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Recently, Tibshirani et al. [J. Amer. Statist. Assoc. 111 (2016) 600–620]
proposed a method for making inferences about parameters defined by model
selection, in a typical regression setting with normally distributed errors.
Here, we study the large sample properties of this method, without assum-
ing normality. We prove that the test statistic of Tibshirani et al. (2016) is
asymptotically valid, as the number of samples n grows and the dimension d

of the regression problem stays fixed. Our asymptotic result holds uniformly
over a wide class of nonnormal error distributions. We also propose an effi-
cient bootstrap version of this test that is provably (asymptotically) conser-
vative, and in practice, often delivers shorter intervals than those from the
original normality-based approach. Finally, we prove that the test statistic of
Tibshirani et al. (2016) does not enjoy uniform validity in a high-dimensional
setting, when the dimension d is allowed grow.

1. Introduction. There has been a recent surge of work on conducting for-
mally valid inference in a regression setting after a model selection event has oc-
curred; see Bachoc, Leeb and Potscher (2014), Berk et al. (2013), Fithian, Sun and
Taylor (2014), Lee et al. (2016), Lockhart et al. (2014), Tibshirani et al. (2016),
just to name a few. Our interest in this paper stems in particular from the work of
Tibshirani et al. (2016), who presented a method to produce valid p-values and
confidence intervals for adaptively fitted coefficients from any given step of a se-
quential regression procedure like forward stepwise regression (FS), least angle
regression (LAR) or the lasso (the lasso is meant to be thought of as tracing out
a sequence of models along its solution path, as the penalty parameter descends
from λ = ∞ to λ = 0). These authors use a statistic that is carefully crafted to be
pivotal after conditioning on the model selection event. This idea is not specific to
the sequential regression setting, and is an example of a broader framework that
we might call selective pivotal inference, applicable in many other settings, as in,
for example, Choi, Taylor and Tibshirani (2014), Fithian, Sun and Taylor (2014),
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Hyun, G’Sell and Tibshirani (2016), Lee and Taylor (2014), Lee et al. (2016),
Loftus and Taylor (2014), Reid, Taylor and Tibshirani (2017), Taylor, Loftus and
Tibshirani (2016).

A key to the methodology in Tibshirani et al. (2016) (and much of the work
in selective pivotal inference) is to the assumption of normality of the errors. To
fix notation, consider the regression of a response Y ∈ R

n on predictor variables
X1, . . . ,Xd ∈ R

n, stacked together as columns of a matrix X ∈ R
n×d . We will treat

the predictors X are fixed (nonrandom), and assume the model

(1) Yi = θi + εi, i = 1, . . . , n,

where θ ∈ R
n is an unknown mean parameter of interest. Tibshirani et al. (2016)

assume that the errors ε1, . . . , εn are i.i.d. N(0, σ 2), where the error variance
σ 2 > 0 is known. An advantage of their approach is that it does not require θ to be
an exact linear combination of the predictors X1, . . . ,Xd , and makes no assump-
tions about the correlations among these predictors. But as far as the finite-sample
guarantees are concerned, normality of the errors is crucial. In this work, we ex-
amine the properties of the test statistic proposed in Tibshirani et al. (2016)—
hereafter, the truncated Gaussian (TG) statistic—without using an assumption
about normal errors. We only assume that ε1, . . . , εn are i.i.d. from a distribution
with mean zero and essentially no other restrictions.

A high-level description of the selective pivotal inference framework for se-
quential regression is as follows (details are provided in Section 2). FS, LAR or
the lasso is run for some number of steps k, and a model is selected, call it M . For
FS and LAR, this model will always have k active variables, and for the lasso, it
will have at most k, as variables can be added to or deleted from the active set at
each step. We specify a linear contrast of the mean vT θ of interest, for example,
one giving the coefficient of a variable of interest in the model M at step k, in
the regression of θ onto the active variables. By assuming normal errors in (1), and
examining the distribution of vT Y conditional on having selected model M , which
we denote by M̂(Y ) = M , we can construct a confidence interval Cα satisfying

P
(
vT θ ∈ Cα|M̂(Y ) = M

)
= 1 − α,

for a given α ∈ [0,1]. The interpretation: if we were to repeatedly draw Y from
(1) and run FS, LAR, or the lasso for k steps, and only pay attention to cases in
which we selected model M , then among these cases, the constructed intervals
Cα = Cα(Y ;M) contain vT θ with frequency tending to 1 − α.

The above is a conditional perspective of the selective pivotal inference frame-
work for FS, LAR and lasso. An unconditional or marginal point of view is also
possible, which we now describe. For each possible selected model M , a contrast
vector vM is specified, and the contrast vT

Mθ is considered when model M is se-
lected, M̂(Y ) = M . To be concrete, we can again think of a setup such that vT

Mθ

gives the coefficient of a variable in the model M at step k, in the projection of θ
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onto the active set. Confidence intervals are then constructed in exactly the same
manner as above (without change), and conditional coverage over all models M

implies the following unconditional property for Cα :

P
(
vT
M̂(Y )

θ ∈ Cα

)
= 1 − α.

The interpretation is different: if we were to repeatedly draw Y from (1) and
run FS, LAR or lasso for k steps, and construct confidence intervals Cα =
Cα(Y ; M̂(Y )), then these intervals contain their respective targets vT

M̂(Y )
θ with

frequency approaching 1 − α. Notice that, by construction, the target itself may
change each time we draw Y , though it is the same for all Y that give rise to
the same selected model. In terms of the setting for regression contrasts described
above, each time we draw Y and carry out the inferential procedure, the interval
Cα covers the coefficient of a possibly different variable in the active model, in
the projection of θ onto the active variables. Figure A.1 in the online supplement
[Tibshirani et al. (2018)], Section A.1, demonstrates this point.

1.1. Uniform convergence. When making asymptotic inferential guarantees,
as we do in this paper, it is important to be clear about the type of guarantee. Here,
we review the concepts of uniform convergence and validity. Let ξ1, . . . , ξn ∈ R

s

be random vectors with joint distribution (ξ1, . . . , ξn) ∼ Fn, where Fn ∈ Pn, and
Pn is a class of distributions. For example, we could have ξ1, . . . , ξn ∈ R

s i.i.d.
from F , and the class Pn could contain product distributions of the form Fn =
F × · · · × F (n times); our notation allows for a more general setup than this one.
Let Wn = Tn(ξ1, . . . , ξn) for a statistic Tn, and W ∼ G, where Wn,W ∈ R

q . We
will say that Wn, converges uniformly in distribution to W , over Pn, provided that

(2) lim
n→∞

sup
Fn∈Pn

sup
x∈Rq

∣∣PFn(Wn ≤ x) − P(W ≤ x)
∣∣ = 0.

(The above inequalities, as in Wn ≤ x and W ≤ x, are meant to be interpreted
componentwise; we are also implicitly assuming that the limiting distribution G is
continuous, otherwise the above inner supremum should be restricted to continuity
points x of G.) This is much stronger than the notion of pointwise convergence in
distribution, which only requires that

(3) lim
n→∞

sup
x∈Rq

∣∣PFn(Wn ≤ x) − P(W ≤ x)
∣∣ = 0,

for a particular sequence of distributions Fn, n = 1,2,3, . . . .

A recent article by Kasy (2015) emphasizes the importance of uniformity in
asymptotic approximations. This authors points out that uniform versions of the
continuous mapping theorem and the central limit theorem for triangular arrays
follow from standard proofs of these results [e.g., following their proofs in van der
Vaart (1998)]. For convenience, these basic uniform convergence results are tran-
scribed in the online supplement [Tibshirani et al. (2018), Section A.2].
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In our work, a motivating reason for the study of uniform convergence is the
associated property of uniform validity of asymptotic confidence intervals. That is,
if Wn = Wn(μ) depends on a parameter μ = μ(Fn) of the distribution Fn, but W

does not, then we can consider any (1−α) confidence set Cn,α built from a (1−α)

probability rectangle Rα of W ,

Cn,α =
{
μ : Wn(μ) ∈ Rα

}
,

and the uniform convergence of Wn to W , really just by rearranging its definition
in (2), implies

(4) lim
n→∞

sup
Fn∈Pn

sup
α∈[0,1]

∣∣PFn

(
μ(Fn) ∈ Cn,α

)
− (1 − α)

∣∣ = 0.

Meanwhile, pointwise convergence as in (3) only implies

(5) lim
n→∞

sup
α∈[0,1]

∣∣PFn

(
μ(Fn) ∈ Cn,α

)
− (1 − α)

∣∣ = 0,

for a particular sequence Fn, n = 1,2,3, . . . . For a confidence set satisfying (4),
and a given tolerance ε > 0, there exists a sample size n(ε) such that the coverage
is guaranteed to be at least 1 −α − ε, for n ≥ n(ε), no matter the underlying distri-
bution (over the class of distributions in question). Note that this is not necessarily
true for a pointwise confidence set as in (5), as the required sample size here could
depend on the particular distribution under consideration.

1.2. Summary of main results. An overview of our main contributions is as
follows:

1. We establish that TG statistics for typical inferences along the FS, LAR, and
lasso paths only depend on the data (X,Y ) through 1

n
XT X and 1√

n
XT Y (Lem-

mas 1, 2 and 3 in Section 3), which is important since these two quantities have
asymptotic limits in a standard low-dimensional asymptotic setup.

2. Placing mild constraints on the mean and error distribution in (1), and treat-
ing the dimension d as fixed, we prove that the TG test statistic is asymptotically
pivotal, converging to U(0,1) (the standard uniform distribution), when evaluated
at the true population value for its pivot argument. We show that this holds uni-
formly over a wide class of distributions for the errors, without any real restrictions
on the predictors X (first part of Theorem 5 in Section 4).

3. The resulting confidence intervals are therefore asymptotically uniformly
valid, over the same class of distributions (second part of Theorem 5 in Section 4).

4. The above asymptotic results assume that the error variance σ 2 is known,
so for σ 2 unknown, we propose a plug-in approach that replaces σ 2 in the TG
statistic with a simple estimate, and alternatively, an efficient bootstrap approach.
Both allow for conservative asymptotic inference (Theorem 9 in Section 5).
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5. We present detailed numerical experiments that support the asymptotic va-
lidity of the TG p-values and confidence intervals for inference in low-dimensional
regression problems that have nonnormal errors (Section 6). Our experiments re-
veal that the plug-in and bootstrap versions also show good performance, and the
bootstrap method can often deliver substantially shorter intervals than those based
directly on the TG statistic.

6 Our experiments also also suggest that the TG test statistic (and plug-in,
bootstrap variants) may be asymptotically valid in even broader settings not cov-
ered by our theory, for example, problems with heteroscedastic errors and (some)
high-dimensional problems.

7. We prove that TG statistic does not exhibit a general uniform convergence to
U(0,1) when the dimension d is allowed to increase (Theorem 10 in Section 7).

1.3. Related work. A recent paper by Tian and Taylor (2017) is very related
to our work here. These authors examine the asymptotic distribution of the TG
statistic under nonnormal errors. Their main result proves that the TG statistic is
asymptotically pivotal, under some restrictions on the model selection events in
question. We view their work as providing a complementary perspective to our
own: they consider a setting where the dimension d grows, but place strong reg-
ularity conditions on the selected models; we adopt a more basic setting with d

fixed, and prove more broad uniformly valid convergence results for the TG pivot,
free of regularity conditions.

In a sequence of papers, Leeb and Pötscher (2003, 2006, 2008) prove that in
a classical regression setting, it is impossible to find the distribution of a post-
selection estimator of the underlying coefficients, even asymptotically. Specifi-

cally, they prove for an estimate β̂ of some underlying coefficient vector β0, any

quantity of the form Qn =
√

nA(β̂ − β0), for a linear transform A, cannot be used
for inference after model selection. Though Qn can be made to be pivotal or at least
asymptotically pivotal (once A is chosen once appropriately), this is no longer true
in the presence of selection, even if the dimension d is fixed and the sample size
n approaches ∞. Furthermore, they show that there is no uniformly consistent es-
timate of the distribution of Qn (either conditionally or unconditionally), which
makes Qn unsuitable for inference. This fact is essentially a manifestation of the
well-known Hodges phenomenon. The selective pivotal inference framework, and
hence our paper, circumvents this problem as we do not claim (nor attempt) to esti-
mate the distribution of Qn, and instead make inferences using an entirely different
pivot that is constructed via a careful conditioning scheme.

1.4. Notation. As our paper considers an asymptotic regime, with the number
of samples n growing, we will often use a subscript n to mark the dependence of
various quantities on the sample size. An exception is our notation for the predic-
tors, response, and mean, which we will always denote by X,Y, θ , respectively.
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Though these quantities will (of course) vary with n, our notation hides this de-
pendence for simplicity.

When it comes to probability statements involving Y , drawn from (1), we will
write Pf (θ)=μ(·) to denote the probability operator under a mean vector θ such that
f (θ) = μ. With a subscript omitted, as in P(·), it is implicit that the probability is
taken under θ . Also, we will generally write y (lowercase) for an arbitrary response
vector, and Y (uppercase) for a random response vector drawn from (1). This is
intended to distinguish statements that hold for an arbitrary y, and statements that
hold for a random Y with a certain distribution. Lastly, we will denote M̂ the model
selection procedure associated with the regression algorithm under consideration
(FS, LAR or lasso), and we will treat this as a mapping from R

n to the space of
models, so that M̂(y) is a fixed quantity, representing the model selected when the
response is the fixed vector y, and M̂(Y ) is a random variable, representing the
model selected when the response is the random vector Y . Similar notation will be
used for related quantities.

2. Selective inference. In this section, we review the selective pivotal infer-
ence framework for sequential regression procedures. We present interpretations
for the inferences from both conditional and unconditional perpsectives, in Sec-
tions 2.2 and 2.4, respectively. The other subsections provide the necessary details
for understanding the framework, beginning with the selection events encountered
along the FS, LAR and lasso paths.

2.1. Model selection. Consider forward stepwise regression (FS), least angle
regression (LAR) or the lasso, run for a number of steps k, where k is arbitrary
(but treated as fixed throughout this paper). Such a procedure defines a partition

of the sample space, Rn =
⋃

M∈M 	M , with elements

(6) 	M =
{
y : M̂(y) = M

}
, M ∈M.

Here, M̂(y) denotes the selected model from the given k-step procedure, run on
y, and M is the space of possible models. Calling M̂(Y ) a selected model may
be bit of an abuse of common nomenclature, because, as we will see, M̂(y) will
describe more than just a set of selected variables at the point y. In fact, one can
think of M̂(y) as a representation of the decisions made by the algorithm across
its k steps. For FS, we define M̂(y) = {(Âℓ(y), ŝℓ(y)) : ℓ = 1, . . . , k}, comprised
of two things:

1. A sequence of active sets Âℓ(y), ℓ = 1, . . . , k, denoting the variables that are
given nonzero coefficients, at each of the k steps.

2. A sequence of sign vectors ŝℓ(y), ℓ = 1, . . . , k, denoting the signs of nonzero
coefficients, at each of the k steps.

The active sets are nested across steps, Â1(y) ⊆ Â2(y) ⊆ Â3(y) ⊆ . . . , as FS se-
lects one variable to add to the active set at each step. However, the sign vectors
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ŝ1(y), ŝ2(y), ŝ3(y), . . . are not, since these are determined by least squares on the
active variables at each step. Hence, as defined, the number of possible models
M̂(y) after k steps of FS is

|M| = d · (d − 1) · · · (d − k + 1) · 2 · 22 · · ·2k = O
(
dk2k2)

.

Moreover, the corresponding partition elements 	M , M ∈ M in (6) are all convex
cones. The proof of this fact is not difficult, and requires only a slight modification
of the arguments in Tibshirani et al. (2016), given in Section A.3 for completeness.
The result is easily seen for k = 1: after one step of FS, assuming without a loss of
generality that X1, . . . ,Xd have unit norm, we can express, for example,

{
y :

(
Â1(y), ŝ1(y)

)

= (1,1)
}
=

{
y : XT

1 y ≥ ±XT
j y, j = 2, . . . , d

}

=
d⋂

j=2

{
y : (X1 − Xj )

T y ≥ 0
}
∩

{
y : (X1 + Xj )

T y ≥ 0
}
,

the right-hand side above being an intersection of half-spaces passing through
zero and, therefore, a convex cone. As we enumerate the possible choices for
(Â1(y), ŝ1(y)), these cones form a partition of Rn. Figure 1 shows an illustration.

For LAR and the lasso, we need to modify the definition of the selected model
M̂(y) in order for the resulting partition elements in (6) to be convex cones. We

FIG. 1. An example of the model selection partition from one step of FS (the variables are nor-

malized, and this is equivalent to one step of LAR, or lasso). Here, n = 2 and d = 3. The colors

indicate the regions of the sample space R2 for which different models—pairs of active variables and

signs—are selected, so that, for example, the red region contains points in R
2 that are maximally

aligned with X1.
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add an “extra” bit of model information and define M̂(y) = {(Â(y), ŝ(y), Îℓ(y)) :
ℓ = 1, . . . , k}, where Îℓ(y) is a list of variables that play a special role in the con-
struction of the LAR or lasso active set at the ℓth step, but that a user would not
typically pay attention to. In truth, the latter quantity is only a detail that is in-
cluded so that 	M , M ∈ M are convex cones (without it, the partition elements
would each be a union of cones), and so we do not describe it here. Furthermore,
it does not affect our treatment of inference in what follows, and for this reason,
we will largely ignore the minor differences in model selection events between FS,
LAR and lasso hereafter.

The description of Îℓ(y), ℓ = 1, . . . , k, and the proof that the partition elements
	M , M ∈ M are cones for LAR and lasso, mirrors that in Tibshirani et al. (2016),
and is again given in Section A.3. Like FS, the active sets from LAR are nested,
Â1(y) ⊆ Â2(y) ⊆ Â3(y) ⊆ . . ., since one variable is added to the active set at each
step. But for the lasso, this is not necessarily true, as in this case variables can be
either added or deleted at each step.

2.2. Inference after selection. We review the selective pivotal inference ap-
proach for hypothesis testing after model selection with FS, LAR or the lasso.
The technical details of the TG statistic are deferred to the next two subsec-
tions, as they are not needed to understand how the method is used. The null hy-
potheses we consider are of the form H0 : vT θ = 0. An important special case
occurs when the linear contrast vT θ gives a normalized coefficient in the re-
gression of θ onto a subset of the variables in X. To be specific, in this case
v = XA(XT

AXA)−1ej/(e
T
j (XT

AXA)−1ej )
1/2, for a subset A ⊆ {1, . . . , d}, where we

let XA ∈R
n×|A| denote the submatrix of X whose columns correspond to elements

of A (with XT
AXA assumed to be invertible for the chosen subset), and we write ej

for the j th standard basis vector. This gives

(7) vT θ =
eT
j (XT

AXA)−1XT
Aθ

√
eT
j (XT

AXA)−1ej

:= βj (A),

and, therefore, H0 : vT θ = 0 is a test for the significance of the j th normalized co-
efficient in the linear projection of θ onto XA, written as βj (A) for short. (Though
the normalization in the denominator is irrelevant for this significance test, it acts
as a key scaling factor for the asymptotics in Section 4.) The idea of using a pro-
jection parameter for inference, βj (A), has also appeared in, for example, Berk
et al. (2013), Lee et al. (2016), Wasserman (2014). Here is now a summary of the
testing framework:

• For each possible model M ∈ M, and any v ∈ R
n and μ ∈ R, a TG statistic

T (·;M,v,μ) is defined [see (10), in the next subsection], whose domain is the
partition element 	M . This can be used as follows: if Y is drawn from (1), and
lands in the partition element 	M for model M , then the statistic T (Y ;M,v,μ)

provides us with a test for the hypothesis H0 : vT θ = μ.
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• A concrete case to keep in mind, denoting M = {(Aℓ, sℓ) : ℓ = 1, . . . , k}, is a
choice of v such that vT θ = βj (Aℓ), in the notation of (7). This is the j th nor-
malized coefficient in the regression of θ onto the active variables XAℓ

, for an
active set Aℓ at some step ℓ = 1, . . . , k.

• Assume i.i.d. N(0, σ 2) errors in (1). Under the null hypothesis, the TG statistic
has a standard uniform distribution, over draws of Y that land in 	M . Mathe-
matically, this is the property

(8) PvT θ=μ

(
T (Y ;M,v,μ) ≤ t |M̂(Y ) = M

)
= t,

for all t ∈ [0,1]. The probability above is taken over an arbitrary mean parame-
ter θ for which vT θ = μ [in fact, the TG statistic is constructed so that the law
of T (Y ;M,v,μ)|M̂(Y ) = M only depends on θ through vT θ , so this is unam-
biguous]. In order for (8) to hold, of course, v and μ cannot be random, that is,
they cannot depend on Y , though they can be functions of M .

• Thus T (Y ;M,v,μ) serves as a valid p-value (with exact finite sample size) for
testing the null hypothesis H0 : vT θ = μ, conditional on M̂(Y ) = M .

• A confidence interval is obtained by inverting the test in (8). Given a desired
confidence level 1−α, we define Cα to be the set of all values μ such that α/2 ≤
T (Y ;M,v,μ) ≤ 1 − α/2. Then, by construction, the property in (8) [which we
reiterate, assumes i.i.d. N(0, σ 2) errors] translates into

(9) P
(
vT θ ∈ Cα|M̂(Y ) = M

)
= 1 − α.

The interpretation of the above statement is straightforward: the random interval
Cα contains the fixed parameter vT θ with probability 1 − α, conditional on
M̂(Y ) = M .

2.3. The truncated Gaussian pivot. We now review the truncated Gaussian
(TG) pivotal quantity. As defined in Section 2.1, if we write M̂(y) for the se-
lected model from the given algorithm (FS, LAR or lasso), run for k steps on y,
then 	M = {y : M̂(y) = M} is a convex cone, for any fixed achievable model M .
Hence,

	M =
{
y : M̂(y) = M

}
= {y : QMy ≥ 0},

for some fixed matrix QM (here the inequality is meant to be interpreted compo-
nentwise). The pivot T (·;M,v,μ) for testing H0 : vT θ = μ can be defined by

(10) T (y;M,v,μ) =
�(

b(y;M,v)−μ
σ‖v‖2

) − �(
vT y−μ
σ‖v‖2

)

�(
b(y;M,v)−μ

σ‖v‖2
) − �(

a(y;M,v)−μ
σ‖v‖2

)
,

which is the evaluation of the truncated Gaussian survival function at vT y, for
specific truncation limits a(y;M,v), b(y;M,v) defined in Section A.4. This pivot
has the following property, as stated in (8): when Y is drawn from (1) with i.i.d.
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N(0, σ 2) errors, and vT θ = μ, the pivot T (Y ;M,v,μ) is uniformly distributed
conditional on M̂(Y ) = M . See Lemmas 1 and 2 in Tibshirani et al. (2016) for a
proof of this result.

P -values and confidence intervals follow directly from the construction of the
pivot above. For the null hypothesis H0 : vT θ = 0, we prefer the one-sided p-value
T (Y ;M,v,0), as in (8). For confidence intervals, we prefer the two-sided interval
given by inverting the two-sided pivot 2 min{T (Y ;M,v,μ),1 − T (Y ;M,v,μ)},
as in (9). Further discussion in deferred until Section A.5.

2.4. Inference after selection, revisited. We have portrayed selective pivotal
inference, in sequential regression procedures, as a method for producing condi-
tional p-values and intervals. An unconditional interpretation of this framework is
also possible, which we describe here.

• For each model M ∈ M, a contrast vector vM ∈ R
n and pivot value μM ∈ R

are identified, so that the hypothesis H0,M : vT
Mθ = μM is to be tested whenever

y ∈ 	M , that is, whenever M̂(y) = M . A TG statistic T (·;V,U) is then defined,
whose domain is the entire sample space Rn. Here, we write V = {vM : M ∈ M}
and U = {μM : M ∈ M} to denote the collection of contrast vectors and pivot
values, respectively, across partition elements—we will also refer to these as
catalogs. This unconditional TG statistic is defined by

T (·;V,U) =
∑

M∈M
T (·;M,vM ,μM)1	M

(·),

where 1	M
(·) denotes the indicator function for the partition element 	M [and

T (·;M,vM ,μM) is as before, defined in (10)]. The unconditional statistic can
be used as follows: if a response Y is drawn from (1), then we can form
T (Y ;V,U) = T (Y ; M̂(Y ), vM̂(y),μM̂(y)) to test the hypothesis H0 : vT

M̂(Y )
θ =

μM̂(Y ).
• A concrete case to keep in mind is when V assigns a contrast vector vM to

each model M , such that vT
Mθ = βjM

(AℓM
), in the notation of (7), where M =

{(Aℓ, sℓ) : ℓ = 1, . . . , k} as usual. This is the jM th normalized coefficient from
projecting θ onto XAℓM

, the active variables at step ℓM .

• Assume that the errors in (1) are i.i.d. N(0, σ 2). Then under the proper hypoth-
esis, by summing up the conditional property in (8) across partition elements,
we have

(11) PV T θ=U

(
T (Y ;V,U) ≤ t

)
= t,

for all t ∈ [0,1]. The assertion above holds for a parameter θ such that V T θ =
U , which we use as shorthand for vT

Mθ = μM for all M ∈ M. Note that this full
specification, across all M ∈ M, is critical in order to apply the relevant null
probability within each partition element [giving rise to the equality in (11)].
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• Therefore, T (Y ;V,U) serves as a valid p-value (with exact finite sample
size)—but for testing what null hypothesis? Formally, it is attached to H0 :
V T θ = U , an exhaustive specification of vT

Mθ = μM , over all M ∈ M, but in
truth, T (Y ;V,U) carries no information about models other than the selected
one, M̂(Y ). For this reason, we actually consider T (Y ;V,U) to be a p-value
for the random null hypothesis H0 : vT

M̂(Y )
θ = μM̂(Y ). This is made more precise

through confidence intervals.
• A confidence interval is obtained by inverting the test in (11). But the TG statis-

tic at Y ,

T (Y ;V,U) =
∑

M∈M
T (Y ;M,vM ,μM)1	M

(Y ) = T
(
Y ; M̂(Y ), vM̂(Y ),μM̂(Y )

)
,

only depends on U through μM̂(Y ). Thus, given a desired confidence level 1−α,
let us define Dα to be the set of U such that α/2 ≤ T (Y ;V,U) ≤ 1 − α/2,
and Cα to be the set of μM̂(Y ) such that α/2 ≤ T (Y ; M̂(Y ), vM̂(Y ),μM̂(Y )) ≤
1 − α/2. Then we can see that

U ∈ Dα ⇐⇒ μM̂(Y ) ∈ Cα,

so the confidence interval is effectively infinite with respect to the values μM ,
M �= M̂(Y ), and inverting the test in (11) yields

(12) P
(
vT
M̂(Y )

θ ∈ Cα

)
= 1 − α.

The above expression says that the random interval Cα traps the random param-
eter vT

M̂(Y )
θ with probability 1 − α, and thus, this supports the interpretation of

H0 : vT
M̂(Y )

θ = μM̂(Y ) as the null hypothesis underlying the unconditional TG

statistic.

REMARK 1. The pivotal property in (11) is derived under the distributional
assumption that V T θ = U , that is, vT

Mθ = μM for all M ∈ M, which may seem
unnatural, as the catalog U of pivot value can be large (e.g., on the order of dk

after k steps of FS), and so this is condition on possibly many contrasts of θ .
However, it is worth emphasizing that the unconditional testing property in (11)
is really only useful in that it allows us to formulate the unconditional confidence
interval property in (12), which is a more natural statement about coverage of a sin-
gle (random) parameter. When viewing selective inference from an unconditional
perpsective, we find it more natural to place the focus on confidence intervals rather
than hypothesis testing; in many ways, we find the former the more natural of the
two perspectives, unconditionally. Tibshirani et al. (2016) in fact suggest separate
nomenclature for the unconditional case, referring to the property in (12) as that of
a selection interval (rather than confidence interval), to emphasize that this interval
covers a moving target.
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3. The master statistic. Given a response y and predictors X, our descrip-
tion thus far of the selected model M̂(y), statistics T (y;M,v,μ) and T (y;V,U),
etc., has ignored the role of X. This was done for simplicity. The theory to come
in Section 4 will consider X to be nonrandom, but asymptotically X must (of
course) grow with n, and so it will help to be precise about the dependence of the
selected model and statistics on X. We will denote these quantities by M̂(X,y),
T (X,y;M,v,μ) and T (X,y;V,U) to emphasize this dependence. We define

�n =
(

1

n
XT X,

1
√

n
XT y

)
,

a d(d + 3)/2-dimensional quantity that we will call the master statistic. As its
name might suggest, this plays an important role: all normalized coefficients from
regressing y onto subsets of the variables X can be written in terms of �n. That
is, for an arbitrary set A ⊆ {1, . . . , p}, the j th normalized coefficient from the
regression of y onto XA is

(eT
j XT

AXA)−1XT
Ay

√
eT
j (XT

AXA)−1ej

=
eT
j n(XT

AXA)−1 1√
n
XT

Ay
√

eT
j n(XT

AXA)−1ej

,

which only depends on (X,y) through �n. The same dependence is true, it turns
out, for the selected models from FS, LAR and the lasso. We defer the proof of the
next lemma, as with all proofs in this paper, until the online supplement [Tibshirani
et al. (2018)].

LEMMA 1. For each of the FS, LAR, and lasso procedures, run for k steps on

data (X,y), the selected model M̂(X,y) only depends on (X,y) through �n =
( 1
n
XT X, 1√

n
XT y), the master statistic.

In more detail, for any fixed M ∈ M, the matrix QM(X) such that M̂(X,y) =
M ⇐⇒ QM(X)y ≥ 0 can be written as QM(X) = PM( 1

n
XT X) 1√

n
XT , where

PM depends only on 1
n
XT X. Hence,

M̂(X,y) = M ⇐⇒ PM

(
1

n
XT X

)
1

√
n
XT y ≥ 0.

This lemma asserts that the master statistic governs model selection, as per-
formed by FS, LAR and the lasso. It is also central to TG pivot for these proce-
dures. Denoting M = M̂(X,y), the statistic T (X,y;M,v,μ) in (10) only depends
on (X,y) through three quantities:

vT y

‖v‖2
,

QM(X)v

‖v‖2
, and QM(X)y.

The third quantity is always a function of �n, by Lemma 1. When v is chosen
so that vT y is a normalized coefficient in the regression of y onto a subset of the
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variables in X, the first two quantities are also functions of �n. Thus, in this case,
the TG pivot only depends on (X,y) through the master statistic �n; in fact, it is
continuous at any point such that 1

n
XT X is nonsingular and y does not lie on the

boundary of a model selection event.

LEMMA 2. Fix any model M ∈ M, and suppose that v is chosen so that vT y

is a normalized coefficient from projecting y onto a subset of the variables in X.
Then the TG statistic only depends on (X,y) by means of �n, so that we may write

T (X,y;M,v,μ) = ψM

(
1

n
XT X,

1
√

n
XT y

)
.

Further, the function ψM is continuous at any point (S, z) such that S is nonsingu-

lar and PM(S)z > 0.

Finally, we show that the conditional pivotal property of the TG statistic in (8)
can be phrased entirely in terms of the master statistic.

LEMMA 3. Assume the conditions of Lemma 2, and additionally that Y is

drawn from (1). Construct the master statistic �n = ( 1
n
XT X, 1√

n
XT Y). Then there

is a function g such that

vT θ = g
(
E(�n)

)
.

Thus if the errors in (1) are i.i.d. N(0, σ 2), then the conditional pivotal property

(8) of the TG statistic can be reexpressed as

Pg(E(�n))=μ

(
ψM(�n) ≤ t |M̂(X,Y ) = M

)
= t,

for all t ∈ [0,1].

Equipped with the last two lemmas, asymptotic theory for the TG test, when
d is fixed, is not far off. Under weak conditions on the data model in (1), the
central limit theorem tells us that 1√

n
XT Y converges weakly to a normal random

variable. With 1
n
XT X converging to a deterministic matrix, the continuous map-

ping theorem will then provide the appropriate asymptotic limit for the statistic
T (X,y;M,v,μ) = ψM( 1

n
XT X, 1√

n
XT Y). This is made more precise next.

4. Asymptotic theory. Here, we treat the dimension d as fixed, and consider
the limiting distribution of the TG statistic as n → ∞. (See Section 7 for the case
when d grows.) Throughout, the matrix X ∈ R

n×d will be treated as nonrandom,
and we consider a sequence of predictor matrices satisfying two conditions:

(13) lim
n→∞

1

n
XT X = �,
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for a nonsingular matrix � ∈ R
d×d , and

(14) lim
n→∞

max
i=1,...,n

‖xi‖2√
n

= 0,

where xi ∈ R
d , i = 1, . . . , n denote the rows of X. These are not strong conditions.

4.1. A nonparametric family of distributions. We specify the class of distri-
butions that we will be working with for Y in (1). Let σ 2 > 0 be a fixed, known
constant. First, we define a set of error distributions

E =
{
F :

∫
x dF(x) = 0,

∫
x2 dF(x) = σ 2

}
.

The first moment condition in the above definition is needed to make the model
identifiable, and the second condition is used for simplicity. Aside from these mo-
ment conditions, the class E contains a small neighborhood (say, as measured in
the total variation metric) around essentially every element. Thus, modulo the mo-
ment assumptions, E is strongly nonparametric in the sense of Donoho (1988).
Given μ ∈ R, let Fμ denote the distribution of μ + δ, where δ ∼ F , and given
θ = (θ1, . . . , θn) ∈ R

n, let Fn(θ) = Fθ1 × · · · × Fθn . Now we define a class of dis-
tributions

(15) Pn(θ) =
{
Fn(θ) = Fθ1 × · · · × Fθn : F ∈ E

}
.

In words, assigning a distribution Y ∼ Fn(θ) means that Y in drawn from the
model (1), with mean θ ∈ R

n, and errors ε1, . . . , εn i.i.d. from an arbitrary centered
distribution F with variance σ 2.

As n grows, we allow the underlying mean θ to change, but we place a restric-
tion on this parameter so that it has an appropriate asymptotic limit. Specifically,
we consider a class � of sequences of mean parameters such that 1√

n
XT θ has an

asymptotic limit lying in some compact set, with uniform convergence to this limit.
Formally, write (in a slight abuse of notation) θ ∈ � to denote a sequence of mean
parameters in �, and let E(�) denote the set of limit points of { 1√

n
XT θ : θ ∈ �}.

Then, for some constant B > 0, we require of the class �,

(16) E(�) ⊆ [−B,B]d, and lim
n→∞

sup
η∈E(�)

sup
1√
n
XT θ→η

∣∣∣∣
1

√
n
XT θ − η

∣∣∣∣ = 0.

We emphasize once again that θ ∈ R
n and X ∈ R

n×p will both vary with n, that
is, we can think of θ and the columns of X as triangular arrays, but our notation
suppresses this dependence for simplicity.
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4.2. Uniform convergence results. We begin with a result on the uniform con-
vergence of (the random part of) the master statistic to a normal distribution, both
marginally and conditionally.

LEMMA 4. Assume that X has asymptotic covariance matrix �, as in (13),
and satisfies the normalization condition in (14). Let Y ∼ Fn(θ) ∈ Pn(θ), this class

as defined in (15), for a sequence of mean parameters θ ∈ �, as defined in (16).
Denote 1√

n
XT θ → η as n → ∞. Then Zn = 1√

n
XT Y converges in distribution to

Z ∼ N(η,σ 2�), uniformly over Pn(θ), and uniformly over all θ ∈ �. That is,

lim
n→∞

sup
θ∈�

sup
Fn(θ)∈Pn(θ)

sup
x∈Rd

∣∣P(Zn ≤ x) − P(Z ≤ x)
∣∣ = 0.

Further, given a sequence of matrices An ∈ R
q×d , n = 1,2,3, . . . with An → A

as n → ∞, such that the set {z : Az ≥ 0} has nonempty interior, Zn|AnZn ≥ 0
converges in distribution to Z|AZ ≥ 0, uniformly over Pn(θ), and uniformly over

all θ ∈ �.

This lemma, combined with Lemmas 2 and 3 of the last section, leads us to
uniform asymptotic theory for the TG test. We remind the reader that k, the number
of steps, is to be considered fixed in the next result (as it is throughout the paper).

THEOREM 5. Assume the conditions of Lemma 4. Suppose FS, LAR or the

lasso is run for k steps on (X,Y ). Below we describe the conditional and uncon-

ditional asymptotic results separately.

(a, Markovic) Fix any model M ∈ M. Let v be a vector such that vT θ gives

a normalized coefficient in the projection of θ onto some subset of the variables

in X, and let μ be an arbitrary pivot value. Then under vT θ = μ, the conditional

TG statistic T (X,Y ;M,v,μ)|M̂(X,Y ) = M converges in distribution to W ∼
U(0,1), uniformly over Pn(θ), and over θ ∈ �. That is,

lim
n→∞

sup
θ∈�

sup
Fn(θ)∈Pn(θ)

sup
t∈[0,1]

∣∣PvT θ=μ

(
T (X,Y ;M,v,μ) ≤ t |M̂(X,Y ) = M

)
− t

∣∣ = 0.

Moreover, if we define Cn,α to be the set of μ such that α/2 ≤ T (X,Y ;M,v,μ) ≤
1 − α/2, then Cn,α is an asymptotically uniformly valid confidence interval for

vT θ . That is,

lim
n→∞

sup
θ∈�

sup
Fn(θ)∈Pn(θ)

sup
α∈[0,1]

∣∣PvT θ=μ

(
vT θ ∈ Cn,α|M̂(X,Y ) = M

)
− (1 − α)

∣∣ = 0.

(b) Let V = {vM : M ∈ M} be a catalog of vectors such that each vT
Mθ yields

a normalized coefficient in the projection of θ onto a subset of the variables in X,
for M ∈ M and U = {μM : M ∈ M} be a catalog of pivot values. Then under

V T θ = U , the same results as in part (a) hold marginally. That is,

lim
n→∞

sup
θ∈�

sup
Fn(θ)∈Pn(θ)

sup
t∈[0,1]

∣∣PV T θ=U

(
T (X,Y ;V,U) ≤ t

)
− t

∣∣ = 0,
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and for Cn,α defined to be the set of μ such that α/2 ≤ T (X,Y ; M̂(X,Y ),

vM̂(X,Y ),μ) ≤ 1 − α/2,

lim
n→∞

sup
θ∈�

sup
Fn(θ)∈Pn(θ)

sup
α∈[0,1]

∣∣P
(
vT
M̂(X,Y )

θ ∈ Cn,α

)
− (1 − α)

∣∣ = 0.

REMARK 2. An initial version of this work contained only the unconditional
result in part (b) of the theorem. Jelena Markovic pointed out that the conditional
result in part (a) should also be possible, and thus this conditional result should
also be attributed to her. Between the initial and the current version of this paper,
in addition to revising Theorem 5, we have also revised Theorems 9 and 10 to
include the appropriate conditional results.

5. Unknown σ
2 and the bootstrap. The results of the previous section as-

sumed that the error variance σ 2 in the model (1) was known. Here, we consider
two strategies when σ 2 is unknown. The first plugs a (rather naive) estimate of
σ 2 into the usual TG statistic. The second is a computationally efficient bootstrap
method. Both, as we will show, yield asymptotically conservative p-values. (In
practice, the bootstrap often gives shorter confidence intervals than those based on
the TG pivot; see Section 6.)

5.1. A simple plug-in approach. Given a model M ∈ M, contrast vector v,
and pivot value μ, consider the TG statistic T (X,Y ;M,v,μ). Let us abbreviate

âM = a(X,Y ;M,v), and b̂M = b(X,Y ;M,v),

where the latter two functions are as defined in Section 2.3. In this notation, we
can succinctly write the TG statistic as

(17) T (X,Y ;M,v,μ) =
�(

b̂M−μ
σ‖v‖2

) − �(
vT Y−μ
σ‖v‖2

)

�(
b̂M−μ
σ‖v‖2

) − �(
âM−μ
σ‖v‖2

)
.

When σ 2 is unknown, we propose a simple plug-in approach that replaces σ with
csY , where

s2
Y =

1

n

n∑

i=1

|Yi − Y |2,

the sample variance of Y (here Y =
∑n

i=1 Yi/n denotes the sample mean), and
c > 1 is a fixed constant. To be explicit, we consider the modified TG statistic

(18) T̃ (X,Y ;M,v,μ) =
�(

b̂M−μ
csY ‖v‖2

) − �(
vT Y−μ
csY ‖v‖2

)

�(
b̂M−μ
csY ‖v‖2

) − �(
âM−μ
csY ‖v‖2

)
.
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The scaling factor c facilitates our theoretical study of the above plug-in statistic,
and practically, we have found that ignoring it (i.e., setting c = 1) works perfectly
well, though a choice of, say, c = 1.0001 seems to have a minor effect anyway.

When the mean θ of Y is nonzero, the sample variance s2
Y is generally too large

as an estimate of σ 2. As we will show, the modified statistic in (18) thus yields
asymptotically conservative p-values. Residual based estimates of σ 2 are not as
useful in our setting because they depend more heavily on the linearity of the
underlying regression model, and they suffer practically when d is close to n (see
also the discussion at the start of Section 6).

5.2. An efficient bootstrap approach. As an alternative to the plug-in method
of the last subsection, we investigate a highly efficient bootstrap scheme that does
not rely on knowledge of σ 2. Our general framework so far treats X as fixed, and
for our bootstrap strategy to respect this assumption, we cannot use, say, the pairs
bootstrap, and must perform sampling with respect to Y only. The residual boot-
strap is ruled out since we do not assume that the mean θ follows a linear model
in X. This leaves us to consider simple bootstrap sampling of the components of
Y . This is somewhat nonstandard, as the components of Y in (1) are not i.i.d., but
it provides a mechanism for provably conservative asymptotic inference, and it is
what makes our approach so computationally efficient.

Given Y = (Y1, . . . , Yn) drawn from the model in (1), let Y ∗ = (Y ∗
1 , . . . , Y ∗

n )

denote a bootstrap sample of Y . We will denote by P∗ the conditional distribution
of Y ∗ on Y , and E∗ the associated expectation operator. That is, P∗(Y ∗ ∈ A) is
shorthand for P(Y ∗ ∈ A|Y), and similarly for E∗. Using the notation of the last
subsection (notation for âM , b̂M ), and assuming without a loss of generality that
‖v‖2 = 1, let us motivate our bootstrap proposal by expressing the TG statistic as

T (X,Y ;M,v,μ) = P
(
Zμ,σ 2 ≥ vT Y |̂aM ≤ Zμ,σ 2 ≤ b̂M , Y

)
,

where the probability on the right-hand side is taken with Y (and thus âM , b̂M )
treated as fixed, and with Zμ,σ 2 denoting a N(μ,σ 2) random variable. The main
idea is now to approximate the truncated normal distribution underlying the TG
statistic with an appropriate one from bootstrap samples:

P
(
Zμ,σ 2 ≥ vT Y |̂aM ≤ Zμ,σ 2 ≤ b̂M , Y

)

≈ P∗
(
vT (

Y ∗ − Y1
)
+ μ ≥ vT Y |̂aM ≤ vT (

Y ∗ − Y1
)
+ μ ≤ b̂M

)
.

Recall Y =
∑n

i=1 Yi/n is the sample mean of Y , so E∗(vT Y ∗) = vT (Y1) (with 1 ∈
R

n denoting the vector of all 1s), and we have shifted vT Y ∗ so that the resulting
quantity vT (Y ∗ −Y1)+μ mimics a normal variable with mean μ. The right-hand
side above very nearly defines our bootstrap version of the TG statistic, except that
for technical reasons, we must make two small modifications. In particular, we
define the bootstrap TG statistic as

(19) T ∗(X,Y ;M,v,μ) =
P∗(vT Y ≤ cvT (Y ∗ − Y1) + μ ≤ b̂M) + δn

P∗(âM ≤ cvT (Y ∗ − Y1) + μ ≤ b̂M) + δn

,
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where c > 1 is a constant as before, and δn = γ n−1/4 for a small constant γ > 0.
Again, we have found that ignoring the scaling factor c (i.e., setting c = 1) works
just fine in practice, though a choice like c = 1.0001 does not cause major dif-
ferences anyway. On the contrary, a nonzero choice of the padding factor like
δn = 10−4n−1/4 does play an important practical role, since the bootstrap prob-
abilities in the numerator and denominator in (19) can sometimes be zero.

Lastly, it is worth emphasizing that practical estimation of the bootstrap proba-
bilities appearing in (19) is quite an easy computational task, because the regres-
sion procedure in question, be it FS, LAR, or the lasso, need not be rerun beyond
its initial run on the observed Y . After this initial run, we can just save the realized
quantities âM , b̂M , and then draw, say, B = 1000 bootstrap samples Y ∗ in order
to estimate the probabilities in (19). This is not at all computationally expensive.
Moreover, to estimate (19) over multiple trial values of μ (so that we can invert
these bootstrap p-values for a bootstrap confidence interval), only a single com-
mon set of bootstrap samples is needed, since we can just shift vT Y ∗ appropriately
for each bootstrap sample Y ∗.

5.3. Asymptotic theory for unknown σ 2. Treating the dimension d as fixed,
we will assume the previous limiting conditions (13), (14) on the matrix X, and
additionally, that

(20)
1

n

n∑

i=1

‖xi‖3
2 = O(1).

Note that (13) already implies that 1
n

∑n
i=1 ‖xi‖2

2 → tr(�), and the above is a little
stronger, though it is still not a strong condition by any means. For example, it is
satisfied when maxi=1,...,n ‖xi‖2 = O(1). These conditions on X imply important
scaling properties for our usual choices of contrast vectors.

LEMMA 6. Assume that X satisfies (13), (14), (20). If v is any vector such that

vT θ gives a normalized regression coefficient from projecting θ onto some subset

of the variables in X, then

‖v‖3
3 = O

(
1

√
n

)
.

We specify assumptions on the distribution of Y in (1) that are similar to (but
slightly stronger than) those in Section 4.1. For constants σ 2, τ, κ > 0, we define a
set of error distributions

E
′ =

{
F :

∫
x dF(x) = 0,

∫
x2 dF(x) = σ 2,

∫
x3 dF(x) ≤ τ,

∫
x4 dF(x) ≤ κ

}
.

We also define a class of distributions

(21) P
′
n(θ) =

{
Fn(θ) = Fθ1 × · · · × Fθn : F ∈ E

′},
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where as before, Fμ denotes the distribution of μ+ δ, for δ ∼ F . We define a class
�′ of sequences of mean parameters that satisfies, as before,

(22) E
(
�′) ⊆ [−B,B]d, and lim

n→∞
sup

η∈E(�′)
sup

1√
n
XT θ→η

∣∣∣∣
1

√
n
XT θ − η

∣∣∣∣ = 0,

for a constant B > 0, where recall E(�′) denotes the set of limit points in �′; also,
for each θ ∈ �′, at each n, we require

(23) s2
θ =

1

n

n∑

i=1

|θi − θ |2 ≤ S, and r3
θ =

1

n

n∑

i=1

|θi − θ |3,

for constants S,R > 0, where θ =
∑n

i=1 θi/n. Note that the assumptions Y ∼
Fn(θ), with Fn(θ) ∈ P ′

n(θ) and θ ∈ �′, are not much stronger than our assump-
tions in Section 4.1: we require the existence of two more moments for the error
distribution, and place an additional weak condition on the growth of (components
of) θ . These conditions are sufficient to prove the following helpful lemma.

LEMMA 7. Assume that X satisfies (13), (14). Let Y ∼ Fn(θ) ∈ P ′
n(θ), where

this class is as defined in (21), and let θ ∈ �′, where this class is as in (22), (23).
Then for any fixed M ∈ M, and c > 1,

lim
n→∞

sup
θ∈�′

sup
Fn(θ)∈P ′

n(θ)

P
(
csY ≥ σ |M̂(X,Y ) = M

)
= 1.

In words, the event {csY ≥ σ } has probability tending to 1 conditional on

M̂(X,Y ) = M , uniformly over P ′
n(θ), and over θ ∈ �′. Furthermore, denoting

the sample third moment of Y as

r3
Y =

1

n

n∑

i=1

|Yi − Y |3,

we have that for any δ > 0, there exists C > 0 such that for sufficiently large n,

sup
θ∈�′

sup
Fn(θ)∈P ′

n(θ)

P

(
r3
Y

s3
Y

≥ C
∣∣∣M̂(X,Y ) = M

)
≤ δ.

In words, r3
Y /s3

Y = OP(1) conditional on M̂(X,Y ) = M , uniformly over P ′
n(θ),

and over θ ∈ �′.

The last two lemmas allow us to tie the distribution function of our bootstrap
contrast to that of a normal random variable.

LEMMA 8. Assume that X satisfies (13), (14), (20). Let Y ∼ Fn(θ) ∈ P ′
n(θ),

as defined in (21), and let θ ∈ �′, as defined in (22), (23). Let M ∈ M, and let v

be such that vT θ gives a normalized regression coefficient from projecting θ onto
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a subset of the variables in X. Then for any δ > 0, there exists C > 0 such that

sufficiently large n,

sup
θ∈�′

sup
Fn(θ)∈P ′

n(θ)

P

(
sup
t∈R

∣∣P∗
(
vT (

Y ∗ − Y1
)
≤ t

)
− P(sY Z ≤ t |Y)

∣∣

≥
C
√

n

∣∣∣M̂(X,Y ) = M

)
≤ δ,

where we use Z ∼ N(0,1) for a standard normal random variate. In words,
supt∈R |P∗(vT (Y ∗ − Y1) ≤ t) − P(sY Z ≤ t |Y)| = OP(1/

√
n) conditional on

M̂(X,Y ) = M , uniformly over P ′
n(θ), and over θ ∈ �′.

We are now ready to present uniform asymptotic results for the plug-in and
bootstrap TG statistics. We remind the reader the number of steps k is treated as
fixed below (as it is throughout).

THEOREM 9. Assume the conditions of Lemma 8. Suppose FS, LAR or the

lasso is run for k steps on (X,Y ). Then under vT θ = 0, the conditional plug-in TG

statistic T̃ (X,Y ;M,v,0)|M̂(X,Y ) = M and conditional bootstrap TG statistic

T ∗(X,Y ;M,v,0)|M̂(X,Y ) = M are each asymptotically larger than U(0,1) in

distribution, uniformly over P ′
n(θ), and over θ ∈ �′. That is,

lim
n→∞

sup
θ∈�′

sup
Fn(θ)∈P ′

n(θ)

sup
t∈[0,1]

[
PvT θ=0

(
T̃ (X,Y ;M,v,0)

≤ t |M̂(X,Y ) = M
)
− t

]
+ = 0

and

lim
n→∞

sup
θ∈�′

sup
Fn(θ)∈P ′

n(θ)

sup
t∈[0,1]

[
PvT θ=0

(
T ∗(X,Y ;M,v,0)

≤ t |M̂(X,Y ) = M
)
− t

]
+ = 0,

where x+ = max{x,0} denotes the positive part of x. Further, given any catalog

V = {μM : M ∈ M} of vectors such that each vT
Mθ yields a normalized coefficient

in the projection of θ onto a subset of the variables in X, for M ∈ M, the same

results hold marginally under V T θ = 0.

REMARK 3. For simplicity, we analyzed the plug-in and bootstrap statistics
simultaneously. Consequently, the conditions assumed to prove asymptotic prop-
erties of the plug-in approach are stronger than what we would need if we were to
study this method on its own, but there are not major differences in these condi-
tions.
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Theorem 9 establishes that the plug-in and bootstrap versions of the TG statistic
are asymptotically conservative when viewed as p-values under vT θ = 0. If we
look more broadly at the distribution of these test statistics under vT θ = μ, for an
arbitrary value of μ, then a technical barrier arises. For each statistic, our proof
of its asymptotic conservativeness leverages the fact that the truncated Gaussian
survival function decreases (in a pointwise sense), as its underlying variance pa-
rameter decreases. To extend these results to the case of an arbitrary pivot value μ,
we would need the analogous fact to hold when we replace the survival function
of the Gaussian variate csY Z +μ truncated to [âM , b̂M ], with that of σZ +μ trun-
cated to [̂aM , b̂M ], on the event {csY ≥ σ }. Yet, without the guarantee that âM ≥ μ

(which clearly cannot always be true, for an arbitrary value of μ), it is no longer
the case that decreasing the variance from c2s2

Y to σ 2 always decreases the sur-
vival functions of these two truncated Gaussians; see Section A.15. This means
that confidence intervals given by directly inverting either the plug-in or bootstrap
TG statistic do not have provably correct asymptotic coverage properties, under
the current analysis.

From the arguments in the proof of Theorem 9, we can construct one-sided
confidence intervals with conversative asymptotic coverage, by forcing them to
include âM . We do not pursue the details here, as we have found that these one-
sided intervals are practically too wide to be of interest.

Importantly, the plug-in and bootstrap TG statistics often display excellent em-
pirical properties, as we will show in the next section. A more refined analysis
is needed to establish asymptotic uniformity for the distribution of these statis-
tics under vT θ = μ. Such asymptotic uniformity, for arbitrary μ, would lead to
asymptotic coverage guarantees for confidence intervals produced by inverting
these statistics, and we leave this extension to future work.

6. Examples. We present empirical examples that support the theory devel-
oped in the previous sections, and also suggest that there is much room to refine
and expand our current set of results. The first two subsections examine a low-
dimensional problem setting that is covered by our theory. The last two look at
substantial departures from this theoretical framework, the heteroscedastic and
high-dimensional settings, respectively. In all examples, the LAR algorithm was
used for variable selection and associated inferences; results with the FS and lasso
paths were roughly similar. Also, in all examples, where not explicitly stated oth-
erwise, the computed p-values are a test of whether the target population value
is 0.

It may be worth discussing two potentially common reactions to our experi-
mental setups, especially for the low-dimensional problems described in the next
subsections. First, our plug-in statistic uses s2

Y as an estimate for σ 2; why not
use an estimate from the full least squares model of Y on X, since this would be
less conservative? While experiments (not shown) confirm that this works in low-
dimensional regression problems, such an estimate becomes anti-conservative as
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the number of variables grows (particularly, irrelevant ones), and is obviously not
applicable in high-dimensional problems. Therefore, we stick with the simple es-
timate s2

Y , as this is always applicable and always conservative.
Second, to determine variable significance in a low-dimensional problem, one

could of course fit a full regression model and inspect the resulting p-values
and confidence intervals. These p-values and intervals could even be Bonferonni-
adjusted to account for selection. Of course, this strategy would not be possible
for a high-dimensional problem, but if the number of predictors is small enough,
then it may work perfectly fine. So when should one use more complex tools for
post-selection inference? This is an important question, deserving of study, but it
is not the topic of this paper. The examples that follow are intended to portray the
robustness of the selective pivotal inference method against nonnormal error dis-
tributions; they are not meant to represent the ideal statistical practice in any given
scenario.

6.1. P -value examples. We begin by studying a low-dimensional setting with
n = 50 and d = 10. We defined predictors X ∈ R

50×10, by drawing the columns in-
dependently according to the following mixture distribution: with equal probabil-
ity, a column was filled with i.i.d. entries from N(0,1), Bern(0.5), or SN(0,1,5),
where SN(0,1,5) denotes the skew normal distribution [O’Hagan and Leonard
(1976)] with shape parameter equal to 5. We then scaled the columns of X to have
unit norm. The underlying mean was defined as θ = Xβ0, where β0 ∈ R

10 has its
first 2 components equal to −4 and 4, and the rest set to 0. Over 500 repetitions,
we drew a response Y ∈ R

50 from (1), with i.i.d. errors, and 4 different choices for
the error distribution: normal, Laplace, uniform and skew normal. In each case, we
centered the error distribution, and we scaled it to have variance σ 2 = 1 (for the
skew normal distribution, we used a shape parameter 5). Every 10 repetitions, the
predictor matrix X was regenerated according to the prescription described above.

Figure 2(a) displays QQ plots of p-values for testing the significance of the vari-
able entered into the active model, across 3 steps of LAR. (The QQ plots compare
the p-values to a standard uniform distribution.) The p-values were computed us-
ing the TG statistic with σ 2 = 1, the plug-in TG statistic with s2

Y as its estimate
for σ 2, and the bootstrap TG statistic with 50,000 bootstrap samples used to ap-
proximate the probabilities in the numerator and denominator of (19), and padding
factor δn = 10−4n−1/4. (The scaling factor was ignored, i.e., set to c = 1, for the
plug-in and bootstrap statistics.) In steps 1 and 2, the p-values are restricted to rep-
etitions in which a correct variable selection was made, that is, variable 1 or 2 was
entered into the active LAR model. In step 3, the p-values are from repetitions in
which an incorrect variable selection was made, that is, one of variables 3 through
10 was entered into the active model. Since the underlying signal was fairly strong
and the predictors uncorrelated, such selections happened the majority of the time;
specifically, the p-values displayed for steps 1, 2 and 3 comprise approximately
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FIG. 2. A simulation setup with n = 50 and d = 10, and a mean θ = Xβ0, where β0 has 2 nonzero

components.
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95%, 85%, and 87% of the 500 repetitions, respectively. The p-values in steps 1
and 2 show reasonable power, for all 3 statistics (TG, plug-in and bootstrap types),
and all 4 error distributions. Also, the p-values in step 3 are uniform, as desired,
again for all statistics and all error distributions. Though the guarantees (for uni-
form null p-values) are only asymptotic for the Laplace, uniform and skew normal
error distributions, such asymptotic behavior appears to kick in quite early for
these distributions, as the sample size here is only n = 50. Further, the QQ plots
reveal that the p-values for the nonnormal error distributions are not really any
farther from uniform than they are in the normal case. This is somewhat remark-
able, recalling that the p-values are, by construction, exactly uniform under normal
errors.

Figure 2(b) inspects the TG statistic and plug-in and boostrap variants, when
the pivot value μ is set to the true population value. That is, we set μ = vT θ in
computing the statistics in (17), (18) and (19), in each data instance and each step
of LAR. The figure collects the p-values across all 3 steps of LAR, for each of the 4
error distribution types. According to our theory, the distribution of the TG pivotal
statistics here should be asymptotically uniform. This is clearly supported by the
QQ plots. Interestingly, both plug-in and bootstrap pivotal statistics also appear
uniform in the QQ plots, and yet, this is not a case handled by our asymptotic
theory: recall, Theorem 9 fixes the pivot value μ to be 0 (as, otherwise, technical
difficulties are encountered in its proof). This gives empirical evidence to the idea
that a more refined analysis could extend Theorem 9 to the broader setting (of
arbitrary pivot values) handled by Theorem 5. Moreover, it suggests that inverting
the plug-in and bootstrap TG statistics should yield intervals with proper coverage,
which is verified in the next subsection.

Lastly, we repeated all experiments in this subsection with the predictors X ∈
R

50×10 generated in such a way to induce a (population) correlation of 0.5 between
all pairs of predictor variables. The results are quite similar to those shown in
Figure 2, and hence are deferred to Section A.16.

6.2. Confidence interval examples. We stay in same setting as the last sub-
section, so that n = 50, d = 10, and θ = Xβ0 for a coefficient vector β0 with its
first 2 components equal to −4 and 4, and the rest equal to 0. We invert the TG,
plug-in TG, and bootstrap TG statistics to obtain 90% confidence intervals at each
LAR step. See Table 1 for a numerical summary. “Coverage” refers to the average
fraction of intervals that contained their respective targets over the 500 repetitions,
“power” is the average fraction of intervals that excluded zero, and “width” is the
median interval width. These are all recorded in an unconditional sense, that is, no
screening of repetitions was performed based on the variables that were selected
across the 3 steps of LAR (the conditional coverages, however, were quite similar).
From the table, we can see that all 3 methods lead to accurate coverage (around
90%) in all cases. We can further see that the intervals from the bootstrap TG
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TABLE 1
Summary statistics for 90% confidence intervals constructed in the problem setting of Figure 2. The

4 blocks of rows correspond to the 4 types of noise: normal, Laplace, uniform and skew normal,
respectively. The standard errors are about 0.01, 0.02 and 0.42 for the coverage, power and width

statistics, respectively

Step 1 Step 2 Step 3

Coverage Power Width Coverage Power Width Coverage Power Width

N TG 0.914 0.508 5.622 0.890 0.520 10.309 0.910 0.114 25.155
Plug-in 0.928 0.378 7.561 0.914 0.404 15.774 0.918 0.100 34.642
Boot 0.932 0.528 5.477 0.916 0.424 7.856 0.930 0.090 9.141

L TG 0.904 0.568 5.193 0.926 0.536 11.153 0.912 0.118 26.393
Plug-in 0.944 0.410 7.271 0.930 0.440 14.859 0.904 0.120 36.206
Boot 0.944 0.566 5.429 0.944 0.454 7.892 0.924 0.108 9.273

U TG 0.912 0.538 5.153 0.902 0.504 12.347 0.894 0.128 26.451
Plug-in 0.928 0.396 7.284 0.910 0.390 17.497 0.886 0.126 39.299
Boot 0.924 0.540 5.453 0.910 0.422 7.808 0.892 0.118 8.913

S TG 0.892 0.540 5.346 0.878 0.504 10.876 0.906 0.116 26.592
Plug-in 0.940 0.402 7.210 0.896 0.380 15.687 0.910 0.106 38.965
Boot 0.936 0.520 5.477 0.912 0.394 8.060 0.918 0.102 9.057

statistic are shorter than those from the plug-in TG statistic in all cases, and con-
siderably shorter than both the plug-in and original TG statistics in steps 2 and 3.
The power from the bootstrap TG intervals is generally better than that from the
plug-in TG intervals; also, it is on par with the power from the original TG statistic
in step 1, but somewhat worse in step 2. Recall that the original TG statistic uses
knowledge of the error variance (σ 2 = 1) but the bootstrap and plug-in variants do
not.

It is a bit surprising that the bootstrap intervals can be shorter but still have
worse power than the original TG intervals. This is easier to understand once the
intervals are visualized, as done in Figure 3. The figure shows 100 sample intervals
from the first LAR step, under normally distributed errors. Sample intervals from
the other error models are shown in Section A.17. We see that the bootstrap TG
intervals are indeed shorter, but compared to the original TG intervals, they are
more symmetric around the target population values. The original TG intervals,
being more asymmetric, are often shorter on the side (of the target value) facing 0,
and this results in better power.

Again, we repeated the experiments here with the predictors X ∈ R
50×10 gen-

erated to have pairwise correlation 0.5. Comparisons can be drawn between the
results in a manner that roughly parallels the discussions following Table 1; how-
ever, on an absolute scale, all methods display a decrease in power across the board
(as correlated predictors clearly make the problem more difficult). Details are pro-
vided in Section A.18.
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FIG. 3. Confidence intervals from 100 draws of Y from the same model as that in Figure 2. These

intervals are constructed from the first step of LAR, under a uniform distribution for noise. The

colors are simply a visual aid to mark the selection of different variables at step 1. The open circles

denote the true population quantity to be covered (here, the coefficient from projecting θ onto the

first selected variable). Intervals that do not contain their targets are drawn as dotted segments.

6.3. Heteroscedastic errors. In the same setup as in Sections 6.1 and 6.2, with
n = 50, d = 10, and the predictors X and mean θ generated in the same manner,
we consider a heteroscedastic model for Y by drawing ε′

i , i = 1, . . . , n i.i.d. from
the given distribution—normal, Laplace, uniform, or skew normal—and then tak-
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FIG. 4. A simulation setup with n = 50 and d = 10, but with heteroscedastic errors. Shown are the

pivotal statistics aggregated over 3 LAR steps.

ing the errors to be εi = σiε
′
i , i = 1, . . . , n, where σ 2

i = 10‖xi‖2
2, i = 1, . . . , n (and

where xi ∈ R
d , i = 1, . . . , n denote the rows of X). The spread of error variances

ended up being fairly substantial, from about 0.3 to 5.5. The original TG statistic
was computed with σ 2 = 1

n

∑n
i=1 σ 2

i as a surrogate for the common error variance;
the plug-in and bootstrap variants were computed as usual. For brevity, we only
plot the pivotal statistics, aggregated over 3 steps of LAR, in Figure 4. [This is
analogous to what is shown in Figure 2(b) for the homoscedastic case. P -values
at steps 1, 2 and 3, not shown, end up being similar to those in Figure 2(a), but
the power from all methods is generally lower, due to the heteroscedastic errors.]
As we can see, the pivotal statistics in the figure look very close to uniformly dis-
tributed, as desired. This is especially encouraging because the current problem
setup lies outside of the scope of our asymptotic theory (which assumes a con-
stant error variance), and it suggests that our theory could possibly be extended to
accommodate errors with an (unknown) nonconstant variance structure.

6.4. High-dimensional examples. Finally, we consider a high-dimensional
regime with n = 50 and d = 1000 predictors. The matrix X ∈ R

50×1000 was gener-
ated according to the same recipe as before: each column, with equal probability,
was assigned i.i.d. entries from N(0,1), Bern(0.5) or SN(0,1,5), and then scaled
to have unit norm. The mean was defined as θ = Xβ0, where β0 ∈ R

1000 has its
first 2 components equal to −4 and 4, and the rest 0. Over 500 repetitions, a re-
sponse Y ∈ R

50 was generated by adding normal, Laplace, uniform or skew normal
noise to θ , with an error variance of σ 2 = 1 (and every 10 repetitions, the pre-
dictor matrix X was regenerated). Figure 5 plots the pivotal statistics aggregated
over the first 3 steps of LAR. [This is as in Figure 2(b) for the low-dimensional
case. P -values from the first 3 LAR steps are omitted for brevity, and are roughly
similar to those in Figure 2(a), except that they display less power, due to the high-
dimensionality.] The pivotal statistics here look quite close to uniform, as desired,
and this is again encouraging, especially given that the current high-dimensional
case lies outside of the scope of our theory (which assumes that d is fixed). Further
work on high-dimensional asymptotic theory should be pursued [see also Tian and
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FIG. 5. A simulation setup with n = 50 and d = 1000. Shown are the pivotal statistics over 3 LAR

steps.

Taylor (2017)], though, as we show in the next section, there is no hope for a uni-
form convergence result in high dimensions that holds as generally as the one we
established in Theorem 5 for low dimensions.

7. A negative result in high dimensions. We prove that the TG statistic fails
to converge to a uniform distribution, under the null hypothesis, in a data model
that has nonnormal errors and is high-dimensional, but otherwise represents a
fairly standard setting: the “many means” setting. We write the observation model
as

(24) Yij = μj + εij , i = 1, . . . ,m, j = 1, . . . , d,

where we interpret i = 1, . . . ,m as replications, and j = 1, . . . , d as dimensions.
In total, there are hence n = md observations. Denote

Y j =
1

m

m∑

i=1

Yij , j = 1, . . . , d.

We will analyze the TG statistic, when selection is performed based on the largest
of |Y j |, j = 1, . . . , d , and inference is then performed on the corresponding mean
parameter. A straightforward change of notation will translate the above into a
regression problem, with an orthogonal design X ∈ R

n×d , but we stick with the
many means formulation of the problem for simplicity.

We assume that the errors εij , i = 1, . . . ,m, j = 1, . . . , d in (24) are i.i.d. from
the following mixture:

(25) π · N(−B,1) + (1 − 2π) · N(0,1) + π · N(B,1).

The mixing proportion π and mean shift B will both scale with d . Moreover, they
will be chosen so that (for each d) the error variance is

σ 2 = 1 + 2πB2 = 2.

As mentioned, we will consider model selection events of the form

M̂(Y ) = (j, s) ⇐⇒ sY j ≥ max
ℓ �=j

|Y ℓ|.
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We note that this is exactly the same selection event as that from the first step of
FS, LAR or lasso paths, when run on the regression version of this problem with
orthogonal design X. It is not hard to check that the TG statistic for conditionally
testing μj = 0, given that M̂(Y ) = (j, s), is

(26) T (Y ; j, s,0) =
1 − �(

√
msY j√

2
)

1 − �(
maxℓ�=j

√
m|Y ℓ|√

2
)

.

As per the spirit of our paper, we can also view this statistic unconditionally; for
this it is helpful to define W1 = |Y 1|, . . . ,Wd = |Y d |, and denote by W(1) ≥ · · · ≥
W(d) the order statistics. Then from (26), we can see that the unconditional TG
statistic for testing the selected mean being 0 is

(27) T (Y ;0) =
1 − �(

√
mW(1)√

2
)

1 − �(
√

mW(2)√
2

)
.

The framework underlying the TG statistic tells us that if the errors in (24) are
i.i.d. N(0,2), then for any fixed model (j, s), the pivot T (Y ; j, s,0) is uniformly
distributed conditional on M̂(Y ) = (j, s). Further, if W(1) and W(2) are the largest
and second largest absolute values of centered normal random variables (each with
variance 2/m), then the unconditional pivot T (Y ;0) is again uniform. But when
W(1),W(2) are large, and are defined by the order statistics of nonnormal random
variates, the statistic T (Y ;0)—which in this case is defined by the extreme tail
behavior of the normal distribution—could be nonuniform. The next theorem as-
serts that such nonuniformity does indeed happen asymptotically if we choose the
mixture distribution in (25) appropriately.

THEOREM 10. Assume the observation model (24), where the errors are all

drawn i.i.d. from (25). Let d and m scale in such a manner that (logd)/m → ∞.
Further, let

π =
(

1

d

)1/m

, B =

√
d1/m

2
,

so that the error variance is fixed at σ 2 = 2. Then under the global null hypoth-

esis, μ = 0, the unconditional TG statistic T (Y ;0) in (27) does not converge in

distribution to U(0,1). In particular, on an event whose limiting probability is at

least 1/e, the statistic T (Y ;0) converges to 0.
Further, the same results hold conditionally on any selected model. That is,

for any fixed (j, s), the conditional TG statistic T (Y ; j, s,0)|M̂(Y ) = (j, s) does

not converge in distribution to U(0,1), and on an event with limiting probability

[conditional on M̂(Y ) = (j, s)] at least 1/e, it converges to 0.
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FIG. 6. The left plot shows a QQ plot of TG p-values, computed over 500 repetitions from the many

means setup exactly as described in Theorem 10, with d = 50,000 and m = 2. We can see that the

p-values are clearly nonuniform, and 34% of the p-values are 0 (up to computer precision), close

to the theoretically predicted proportion of 1/e. The right plot shows p-values from the same model,
but having reversed the roles of d and m (we also had to cap π at 1/2); we can see that the p-values

are essentially uniform.

REMARK 4. The assumed condition (logd)/m → ∞ requires the dimension
d to diverge to ∞, but not necessarily the number of replications m, though it
clearly allows m to diverge at a sufficiently slow rate. On the other hand, if d were
fixed and m diverged to ∞, then the result of the theorem would no longer be
true, and the limiting distribution of the TG p-value would revert to U(0,1). (To
be careful, here we would have cap the mixing probability π at 1/2 in order for
the mixture to make sense, since the current definition of π diverges with d fixed
and m tending to ∞.) In fact, this is ensured by our low-dimensional result in
Theorem 5: after reformulating the many means problem in appropriate regression
notation, all of the conditions of Theorem 5 are met by our current setup when d

is fixed. This is supported by the simulation in Figure 6.

REMARK 5. The precise scaling (logd)/m → ∞ is chosen since this im-
plies π = (1/d)1/m → 0, that is, the extreme mixture components N(−B,1) and
N(B,1) each have probability tending to 0, an intuitively reasonable property for
the error distribution. But we note that this scaling is not important for any other
reason, and the proof would still remain correct if d/m → ∞.

REMARK 6. In Theorem 3 of Tian and Taylor (2017), the authors show that
the TG statistic converges in distribution to a standard uniform random variable,
in a high-dimensional problem setting, with some restrictions on the sequences of
selection events that are allowed. One might ask what part of our high-dimensional
setup here violates their conditions, because both results obviously cannot be true
simultaneously. As far as we can tell, the issue lies in the role of δn in Assumption 1
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of Tian and Taylor (2017). Namely, as we have defined the error distribution in
(25), the value of δn needed to certify the third condition Assumption 1 of their
work is too small for the main assumption in their Theorem 3 to hold. Hence,
Theorem 3 of Tian and Taylor (2017) does not apply to our current setup.

8. Discussion. We have studied the selective pivotal inference framework,
with a focus on forward stepwise regression (FS), least angle regression (LAR),
and the lasso, in regression problems with nonnormal errors. We have shown that
the truncated Gaussian (TG) pivot is asymptotically robust in low-dimensional set-
tings to departures from normality, in that it converges to a U(0,1) distribution (its
pivotal distribution under normality), and does so uniformly over a broad class of
nonnormal error distributions. When the error variance σ 2 is unknown, we have
proposed plug-in and bootstrap versions of the TG statistic, both of which yield
provably conservative asymptotic p-values.

Our numerical experiments revealed that the statistics under theoretical inves-
tigation generally display excellent finite-sample performance, for highly nonnor-
mal error distributions. These experiments also revealed findings not predicted by
our theory: (i) the bootstrap TG statistic often produces shorter confidence inter-
vals than those based on the plug-in TG statistic, and even the TG statistic that
relies on the error variance σ 2; and (ii) all three TG statistics show strong empiri-
cal properties well outside of the classic homoscedastic, fixed d regression setting
that we presumed theoretically.

However, as we have clearly demonstrated, one should not hope for a conver-
gence result in high dimensions that is as general as the result obtained in low
dimensions. In a relatively simple many means problem, we showed the noncon-
vergence of the TG statistic to U(0,1) as d → ∞, whereas in the same problem
but with d fixed, the TG statistic converges to its usual U(0,1) limit.

There is still much left to do in terms of understanding the behavior of selective
pivotal inference tools that are constructed to have exact finite-sample guarantees
under normality, like the TG statistic of Tibshirani et al. (2016), when applied in
high-dimensional regression settings with nonnormal data. When the pivot, the
central cog of this framework, is constructed under the assumption of normality,
this creates robustness issues that are especially worrisome in high dimensions.
Section A.20 provides a high-level discussion of some of these issues; a more
detailed study will be the subject of future research.
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rems (Theorems 5, 9 and 10); Jelena Markovic pointed out that Theorem 5 should
also hold conditionally, and the current version of this work has been revised ac-
cordingly.



1286 TIBSHIRANI, RINALDO, TIBSHIRANI AND WASSERMAN

SUPPLEMENTARY MATERIAL

Supplement to “Uniform asymptotic inference and the bootstrap after

model selection” (DOI: 10.1214/17-AOS1584SUPP; .pdf). This document gives
additional figures, details, and proofs for the paper “Uniform asymptotic inference
and the bootstrap after model selection.”
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