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Uniform Asymptotic Theory of Edge Diffraction * 
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Geometrical optics fails to account for the phenomenon of diffraction, i.e., the existence of nonzero 
fields in the geometrical shadow. Keller's geometrical theory of diffraction accounts for this phenomenon 
by providing correction terms to the geometrical optics field, in the form of a high-frequency asymptotic 
expansion. In problems involving screens with apertures, this asymptotic expansion fails at the edge of the 
screen and on shadow boundaries where the expansion has singularities. The uniform asymptotic theory 
presented here provides a new asymptotic solution of the diffraction problem which is uniformly valid 
near edges and shadow boundaries. Away from these regions the solution reduces to that of Keller's 
theory. However, singularities at any caustics other than the edge are not corrected. 

1. INTRODUCTION 

Geometrical optics fails to accpunt for the phenom­

enon of diffraction, i.e., the existence of nonzero 

fields in the geometrical shadow. It is now known that 

the geometrical-optics field corresponds to the leading 

term of a high-frequency asymptotic expansion of the 

solution of a boundary-value problem for the reduced 

wave equation or Maxwell's equations, and that higher­

order terms account for diffraction. Keller's "geo­

metrical theory of diffraction" 1.2 provides a systematic 

means for computing these terms. 

In this paper we consider problems of diffraction 

by screens. The screens may be portions of planes or 

other smooth surfaces bounded by smooth curves, 

and the prescribed incident wave may be arbitrary. 

We consider here only scalar problems for the reduced 

wave equation with boundary conditions of the first 

or second kind (u = 0 or au/an = 0) on the screen. 

In Sec. 2 we present a brief but self-contained treat­

ment of Keller's geometrical theory for such problems. 

This theory depends on a "diffraction coefficient" the 

value of which is obtained from a special ("canonical") 

problem, the problem of diffraction of a plane wave 

by a half plane. Sommerfeld's solution of this problem 

is discussed in Sec. 3 and there the diffraction coeffi­

cient is evaluated. 

The geometrical theory has several shortcomings. 

It fails at the shadow boundaries of the incident and 

reflected waves as well as at the edge of the screen 

where the "diffracted wave" becomes infinite. Further­

more, it is difficult to justify the determination of the 

• The research in this paper was supported by the Air Force 
Cambridge Research Laboratories, Office of Aerospace Research, 
under Contract No. AF 19(628)3868. Reproduction in whole or in 
part is permitted for any purpose of the U.S. Government. 

t R. M. Lewis died on 7 November 1968. 
1 J. B. Keller, J. Opt. Soc. Am. 52,116 (1962). 
• R. M. Lewis and J. B. Keller, New York University Research 

Report EM-194, 1964. 

diffraction coefficient by comparison with the solution 

of the canonical problem, and this procedure cannot 

be generalized to yield higher-order terms in the 

diffracted field. These shortcomings are overcome by 

the method presented in Secs. 4 and 5 of this paper. 

Other shortcomings of the geometrical theory (the 

failure at caustics of the problem) remain. Like 

Keller's theory, ours is formal in the sense that we do 

not rigorously prove the asymptotic nature of the 

solution obtained. 

Our approach is motivated by a new representation 

of the solution of the half-plane problem. By using 

simple concepts of the geometrical theory such as 

incident-, reflected-, and diffracted-phase functions, 

we show in Sec. 3 that Sommerfeld's solution can be 

expressed in a remarkably simple and suggestive form. 

This representation involves a special function/which 

is discussed briefly in Appendix A. It is closely related 

to the Fresnel integral functions. 

The geometrical theory of diffraction is based on an 

"ansatz" in the form of an asymptotic series involving 

certain "phase" and "amplitude" functions. By 

inserting the series into the reduced wave equation, 

one obtains the eikonal equation for the phase 

function sex) and a sequence of transport equations 

for the amplitude functions zm(x). These equations 

can be solved by introducing lines in x-space called 

"rays." Our approach is based on a new ansatz that 

involves the function f Away from the edge of the 

screen and the &hadow boundaries, the new expression 

reduces to one of the same form as Keller used. 

Therefore the phase and amplitude functions which 

appear in the new ansatz also satisfy the eikonal and 

transport equations. In Keller's theory there is an 

undetermined "initial condition" for the transport 

equation of order zero. This leads to the diffraction 

coefficient. In our approach the initial condition is 
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2292 R. M. LEWIS AND J. BOERSMA 

uniquely determined by imposing the "edge condition," 

which is a part of the rigorous formulation of the 

boundary-value problem. Away from the edge and 

shadow boundaries, the leading term of our result 

reduces to Keller's, and we verify his expression for 

the diffraction coefficient. 

By construction our solution is continuous and 

finite at the edge of the screen because the edge 

condition demands this. It is not immediately obvious 

that it is also continuous at the shadow boundaries. 

However, in Sec. 4 we compute the leading term of our 

expansion and prove that it is continuous at the 

shadow boundaries as well as at the edge. (For this 

reason we call our asymptotic solution "uniform.") 

The generalization of this theorem to higher-order 

terms has not yet been proved. In Sec. 5 we compute 

the next term of our expansion. In order to simplify 

the calculations we restrict the problem at this point 

to screens which are portions of planes. The com­

putation requires an expression for the Laplacian in 

"ray coordinates" which are not orthogonal. This 

expression is derived in Appendix C. When our 

result is evaluated away from the edge and shadow 

boundaries, it again reduces to an expression of the 

form used in the geometrical theory, but now the first 

two terms of the diffracted wave are given. The second 

term can be expressed in a form that involves Keller's 

diffraction coefficient and a new coefficient. There is a 

special problem (grazing incidence with boundary 

condition au/an = 0) in which Keller's diffraction 

coefficient vanishes and the second term becomes 

important. For this. case Keller has obtained a special 

diffraction coefficient by using a special canonical 

problem. In this case our new coefficient reduces to 

his. 

In several respects our theory is incomplete. We 

have already mentioned the unproved conjecture that 

all terms are continuous at the shadow boundary. 

There is a second unproved conjecture: We have 

obtained the first two terms of the expansion, at least 

for plane screens. (This is probably not an essential 

restriction.) It seems likely that the procedure can be 

continued to yield higher-order terms. But this too is 

not obvious and has not yet been proved. [Note added 

in proof Both conjectures were proved recently; see 

D. S. Ahluwalia, R. M. Lewis, and J. Boersma, 

SIAM J. Appl. Math. 16, 703 (1968).] Furthermore, 

as we have mentioned, our theory also fails at caustics 

of the incident and reflected waves and caustic points 

of the diffracted wave other than those on the edge. 

Our theory is also incomplete in another sense. 

For nonplanar screens, diffracted rays emanating from 

the edge may strike another portion of the screen 

giving rise to secondary reflected waves or creeping 

waves. Such waves are not included in our theory. 

(See the remarks at the end of Sec. 4.) 

Uniform expansions which are valid at caustics 

have recently been obtained by Kravtsov3 and 

Ludwig.4 In fact, their work partially motivated our 

approach to the problem of diffraction by screens. A 

second motivation came from the work of Lewis5 on 

the uniform transition from the "forerunner" to the 

"main signal" of a transient wave propagating into a 

dispersive medium. 

The main motivation, however, came from the 

recent work of Wolfe. 6 Wolfe considered some special 

cases of the problems treated here, involving plane 

and spherical waves incident on a screen which is a 

portion of a plane. For these problems he obtained 

uniform asymptotic solutions by means of an ansatz 

involving Fresnel integrals. This ansatz, which was 

given in terms of ray coordinates, was substituted 

into the reduced wave equation which had to be 

transformed to these same coordinates. This obscures 

several important features of the method. For ex­

ample, one does not see that the ansatz involves 

functions that are identical to the phase and amplitude 

functions of the geometrical theory. As a consequence 

Wolfe's method is more complicated than ours. In 

addition, Wolfe relies on the use of the canonical 

half-plane problem, since the Fresnel-integral part of 

his ansatz is derived from the uniform asymptotic 

expansion of the solution of the half-plane problem 

for the same incident wave. Since this problem has 

been solved only for special incident waves (plane, 

cylindrical, and spherical), this restricts the generality 

of his method. Nevertheless the essential features of 

our approach are contained in Wolfe's work and we 

are very much indebted to him. We are of course also 

greatly indebted to Keller, not only for his geometrical 

theory of diffraction, but also for his continuing 

interest and advice in the course of Wolfe's work and 

our own. 

In closing this introduction we wish to mention 

some problems closely related to the one treated here. 

The problem of diffraction by a screen is a special 

case of diffraction by objects which are locally wedge­

shaped. (Along the edge the screen is locally a zero­

angled wedge.) Such problems can be treated by 

Keller's theory. The generalization of our method to 

these problems is currently under consideration. There 

3 Yu. A. Kravtsov, Radiofiz. 7, 664 (1964). 
4 D. Ludwig, Commun. Pure Appl. Math. 19,215 (1966). 
• R. M. Lewis, Proceedings of the U.R.S.I. Symposium on Electro­

magnetic Wave Theory (Delft, The Netherlands, 1965). 
6 P. Wolfe, "Diffraction of a Scalar Wave by a Plane Screen," 

Ph.D. thesis, New York University, 1965. 
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is also a fairly obvious generalization of our approach 

to problems of diffraction by screens in inhomogeneous 

media. We have not included a treatment of such 

problems because the added complications are not 

justified by the practical importance of the generaliza­

tion. In addition it is fairly clear that the method 

presented here can be applied to Maxwell's equations 

and other linear partial-differential equations, but this 

has not yet been done. Many diffraction problems 

(e.g., diffraction by a slit or by a circular aperture in a 

plane screen) involve "multiple diffraction" (waves 

produced at one edge are incident on another). Such 

problems have been treated by Keller and will be 

treated by our method in a forthcoming sequel to this 

paper. Finally there is a whole class of problems of 

diffraction by smooth objects that can be treated by 

another part of Keller's theory. Recently uniform 

asymptotic solutions of these problems have been 

obtained.7 •8 These solutions improve on Keller's 

theory in much the same way as the method presented 

here improves on his theory of edge diffraction. 

2. KELLER'S GEOMETRICAL THEORY OF 
DIFFRACTION 

In this section we present a summary of that part 

of Keller's theory which relates to diffraction by an 

edge of a screen. Further details are given in References 

1 and 2. It is important for us to summarize Keller's 

theory not only because our work was motivated by it, 

but because we make heavy use of his results. In 

Secs. 4 and 5, we use almost all the equations derived 

here. 

We consider asymptotic solutions of the reduced 

wave equation 

(2.1) 
of the form 

00 

u,-.; eikS(x) 2 (ik)-mzm(x), k -- 00. (2.2) 
m=O 

By inserting (2.2) into (2.1), we find that the phase 

function sex) satisfies the eikonal equation of geo­

metrical optics 

(Vs)2 = 1, (2.3) 

while the amplitude functions zm(x) satisfy the recursive 

system of transport equations 

2Vs· VZm + zm~s = -~Zm_1; m = 0,1,2,'" , 

Z_l == O. (2.4) 

Solution of (2.3) may be described as follows: Given 

a surface (wavefront) on which s has the constant value 

, R. M. Lewis, N. Bleistein, and D. Ludwig, Commun. Pure Appl. 
Math. 20,295 (1967). 

8 D. Ludwig, Commun. Pure Appl. Math. 20, 103 (1967). 

so' we introduce the two-parameter family of straight 

lines (rays) orthogonal to the surface. If a denotes 

distance along the rays from the wavefront (measured 

positively in the direction of increasing s), then on each 

ray 

s = So + a. (2.5) 

It is then clear that (2.5) satisfies (2.3). 

Let a2 and aa be the two parameters that label the 

rays and let us describe a ray parametrically in the 

form 

x = x(a) = x(a, a2 , aa). (2.6) 

If we set a = aI, then (2.6) defines a transformation 

from (aI' a2 , aa)-space to (Xl> X 2 , xa)-space and the 

Jacobian of the transformation is 

j = j(a) = j(a, a2 , ( 3) = det (OXi) , i,j = 1,2,3 . 
oa j 

(2.7) 

For given Zm-l it is easy to see that (2.4) is an ordinary 

differential equation for Zm along a ray. The solution 

can be expressed in the form 

zm(a) = Ij(ao) I!Zm(ao) -! f" Ij(a') 1!~Zm_l(a') da', 
j(a) 2 )"0 j(a) 

m = 0, 1,2, .. '. (2.8) 

Here zm(a) = zm[x(a, a2 , aa)] is the value of Zm at a 

point a on a given ray. The solution (2.8) is given in 

terms of an "initial value" Zm (ao) at some fixed point 

on each ray. For m = 0 we note that the second term 

of (2.8) is absent because Z_l == O. Two alternative 

expressions for the ratio of Jacobians are sometimes 

useful: 

j( ao) da( ao) (P2 + ao)(Pa + ao) --= --= 
j( a) da( a) (P2 + a)(P3 + a) 

(2.9) 

Here da( a) is the cross-sectional area of an infinites­

imal tube of rays, while P2( a2 , ( 3) and PaC a2 , ( 3) are 

the principal radii of curvature of the wavefront 

a = O. 

At the two points a = - P2 and a = - P3 on each 

ray, we see from (2.9) that Zm becomes infinite and the 

integral in (2.8) will, in general, diverge. Such points 

are called caustic points. They lie on the caustic, which 

is, in general, a two-sheeted surface forming the 

envelope of the family of rays (the rays are tangent to 

the caustic). We shall require an alternative form of 

(2.8) which remains valid when ao = 0 is a caustic 

point. First we rewrite (2.8) in the form 

ll(a)l! zm(a) = U(ao)l! zm(ao) 

- t r"ll(a')I~ ~Zm_l(a') da'. (2.10) 
)"0 

Downloaded 01 Oct 2011 to 131.155.197.179. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Then we express the integral in (2.10) in the form 

(2.11) 

Here the dash denotes the "finite part" 9 of a divergent 

integral. (The ordinary integrals would diverge at 

a' = 0.) Now (2.10) becomes 

li(a)l! zm(a) + t£' = Ii(ao)I! zm(ao) + i£'o. (2.12) 

The right side of (2.12) is independent of a. If we 

denote its value by ~m' then we obtain 

zin(a) = ~ -! [" \j(a') \!Azm_1(a') da', 
Ii( a)l! 2 Jo j( a) 

m = 0, 1,2, ' . '. (2.13) 

This is the required modification of (2.S). The "initial 

value" ~m(a2' as) has first to be determined before 

(2.13) is useful. We will see in Sec. 5 that the finite­

part integrals are a useful computational tool. For 

m = 0, the integral in (2.13) is again absent. 

We now consider the problem of diffraction by a 

screen S. The screen is a portion of a smooth surface. 

It is bounded by an edge E consisting of a smooth 

curve 

(2.14) 

Here 'fJ is an arclength parameter. For example, S 

might be an infinite plane with a circular aperture or it 

could be the complementary disk. Alternatively the 

aperture may have any smooth shape. In general, S 

need not be a portion of a plane. We consider an 

incident wave, 
00 

u~ '"'-' e
ikSI I (ik)-mz~, (2.15) 

m=O 

which is an asymptotic solution of (2.1). Then si and 

the z~ satisfy the equations derived above. The total 

field u is a solution of (2.1) and satisfies a boundary 

condition on the screen. We shall consider simultane­

ously the two conditions 

and 
u = 0 on S 

au 
- = N . Vu = ° on S. on 

(2.16a) 

(2. 16b) 

Here N is a unit normal vector on S. In addition, 

u - u~ is required to be "outgoing." 

To solve the diffraction problem, we first set 

9 Let!(E) = S~ g(x) dx have an asymptotic expansion in (perhaps 

fractional) powers of E for E ->- O. The coefficient of EO = 1 in the 
expansion is called the finite part of the integral and will be denoted 

by fo g(x) dx. 

u = ~ + u~. We assume that the reflected wave u~ 
has an asymptotic expansion 

Then (2.16) will be satisfied, provided 

sr = Si on S 

and, for the boundary condition u = 0, 

(2.17) 

(2.1S) 

z~ = -z~ on S; m = 0, 1,2, .. '. (2.19) 

For the case aulon = 0, (2.19) is replaced by 

::l i ::l r ::l i ::l r 

Zi ~ + zr ~ + UZm_l + uZm_l = 0 on S, 
man m an an an 

m = 0, 1,2, .. '. (2.20) 

It can be shown that (2.1S) implies that the inc;.dent 

and reflected rays (which have the direction VSI and 

Vsr, respectively) satisfy the law of reflection of 

geometrical optics. If "p is the angle of incidence 

(= angle of reflection), then asrlan = cos "p = -asilan 
and (2.20) becomes 

Z~ = z~ __ 1_(aZ~_l + aZ~_l) on S, 
cOS"p an an 

m = 0, 1,2, .. '. (2.21) 

Thus sr is determined on the reflected rays by (2.1S) 

and (2.5), while the functions z~ are given by (2.S) 

with zm(ao) determined by (2.19) or (2.21). We note 

that both u~ and u~ are zero in their respective "shadow 

regions," i.e., where there are no incident or reflected 

rays. Thus each has an "illuminated region" separated 

from the corresponding shadow region by a shadow 

boundary surface. 

The leading term u = u~ + lfo '"'-' z~ exp (iksi) + 
z~ exp (iksr) is the geometrical-optics solution of the 

problem, which of course fails to account for diffrac­

tion phenomena (nonzero fields in the shadows). The 

full solution (2.15) + (2.17) is correct only to first 

order because, according to Keller's theory, there is an 

additional diffracted wave U. Then 

u = u~ + u~ + u, (2.22) 

where 

, k-! iks ~ ('k)-m' u'"'-' e 4. I Zm' (2.23) 
m=O 

Of course s and the 2m satisfy the equations derived 

earlier for phase and amplitude functions. The 

diffracted rays associated with s emanate from the 

edge E of the screen and 

s = Si on E. (2.24) 
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Let us introduce the unit tangent, normal, and bi­

normal vectors t, D, and b of E. Then t = xo(11), 

b = t x D, and the equations of Frenet, 

i = KD, it = -Kt + Tb, b = -TD, (2.25) 

are satisfied. Here K is the curvature and T is the 

torsion of E. If we differentiate (2.24) with respect to 

1], we obtain 

Vs· t = VSi. t. (2.26) 

This implies the law of edge diffraction: The diffracted 

rays make the same angle with the tangent t to the 

edge as the incident ray at the point of diffraction. 

Let {J = (J( 1]) be this angle. Then, from each point 

xo(1J) of the edge, the diffracted rays emanating from 

the point generate a cone of semiangle {J. Thus we 

have a two-parameter family of diffracted rays 

(2.27) 

where U is a unit vector given by 

U = cos {Jt + sin {J cos exD + sin {J sin exb. (2.28) 

We may calculate the Jacobian 

and 

(2.35) 

The factor of proportionality D is called a diffraction 

coefficient. In Keller's theory it is determined by 

comparison with the solution of the problem of 

diffraction by a half-plane; the motivation is that 

diffraction is a local phenomenon and locally the 

screen can be approximated by a half-plane. In the 

next section we discuss the solution of the half-plane 

problem and derive the diffraction coefficient. The 

value of D is given by (3.16). It depends on the angles 

(J, rp, and rpo. The angles rp and rpo are illustrated in 

Fig. 1. 

In closing this section we state and prove two 

lemmas which will be useful in Sec. 4. 

Lemma 1: Let si.r be the phase function of the 

incident (reflected) wave and s the phase function of 

the diffracted wave. Then 

(2.36) 

.().( ) 0(x 1 , x 2 , x 3) 
] a = ] a, ex, 1] = 

o( a, ex, 1]) 

and si.r(x) = sex) if and only if x is a point on the 

(2.29) shadow boundary of the incident (reflected) wave. 

of the transformation defined by (2.27), using (2.25). 

We find that 

] = - . - x - = sm a 1 + - , . ox ox ox (. 2{J) ( a) 
oa oex 01] p 

(2.30) 

where 

sin {J 
p = - -:-----'---

(3(1]) + K cos ex (3 sin {J + K cos <5 ' 

(2.31) 

and 

cos <5 = sin (J cos ex = U . D. (2.32) 

Then, if we set <5m (ex, 1]) = 'm/sin (J, (2.13) yields 

m = 0, 1,2, .. '. (2.33) 
In particular, 

(2.34) 

The undetermined factor <50 is assumed to be 

proportional to the amplitude z~ of the incident wave 

at the point of diffraction xo(1]). Then <50 = Dz~[xo(1])] 

Proof: Let So be the common value of Si, sr, and s 

at a point Q on the edge. Let P be any point on a 

diffracted ray emanating from Q in the direction of 

the unit vector U; and let ao be the distance from Q 
to P. Since jVsi.rj = 1, 

si.r(p) = So + J: Vs i
•
r • U da ~ So + ao = S(P). 

(2.37) 

Equality holds in (2.37) if and only if Vsi.r == U, i.e., 

if and only if the diffracted ray coincides with an 

incident (reflected) ray. But this occurs if and only if 

FIG. I. Angles at the edge of a 
screen. The unit vectors t. and t. 
are orthogonal to the unit vector 
t J , which is tangent to the edge. 
t2 lies in the tangent plane and 
points away from the screen. 
t3 = tJ X t2 is orthogonal to the 
tangent plane and points toward 
the illuminated side. Projections 
of the incident ray and the 
diffracted ray into the plane 
orthogonal to the edge are 
shown. The directions of the 
projections are determined by 
the angles CPo (0 :::;; CPo :::;; 1T) and 
cP (-1T :::;; cP :::;; 1T). For purposes 
of Sec. 3 the y and z axes are 
shown. For purposes of Secs. 3 
and 5 the screen coincides with 
the tangent plane. 

projection of 

diffracted ray-

projection of 

incident ray 
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P is on the shadow boundary of the incident (reflected) 

wave. 

Lemma 2: (See Fig. 2.) Let t be a unit vector tangent 

to the edge at Q, and UI a unit vector in the direction 

of the incident (reflected) ray at Q. Let Ua be a unit 

vector in the plane T spanned by t and U I . Ua is 

chosen so that it is perpendicular to U I and 

t = cos PUI + sin pUa • (2.38) 

Let Po be the radius of curvature of the normal section 

of the incident (reflected) wavefront at Q in the direc­

tion of Ua • Then for the diffracted ray emanating from 

Q which lies on the shadow boundary of the incident 

(reflected) wave, the quantity p defined by (2.31) has 

the value 

p = Po· (2.39) 

Proof: Let S be the shadow-boundary surface of the 

incident (reflected) wave, W(x) the incident (reflected) 

wavefront and W(x) the diffracted wavefront that 

passes through the point x. On S, the incident 

(reflected) and diffracted rays coincide. (See Fig. 2.) 

Let Q denote a point on the edge x = xo(1]) and P a 

point on the ray through Q at a distance (1 from Q. 

From (2.9) and (2.30), we see that the principal radii 

at P of W(P) are (1 and p + (1. The cone of diffracted 

rays emanating from Q intersects W(P) in a circle. 

The axis of the cone has the direction of the vector t. 

From the "formula of Rodrigues" it can easily be 

shown that the circle is a line of curvature on W(P) 

corresponding to the principal radius of curvature (1. 

Therefore one of the principal directions atP is 

tangent to the circle, hence perpendicular to t. Thus 

it is perpendicular to the plane T spanned by t and 

UI . The other principal direction corresponding to the 

principal radius of curvature p + (1 is given by the 

vector Ua which lies in the plane T and is perpendicular 

to U I . Since W(Q) and W(P) are parallel surfaces, 

their principal directions are the same. If we take 

(1 = 0, we see that the principal radius of curvature of 

W(Q) in the direction Ua is p. 

edge 

FIG. 2 The shadow 
boundary surface S 
(proof of Lemma 2). 

Let C be the curve of intersection of Sand W(Q). 

According to Lemma 1, S = s on S; hence C also lies 

on W(Q). The rays of S are orthogonal to both W(Q) 

and W(Q) along C; hence W(Q) and W(Q) are tangent 

along C. From this it can easily be shown that the 

radii of curvature of the normal section of W(Q) and 

W(Q) at any point of C in the direction of the tangent 

to C are equal. But at Q the tangent to C has the 

direction Ua . Hence Po = p. 

3. SOMMERFELD'S SOLUTION OF THE 
PROBLEM OF DIFFRACTION BY A 

HALF-PLANE 

In this section we shall express Sommerfeld's well­

known solution of the half-plane ~i~raction problem 

in a new form. This expression partially motivated our 

work in this paper. From Sommerfeld's solution we 

shall also derive Keller's diffraction coefficient. 

Let x, y, and z be rectangular coordinates and let 

a half-plane be given by z = 0, y ~ 0, as in Fig. l. 
We introduce polar coordinates p, f{J (0 ~ p; -7T :5; 

f{J :5; 7T) defined by the equations y = p cos f{J, z = 
p sin f{J; and an incident plane wave u~ = exp (iksi), 

where 

Si = x cos p - y sin p cos f{Jo + z sin p sin f{Jo 

= x cos p - p sin p cos (f{J + f{Jo). (3.1) 

For p = 7T/2, the solution of the diffraction problem 

with boundary conditions (2.16) was first derived by 

Sommerfeld. A simple derivation appears in Ref. 

10,11 For arbitrary p the transformation 

u = exp (ikx cos P)u'(y, z) 

reduces the general problem to the special one 

(P = 7T/2), with k replaced by k sin p. Thus it is not 

difficult to obtain the solution of the diffraction 

problem for the incident plane wave given above. We 

find that the total field is given by 

u = exp {ik [ - p sin p cos (f{J + f{Jo) + x cos P]} 
x h[(2kp sin P)! cos Hf{J + f{Jo)] 

1= exp {ik[ - P sin p cos (f{J - f{Jo) + x cos P]} 
x h[ -(2kp sin p)l cos t(f{J - f{Jo)], (3.2) 

where 

hex) = 7T-le-ilTI4j:oo e
it2 

dt. (3.3) 

In (3.2) the upper (lower) sign is valid for the bound­

ary condition u = 0 (au/an = 0) on the half-plane. 

10 C. J. Bouwkamp, New York University Research Report 
EM· 50, 1953. 

11 To obtain our notation from Ref. 10, it is necessary to replace 
by 1r - qi, 80 by qio, and y by -yo 
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The above result can be greatly simplified by intro­

ducing the reflected and diffracted phase functions sr 

and s discussed in Sec. 2. It is easily seen that 

sr = x cos {3 - y sin {3 cos lPo - z sin {3 sin lPo 

= x cos {3 - p sin {3 cos (lP - lPo). (3.4) 

The diffracted rays may be expressed in the form 

x = (x,y, z) = (1],0,0) 

+ (J'(cos {3, sin {3 cos lP, sin (3 sin lP) (3.S) 

and on each ray 

s = Si(1], 0, 0) + (J' = 1] cos {3 + (J'. (3.6) 

Since 1] = x - (J' cos {3 and p = (J' sin {3, we see that 

S = x cos {3 + p sin {3. (3.7) 

We note that 

and 

We set 

and 

S - Si = 2p sin (3 cos2 Hcp + CPo) (3.8) 

S - sr = 2p sin (3 cos2 HlP - lPo)· 

e
i = sgn [cos HlP + lPo)], 

er = -sgn [cos HlP - lPo)], 

(3.9) 

(3.10) 

f(x) = e-i",'h(x) = 7T-ie-i1T/4e-i",2L"oo eit' dt. (3.11) 

Then (3.2) can be written as 

u = u
i + u', (3.12) 

where 

(3.13) 

and z~ and z~ are the geometrical incident and reflected 

amplitudes. Thus 

zi=l, z~==F1. (3.14) 

The geometric structure of the exact solution [(3.12) 

and (3.13)] becomes even more striking when we recog­

nize that ei
•
r = + 1 in the region illuminated by the 

incident (reflected) field and ei,r = -1 in the shadow 

region of the incident (reflected) field. 

On the shadow boundary of the incident (reflected) 

field, s = si.r and the argument of the function / in 

(3.13) is zero. For points not on a shadow boundary, 

and for k -4- 00, we may introduce the asymptotic 

expansion of/given in Appendix A. Then we find that 

u '"'-''r/(ei)eikS!z~ + 'r/(e')eikSrz~ + eik§(ka)-i D + O(k-!), 

(3.1S) 

where 'r/(x) is the unit-step function (see Appendix A) 

and 

ei1T /4 

D = - i [sec HlP + lPo) ± sect(lP -lPo)]' 
2(27T) sin (3 

(3.16) 

The factor 'r/( eLr) is one in the illuminated region of 

the incident (reflected) field and zero in the shadow 

region. Thus the first two terms in (3.1S) are just the 

geometrical-optics solution. If we remember that the 

angle {3 is constant on the edge and the curvature K of 

the edge is zero, we see that (2.31) yields p = 00 and 

(2.3S) becomes 

20 = (J'-i Dzi = (J'-i D. (3.17) 

Thus we recognize that the third term in (3.1S) is the 

leading term of Keller's diffracted wave (2.23) and D 

is the diffraction coefficient. Now, however, (3.16) 

provides a formula12 for D. In Keller's theory it is 

assumed that D is given by (3.16) for an arbitrary 

screen, with the angle {3, lP, and lPo defined at each 

point on the edge as in Fig. 1. 

4. DIFFRACTION BY A SCREEN 

In this section we reconsider the diffraction problem 

discussed in Sec, 2: The wave u~ given by (2.1S) is 

incident on an arbitrary smooth screen with either 

boundary condition (2.16). The total field u is a 

solution of the reduced wave equation (2.1) and the 

boundary condition; and the scattered field u - u~ 

must be outgoing. In addition u must satisfy an 

"edge condition," 13 which we shall introduce shortly. 

As we have seen in Sec. 2, Keller's approach to this 

problem is based on the ansatz (2.2). Motivated by the 

representation (3.12) of the exact solution of the 

Sommerfeld problem, we shall introduce a new 

ansatz for the general diffraction problem. We will 

find that, away from the shadow boundaries, our 

results will reduce to those of Sec. 2, but we shall be 

able to obtain more than just the leading term of the 

diffracted wave. (In this section we obtain the leading 

term, In Sec. S we obtain the next term, and pre­

sumably the process can be continued,) Moreover, 

we shall not resort to the Sommerfeld solution for the 

determination of the diffraction coefficient. Instead, 

we shall find that the coefficient and its generalization 

for higher-order terms arise as a consequence of 

I. If we introduce Keller's angles, IX = 17/2 - 'Po, () = 17/2 + 'P, 
we see that (3.16) agrees with the result given in Ref. I or Ref. 2. In 
these references the factor k-i is included in the diffraction coefficient. 
We prefer to define D so that it is dimensionless. 

13 It is well known that an edge condition is necessary for the 
solution to be unique. [See C. J. Bouwkamp, Rept. Progr. Phys. 17, 
35 (1954).J The Sommerfeld solution in Sec. 3 satisfies this condition. 
The condition also enters indirectly into the method of Sec. 2 because 
Keller's diffraction coefficient is obtained from the Sommerfeld 
solution. 
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imposing the edge condition on our asymptotic 

solution. We will also see that the asymptotic solution 

obtained in this section will be continuous at the 

shadow boundaries as well as at the edge. For this 

reason we call it "uniform." 

Our asymptotic solution is based on the ansatz 

u = ui + uf
, (4.1) 

where 

ui.r I"-..J eik§(f{€i.r[k(S - si.r)]t} io(ik)-mz~r 

+ k-t io(ik)-mw~r). (4.2) 

The function/is given by (3.11). The second term in 

(4.2) is not present in (3.13), but such a term appears 

in the uniform asymptotic expansion of the solution of 

the problem of diffraction of a cylindrical wave by a 

half-plane. It is also suggested by the work of Wolfe.6 

In (4.2) we take ei
.
f = 1 in the illuminated region of 

the incident (reflected) wave and €I.r = -1 in the 

shadow region. For s - si.r > 0, we may introduce 

the asymptotic expansion of/which is given in Appen­

dix A. Then we find that 

ui,r I"-..J 1J(€i.r)eikSI ., i (ik)-mz~r 
m~O 

+ k-teik§ i (ik)-mz~r, (4.3) 
m~O 

where Z~f is determined by 

i,r m zi.r 

wi.r=zi.r+_€_ei1T/4!(1'-) m-n . (4.4) 
m m 27Tt n~O 2 n (S _ si.ry,+l 

In (4.3), 1J(€i.f) is one in the illuminated region of the 

incident (reflected) wave and is zero in the shadow. 

By inserting (4.2) into the reduced wave equation,. one 

can obtain equations for the determination of S, s\ Sf, 

Zi Zf, Wi , wf 
• It is, however, much simpler to use 

m' m m m . 

(4.3) and then use (4.4) to obtain w~. 

It is clear from our work in Sec. 2 that (4.3) will 

satisfy the reduced wave equation, provided Sl.f and 

s satisfy the eikonal equation; and both z:;,r, Sl.f 

together, and z:;,r, s together satisfy the transport 

equations (2.4). 

We now impose the boundary conditions (2.16). 

If we insert (4.1, 4.3) into the first boundary condition 

(u = 0), we obtain (2.18), (2.19), and the additional 

equations 

2;' = -2!., on S, m = 0, 1,2, .. '. (4.5a) 

If we use the second boundary condition, we again 

obtain (2.18), (2.20), and the additional equations 

os [Ai + Ar] + 02!.,_1 + 02;'_1 ° 
- Z Z -- --= 
on m m on on 

on S, 

m = 0, 1,2, .. '. (4.5b) 

Since the functions Sf and z:;. satisfy exactly the 

same equations as those of Sec. 2, these functions are 

identical to those of Keller's theory and may be 

computed by the method of Sec. 2. The functions Sl 

and z~ are, of course, given. As in Sec. 2, we assume 

that the diffracted rays emanate from the edge and that 

s = Si on the edge. It follows that s is identical to the 

diffracted-phase function of Sec. 2. Furthermore, 

since z:;,r and s together satisfy the transport equations, 

z:;,r is given along the diffracted rays by (2.33) with 

15 m replaced by 15~. These coefficients will be deter­

mined shortly by the edge condition: u must have a 

finite limit at the edge.14 

Once all of the functions in (4.3) are determined, 

(4.2) follows from (4.4). Since sand Sl.f have been 

identified as the phase functions of Sec. 2, it follows 

from Lemma 1 that s - si.r ~ ° and s = si.r only on 

the shadow boundary. We take the radical in (4.2) to 

mean the nonnegative square root. 

We may assume that the functions si and z~ are 

defined everywhere. However, the functions Sf and z!n 
are so far defined only in the illuminated region of the 

reflected wave. In order for (4.2) to be defined 

everywhere, we must continue the reflected wave into 

its shadow region, i.e., we must continue the functions 

Sf and z!n. We require that these continuations be 

smooth (i.e., the functions must have sufficiently 

many derivatives). This smooth continuation can eas­

ily be constructed by continuing the screen smoothly 

past the edge and extending the reflected rays 

backward through the screen. Then Sf and z!n are 

defined along these extended rays by the formulas of 

Sec. 2. As a consequence they will satisfy the eikonal 

and transport equations in the shadow region. (If the 

screen has an analytic representation, we can use its 

analytic continuation.) It can be shown that, to any 

given order in k-I , the asymptotic expansion (4.2) for 

uf is independent of the continuation of Sf and z!n, 
provided it is sufficiently smooth.15 In fact, if 

k(s - Sf) » 1, it is clear from (4.3) that ur does not 

depend on values of Sf and z!n in the shadow, for there 

1J(e f
) = 0. For points so close to the shadow boundary 

that k(s - Sf) is finite, it can be shown that the distance 

to the shadow boundary is of order k-l. Then, if 

(4.2) is sufficiently smooth, its values in the shadow 

are given by a Taylor expansion in the distance, hence 

14 This condition is sufficient to ensure uniqueness of the solution 
of the diffraction problem. See C. J. Bouwkamp. Rept. Progr. Phys. 
17, 35 (1954); L. M. Levine. Commun. Pure Appl. Math. 17, 147 
(1964). 

15 This assertion depends on the assumption that the smoothness 

of s' and z:;' implies the smoothness of w:;' at the shadow boundary. 
We will prove (Lemma 3) that w~ is continuous at the shadow 
boundary. Further smoothness properties have not yet been proved. 
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an expansion in powers of k-t. The coefficients of the 

expansion up to any order depend only on derivatives 

at the shadow boundary, therefore are independent of 

the continuation provided it is sufficiently smooth. 

Thus any two continuations differ by a term of 

arbitrarily high order in k-t , provided they are 

sufficiently smooth. 

Since f(x) is regular at x = 0 and the functions 

z~ are regular at the edge, we see from (4.2) that the 

edge condition is satisfied provided the equivalent edge 

condition, Ilim w~rl < 00, m = 0, 1, 2, ... , on each 
a-O 

diffracted ray, is satisfied. For m = 0 we see that 

Lr 1 ZJ·r 
W~·r = z~,r + ~ Tr-'J:e

i1T
/
4 (4.6) 

2 (& - sl.r)t . 

In order to apply the edge condition we now expand 

the functions that appear in (4.6) for small a. From 

(2.34) 

z~·r = b~·ra-! + O(at ). (4.7) 

Since the functions z~r are regular at the edge x = 

xo(rJ), 

z~,r = z~,r[xo(rJ)] + O( a). (4.8) 

In order to expand sLr near the edge, we introduce the 

unit vectors tl = t = xo(rJ), t2, and t3 = tl X t2 as 

illustrated in Fig. 1. Since V Si is a unit vector, we may 

set [at x = xo(fj)] 

V Sl = cos {3tl - sin {3 cos 91ot2 - sin {3 sin 91ot3' 

(4.9) 

This equation defines the angles {3 (0 ::;; {3 ::;; Tr) and 

910 (0 ::;; 910 ::;; Tr). From the law of reflection it follows 

that 

V sr = cos {3tl - sin {3 cos 910t2 

+ sin {3 sin 91ot3' (4.10) 

and by the law of edge diffraction, the diffracted rays 

are given by 

(4.11) 

where 

U = cos {3tl + sin {3 cos 91t2 - sin {3 sin 91t3 

(-Tr ::;; 91 ::;; Tr). (4.12) 

On a diffracted ray, 

sl.r = sLr[xo(rJ)] + aU. VsLr + 0(a2) 

= Si[xo(rJ)] + a [cos2 {3 - sin2 {3 cos (91 ± 910)] 

Hence, since & = SI[xo(rJ)] + a, 

eLr(s _ sl.r)t 

+ 0(a2
). (4.13) 

= ±(2a)! sin {3 cos H91 ± CPo) + O(ai ). (4.14) 

Here we have set 

e
l
.
r = ±sgn [cos H91 ± 910)], (4.15) 

and it can be easily verified that eLr is indeed + I in 

the illuminated region of the incident (reflected) wave 

and -1 in the shadow. By inserting (4.7), (4.8), and 

(4.14) into (4.6), we find that (for m = 0) the edge 

condition is satisfied provided 

i11/4 zl.r[x ('Yl)] 
b"r-=F 0 0'/ (416) 

o - 2(2Tr)t sin {3 cos H 91 ± 910) . . 

We may now express z~[xo(fj)] in terms of z~[xo(fj)] by 

using (2.19) or (2.21). (For m = 0, the latter becomes 

simply z~ = z~.) Then from (2.34) we have, for the 

boundary condition u = 0 (au/an = 0) on S, 

zo(a) = - -- a 1 + -AI ei11
/

4 

zJ[Xo(fj)] I ( a) I-I 
2(2Tr)t sin {3 cos H cP + 910) P 

(4.17) 
and 

zo(a) = -- a 1 + - . Ar ei11

/

4 

z~[Xo(fj)] I ( a) I-t 
2(2Tr)t sin {3 cos t( 91 - 910) p' 

z~[xo(fj)] = =FzJ[xo(rJ)]. (4.18) 

Thus we have found the terms of (4.3) and (4.2) for 

which m = O. The leading term of the nonuniform 

expansion (4.1, 4.3) is just the geometrical-optics 

(incident and reflected) field. The second term is given 

by 
A k-t ik§ A u,...., e zo, (4.19) 

where 

Zo = z~ + z~ = DzMxo(rJ)] I a( 1 + ~) I-t

, (4.20) 

and, for the boundary condition u = 0 (au/an = 0), 

ei1T /4 

D = - t. [sec Hcp + CPo) ± sec t(cp - 910)]. 
2(2Tr) sm {3 

(4.21) 

From (3.16) we see that D is Keller's diffraction 

coefficient, and, by comparing (4.20) with (2.35) and 

(4.19) with (2.23), we see that away from the shadow 

boundary our result reduces to the solution obtained 

by the geometrical theory of diffraction. 

The terms of the uniform expansion [(4.1) and (4.2)] 

obtained so far are given by (4.1) and 

u l
•
r

,...., eikS(f {eLr[k(& - sl.r)]I}zkr -+- k-1wk r ). (4.22) 

Here w~r is given by (4.6), (4.17), and (4.18). Let us 

compare the present solution (4.22) with Keller's 

solution. By construction, the solution (4.22) is finite 

at the edge because we have satisfied the edge con­

dition, whereas Keller's geometrical theory fails at the 
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edge. However, at all other caustic points of the 

diffracted wave, as well as caustic points of the incident 

and reflected waves, both our solution and Keller's 

solution will fail. At the shadow boundary, the 

geometrical theory breaks down because the geo­

metrical-optics field is discontinuous and the diffrac­

tion coefficient becomes infinite. We will now verify 

that the uniform solution (4.22) is continuous at the 

shadow boundary. Since f(x) is regular at x = 0 and 

z~· is smooth, it is sufficient to examine only the 

second term of (4.22) which is given by (4.6). At the 

shadow boundary of the incident (reflected) wave, 

s - Si,. = 0 and cos H <p ± <Po) = 0; hence both 

terms in (4.6) become infinite and we must evaluate 

the limit of the sum carefully. This is done in Appendix 

D, where we prove the following: 

orthogonal. In order to simplify this and other parts of 

our work, we specialize our problem and consider 

only plane screens in this section. 

The screen lies in the plane Xa = 0 and is bounded 

by a smooth curve x = xo(-r/) = (x~, x~, 0). 'YJ denotes 

arclength on the edge; hence tl = Xo is a unit tangent 

vector. A dot denotes differentiation with respect to 

'YJ. We assume that the incident wave comes from the 

region Xa < O. Then the Xa axis coincides with the 

z axis of Fig. 1 and ta = (0,0, -1). The parameter 'YJ 

is chosen in such a way that the vector t2 = ta x tl 

points away from the screen as in Fig. 1. If n denotes 

the unit normal to the edge, then t2 = ±n and the 

upper (lower) sign holds when the screen is locally 

concave (convex). In either case the curvature K is 

given by 

Lemma 3: w~' is continuous at the shadow bound- where 

ary of the incident (reflected) wave. 

K = n· tl = =fIC, (5.1) 

(5.2) 

It follows that the leading term [(4.1), (4.2)] of our 

solution [(4.1), (4.2)] is continuous everywhere except at 

caustics of the incident and reflected waves and any 

caustic of the diffracted wave other than the edge. 

We have not yet examined Eqs. (4.5a) and (4.5b), 

which must be satisfied if (4.1) is to satisfy the bound­

ary condition (2.16a) and (2.16b). We find in the next 

section that these equations are indeed satisfied if the 

screen is a portion of a plane, provided none of the dif­

fracted rays strike another part of the edge. If that 

occurs, it is necessary to introduce additional terms into 

(4.1). Examples of such problems of multiple diffraction 

will be treated by our method in a forthcoming paper. 

They are treated by Keller's method in Refs. 1 and 2. If 

the screen is curved, still more terms must be introduced 

into (4.1) if the boundary condition is to be satisfied. 

These terms correspond to secondary reflected waves 

which are produced when reflected or diffracted rays 

strike the screen at an angle of incidence less than 

77/2, and creeping waves7 which are excited when 

incident, reflected, or diffracted rays are tangent to a 

convex portion of the screen. The existence of such 

terms was suggested by earlier experience with 

asymptotic methods in other problems but has not 

yet been verified for our problem. 

5. DIFFRACTION BY A PLANE SCREEN 

In order to compute higher-order terms in our 

expansion (4.1) and (4.2) or (4.1) and (4.3), we may use 

(2.33) for i;:-. Thus to determine i~' it is necessary to 

find Lli~'. But i~' is given by (4.17) and (4.18) as a 

function of a, <p, 'YJ. Thus it is necessary to transform 

the Laplacian to these coordinates which are not 

is the "signed curvature." Then 

t1 =Kn=-Kt2, i2 =Kt1, ta=O. (5.3) 

From (4.11) and (4.12) the diffracted rays are given 

by 

(5.4) 

where 

u = cos {Jtl + sin {J cos <Pt2 - sin {J sin <pta, (5.5) 

and {J = (J('YJ). By comparing (5.5) with (2.29), we see 

that cos IX = ±cos <p; hence (2.31) yields 

p = sin (JI(K cos <p - (1). (5.6) 

By using (5.3), (5.6), and standard formulas,16 the 

Laplacian can be computed in a, <p, 'YJ coordinates. 

This is done in Appendix C. We will soon make use of 

the final result of that appendix, which is an expansion 

of the Laplacian for small a. 

For the case of a plane screen considered here, we 

can give a simplified representation of the reflected 

wave. It is easy to show that now 

S'(Xl,X2,Xa) =Si(Xl,X2, -xa), (5.7) 

and, for the two boundary conditions u = 0 and 

ou/on = ou/oxa = 0, 

(5.8) 

To verify (5.7) and (5.8) we note that s· satisfies the 

eikonal equation (2.3) because Si does. Furthermore, 

s· and z:" satisfy the system of transport equations 

(2.4) because Si and z!,. satisfy the same system. 

'6 J. A. Stratton, Electromagnetic Theory (McGraw·Hill Book Co .• 
New York, 1964). 
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Finally, for the boundary condition u = 0, (2.19) is 

clearly satisfied, and for the boundary condition 

au/an = 0, (2.21) is satisfied because (O/OX3)Zr.,. + 
(O/OX3)Z~ = ° on the screen. For both boundary 

conditions (2.18) is satisfied. 

The functions z~r are given by (2.33) for m = 1 once 

the coefficients <5~r are determined. As in the evalua­

tion of <5~r, the values of <5~r are uniquely determined 

by the edge condition. To apply this condition it is 

necessary to compute [cf. (4.4)] 

for small values of a. Then the edge condition, 

Ilim w~rl < 00, will determine the value of <5~r. The 
,,~o 

first step is to find z~r for small a and this requires the 

determination of tlz~r for small a. Therefore we apply 

(CI6) to the first two terms of the expansion of 

(4.17) and (4.18) for small values of a. The computa­

tion, although somewhat long, is straightforward and 

the surprisingly simple result is 

T 1 Zol·.r[xo('Yl)] A _I.r i1T/4 ___ ...::.....::.......::.-"'.,:.::...::... __ 
uZo = --e 

4(2rr)! sin3 f3 COS
3 

H!p ± !po) 

x [a-
i - 2~ a-! + o(a-!)} (5.10) 

The functions z~r are now given by [cf. (2.33)] 

z~·r = [a( 1 + ;) r!{<5p - tf" gi.r(t) dt}, (5.11) 

where, from (5.10), 

gi.r(t) = [t( 1 + ;) rtlzkr(t) 

= T _1_ ei1T/4 zkr[xo(fJ)] 

4(2rr)! sin3 f3 cos3 H!p ± !Po) 

X [t-2 + 0(1)]. (5.12) 

The finite part integral in (5.11) is now easily evaluated. 

(We need only ignore the infinite contribution from 

the lower limit of integration.) Thus we obtain 

z~.r = <51. ra-! T _1_ ei1T/4 zkr[xo(fJ)] 

8(2rr)! sin3 f3 cos3 !(!p ± !Po) 

r -tJ x L a-! - ~p + O(at ). (5.13) 

It is interesting to note that the term of order t-1 in 

(5.12) is missing. Such a term would have led to a term 

involving log a in (5.13) and then the edge condition 

could not have been satisfied. 

In order to compute the remaining terms in (5.9) 

for small a, we note that z~r and z~r are regular in a 

neighborhood of the edge; hence 

(5.14) 
and 

(5.15) 
where 

(5.16) 

Then, by extending (4.13) to one more term, we obtain 

si.r = Si[xo(fJ)] 

+ a[cos2 f3 - sin2 f3 cos (!p ± !Po)] + bi
•
ra2 + O( ( 3), 

(5.17) 

where 

2H·r = (U • V)(U • V)si.r = (U • V)2si.r. (5.18) 

Since s = Si[xo(fJ)] + a, we find that 

s - si.r = 2a sin2 f3 cos2 H!p ± !Po) 

- bi
•
r a2 + 0(a3

). (5.19) 

It is now an easy matter to compute (s - si.r)-t and 

(s - si.r)-!. Then we may evaluate (5.9) for small a. 

In so doing we must use (4.15). It is clear that the 

result will be of the form 

w~·r = p1· ra-! + p~.ra-~ + O(a!), 

but it is remarkable that the calculation yields 

p~.r = 0. 

(5.20) 

(5.21) 

Then the edge condition will be satisfied if and only if 

p~r = 0, and this condition uniquely determines <5~r. 

The result is 

bl.r _ 1 0 . Te
i1T

/
4 

{ zi.r(x) 

1 - 2(2rr)t sin f3 cos t(!p ± !Po) 

+ a l
•
r + - zl.r(x) 1 [ . 1. ] 

4 sin2 f3 cos3 H!p ± !Po) 2p 0 0 

+ 0 0 • 
3b l

.
rzi.r(X) } 

16 sin
4 f3 coss H!p ± !Po) 

(5.22) 

With this value of b~r, z~r is given by (2.33) for m = 1. 

We note from (5.20) that the expansion for small 

a of w~r has two terms which become infinite at a = 0. 

One of them automatically vanishes, and the vanishing 

of the other term, which is required by the edge 

condition, uniquely determines b~r. In general it can 

be seen that the expansion of w:;; for small a will be 

of the form 

w~r = p~.ra-m-! + pkra-m+! 

+ ... + p~~la-t + O(a!). (5.20') 
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We conjecture that the first m terms will vanish auto­

matically, i.e., p~" = ° for j = I, 2, ... , m. Then the 

vanishing of the remaining term, i.e., the requirement 

pi;:.+l = 0, will uniquely determine b~. But this con­

jecture has not yet been proved. 

While in the realm of conjecture, we should also 

consider the behavior of our asymptotic solution 

(4.1, 4.2) in the neighborhood of the shadow bound­

aries. At the end of Sec. 4 we proved that the leading 

term (4.1, 4.22) is continuous at the shadow bound­

aries as well as at the edge. We also conjecture that to 

every order (4.1, 4.2) is not only continuous but 

smooth at the shadow boundaries. This conjecture 

also has not yet been verified. (Note added in proof: As 

mentioned in Sec. I, both conjectures have recently 

been proven.) (At the edge, derivatives of the asymp­

totic solution may become singular, but the exact 

solution has the same property.) 

Our nonuniform expansion [(4.1) and (4.3)] may be 

written in the form 

U = 1](Ei)U~ + 1](Er)U~ + u, (5.23) 

where 
«> 

uk',-..; eikSI.r ~ (ik)-mz!;,', (5.24) 
m=O 

" k-i ik§ ~ ('k)-m" 
U'" e 4.. I Zm' (5.25) 

m=O 

and 

(5.26) 

By comparing (5.23)-(5.25) with the results of Sec. 2, 

we find that they are identical. In Sec. 4 we showed 

that the leading. term of the diffracted wave (5.25) 

agrees exactly with Keller's formula. The geometrical 

theory of diffraction (Sec. 2) is not capable of deter­

mining higher-order terms in (5.25), but our theory 

yields these terms as wellY 

Since z~ and z~ both satisfy (2.33) with bm replaced 

by b~ and b~, it is clear from (5.26) that zm satisfies 

(2.33) with 

bm = b~ + b!'". (5.27) 

Since we have determined b~ and b~, we can give the 

value of b1 • First, however, we simplify the terms 
d· r and bi.r that appear in (5.22). We introduce the 

tangential- and normal-gradient operators defined by 

Vn=NN.V, Vt=V-Vn, 

N = (0, 0, 1) = -t3' 

Then (5.7) and (5.8) yield 

(5.28) 

17 The determination of the terms Zm for m = 2, 3, ... depends on 

the validity of our first conjecture. 

and from (5.5), (5.16), and (5.18) we obtain 

and 

ar = =fV· Vz~ ± 2 sin (3 sin rp ozJ , 
on 

(5.30) 

b i = teu . V)2si, 

br = tev . V)2Si - 2(V • Vt)(V • V n)si. (5.31) 

It now follows from (5.22) and (5.27) that 

_ei1T /' 
b

1 
= ------,,.---

2(21T)! sin {3 

x {[sec t( rp + rpo) ± sec !( rp - !Po)]zl(xo) 

+ ! csc
2 

(3[sec
3 

H!p + !Po) ± sec
3 t( rp - !Po)] 

[ 
. 1· ] xU· Vz~(xo) + 2p z~(xo) 

+ 1'2 csc
4 

(3[sec
5 

t(!p + !Po) ± sec5 
t(!p - !Po)] 

X [(V· V)2Si]zi(xo) 

az i 

=f 1 csc (3 sin !P sec3 H rp - !Po) _0 (xo) an 
=f i csc' (3 sec

5 
H!p - !Po) 

x [(u. Vt)(U • V n)Si]Z~(Xo)}. (5.32) 

From (4.21) we see that (5.32) can be written in the 

form 

(5.33) 

where D is the "zero-order diffraction coefficient" 

(Keller's diffraction coefficient) and the "first-order 

diffraction coefficient" Dl is a linear differential 

operator defined by (5.32). 

It may happen that the incident rays are tangent to 

the screen. In this case of "grazing incidence," our 

results have some special features of interest. There 

are two cases to consider, depending on whether 

!Po = ° or !Po = 1T. (See Fig. 1.) For !Po = 1T, the 
diffraction problem is pathological. This case will be 

treated in a sequel to the present paper. 

If !Po = 0, the whole region is in the shadow of the 

reflected wave and illuminated by the incident wave, 

i.e., e i == 1 and e' == -1, and the shadow boundary 

coincides with the screen. As pointed out in Sec. 4, 

our results are independent of the values of the func­

tions z~ and Sf, provided those functions are suffi­

ciently smooth. Therefore we may continue to define 

z~ and s' by (5.7) and (5.8). For the boundary condi­

tion au/an = 0, we see from (4.21) that D = ° and 
from (4.20) that zo == 0. In this case, the leading term 
of the diffracted field (5.25) is given by 

(5.34) 
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and it is important to compute Zl' This can easily be 

done now because V nsi == ° on S, and therefore (5.32) 

becomes 

_ei1f
/
4

• 3 'P az~ 
151 = t sm 'P sec - - (xo). (S.3S) 

4(21T) sin2 (3 2 an 

Furthermore, since Zo == 0, the integral term in (2.33) 

is absent for m = 1. It follows that 

II"" k-!e
ikS 

D' ~:~(xo) I 0'( 1 + ;) rt
, (S.36) 

where D' is a special diffraction coefficient given by 

I e-i1f
/
4 sin ('P/2) 

D = - . (S.37) 
2(21T)t sin2 (3 cos2 ('P/2) 

This result was also obtained by Keller by expanding 

the exact solution of a special half-plane diffraction 

problem. It is easily seen that our results agree with 

those given by Keller in Ref. 1.18 

In order to complete our general treatment of 

diffraction by a plane screen, it is necessary to verify 

that the conditions (4.Sa) and (4.Sb) are satisfied. These 

conditions result from imposing the boundary con­

dition (2.16a) and (2.16b) on the asymptotic solution 

[(4.1) and (4.3)]. First we show that 

Z~(Xl' X2, x3) = ±Z~(Xl' X 2 , -x3), 

m = 0, 1,2, .. '. (S.38) 

From (5.4) and (5.5) it is clear that the points with rec­

tangular coordinates (Xl' X 2 , ±x3) will have ray co­

ordinates (0', ± 'P, 1]). Hence it follows from (4.17) and 

(4.18) that (5.3S) is valid for m = 0. The validity of 

(S.38) for arbitrary m can then be established by an 

induction argument. Secondly we state that 

Z~(Xl' X 2 , +0) = -Z~(Xl' X 2 , -0), 

a- i a- i 

Zm (Xl' X2' +0) = - ...!.!!!: (Xl' X 2 , -0). (5.39) 
an an 

To prove this we extend the domain of definition of 

the functions z~(O', 'P, 1]) to arbitrary values of 'P. 

(Only the interval -1T ~ 'P ~ 1T corresponds to 

physical space.) Then it follows from (4.l7) that 

z~(O', 'P + 21T,1]) = -z~(O', 'P, 1]) (5.40) 

for m = 0, and (5.40) can be established for m = 0, 

1, 2, ... , by another induction argument. If we now 

take 'P = -1T, we find that 

z~( 0', 1T,1]) = - z~( 0', -1T, 1]), 

a- i a- i 

zm(O', 1T,1]) = - ...!.!!!:(O', -1T,1]), (S.41) 
arp arp 

18 We must first correct an error in the last part of Eq. (12) of 
Ref. I which has the wrong sign. Then the results agree because 
q; = (j - rr/2. Note that here D' has been defined so that it is 
dimensionless. 

which is equivalent to (5.39). Finally (5.38) and (5.39) 

imply (4.5a) and (4.5b) because as/an vanishes on the 

screen. 

APPENDIX A: A SPECIAL FUNCTION 

Let 

f(x) = 1T-te-i1T/4e-i"'J:oo eil' dt. (AI) 

This is an entire function. It is closely related to the 

Fresnel integral functions. For large real values of X, 

its asymptotic expansion is 

f(x) "" e-i""1](x) - t1T-tei1T/4x-l f (t)n(ix2)-n, 
n=O 

X ---+ ± ex) , (A2) 
where 

Wo = 1, Wn = tel + 1) ... (l + n - 1), 

n = 1,2,3, ... , (A3) 

and 1](x) is the unit step function. Thus 1](x) = I for 

X > ° and 1](x) = ° for X < O. 

APPENDIX B: PROOF OF LEMMA 3 

From (4.9) and (4.10) we see that the unit vector in 

the direction of the incident (reflected) ray is 

VI = Vsi,r = cos {3tl - sin {3 cos 'POt2 

=f sin {3 sin 'POt3 . (B 1) 

Let 

and 

V3 = VI X V 2 = sin {3tl + cos {3 cos 'POt2 

± cos {3 sin 'POt3 . (B3) 

From (4.l2) we have the unit vector in the direction 

of the diffracted ray: 

V = cos {3tl + sin {3 cos rpt2 - sin (3 sin rpt3 . (B4) 

Let 'P = =f rpo ± 1T =f ~. Then, for small ~, 

cos'P = -cos 'Po + ~ sin 'Po + E2 cos 'Po + Oa3), 

(BS) 

sin rp = ±(sin 'Po + ~ cos 'Po - E2 sin rpo) + Oa3), 

(B6) 

and 

V = VI ± , sin PV2 

+ E2 sin {3[ -sin PVI + cos (3V3] + O(~3). (B7) 

Let Q be a point on the edge and let P and P be 

points on the incident (reflected) and diffracted rays 

emanating from Q at a distance 0' from Q. Then 

P = Q + O'VI , P = Q + O'V. CBS) 
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In a Cartesian coordinate system with basis vectors 

UI , U2, Us, 

h = :it - P = a(U - U I ) 

= a( _g2 sin2 p, ±, sin p, +E2 sin p cos P) 

+ O( '3). (B9) 
Hence, for S = si.r, 

s(P) = s(P + h) = s(P) + h· Vs(P) 

+ t ! h;hjsij(P) + .. " (BI0) 
i. j 

where sij = a2slaxi ax j • But s(P) = Si(Q) + a = s(P). 
Therefore, since Vs = (1,0,0), 

s(P) - sCP) = E 2a sin2 p [I - as22(P)] + 0('3). 

(B11) 

Let Xl = f(x 2 , xa) be the equation of the incident 

(reflected) wavefront passing through P. Then 

s(f, X2' xs) = const. Therefore 

sd. + s. = 0, Y = 2, 3 .' (BI2) 
and 

sId,./. + SI,./. + sd.,. + St.f,. + s./l = 0, 

Y, /-' = 2, 3. (BI3) 

Since (V S)2 = si + s~ + s~ = I, 

SISI. + S2S2. + S3SS. = 0, Y = I, 2, 3. (BI4) 

The wavefront can be represented parametrically with 

parameters X 2 , X3 in the form x = [f(x2 , X3), X 2 , xa]. 

Then X2 = (f2' 1,0), Xa = (fs, 0, I), and x.,. = 

(f./l' 0, 0). At P, since Vs = (SI' S2' sa) = (1,0,0), 

we see thatf2 = fa = 0, Sll = S12 = Sl3 = 0, s.,. = -f.,. 
(Y,/-, =2,3), x2 =(0,1,0)=U2, xa=(O,O,I)= 

Us, g./l = X •• x/l = tJ./l' Xl = X3 X X2 = (-1,0,0) = 

- UI , and L./l = Xl • x.1i = - f./l = s./l' It follows 

that P* = I/S22 = llL22 is the radius of curvature of 

the normal section in the direction ofU2 of the incident 

(reflected) wavefront at P. 

In Fig. 3 we illustrate the vectors U2 and Ua which 

are tangent to the incident (reflected) wavefront at 

Q. We also show the angle (j between these vectors and 

the principal directions 2 and 3 corresponding to the 

principal radii of curvature P2 and Pa of the wavefront 

at Q. Since the wavefronts are parallel (i.e., orthog-

principal direction 3 

0. 

__ ~~:=.LlLU~a prinCipal direction 2 
U1 

FIG. 3. Principal 
directions of the inci­
dent (reflected) wave­
front at Q (proof of 
Lemma 3). 

onal to the same 2-parameter family of rays), the 

principal radii of curvature of the incident (reflected) 

wavefront at Pare (P2 + a) and (Pa + a). Further­

more, the principal directions are the same as those 

at Q. Therefore, according to Euler's formula, 

S22 = .!.. = cos
2 

(j + sin
2 

(j (B15) 
P * P2 + a Ps + a . 

From (BI) and (B3) we see that the unit tangent 

vector to the edge is given by 

t = tl = sin PUa + cos pUI . (BI6) 

In Lemma 2 (Sec. 2) we introduced the radius of 

curvature Po of the normal section of the incident 

(reflected) wavefront at Q in the direction of Us and 

found that it was equal to p. Now we see that 

1. = 1.. = sin
2 

(j + cos
2 

(j . (B17) 

P Po P2 Pa 

If we eliminate (j from (BI5) and (BI7), we find that 

(P2 + a)(P3 + a)s22 

= (Pa + a) cos2 
(j + (P2 + a) sin

2 
(j 

= a + P2 + Pa - (P2 cos
2 

(j + Pa sin
2 

(j) 

= a + P2 + Pa - (P2P31 p). (B18) 

Hence (B 11) becomes 

s(P) - s(P) = H2 sin2 P ap2Pa(P + a) + Oa3
). 

P(P2 + a)(p3 + a) 

(B19) 

Since z~r is regular at P, we see from (2.8) and 

(2.9) that 

z~r(p) = z~r(p) + O(n 

= z~r(Q) I P2P3 It + Om; (B20) 
(P2 + a)(P3 + a) 

hence 

"I.r 1. zi.r(p) 
_ 1T -'lie'" / 4 ----;==;::=0 ===,===;;= 
2 .j s(l» - s(l» 

= - + 0(1). 
ei1T

/
4 

,,1.rz~·r(Q) I P It 
(21T)t '" sin P a(p + a) 

(B21) 

Since ffJ = =r ffJo ± 1T =r " 

cos HffJ ± ffJo) = E + Oa3
). (B22) 

Therefore (4.17) and (4.18) yield 

ikrCp) = =r e
i1T

/

4 

z~r(Q) I P It + Om. (B23) 
(21T)t ,sin p a(p + a) 

Now "i,r = ±sgn ,. Therefore "I,r/'" = ±ll'. Ac­

cording to (4.6), w~r(p) is the sum of (B23) and 
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(B21); hence wkr(P) has a finite limit as ~ __ 0, i.e., as If we set 

P -- P. It follows that wior(p) is continuous at the a
H = (g)tgii, (Cll) 

shadow boundary of the incident (reflected) wave. then (C2) becomes 

APPENDIX C: THE LAPLACIAN IN RAY 
COORDINATES 

We shall transform the Laplacian to the coordinates 

(Yl,Y2,Y3) = (0', cp, 'YJ), (CI) 

which are defined by the transformation (5.4) and 

(5.5). According to Ref. 16, p. 47, 

Af= _1 ± ± ~(g)tgi1 Of), (C2) 
(g)ti~li~l 0Yi oY; 

where 

and 

From (5.4), 

ax ax 
gij = oY; • oY; , 

(gil) = (gij)-I, 

g = det (gij)' 

(C3) 

(C4) 

(C5) 

ax _ U ax = aU ax = tl + aV. (C6) 
OYI - 'OY2 '1" 0Y3 

Hence 

gu = 1, g12 = g2l = 0, g13 = g3l = cos {3, 

g22 = a
2
U;, g23 = g32 = aU'P • tl + a

2
U'P • V, (C7) 

g33 = 1 + 2atl • V + a2V2
. 

By using (5.5) and (5.3), we may easily obtain V and 

U'I" Then, by using (5.6), we find that 

g22 = 0'2 sin2 {3, g23 = 0'2;( sin {3 cos {3 sin cp, 

g33 = 1 + 20' s:n2 {3 + a2
[ Ci

: {3r + (K cos {3 sin CP)J 

(C8) 

The determinant (C5) and inverse matrix (C4) may 

now be computed by standard methods. We find that 

and 

U 2' 2 {3(1 20' sin
2 (3 0'2 sin

2 (3) 
gg = 0' sm + + , 

p p2 

gg12 = a2K sin {3 cos2 {3 sin cp, 

gg13 = _0'2 sin2 {3 cos {3, 

gg22 = sin
2 {3( 1 + ;r + 0'2;(2 cos 2 {3 sin2 cp, 

(ClO) 

gg23 = -a2K sin fJ cos fJ sin cp, gg33 = 0'2 sin2 fJ. 

Af = _1 ± i [a ii 0'1 + oa
H 

OfJ. (C12) 
(g)ti~l;~l oY;CJY; 0Yi oY; 

Since the ai
; are given by (C9)-(CII), (CI2) provides 

a formula for the Laplacian in the coordinates (CI). 

In Sec. 5 we require an expansion of (CI2) for 

small 0'. This is easily obtained from our results. We 

find that 

-=-- 1--+0(~) . 1 1 [0' J 
(g)t 0' sin2 {3 p , 

(C13) 

and 

all = 0'[1 + ;(2Sin
2 

(3 - l)J + 0(0'3), 

12 aK cos
2 

(3 sin cp O( 2 
a = . + 0' ), 

sm {3 (CI4) 

a13 = -0' cos (3 + 0(0'2), 

a
22 

= ~(1 + ;) + 0(0'), a
23 

= 0(0'), a
33 

= 0(0'); 

and 

'" (oa
il

) 1 [3 sin
2 

(3 - 1 fJ J O( 2) £. - = +0' +-- + 0', 
i 0Yi p sin {3 

I - = -K sm (3 sm cp + 0(0'), (
oa

i2
) _. . 

i 0Yi 

I - = -cos (3 + 0(0'). 
(

oa
i3

) 

i 0Yi 

By inserting (C13)-(CI5) in (CI2), we find that 

Af = . 12 {3[1 - 2 cos
2 

{3 0' + 0(a
2
)JI(1u 

sm p 

[
2;( cos 

2 
{3 sin cp O()J 1. 

+ . 3 {3 + 0' (1'1' 
sm 

+ [ 2 ~ 2 {3 + O(l)Jf'P'I' 
0' sm 

+ [ - ~i:~s: + O(a)Jf(1~ 
+ [O(I)]f'P~ + [O(l)]f~~ 

(CI5) 

+ [ 
1 K cos cp 3 cos

2 

fJ O()J --+ - + 0' 1. 
0' sin2 fJ sin3 fJ p sin2 fJ (1 

+ [_ K s~n cp + O(1)Jf'P 
0' sm fJ 

[

COS (3 J + - -'-2- + 0(1) f~· 
0' sm fJ 

(C16) 

Downloaded 01 Oct 2011 to 131.155.197.179. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions


