 5   \
(4.1) -+w[-v2 +-) =

dv2 \ 36v2/
0.

In applying the same transformations to (3.3) we use for the new dependent
variable a symbol ¿i distinct from w. The transformation is

f = (3./2)2'3, z - 0-1(f) = 0-'[O/2)2/3] = fav),
(4.2) 1 /2\1/3   1

and by Lemma 1 it converts (3.3) into

d2û       r fa"     3/^"\n(4.3) 7Bi + 4-^'2 + ̂  + ̂ -T(7r)J = o.
Now (3.9) is obtained from (3.3) on replacing g by g — G, so the same re-

placement in (4.3) must yield (4.1). Hence (4.3) must be

d2w        r 5 1
(4.4) -\-w\ -v2-\-hF(v, v-2)    = 0,

L 36d2 Jdv

(6) This transformation depends upon n, but it seems unnecessary to show this in the
notation.
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where
G /2\2'3

(4.5) F=G^'2 =-( — )    .
<p'2\3v)

When \v\ is large, the domain <DZ is in one-one correspondence with an
almost coincident domain *Dr,v, and this, via Ç=(3v/2)2,s, is in 1:2 correspond-
ence with a part D„,„ of a 3-sheeted Riemann surface having the branch point
v — 0 in its interior. Thus in Example 2 of §2, Ov,, is the whole of the Riemann
surface of vm, except for arbitrary sectorial neighbourhoods of four cuts one
of which is CG in Fig. 1 (iii). The notation ©„,„ exhibits the dependence of
the boundaries upon v, but for almost all purposes their small variation with
v is unimportant; since Oz is a star (centre z = 0), D„,„ is almost a star (centre
v = 0), and we can make it strictly a star by paring away a thin layer (depend-
ing on v) from its boundary.

The relevant properties of F in (4.4) are that it is regular in Dv,„ except at
v = 0, and that

| F(v, v-2) j ^An\v j-2" I v |"2'3 for I j> I ai 1,
\F(v, k-2)| SM»| v\-2n\v\-3 for I ii |^1;:

these follow from (4.5) and (3.26), if we bear in mind that f = (3w/2)2/3 and
<p' = \ + 0(ir*), uniformly.

The comparison of solutions of (4.1) and (4.4) rests upon the following
simple lemma:

Lemma 2. Let Wi(v), w2(v) be linearly independent solutions of (4.1), let.
w(v) be any solution, and let w(v) be a function satisfying

X   c"
(4.7) w(») = w(v) H-I     {w2(v)wi(t) - wi(v)w2(t)}F(t)ùi(t)dt,

A J v0

where

A = wi(v)w2(v) — w2(v)wi(v) t¿ 0;

the integral may be improper at Vo provided that it converges there. Then ¿>(i>) is a
solution of (4.4).

Starting with given w1( Wi, w we prove in §4.2 the existence of a solution
eo of the integral equation (4.7), and deduce the asymptotic formula ¿b/w
= l + 0(i'_2n_1), provided v is suitably restricted. The transformation (4.2)
then (§4.3) gives a similar asymptotic formula for a certain solution y of
(3.3). To deduce asymptotic formulae for standard solutions of (3.3) we must
express y in terms of such solutions (§4.4), and it is because this is most easily
done by choosing in (4.7) i>0= + =° or xe±ri that we have taken trouble in
§3 to make F integrable to infinity, according to (4.6)2. The final step (§4.5)
is to find the largest domains of validity of the asymptotic formulae; the ones
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first found are unnecessarily restricted.
In §§4.2-4.5 we restrict v to be real positive. In §4.6 the restriction is re-

laxed.
4.1. Properties of the approximation-function L(x). The equation (4.1) is a

well known transform of Bessel's equation of order 1/3. We shall use the
following facts regarding its solutions:

(i) The general solution is

w = CL(vv) + DL(vve±Ti),

where

(4.8) L(x) = x1i2KUz(x) = x1'«?!^2) + x6/6<P2(z2),

the power series <Pi, "P2 being everywhere convergent. The multiple-valued
L(x) is made determinate on a 6-sheeted Riemann surface by taking arg x1/8,
arg xB/6 to vanish when arg x = 0.

(ii) 7,(x) and L(xe~ri) are linearly independent, their Wronskian being

d d
(4.9) L(x) —L(xe~ri) - L(xe~ri) — L(x) = x.

dx dx

(iii) For |x| ~co,

'(4.10) L(x)~(Tr/2yi2-<rx,

uniformly for | arg x | ^ 37r/2 — e.
(iv) L(x) has strings of zeros on the rays arg x= ±37r/2, the smallest

being at about |x| =2.3; for |arg x| <3n/2 it is nonzero.
From these, along with the corresponding properties of L(xe~Ti), we easily

prove that there are inequalities of the form

(4.11)      \L(x)\ ^ Ai\e-*\,     \L(xe-Ti)\ ^ Ai\e*
L(xe~Ti)

L(x)
^A.

valid for —ir/2 + egarg x^3t/2 — e, without restriction upon |x|.
4.2. Solution of the integral equation (4.7). Let us take w(v) =Wi(v) = L(vv),

w2(v) =L(vve~"'i), and Vo= + °°. Inserting in (4.7) the value of the Wronskian,
A = vtv, from (4.9), we write the integral equation in the form

û(v) 1    r +°° l L(we~Ti)\ F(t)w(t)
(4.12) -±L = 1 + - \L(vt)L(vte-^) - L\vt)     \ \^-^dt.

L(w)                vtJv      {                                              L(vv)    j    L(vt)

Taking v to be real positive, we can use the inequalities (4.11) with x = j>¿ or
w, provided we restrict v and all points t on the path of integration thence to
+ oo by the condition

(4.13) -tt/2 + « g arg v, arg t ^ 3x/2 - e.
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Then in the integrand of (4.12)

241

(4.14) L(vt)L(vte-") - L2(vt)
L(vve~ri)

L(w)
ai a\ + a\ai\ e-2*«-*)

and to make this less than A\-\-A\A2 we impose the further restriction

(4.15) -t/2 ai arg (t - v) á r/2,

for all points t of the path from v to + oo. It is clear that this will be satisfied
provided the slope of the path (away from v) is everywhere between +ir/2,
inclusive.

Boundary of Region I
Shadow Zones

Paths of Integration

Fig. 3

Region I, showing shadow-zones and typical paths of integration.

We call Region I the part of D„,„ for which these two restrictions are satis-
fied. Since D„,v can be taken as a star (centre v = 0), the condition (4.15) is of
no effect where Re v^O, but we must exclude any zone in the quadrant
0<arg v<ir/2 which, on account of an intervening boundary of £>„,„, cannot
be "seen" from v=— ¿oo; and similarly for the conjugate quadrant. These
excluded zones are called shadow-zones; see Fig. 3, which shows also suitable
paths of integration.

The integral equation (4.12) is now solved by iteration. Write ü(v)/L(vv)
=f(v), and define

AW = o,     f0(v) = l,

(4.16)     fr+i(v) = 1 + — f      ÍL(ut)L(vte-") - L\vt)
vttJv       (

L(vve~Ti))

L(vv)    J
F(t)fr(t)dt.
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Then for r = 0, 1, 2, • • •

fr+i(v) - fr(v)
1    r+x Í L(vve~ri)) .

- - \L(vt)L(vte-*i) - L2(vt)     \        '\F(t) \fT(t) - /r_i(¿)}dt,
virJ »       { L(vv)    J

and from (4.14), (4.15)
+00

j fr+i(v) - fr(v) | ^ (vr) ^i(l + At)- j fr(t) - fr-i(t) U-   f      | F(t)dt |.
J v

Here, by (4.6), the integral is less than an absolute multiple of l^l-2", for
any v in Region I, so \fr+i(v) —fr(v)\ úAnv~2n-1\fr(t) — fr-i(t)|max-

It follows that fr+i(v)—fr(v)—»0 as r^oo, uniformly for v in Region I,
provided i'>(yln-|-e)1/(2B+1>; and/r(i/) tends uniformly to a limit f(v), anà f(v)
is bounded in Region I. By letting r—>oo in (4.16) we prove that ù(v),
=f(v)L(vv) = wi(v), say, is a solution of (4.12); and by inserting the upper
bound of | ü>i(t)/L(vt)\ on the right of (4.12) we prove (i) that

ûi(v)
(4.17) —4- = 1 + Oír-2-1),L(w)

uniformly in Region I; and, (ii), using (4.6)2, that

¿)i(z>)
(4.18) —^- = 1 + 0(v-2n-h-2) for »-1- oo.

L(vv)

From (4.8) follows the identity

(4.19) L(xe~Ti) = L(xerí) - iL(x),

and by use of this (4.12) is converted into the conjugate equation, which is
therefore satisfied by ûi(v). But for the conjugate equation the condition
permitting iterative solution is — 37r/2 + e5= arg v^ir/2 — e, in place of (4.13).
Hence we can redefine Region I with |arg v\ ^3ir/2 — e in place of (4.13), and
(4.17), (4.18) are valid in the enlarged region.

In the same way, taking w = Wi—L(vve~iri), w2=L(vv) or L(vve~2Ti), and
vo= ooeri in (4.7), we find a solution w2(v) of (4.4) for which, uniformly in a
Region II of D„,„,

ü2(v)
(4.20) = l + O^-2-1).

L(we~T')

And similarly there is a solution ¿¿z(v) for which, in a Region III,

ô>z(v)
(4.21) W      = l + Ofr-2-1).

L(vveT%)
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To these correspond formulae like (4.18) for i>~ooeTi, <x>e~~ri respectively.
For Region II the restriction is — ir/2 + eaiarg i>a¡57r/2 + €, with the possible
exclusion of shadow-zones in the half-plane ir/2<arg v<3ir/2; and Region
III is its conjugate.

4.3. Airy-function formulae. By applying the transformation (4.2) we con-
vert (4.17), and so on, into asymptotic formulae for solutions yi(z), and so on,
of the differential equation (3.3) which is our primary concern; and to match
this transformation we express the approximation-functions L(vv), and so on,
in terms of Airy functions. If

(4.22) v - 2f3'2/3,        co = exp (2iri/3),
L(w) = 21/W/6f1/4-Ai (?*!*{),

(4.23) L(we") = 21/V6f1'4- (-«■») Ai (v2^),
L(vve~") = 21'27rx1/6r1/4-ùo2 Ai (v2/3co2r),

and the transformation gives

yi(z)(4>'(z)/2yi2(4.24) ^ = 1 + 0(v-2n~l),
n1« Ai (y'3r)

yi(z)(4>'(z)/2Y12
= X + 0(v-2n~l),

= X + o^-2"-1).

¿coV»1'6 Ai (K2/3C02f)
(4.25) ;V3(z)(cfr'(z)/2)i/2

(-¿co)™1'6 Ai (k2/V)

(4.24) is valid in a Region I of Dr,„ (or in an almost coincident Region I of
<DZ), defined by | arg J"| six —2e/3, with shadow-zones excluded corresponding
to those excluded from <DV,V; the "free" boundaries of these zones in the f-
plane, that is, the ones corresponding to the boundaries Re u = const., are of
course curved. Thus, apart from shadow-zones, (4.24) is valid in the whole of
Dr,„ except a narrow sector containing the ray arg f = ±ir on which lie the
zeros of Ai(y2/3f); and for (4.25) similarly the excluded regions are sectors
centred on arg f = +7r/3, respectively.

4.4. Identification of the solutions. Since yi(z) is a solution of (3.3) it is a
linear combination of "standard" solutions of this equation. Now when a
differential equation has singular points, its standard solutions are usually
defined in relation thereto. For f —>+ oo, Ai (j»2/3f)—>0 and Ai (v2l3w2Ç)—»oo, so
since (4.24), (4.25) are uniformly valid for f~+ oo, we have yi(z)—»0, y2(z)—» oo
as z—>+ oo. Hence z= + oo must be a singular point of the differential equa-
tion (3.3), and there will be just one standard solution, F„i(z), say, which is
zero there. Since yi(z)—>0 it must be a multiple of F„i(z), say yi(z) =P„iF„i(z),
where P^t^O, and (4.24) becomes

(4.26) -= 1 + 0(p-2n~1).
TV1'6 Ai  (»2'3f)
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The value of P„i is to be found by letting z, f—»+ oo in (4.26), v remaining
fixed. From (4.18) we see that the right-hand member then tends to 1. Re-
garding the limit on the left, we have from (4.10), (4.23),

„1/6 Ai (x2'^) = (x1'2/2)r1/4 exp (-2^3'2/3){l + O^r3'2)},

and here f =0(z). Substituting the limiting forms of 03/2(z) from (3.24)i and
of 0'(z) from (3.25), we obtain therefore

P„i =   lim  (x/2)1'22(l - i>-*«r)i/%*/73

(4.27) exp [-v\v-2ßv(\ - v-2a,)-l'2zl>2 + v'2c,\]

(1 - »-2a„)1/4z1/4F,,i(z)

The constants a„, ß, are determined solely from the behaviour of g(z, v~2)
for z-~+ oo , according to (3.7), but cv depends on the transformation f =0(z),
being defined by (3.24)2.

Similarly y2, ys are multiples of standard solutions Y,2, Yv% of (3.3), defined
in relation to singular points at z = woo, «2oo respectively, and (4.25) become

7\2F,2(z)(0'(z)/2)i/2       ,,.--,,„
1 + 0(v~2n-1),

koV6 Ai (j/2'3w2f)
(4.28)

^3F,3(z)(0'(z)/2)i/2
- = 1 + 0(v-2n~l),
(-ico)™1'« Ai (*2/3cof)

where P„2, P„3 are given by formulae like (4.27).
4.5. Extension of the regions of validity of (4.26), (4.28). We shall prove

that (4.26) is valid throughout the sector | arg (—f)| ^2e/3, hitherto omitted
from Region I, except in specified neighbourhoods of the zeros of Ai (v2/îÇ)
where a trivial modification is required.

We observe that, in £>,,,„, Regions I, II, III all include a sector centred on
the ray argw = 0, so (4.26), (4.28) are all valid in a sector S centred on argf
= 0. Now there is a linear relation

(4.29) Q,iYvi(z) + Qv2Y,2(z) + Q,zY,z(z) = 0,

where Q,i : Qu2 : Qr3 are determinate solely from the definitions of the standard
solutions Yvr. Hence, denoting by the generic symbol O a function which is
uniformly 0(v~2n~1) in S, we have

(4.30)

Also

Q„l ¿C02Q„2
— Ai (v2'3f)(l +0) + —— Ai (y2'3a)2f)(l + 0)
Pvi 7\,2

¿coQ„3
—— Ai (>/2'V)(l + 0) = 0.
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(4.31) Ai (v2riÇ) + co2 Ai (y2/3co2f) + co Ai (v2'M) = 0.

Eliminating(6) Ai (vww2Ç) and letting f—>oo in S, with v fixed, we obtain
(since Ai (^«D/Ai (i»»/»u*f)-»0), Ç>/P„2 = -(Q,t/P,t)(l + 0). Then let Ç->0 in
S, so that the Airy functions all approach the same nonzero limit, and we
obtain

Q,l iQv2 iQrZ(4.32) ^_=^_(1+0)= __|_(i + o).
Pa P>2 ■» vz

As a corollary, the Qvr are, like the P„r, nonzero.
Now (4.29), (4.32) give, at all points,

P„F„i(z) = ¿PFiF,2(z)(l + 0) - *P„F,8(z)(l + 0),

and since (4.28) are both valid in the sector |arg ( —f)| a=2e/3 we have here

P„1FPi(z)(c6'(z)/2)1'2 = - tt^^co2 Ai (*2/3co2r)(l + O)

- ti/1'6co Ai (x2/3cof)(l +0);

and thence from (4.31)

P,1F,1(*)(0'(z)/2)i's = ^"{Ai (x2/3rt(l + O) + Ai (x2/V)-0},

= ^'«{Ai (x2/3f)(l + 0) + Ai (/"3co2f)-0}.

Surrounding each zero — f, of Ai (p2/3f) there is a neighbourhood, of radius
CV-1fF1/2 with C=l, say, in which all three Airy functions are less in absolute
value than v-1/sfr ; these neighbourhoods do not overlap and enclose no
zeros of Ai' (v2,3Ç)(7) ; and outside them, Ai (v2l3u)Ç)/Ai (v2,3Ç) is bounded on one
side of the ray arg f = 7r, while Ai (i>2/3co2f)/Ai (v2l3Ç) is bounded on the other
side(8). Hence (4.26) is valid outside the said neighbourhoods, while within them
we have

(4.33) P,iFn(z)((i.'(z)/2)1/2 = tv1'6 Ai (v2>3C) + O^-^-'r1'4)-

Similarly, (4.28) are valid throughout Or,?, except in the relevant shadow-zones
and in neighbourhoods of the zeros of the relevant Airy functions, where modifica-
tions like (4.33) are valid.

The relations (4.32) have an additional use. The formulae such as (4.27)
for the P„r involve constants c, which may be difficult to calculate; but from
(4.32) we see that the evaluation in this way of one of the P„r will suffice,

(6) Something more than merely equating coefficients in (4.30), (4.31) is required to get
(4.32), since in (4.30) the 0's are not constants.

(') The fact about Ai' becomes relevant in §4.7.
(8) These facts follow, by means of (4.22), (4.23), from the simpler facts concerning L-

functions. The zero line of L(w) is arg d = 37t/2; the large zeros are spaced at intervals tc/v,
approximately; the neighbourhoods corresponding to those defined for the Airy functions are all
of radius 1/v roughly; and therein the three ¿-functions are less than 21/2x.
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provided the ratios of the Qvr are known. Inversely, if closed formulae for the
ratios of the Qvr are not known (as for Mathieu 's equation, for example), we
can from (4.32) obtain approximations to them (for large v), using the Pyr
as found from (4.27) and similar equations for P„2, P„3.

The real case. Suppose that the differential equation (3.3) has, like all
familiar ones, real coefficients. Then F„i, Q,i, P,i will be real and F„2, Qv2, P„2
conjugate imaginary to F„3, Q„3, P„3. From (4.32) it follows then that
arg (Qv2/Pv2) = — arg (Q,z/P,i) =+ir/2; so (assuming the ratios of the Q,r
known) all the P„r will be known provided we can find |P»2| and the sign of
P„i. This case arises for the hypergeometric functions of Example 3, §2.

The special real case. Suppose, in addition, that a single one of the infinite
sectors of (DZ includes the three rays arg z = 7r, ±27t/3; this occurs in Example
2 of §2. Then a single formula (3.24) for 0 is valid in the whole sector (pro-
vided continuations of 03/2, zI/2 across arg z = ir are taken), and in §3.5 it has
been shown that c, is pure-imaginary. Hence the analogue of (4.27) will give
|P„2| without our knowing the value of cv, and the explicit determination of
all the Pvr is easy.

4.6. Asymptotic formulae when v is unreal. The assumption that v is real
positive has, in the work of §§4.2-4.5, been essential only as regards the con-
ditions defining Regions I—III, for example, (4.13), (4.15), and in the short
cuts just explained for finding the P„r. If we abandon this assumption, and
suppose arg v to rotate through a certain angle, it is clear that we must take
the "free" boundaries of Regions I—III, on the ^-surface (that is, those
boundaries which are not also boundaries of 0„,„) to rotate through an equal
angle in the opposite sense. The formula (4.26) will therefore remain valid in
some part of <DVtV until the sector, centred on the ray arg v = 0, into which we
have integrated to prove it, gets engulfed in a shadow-zone; and this cannot
happen until arg v is outside the limits +ir/2; while in Examples 2, 3, where
the sector extends over | arg v\ ^ir/2 — e, it will not happen until |arg v\
= ir — e.

Moreover (4.27) gives P„i as an analytic function of v, so long as the said
sector is not engulfed, so values of the P„r found by the short cut when v is
real can be extended analytically to all arg v for which (4.26) is valid.

It is to be noted that, since v is involved in (3.3) only as v2, we can restrict
attention to cases where | arg v\ ^tt/2, without essential loss. To summarise:

Theorem. If \arg v\ ¿t/2, the asymptotic formulae (4.26), (4.28) with
modification such as (4.33) near the zeros of the relevant functions hold uni-
formly in Or,y apart from certain shadow-zones. For these formulae, the relation
f = 0(z) has been defined in §3.2, and depends upon the integer n. For (4.26) a
shadow-zone is one which, when mapped by v = 2Ç3/2/3, cannot be joined to v
= -f. » by a path within ©„,„ whose slope (towards + °°) is everywhere between
— 7t/2— arg v, x/2—arg v inclusive. For (4.28) the shadow-zones are similarly
defined in relation to v= °oe'ri, ooe_T* respectively.
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A formula to replace (4.26) in a shadow-zone can be obtained by an evi-
dent modification of the procedure of §4.2. From examples (see §4.9) it appears
that the free boundaries of such zones are effectively genuine boundaries for
(4.26); they can always be pushed back a little, at the expense of increasing
the constant of the error-term; but parallel to them are transition-lines,
on crossing which the asymptotic equality of P,iYn(z)(4>'(z)/2)112 and
7n>i/« Ai (v2l3Ç) ceases.

4.7. Asymptotic series formulae. In (4.26) we have r = z+X^™ v~2r<pr(z),
= z-\-v~2h, say. Let us expand Ai (v2l3Ç) in powers of v~2h. Writing Ai (v2liz)
=f(z), we have

df(z)
Ai {v2'3(z + v-2h) ) = f(z + v~2h) = f(z) + v-2h-1-

dz
v—info2n h2n+1

+-/<2">(s) H-R,
(2n)l (2»+ 1)!

where |P| is less than the greatest value of \v~in~2f-2n+i)(t)\ on the segment
from t = z to z-\-v~~2h. We note from (3.23) that z bounded gives h bounded.

Now the Airy equation is d2f/dz2— —v2zf, whence d3f/dz3= —v2f—v2zdf/dz,
f(»=v*z2f-2v2df/dz, and so on;/« has the form Mrf-\-Nrdf/dz, where Mr, Nr
are polynomials in v, z, involving only even powers of v; Mr is of degree at
most r in v, and A7, at most r — X. Since A is a power series in v~%, v~2rhrfM(z)
takes the form Prf+Qrdf/dz, where Pr, Qr are power series in v~2 beginning
with terms in v*, i>_r_1. The coefficients in these series are polynomials in z
and the <pr(z) ; and if we restrict z to be bounded, the set of terms whose degree
in v~2 exceeds « is uniformly 0(v~2n~2). Hence we obtain the form

Ai (v2'3-ç) = f(z) {1 + a2„-2 + • • • + a2^-2" + 0(v-2»-2)}

(4.34) + df(z)/dz {aiv-2 + • • • + am^iv-2" + 0(V-2»~2)}
h2n+l

H-R.(2« + 1) !

Now (using t as current variable),

(4 35) \fM(t)\2 = \Mrf+Nrdf/dt\2
^   ( |  Mr |2 + |  VNr |2)( I /|2 + I  V-'df/dt\2).

If s denotes arc-length on the straight segment from t = z to z-\-v~2h,

ay2'd i    i
ds dt = | Ifdfldt
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and hence

id/,   .      df/dt \*\\ ...
-(I/I2+   Ji—\ )   = (l + \t\)\2fdf/dt\

\ ds\ v     I / |

S|.|(i + |1|)(|/|. + |i^|).

Hence for t on the segment from z to z-\-v~2h,

\f\2 + \v-Hf/dt\2 .. ... ... ,   .
(|/j2 + |v-i¿//¿¿|2)^       F ll       '   '   ' v      '   '    '       m

= i + o(v->),

since z bounded implies that h is bounded. Since |p| is less than
|j;|-4n-2|y(2n+o(<)|maxj and M2n+i, vN2n+i are 0(vin+1), (4.35) gives therefore

,     , ,    , /,        ,        df(z)  / IV'2

and the remainder-term in (4.34) is of this same order since h is bounded. We
can write this remainder as f(z) -0(v~2n~l) or df(z)/dz-0(v~2n~2), according as
|/(z)| does or does not exceed |í>-1¿/(z)/¿z| .

Hence in (4.34) the term in R can be struck out, provided we write
fj(„-2n-i) instead of 0(v~2n-2) in the coefficient of/(z).

Substitute this expansion in (4.26) and incorporate with it the expansion
of (0'(z))1/2 = (l+j'-20i'(z)+ • • • y<2. Putting finally f(z) = Ai(v2'*z), df(z)/dz
= v2lz Ai'(v2/3z), we obtain the form

P,iFvi(z) = X21/2-»1'6 Ai(x2/3z){l + v-2q2(z) + • • •

.      + v-2"q2n(z) + 0(»-2<-i) }
(4.36)

+ irl^-z^6 A\(V2l3v){v-2qi(z) + ■••

+ v-2»q2n-i(z) +0(i>-2»-2)}.

Here qi, ■ • ■ , q2n are polynomials in z, 0i, • • • , 0n, <p[, • ■ ■ , <p'n; and these
(in contrast to 0„+i, • • • ) are the 0's which were determined from (3.11).
Hence if the work, from §3.2 onwards, be repeated with « replaced by a larger
integer, the expansion corresponding to (4.36) will coincide with (4.36) up to
the terms in v~2n ; and in analogy with familiar asymptotic series we can write

P,iFrt(a) ~ X21'2- j/1'6 Ai (v2<3z) íl + ¿ p-2rq2r(z)\

(4.36 bis)
+ X21'2 V6 Ai'(y'3z)- ¿ v~2rq2r-i(z).

i
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It follows also that in the first  { • • • }  of (4.36), the remainder must be
o(v-2n~2).

The expansion (4.36) is valid provided that (4.26) is valid and \z\ is
bounded. These conditions exclude neighbourhoods of the zeros f of Ai (v2l3Ç),
whose radius is order v~^~112. Since z = f -\-0(v~2^), these coincide with neigh-
bourhoods, of similar radius, of the zeros of Ai (v2,3z); and Ai'(e2/3z) does not
vanish in them. So from the maximum modulus principle, (4.36) is valid
throughout these neighbourhoods, that is, (4.36) is valid under the conditions
that z is in Oz but not in a shadow-zone, and that \z\ is bounded.

There are, of course, similar formulae for F„2, F„3, and the coefficients qr
are the same in all of them.

If we exclude suitable neighbourhoods of the zeros of Ai (v2l3z),
Ai' (i»2/3z)/Ai (v2l3z) is bounded when v2,3z is bounded, but is 0(vll3z112) when
v2l3z is large. Hence in the two cases, the ratio of the second to the first term
on the right of (4.36) is 0(v-i¡3), O^"1) respectively(9).

4.8. Approximation to Bessel functions of large order. The starting point is
the differential equation (2.7), with the solution

(4.37) w = CV2/,{X(1 - s2)1'2} + Ds1'2Yt{X(X - s2)1'2}.

The case usually considered is X = j>, but useful generality is gained by taking

(4.38) X2 - v* = To + Ti""2 + 72«-4 + • ■ •  ,

a convergent series with real coefficients. The corresponding equation (3.3)
of canonic form A is obtained by putting « = 2z3/2/3, w = yzUi, so from (2.9)

^ = 2{(7_1)(¿"¿ + T0)-¿}'
(4.39)

(r è 1),

where

(4.40) z = (3m/2)2'3,        u = arctanh s - s.

The domain <DZ is shown (apart from the excluded neighbourhoods of the two
cuts) in Fig. 1 (iv), and for the values of a„ ft, in (3.7) we have, from (2.11)

(9) Tricomi [5] has given a formula iej,{v+t{v/6yi*} = (6/¡>)l"A^t) -(1/10») {3PAi'(t)
+2tAi(t) } -r-CK»"5'3), where Ai(t) •*$*■!** Ai (-S1'3«). The connection with that case of (4.36)
which corresponds to (4.46)i, below, is established by taking v-\-t(v/6)1,* = v(,l—sr)in and
2 = 2-¡!/3i2(i-(-(2/5)J2+ . . . )t which give vwz= -3-"3/-r3/10- \SrU*v-**P+ • ■ • . Tricomi's
two explicit terms arise then by expanding in (4.36) the principal term on the right and a
factor zllis~l,i which occurs on the left, in accordance with (4.45); the next term in (4.36),
namely the one in ci, is represented by Tricomi's error-term. His approximation is uniform only
when t is bounded.
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(4.42)

and (2.12):

for   I arg z I ^ x/3 — t, a, = ß, = 0,
(4.41) ,

for   | arg (-z) | ^ 2tt/3,        a„ = k2 - X2,    ft = 0.

The integrations whereby 0i, fa, ■ ■ ■ are determined from (3.11) come out
rationally in z1/2 and the dependent parameters u, s(10), for example

1(5 5 11)
0i =-<-1-yos>

z1'2!      72m       24s3      Ss       2       )

=¿2{-74+/i(s)}'say-

z1'2 I     243m3       54m2 6m       j      J

1105 221        /531      5to\  1       /25       3yo\  1(4.43) Ms) =-+(-+—J-(-+—) —
1152s9       128s7       \640       16 / s6       \384        8 / s3

\16      8/ s       \8       2/

The regularity of 0i, 02, • • • at z = 0 is verified when we expand in ascending
powers of s by use of m-1 = 3s_3(1-(-3s2/5 + 3s4/7+ • • • )-1. This gives, for
example

(1       yo\   s        10-40i = (-)-1-(7.301587s3 + 7.05257s5
(4.44) \70       2/z1'2       z1'2

+ 4.8966s7 + 3.244s9 + • • • ),

where

(33 V'3
21'2 = 2-"!i   1 + — s2 + — s4-\-j     = s<P(s2).

If, in using (4.46) below, we restrict s to be bounded from 1 and oo —
which covers the most important cases—it is sufficient to calculate
0i, • ■ • i 0«; the complete series f = z+ J^" v~2rfa, found by solving (3.15), is
needed only to secure uniformity up to s = 1, ».

For F„i, F„2, F„3 in (4.26), (4.28) we are to pick standard functions z~Uiw,

(10) The proof is omitted. The underlying fact is that (4.26) must give an elementary
asymptotic expansion for Yyi(z)—in the present case Debye's "A" series [6]—when we sub-
stitute the corresponding expansion of the Airy function; and by reversing the argument we
can construct Ç = 4>(z) from the two elementary asymptotic expansions.
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where w has the form (4.37), which are zero respectively for z= + oo, «oo,
co2 oo when v is real positive. To these values of z correspond, in accordance
with Fig. 1, (1—s2)1/2 = 0, —ice, ix respectively. Hence we take

(4.45)     {F,i, Yr2, Y,z] = «■"V'V* ~2~V\ - 2~l II?} (\(X - ^H-
so that in (4.29), Q,i = Ç> = Q,» = 1- For the evaluation of the P„r we have the
"special real case" noted at the end of §4.5, so that the analogue of (4.27) for
P,2 gives, on reference to (4.41),

. (27T)1'2 exp (2Xz3'2/3)
P„2    =   lim

Z—*0} o (XA)1'2- \s^2H^{\(X - s2)1'2}

provided v is real positive. Now from (4.40) we have for z~«co, 2z3/2/3 = w
= — s-\-Tri/2-\-0(s~1), and by the elementary asymptotic formula for 22® (v
being fixed)

!/»„<»(    „ M«!   I l/2A1/2   eXP   Í-¿X(1  - í2)1/2} I/"jrf{x<i-.y*}|~|Q
(1 - Í2)1'4

I/2Y'2 /2V/2        (2 \\
~IU '" ~\\i) ^(tX2"")|-

Hence |P^2| =irv112, and since P„i is clearly positive, (4.32) gives P„2 = «n'1/2,
P»3= —iwv112, Pvi = irv112. By analytic continuation, these values will be valid
for those complex v for which (4.46) below are valid.

Hence the formulae (4.26), (4.28) are equivalent to

2 1/2,      /   2   V'2  z1'4 Ai (v2'3t)   .

-1      (2), 2   1/2, /     2    V'2   !»V Ai  (v2'3C02r)   .(4.46) 2   ^-{Xd-.V} —(—)--¿—^{l+Ofr—)J,

-1    (1), 2 1/2, /   2   X1'2  z"4co Ai (v!'V)   , .
2 ff' (x(1-s) l=-(^)) —^¿^fI+°<—»-

where f =</>(z) =z+22" ^-2r^>r(z); and in consequence of (4.40), zll4/s112 is
regular at s = 0 or z = 0. From the last two we obtain

/   2   V'2  z1'4 Bi (^2'3f)   .
(4.47) F,{X(1 - s2)"2} = -(—-)-^__¿{i+0(„-2«-i)},

valid except near the zeros of the function; Bi(x) =eri/6 Ai (wx) -\-e~rilsAi (co2x)
is the second Airy function.

According to the Theorem of §4.6, each of (4.46) is valid in that part of
€){•,„ which is not covered by a shadow-zone, and £>£,„ is the map of D2, Fig. 1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



252 T. M. CHERRY [March

(iv), by 'Ç =0(z). For arg v = 0 there are no shadow-zones. Now let arg v de-
crease towards —k/2, and for definiteness consider the case of /„. Then in
£)„,„ (which is almost coincident with <DU, so that Fig. 1 (iii) can represent a
part of it) a shadow-zone develops on the left-hand side of the cut from iir to
¿oo ; its free boundary begins, say, at v=i(w — e), and makes an angle —arg v
with the imaginary axis; so that for arg v = — ir/2 the free boundary is the ray
arg (v — iir-\-ie) =7r. This is the only shadow-zone, since the conjugate cut
( — iw, — *oo) casts a shadow for arg v>0 but not for arg v<0.

Now on account of continuation formulae such as Jy(xeTi) =e"TiJy(x) it is
sufficient to confine (1 — s2)1'2 to the positive half-plane (Fig. 1 (i)), and to this
corresponds for u the L-shaped region ABDC and its conjugate. Since the
boundary AB of this is Im u = ir/2 and since v = u\l+0(v~2)], the corre-
sponding boundary in D„,„ is certainly below the ray arg (v — iir-\-ie) =w,
except possibly where |d| is large. But then (3.24), with the appropriate
values (4.41)2 of a„ ß„ gives 2f3'2/3 = 2(X/i')z3'2/3-|-0(i'-2), that is, v = (h/v)u
-\-0(v~2). From (4.38), \/v is a power series in v~2 with real coefficients, so to
a boundary point u=iri/2—x corresponds

v - iri/2 + 0(v~2) = - x{ 1 + v-2<P(v-2)} (x real, P with real coefficients).

The corresponding formula giving the boundary of the shadow-zone is

v — iir + it = — x'{ 1 — i tan (ir/2 + arg v)} (x' real).

For arg v = — ir/2 the right-hand members are both real, so the boundary AB
is entirely below the shadow-boundary. For arg v— — ir/2-\-6 (d>0) the same
is true; for on the right the real parts are equal when x' = x{ l-fO^-2)}, and
the imaginary parts are respectively x'-0(|^|-2 sin 20) and x' tan 6, of which
the latter is the greater.

For the shadow-zones for 77^, 77f ' there is a corresponding property, so
the asymptotic formulae (4.46), (4.47) hold uniformly for [arg v\ ^ir/2 and
| arg (1— s2)1'21 ̂ ir/2, except that in small neighbourhoods of the zeros of Ai (v2,3Ç),
and so on, the remainder terms 0(v~2n_1) must be made additive with z1/4Ai (v2liÇ),
and so on.

For numerical approximation to Jv(x) when v is large we can in (4.46) give
X any value we please, provided it is near to v, and determine s from
x=X(l—s2)1'2. The case where X is so chosen that to z = 0 shall correspond
f = 0(z)=O has been tested over the range 0.3 g (1 — s2)1'2 ̂ 10. Taking the
approximation correct to 0(v~2), the largest proportional error found for
v ̂ 5 was 1 in 30000, occurring at (l-s2)1/2 = 0.3, v = 5. At this point Debye's
"A" series, to 0(v~2), gives only 1 in 3000. Even for v = 2 the largest error was
only 1 in 3000. The approximation correct to 0(i'-4) gives one extra correct
figure at v = 2, and two or more for j>5:5.

4.9. Bes sel functions (continued). By using continuation formulae we can
find the full range of arg v for which any one of (4.46) is valid, and at the same
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time verify that the exclusion of the shadow-zones is not merely sufficient for
its truth, but is also necessary. For example, we have

—vici ir» —1      (2) ... —1   —2l»Tri (1) il
I,(vx) = e     Jy(vxe  ) = 2   Hy> (v x) + 2   e Hy'(v x) (v  = ve  ),

and if we take |arg(l—s2)1/2| ^x/2 and — 3x/2^arg vi¡ — x/2 we can sub-
stitute from (4.46) for the functions on the right. If for brevity we omit the
error-terms, this gives

7,{X(1 - s2)1'2}
(4.48) /   ?   xi'2     *i/4/   2   V'2     z1'4     r= ( ̂ 77      ' ̂ 7777 {Ai ̂ "W + e~2'Ti»' Ai ^'^> J •

\0 (Z)/ i/1/-^1'2

and (4.46)i remains valid only so long as the first term is dominant. When
p2/3f is bounded it remains dominant for —x/2^arg v> — x. But when v2l3Ç
is large, and (for definiteness) 2x/3 ¿=arg f ^x, we have, from (4.23) and(4.10),

Ai (v2"f)

Ai (K2'3ü>2r)

From (4.48) we find for /„ a string of zeros at

v(v — tí) — tí/4 + rid (r positive integral and large),

approximately; these zeros lie on a line arg (v — iri) =x/2 — arg v which is
parallel to the free boundary of the shadow-zone discussed in §4.8, and just
within it; and on crossing the line into the shadow-zone the second term on
the right of (4.48) becomes dominant. Thus if i> = 2f3/2/3 and arg v is between
x and 3x/2, with \vv\ large, a necessary condition for (4.46)i is arg v >x/2
— arg (v—iri).

5. Bessel function approximations to hypergeometric functions. Since
the transformation (3.1), which converts (as nearly as we please) the Airy
equation (3.2) into the arbitrary form-A equation (3.3) is reversible when v is
sufficiently large, there is a similar transformation connecting any two form-A
equations. Hence there are asymptotic formulae for the solutions of any such
equation in terms of the solutions of any other such equation. In particular,
there are approximations in terms of Bessel functions of large order ; and these
are "acceptable" approximations, since the properties of Bessel functions are
well known and they are well tabulated.

When we leave the neighbourhood of the transition point z = 0, the re-
semblance between different form-A equations may of course disappear; for
instance the domains <DZ attached to the three Examples of §2 have different
boundaries. In a given case, the choice of Bessel- rather than Airy-ap-
proximations will usually be suggested by features remote from the transition
point; and we should not make this choice unless the Oz attached to the Bessel
functions, Fig. 1  (iv), contains the Oz attached to the other equation, for
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example Fig. 2 (iv).
In the case of the hypergeometric functions of Example 3, Bessel-function

approximations are evidently suitable. There is no space here to enter into
their detailed development, but we may note their general form, and one or
two interesting features.

5.1. The form-A equation corresponding to (2.17) satisfies the hypotheses
of §3.1, so the theorem stated in §4.6 is applicable. Hence there are formulae
of the forms (4.26), (4.28) for the hypergeometric functions, and if we
eliminate the Airy functions between these and the Bessel-function formulae
of §4.8 we obtain the desired formulae. These formulae are however more
directly obtained by transforming the form-B Bessel equation (2.7) into the
hypergeometric equation (2.17), correct to an assigned order in v~2. This
may be conveniently done by using X in (27) as an adjustable parameter, to
be so chosen that the transition point 5 = 0 of the Bessel functions may coin-
cide (to the desired order) with the transition point t = 0 of the hypergeometric
functions. For this we put

(5.1) X2- v2 = 7o + 7i"-2 +

and choose the real coefficients 70, 7i, • • • suitably; the value of 70 is

1       101 - 158r. - 39r,2
70 " 35 140(1 - t,)4'3      '

For the transformation formulae it is sufficient to have s as a function of t, v~2.
We can find s as an explicit function of t, v~2 and a parameter x related to t
by

_1/2 1/2
(5.2) arctanh x — x = arctanh t — r,      arctanh (tr,   ),

an equation which has to be solved numerically for x when / is given.
From the general theory we know that there is asymptotic equality be-

tween solutions of the Bessel and hypergeometric equations which both vanish
at z = + co , or at z = co 00 , or at z = co2 00. Hence we find

(5.3) (1 - rJWW'ïiWW = E,(2m>sy<*J,{\(i - s2)1'2}
•{l + oo,-2»-1)},

(e-"T"'2Fp(r)        r-"'2F^(r)) m
(X - T)«V/»-j—r-;——-:——\ m

(.   i sin vit iirhy     )

= C,(2,vsr-Hr{X(X-sT}-{X+0(V-2n-1)},
i«r**V¥V(r)       t~-'2F^(t))        i,i(1 _ TyiHm)-__1± + wt m
\   —1 sin vit iirhy     )

= 2>,(2™)1/2.22,(1){X(1 - s)m\ ■ {1 + OOT*-1));

(5.4)
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where s is a known function of r, v and «. Here Cv(2tv)112, and so on, play the
part of Pvr in §4, \p' plays the part of 0':

2rs2      ds
(5.5) *' =-.¿(s2 - 1)  dr

and

r(a,)r(i + v-by)
(5.6) h, =

r(a, - iOr(i - Jr)rwr(>. + l)
The equations (2.14) give av, by as double-valued functions of v, and in (5.6) are
to be taken the determinations for which <x„ is large positive and b, large
negative when v is large real positive. When |arg v\ ^x/2 these formulae
hold uniformly in the r-plane (Fig. 2 (i)) cut from 0 to — oo, excluding a
neighbourhood of the cut from 1 to + °° and neighbourhoods of the appro-
priate zeros.

5.2. Regarding the evaluation of E„ C„ Dv we have the "real case" re-
ferred to at the end of §4.5, but not the "special real case"; nevertheless it is
possible to find them explicitly. For brevity, let us omit the remainder-
factors. Then the argument from conjugacy gives Cy = D, — Ev, and by
eliminating F,(t) from (5.4) we obtain

ThvE,(2Tvs)112      . .
(5.7) (1 - T)í'»/1'íT-''íF_(r)(^/)1'í =-— 7_,{X(1 - s2)1'2}.

sin vT

Now (5.3), (5.7) are both valid for |arg v\ ¿x/2, so we can put v=pe~iTl2
in (5.3) and v = pe"12 in (5.7), where p is large real positive, and thereby ob-
tain two formulae which must coincide. Since J-v(xe~Ti) =e"riJ-v(x), and
arg v= —x/2 gives sin vt= —ie"Ti/2, we thus obtain

(5.8) £_ = 2vh,E,.

But from (5.6) we can deduce, for jargj'] 5=x — e, an asymptotic expansion of
the form

(5.9) log (2xA„) ~ c0v + cyr* + c2v~3 + • • •

involving only odd powers; and by letting t—»0, s—»1 in (5.3) we obtain an
asymptotic expansion in odd powers for log E„ which is valid at least for
|arg v\ ^x/2. Hence (5.8) gives, for arg v= —x/2 in the first instance,

(5.10) E, = (2The)-1'2,

and, since this implies identity of the asymptotic expansions of the two
members, it is valid for | arg v\ £w/2. This completes the desired evaluation.

5.3. The formulae (5.3) and (5.7) may be unified as follows: We can take
(5.8) as defining E_„ when |arg v\ ^ir/2, this being consistent with (5.8) and
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(5.10) at arg v= ±t/2; then, for all large v the asymptotic expansion for
log Ey, just referred to, is valid. Let us now put

1        / x\ Y(v+ 1) sinw / x\~'
Jy(x) = —--I —)A,(x),        J-y(x) =-1—-)   A_,(x),

Y(v + 1) \ 2 / VT \ 2 /

so that A„(x) is single-valued in x and v, even in x, and meromorphic in v,
with poles at v= —1, —2, • • • . Then (5.3), (5.7) can be written

■a,{x(i -w){i+<Hr*~*)),
(1 - r)<>/*F_,(r)

•a_,{-x(i - s2yi2\{i + o(v-2n-i)\.

Since \/v is an even function of v the two factors in square brackets have
asymptotic expansions which are interchanged by reversing the sign of v; so
since also s, \p' are even functions of v, (5.12) is derived from (5.11) by revers-
ing the sign of v. Since both formulae are valid for | arg v\ ¡£ir/2, (5.11) is
valid without restriction on arg v. The poles of A, cancel those of 7%, (1 — s2)1/2/r
is regular at r = 0, s = l, and (s/t\f/')112 is regular at s = 0, ¿ = 0. Hence the cut
from r = 0 to — » is unnecessary, and the only restriction upon r is that it be
excluded from a neighbourhood of the cut (+1, + °°) and from small neigh-
bourhoods of the zeros of Fv(t).

5.4. By an argument modelled on §4.7 we can convert (5.3), (5.7) into
the forms

(1 - T)f>l2tli2T>l2Fy(T)~l — \    [Jy{v(l - x2y'2}(l + q2v-2 + Ç4V-4 + • • • )

+ (1 - x2yi2f,{v(l - x2)1'2}^"1 + qzv-3 +•••)],

T(vxh yi2
(1 - r)«'V/2T-'27_„(r)--r-1— [J-r{v(l - X2yi2\(l + ?2«<-2 + • • • )

sin vT

+ (1 - x2yi2f-y{v(i - x2yi2\(qiV-1 +•••)]•

Here x is determined by r only by means of (5.2) and (2.15). The range of
validity differs from that of (5.3), (5.7) in that a neighbourhood of t= 00
must be excluded, but there is no need to exclude neighbourhoods of the zeros
of Fy, F-,. The coefficients gi, q2, • ■ • may be calculated, as explicit functions
of x and ¿, by elementary processes.
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