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Uniform Bottom Shear Stress and 

Equilibrium Hyposometry of Intertidal 
Flats 

C. T. Friedrichs and D. G. Aubrey 

Abstract 

Hypsometry is the distribution of horizontal surface area with respect to elevation. 

Recent observations of tidal flat morphology have correlated convex hypsometry 

with large tide ranges, long-term accretion and/or low wave activity. Concave 

hypsometry, in turn, has been correlated with small tide ranges, long-term erosion 

and/or high wave activity. The present study demonstrates that this empirical 

variation in tidal flat hypsometry is consistent with a simple morphodynamic model 

which assumes tidal flats to be at equilibrium if maximum bottom shear stress ('c) is 

spatially uniform. Two general cases are considered: (i) dominance of 'c by tidal 

currents, where 'c is equal to maximum tidally-generated shear stress ('CT), and (ii) 

dominance by wind waves, where 'c is equal to maximum wave-generated shear 

stress ('Cw). Analytic solutions indicate that a tidal flat which slopes linearly away 

from a straight shoreline does not produce a uniform distribution of '!7 T or '!;W. If the 

profile is adjusted until either '!7 T or '!;w is uniform, then domination by tidal currents 

favors a convex hypsometry, and domination by wind waves favors a concave 

hypsometry. Equilibrium profiles are also derived for curved shorelines. Results 

indicate that an embayed shoreline significantly enhances convexity and a lobate 

shoreline significantly enhances concavity so much so that the potential effect of 

shoreline curvature on equilibrium hypsometry is of the same order as the effect of 

domination by '!7 T or '!7 W. 

Mixing in Estuaries and Coastal Seas 

Coastal and Estuarine Studies Volume 50, Pages 405-429 
Copyright 1996 by the American Geophysical Union 
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Introduction 

Uniform Bottom Shear Stress 

More than half of the world's non-Arctic coastlines are either macrotidal (spring 

range > 4 m) or mesotidal (spring range 2-4 m) (Davies, 1973). The study of 
equilibrium tidal flat morphology provides insight into the response of meso- and 

macrotidal coastlines to such external forcings as engineering works, periodic storm 

activity, and changes in relative sea level. Hypsometry, which measures cumulative 

horizontal basin area as a function of elevation, usefully represents broad aspects of 

tidal flat morphology in a concise and quantitative manner (e.g., Boon and Byrne, 

1981). Recent observations (Dieckmann et al., 1987; Kirby, 1992) relating 
characteristic tidal flat hypsometries to tide range, wind wave activity, and long- 

term accretion or erosion provide a base of empirical data with which to compare 

equilibrium hypsometries predicted by analytic theory. 

Hypsometric analysis, which was formally introduced to geomorphology by Strahler 
(1952), is the study of the distribution of surface area of a land mass or basin with 

respect to elevation. Hypsometries are often presented as non-dimensional plots of 

relative elevation and relative surface area, allowing a comparison of hypsometry 

between systems having different scales. Strahler found distinctive hypsometries to 

be related to the erosional maturity of land regions formed in homogeneous strata. 

Boon (1975) and Boon and Byrne (1981) applied hypsometric analysis to the study 

of intertidal basins and used the hypsometry of intertidal storage areas to model 

patterns of asynunetric discharge in tidal channels near Wachapreague, Virginia. 

Figure 1, modified from Boon and Byrne (1981), shows examples of basin 
morphologies and their associated hypsometries. In Figure 1 and throughout this 
paper, hypsometric plots display the cumulative horizontal basin area below a given 

contour. It is important to distinguish the hypsometry from the topographic profile, 
which is a plot of elevation versus horizontal distance along the gradient of the 

topography. In Figure 1, for example, all three topographies have linear profiles. 
Along a straight shoreline (Figure la) the profile and hypsometry are 
interchangeable. Along curved shorelines, however, the nonlinear transformation 

from profile to hypsometry causes a linear profile to produce a nonlinear hypsometry. 

If the profile is straight and the shoreline is embayed (Figure lb), then the 
hypsometry will be convex. If the profile is straight and the shoreline is lobate 

(Figure lc), then the hypsometry will be concave. Boon and Byrne (1981) 
emphasized the sensitivity of tidal flat hypsometry to shoreline curvature. 

Recent observations of tidal flat hypsometry have related the form of the hypsometry 

to other factors including tidal range, exposure to wind wave activity and patterns of 

long-term accretion or erosion. In a study of tidal basins along the German Bight, 
Dieckmann et al. (1987) noted that hypsometries tend to be more concave for lower 

tidal range flats and more convex for higher tidal range flats (Figure 2a). In a study 
of macrotidal (spring range > 4 m) flats around Great Britain, Kirby (1992) related 
convexity to long-term accretion and concavity to long-term erosion (Figure 2b). At 
a few of the locations, Kirby in turn related accretion or erosion to protection from 
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Topography Hypsometry 
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Figure 1. Block diagrams of topographies with linear profiles, along with their associated 

hypsometries (modified from Boon and Byrne, 1981): (a) Straight shoreline, (b) embayed 

shoreline, (c) lobate shoreline. h is elevation, hm is maximum elevation, A is horizontal area, 

and A m is maximum area. 

exposure to wind waves. Figure 2b displays the examples of concave and convex 

hypsometries observed by Kirby along the Severn Estuary. Finally, in a study of 

sediment exchange off the wide macrotidal flats of western Korea, Wells and Park 

(1992) described a periodic increase in concavity associated with a seasonal 

increase in wave activity. 

The hypsometric trends described above can be summarized by a qualitative ratio 

which indicates the relative importance of tidal currents and wind waves: 

ratio of tidal to wave activity. high --> CONVEX hypsometry 
low --> CONCAVE 
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This correlation is consistent with observations from the German Bight if spatial 

variations in tidal range are assumed to be locally more important than spatial 
variations in wave activity. The same trend describes some of the flats in Great 
Britain if local variations in wave activity dominate variations in tidal activity. The 

ratio describes Korean flats, too, if temporal (rather than spatial) variations in wave 

activity are assumed to be most important. 
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Figure 2. Hypsometries for tidal flats in (a) the German Bight (from Dieckmann et al., 1987) 
and (b) the Severn Estuary (redrawn from Kirby, 1992). MTR is mean tide range, MHW and 

MLW are mean high and mean low 
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Mo rphodynamic Model 

In this study it is assumed that a stable morphology will result when the distribution 
of maximum bottom shear stress ('c) is uniform across a tidal flat. This is a 

simplification of the more correct formulation that stable morphology results when 
there is a zero divergence in net sediment transport. Since common formulations for 

erosion, deposition and net transport are generally expressed as functions of bottom 

shear stress, often in the form of power relations (e.g., Dyer, 1986), the spatial 

distribution of bottom shear stress is a useful starting point before attempting to 
estimate sediment transport directly. Bottom shear stress can be derived from 

hydrodynamic relations more directly and with a greater degree of confidence. 

A deviation of 'c from its mean value across a flat is assumed to cause a local 

increase or decrease in the rate of sediment dispersal and to cause net erosion or 

deposition of sediment. This approach focuses on the diffusive nature of sediment 

transport and does not address the importance of asymmetries in the direction of 

bottom shear stress. The tidal and wind wave processes considered here are 

linearized so no asymmetries in direction of 'c are generated. Clearly, asymmetries 

in 'c can play a morphodynamic role. For example, Friedrichs et al. (1992) suggested 
that sheet-like intertidal flows tend to be flood dominant, which should enhance 

deposition. Nonetheless, if 'c is considered to be symmetrical at first-order, then the 

spatial distribution of its magnitude alone should provide valuable insight into the 
morphology of stable tidal flats. 

For tides in the absence of wind waves or for wind waves in the absence of tides, 'c 

has been expressed as 

'g = p Cd U IUI, (1) 

where @ is the fluid density, Cd is a dimensionless drag coefficient, and U is 

maximum depth-averaged velocity during a complete wave or tidal period. The 

shallow-water approximation allows the decay of wave velocity with depth to be 

neglected. Bottom stress given by (1) is assumed to be dominated effectively by 
either waves or currents. Otherwise, wave-current interaction may play a role in 

determining the net stress field (e.g., Grant and Madsen, 1979). In this study, it is also 

assumed that p and Cd are constant in space. Under these conditions, uniform 'c 

becomes equivalent to uniform U, and equilibrium morphologies can be defined by 
either 'c or U. 

Scaling of Problem: Southwest Coast of Korea 

Before beginning a formal derivation of equilibrium hypsometry, it is useful to scale 

the problem in order to assess its applicability to real tidal flats. The tidal flats 

along the southwest coast of Korea (Wells et el., 1990; Alexander et el., 1991; Wells 

and Park, 1992) are chosen as a field example because of their open form and 

homogeneous composition, attributes which make them particularly amenable to 

first-order analytic modeling. Unlike many tidal flats bordering the North Sea, 
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Korean fiats lack extensive dendritic drainage systems, seaward barriers and 

landward salt marshes (Alexander et al., 1991). The Korean intertidal sediments are 

predominantly poorly sorted mud, whereas sediments on flats in the North Sea often 
show a more well-defined shore-parallel gradation from mud to sand (Klein, 1985). 

Along the southwest coast of Korea the mean tide range is about six meters and tidal 
flats extend locally more than 20 km out from the coast, although a more typical 

shore-normal fiat length is about 5 km (Alexander et al., 1991; Wells and Park, 
1992). During calm summer weather, tidal currents are presumed to dominate 
bottom shear stress across the flats. Assuming a sinusoidal particle excursion, 

maximum tidal current speed is given by UT = •L/T, where L is the horizontal 

distance from the low to high water line, and T is the tidal period. A semi-diurnal 
period then gives UT = 35 cm s -1, which is sufficient to mobilize unconsolidated 
sediment. Wells et al. (1990) measured maximum current speeds of ~ 40 cm s -1 
across Korean tidal flats, consistent with the above estimate. 

During the winter monsoon, Korean flats are exposed to intervals of large ocean 
swell (Wells and Park, 1992), and wave-generated shear stress is presumed to 

dominate. The amplitude of orbital velocity for a shallow water wave is given by 

linear theory to be 

H (gh) 1/2 Uw = , (2) 

where H is wave height, h is still water depth and g is the acceleration of gravity. At 
high fide, a swell of H = 2 m at the seaward edge of the flat (where h -- 6 m) gives 
Uw = 120 cm s '1. Since x ~ U 2, shear stress generated by swell will be an order of 
magnitude larger than that generated by UT, and Uw will effectively dominate the 
net field. Since maximum shear stress generated by waves (Xw) has the potential to 

be much greater than maximum shear stress generated by tides ('1; T), one might expect 
a seasonal transition from fide-to wave-dominated hypsometry to be largely erosional, 

and a transition from wave- to tide-dominated hypsometry to be largely depositional. 

In the following sections, U is used as a proxy for x in deriving equilibrium flat 
morphologies. Under tidal currents, conservation of mass is used to determine the 
distribution of UT, whereas under wind waves, conservation of energy is used to 

determine the distribution of Uw. In each section, U is fffst solved for a flat sloping 

linearly away from a straight shoreline. Profiles and hypsometries which result in a 
uniform distribution of U at equilibrium are then derived for both straight and curved 

shorelines. The uniqueness of the resulting equilibrium profiles and hypsometries 

will not be proven. The goal here is merely a description of simple profile forms 
across which UT and XT are constant in space. 

Tidal Currents 

If the tidal excursion over the fiat is much shorter than the tidal wave length, then it 

is reasonable to assume tidal elevation (xi) pumps up and down uniformly across the 

tidal fiat. Phase lags generated by momentum can contribute to 
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asymmetries over tidal flats (Friedrichs et al., 1992). However a kinematic approach 

is useful at first order when examining only the magnitude of tidal velocity. In the 

past, kinematic approaches have been used successfully in the study of velocity 

distributions along short channels in tidal marshes (Boon, 1975; Pethick, 1980). 

The governing equation applied to tidal currents in the absence of wind waves is 

simply conservation of mass: 

dq(t) + • {h } dt • (x't)Um(X'0 = 0, (3) 

where h is local depth, and UT is tidal velocity. Equation (3) also assumes tidal flow 

to be entirely one-dimensional, neglecting the role played by intertidal channels in 

concentrating the flow of water across the flats. Nonetheless, flow over tidal flats is 

often sheet-like, especially during the flood, even in the presence of intertidal 

channels (Wells and Park, 1992). Although one-dimensional, (3) does not require 
tidal currents to be perpendicular to the contours. Equation (3) only requires currents 
to flow at a constant angle to the bathymetry. 

Integrating (3) to solve for UT gives 

u T (x,0 = xf (t)- x d q (t) (4) 
h(x,t) dt' 

where xf(t) is the boundary between the wetted and exposed portions of the flat, 
hereafter termed the tidal front (Figure 3). Channel depth is defined in terms of its 

time and space-dependent components: 

h(x,t) = q(t) - Z(x), (5) 

where Z(x) is the local elevation of the tidal flat profile. Equations (4) and (5) hold 

for any flat lacking along-shore variations. If q(t) and Z(x) are specified, then 

h(x,t), xf(0 may be calculated, and a solution for UT may be found from (4). Finally 
UT(X) is defined as the maximum value reached by UT at each point in x during the 
tidal cycle. 

x=L 

rl(t)=as•Cot . I . •. •. I• z = 
' - 17x> 

Z--0 ..... 

,, 
i i 

x = 0 x x = xf (t) 

Figure 3. Schematic side view of a linearly sloping flat along a straight shoreline which is 

dominated by tidal currents. h is tidal elevation, h is local depth, xf is the position of the tidal 

front, Z is the elevation of the 
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Straight Shoreline, Linear Profile 

Figure 3 displays a linearly sloping tidal flat with a distance L from the low to high 
water line. The tidal flat profile is given by 

Z(x) = a (2x/L- 1), (6) 

where x = 0 at the low water line, and Z = 0 at x = L/2. For a linear flat, evaluation 

of (4) is particularly straightforward. If the gradient of the flat is constant, then (xf- 
x)/h = L/2a, and, with rl = a sin •ot, 

UT(0 = •-• cos•0t = •- 1- . (7) 

From (7) it is clear that maximum tidal velocity will occur when rl 2 is at a 
minimum. For x < L/2, rl 2 is at a minimum when rl = 0. Thus 

UT - L•o/2 for x < L/2, (8) 

and maximum tidal velocity occurs at mid-tide. For x > L/2, however, the smallest 

value of rl which maintains water at x is (asymptotically) •! = Z. So, 

z(x): / UT(X)= • 1- a 2 J 
= L•o . for x > L/2, (9) 

and maximum tidal velocity occurs at the tidal front. Thus (9) may be alternately 
expressed for x > L/2 as 

dxf 

U T(x) = dt when x=xf>L/2. (10) 

Note that (g) - (9) indicate that UT is independent of tidal amplitude. 

Figure 4 shows UT/UT0 as a function of x/L across a linearly sloping fiat, where UT0 
= UT(X=0). For x/L < 1/2, UT is constant, suggesting that (in the absence of wind 
waves) a linear profile is at morphologic equilibrium over the seaward half of the 

fiat. If values are chosen appropriate to the southwest coast of Korea (M2 fide, L = 5 
lan) then UT0 = 35 cm s -1, which is large enough to mobilize sediment. If the water 
flows at an angle to the shore, UT0 is potentially higher. For x/L > 1/2, however, 

there is a dramatic decrease in UT as x/L approaches 1. Thus according to the 

morphodynamic model applied in this study, a linearly sloping fiat with a stress field 

dominated by tidal currents alone is not at equilibrium for x/L > 1/2. Greater 

deposition (or less erosion) should occur on the landward half of the fiat until UT and 

XT become nearly uniform across the entire 
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Figure 4. Maximum tidal velocity as a function of distance across a flat which slopes linearly 

away from a straight shoreline. 

Straight Shoreline, Equilibrium Profile 

A tidal flat profile is now derived which results in a uniform distribution of U T across 

the entire flat. Figure 5 displays a profile which is linear for x < L* and non-linear 
for x > L*. L* is defined such that Z = 0 at x = L*. The elevation of the lower tidal 

flat profile is given by 

Z-(x) = a(x/L*-l) for x_<L*, (11) 

where L* is also the length of the lower profile. From the linear profile case (see 
above) it follows that for x < L*, UT = L'to at mid-tide and, therefore, UT is at least 

as large as L'to. Also from the preceding section, it seems reasonable to assume 
that for x > L*, UT occurs at the tidal front. The next step is therefore to determine 

what Z is required to give 

dxf (12) 
= L*•O for x>L*. 

dt 

Following a particle at the tidal front: 

dxf 

dq 

dxf dt (13) 

dt dq 

where dt/dq is found from t = •-1 arcsin (q/a). Utilizing (12) and integrating (13) 
then yields 

xf - L* -- L* arcsin q/a. (14) 

At the tidal front, x = xf, h = 0, and, from (5), z = q. Eliminating q and xf in (14) 

and solving for Z then 
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UT -- dxr 
ri(t) - a sin co t dt 

Z+ 
z--O ..... 

x=O x=L* x=L 

X=Xf 

=a 

Figure 5. Schematic side view of an equilibrium flat along a straight shoreline which is 
dominated by tidal currents. Z _ is the elevation of the lower profile, Z+ is the elevation of the 
upper profile, L* is the x location of Z = O. 

Z+ (x) = a sin (x/L*- 1) for x > L* . (15) 

Since Z+ = a at x = L, from (15) it is clear that for an equilibrium flat along a 
straight shoreline, 

L*/L = (re/2 + 1) -1 . (16) 

The equilibrium profile given by (11) and (15) is illustrated in Figure 6a by the 

curve labeled "straight shoreline". Figure 6a indicates that the equilibrium profile for 
a current-dominated flat along a straight shoreline is convex relative to the linear 

profile. In Figure 6b, the curve labeled "straight shoreline" displays the 
corresponding hypsometry, which is identical to the profile for the straight shoreline 
case. Thus the results of this section indicate that tidal currents favor a convex 

hypsometry at equilibrium (at least along a straight shoreline), consistent with the 
general observational trends presented earlier. 

Finally, (16) can be used to constrain the equilibrium length of a tidal flat in the 
absence of wind waves if there exists some characteristic magnitude of UT at 

equilibrium. If U T = Ueq , where Ueq is some (externally fixed) velocity at 
equilibrium, then (16), along with the relation UT = L'co, yields 

L = (re/2 + 1) Ueq/(.O . (17) 

If Ueq = 30 cm s -1 during an M2 tide, then (17) gives L = 5.5 km, where L is the 
length of the fiat in the direction of maximum tidal velocity. Thus it is only 

necessary for the component of the flat perpendicular to the bathymetric contours to 

be of length L cos 0, where 0 is the angle between the velocity and the shoreline. 

Also, intertidal fiats may not extend all the way to high water, but rather may 
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salt marsh. If a flat along a straight shoreline extends from low water to mean water, 

for example, it need only have a length L* = Ueq/• parallel to the velocity direction. 
If Ueq = 30 cm s -1, 0 = 45 ø, and the flat in question lies below mean water, then the 
shore-normal component of the flat need only extend 1.5 kin. 

If a tidal flat abuts salt marsh, then its equilibrium hypsometry will be altered along 

with its horizontal extent. Intertidal marsh is generally concentrated in the upper 

portion of the intertidal zone with its lower extent limited by the frequency of 

submergence (Redfield, 1972; Frey and Basan, 1985). Since the convex portion of 
the "straight shoreline" hypsometry in Figure 6 is also limited to the upper part of the 

tidal range, overall tidal flat convexity will be reduced by the presence of salt marsh. 

(a) 1 ,• 0.6 

• 0.2 y•'••/•/• (for reference) 
•// 1/2 1/4 

•.2 

•.6 •' 

-1 

(b) 1 0 02 04 x• 06 / / 1 
0.6 

0.2 

-0.2 

-0.6 

-1 

0 0.2 0.4 0.6 0.8 

A/AL 

Figure 6. Equilibrium flats dominated by tidal currents. (a) profiles and (b) hypsometries. 

bL/b 0 is the flat width (parallel to the shoreline) at x = L divided by its width at x = O. 

bL/b 0 > 1 for an embayed shoreline, bL/b 0 = 1 for a s•xaight shoreline, and bL/b 0 < 1 for a 
lobate 
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Curved Shoreline, Equilibrium Flat 

The effect of shoreline curvature on equilibrium profiles and hypsometries dominated 

by •:T is now considered. Figure 7 provides plan views of "lobate" and "embayed" 

shorelines with tidal flats extending from x = 0 to x = L. A lobate shoreline has a 

shore-parallel width at x = L which is less than its width at x = 0, giving bL/b0 < 1. 
An embayed shoreline has bL/b0 > 1, and a straight shoreline has bL/b0 = 1. 

For a curved shoreline which is radially symmetric, continuity is easily evaluated in 
polar coordinates: 

dn + rh(r,t)uT(r,0 = 0 (18) dt •-• ' 

In this section tidal flow is assumed everywhere to be perpendicular to the 

bathymetry. Equation (18) integrates to 

2 r 2 rf - dq 

uT(r't) = 2rh(r,t) dt' (19) 

where rf is the position of the tidal front. Keeping in mind that b is proportional to r 
(see Figure 7), (19) may be re-expressed as 

1( ) rf-r dn u T (r,O = • b(rf) / b(r) + 1 h(r,O d t 
(20) 

Transforming back to the x-coordinate, r = ro +- x, rf = ro -+ xf, and uT(r,t) = -+ UT(X,t), 

where ro = r(x=0), and the +_ corresponds to a shoreline that is embayed (+) or lobate 
(-). Then (20) becomes 

xf-x dn 
(21) u T (x,t) = B(xf,x) h(x,t) dt ' 

where 

) B(xf,x) = • (xf)/b(x) + 1 , (22) 

and 

b(x)/bo = 1 + (bL/bo- 1)x/L. (23) 

Equations (21) - (23) are valid for any radially symmetric fiat, regardless of the 
precise form of the profile. 

If shoreline curvature is negligible (i.e., bL/bo = 1), then b(xf) = b(x), B = 1, and 

(20) is identical to (4). If the shoreline is lobate (bL/bo < 1), then b(x) > b(xf) > 0, 
and B is bounded by 1/2 < B < 1. If the shoreline is embayed (bL/bo > 
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LOB ATE shoreline: EMBAYED shoreline' 

Figure 7. Schematic plan view of a lobate and an embayed shoreline. The contours 0 - 4 are 

arbitrary heights between low and high water. 

then 0 < b(x) < b(xf), and B is bounded by 1 < B < oo. Thus B is less sensitive to 

lobate shorelines and more sensitive to embayed shorelines. 

The derivation of equilibrium tidal fiat profiles along curved shorelines in the 

absence of wind waves closely follows that used for straight shorelines. By analogy 

to previous section, different relations are assumed to govern the equilibrium profile 
for x < L* and x > L*. Also, as before it is assumed that UT = L't0 occurs 

simultaneously across all of x < L* when xf = L*. However, •i is not assumed to be 

equal to zero when xf = L*. Rather, •1 = z* when xf = L*, where z* may be less than 

or greater than zero, depending on the nature of the shoreline curvature. For x > L*, 

it is again assumed that UT OCCurS at the tidal front, i.e., dxf/dt = L't0. 

In order to determine z*, (21) is evaluated at x = 0 when xf - L*. Under these 

circumstances, (21) becomes 

L* d n (z*) (24) U T = L*ta = B(L*,0) z*+a d t ' 

Using the expression dq/dt = at0 (1 - q2/a2)1/2, and solving for z*/a then gives: 

B(L*,0) 2- 1 
z*/a = . (25) 

B(L*,0) 2 + 
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If the shoreline is lobate, then B < 1, and z* is negative. If the shoreline is 

embayed, then B > 1, and z* is positive. Finally, if the shoreline is straight, B = 1, 
and z* = 0. 

The form of the tidal profile for x < L* is found by solving for Z_(x) in (21) with 
h = q - Z_, UT = L'co, xf = L*, and q = z*. Then (21) becomes 

Z_(x)/a = z*/a- B(L*,x) (1-x/L*) 

1/2 

for x < L*. (26) 

If the shoreline is straight, then B = 1, z* = 0, and (26) is identical to (11). 

For x > L*, it is assumed that U T occurs at the tidal front, i.e., U T = L'co = dxf/dt. 

Proceeding as in previous section, integration of dxf/dq = dxf/dt dt/dq, followed by 

setting xf = x and q = Z+ yields 

Z+ (x)/a = sin { (x/L* - 1) + arcsin z*/a } for x > L*. (27) 

If z* = 0, (27) becomes equivalent to (15). Since Z+ = a at x = L, (27) can be used 
to derive L* relative to L: 

L*/L = (•/2 + 1 - arcsin z*/a )-1 

If z* = 0, (28) reverts to (16). 

(28) 

Profiles given by (26) - (27) indicate that an embayed shoreline (bL/bo > 1) 
significantly enhances the convexity of the equilibrium tidal profile, whereas a 

lobate shoreline (bL/bo < 1) only slightly decreases the convexity of the profile 

(Figure 6a). This behavior is consistent with the function B, given by (22), which is 
also more sensitive to embayed shorelines. 

Finally the profiles of Figure 6a are re-expressed as hypsometries, which are not 

equivalent to Z(x) if the shoreline is curved. Hypsometries are plots of elevation 
versus cumulative basin area, A, where A(x) = • b(x') dx'. Integration of (23) yields: 

A(x) 2x/L + Co L/b o - 1) (x/L) 2 
A(L) 1 + bL/b o 

(29) 

If the shoreline is straight, then bL/bo = 1, and (29) reduces to A(x)/A(L) = x/L. 

Equilibrium hypsometries for embayed shorelines are much more convex than the 

corresponding profiles (Figure 6b). Likewise, hypsometries for lobate shorelines are 

much less convex than the corresponding profiles so much so that the equilibrium 

hypsometry for a current-dominated flat with bL/bo = 1/4 is primarily concave. The 
enhanced variation of hypsometries relative to profiles stems from the nonlinear 

hypsometric function given by 
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Wind Waves 

The derivation for wave-dominated conditions parallels that described by 

Zimmerman (1973), who also examined the distribution of maximum bottom shear 

stress due to shoaling waves. The approach here differs in that Zimmerman did not 

apply the shallow water approximation nor did he consider waves shoaling across a 
linear profile. 

The governing equation applied to wind waves in the absence of tidal currents is 
conservation of energy for monochromatic, remotely forced, forward propagating, 
shallow water surface waves: 

d (30) 

• (E(x)Cg (x))=- D(x), 

where E is wave energy, Cg = (gh) 1/2 is the wave group velocity, g is the 
acceleration of gravity, and D is dissipation by bottom friction. In this section wind 

waves propagate perpendicular to the shoreline with no refraction across the flat. In 
evaluating (30) neither breaking waves nor wave energy reflected from the shoreline 
are considered. Thus this approach is inappropriate for energetic, steep beaches. 

However for gently sloping, highly dissipative tidal flats, the approach should be 

adequate for gaining useful physical insight. It is also assumed that the largest 
waves are most likely to occur around the time of high water. This is a reasonable 

assumption in enclosed intertidal basins because fetch will be smaller near low tide. 
It is also a reasonable assumption for open coasts if the intertidal slope continues 

some distance offshore. Then offshore dissipation will be greater at lower tide 

levels, reducing the height of waves impinging on the flats. 

Wave energy in (30) is given by 

E(x) = 1/8 p g H(x) 2 , (31) 

where p is the fluid density, and H is the wave height. Frictional dissipation in (30) 
is given by 

D(x) = •ww 0CdUw luwl uw at, (32) 

where Tw is the wave period, uw is instantaneous wave velocity, and the quantity in 
brackets is instantaneous wave-generated bottom shear stress. If 

uw(x,t) = Uw(x) sin (2• t/Tw), 

then substitution of (33) into (32) followed by integration gives 

(33) 

4 

D(x) = •-• 0cc• Uw 3 . 
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The above relations for E(x) and D(x), along with the relation Cg = (gh) 1/2, are 
substituted into (30), and (2) is used to eliminate H(x). The result is a non-linear 

ordinary differential equation for Uw: 

1 d 3 dh 4Cd 

Uw 2 dx Uw + 4hU w dx = 3ngl/2h3/2 ' (35) 

Equation (35) can be rewritten as a linear O.D.E for UW -1' 

d 3 dh 4Cd 

dx UW-1 4 h dx UW-1 = 3 n gl/2 h3/2 ' (36) 
The boundary condition on (36) is Uw -1 = UW0 -1 at x = 0, which may determined 
from H(x=0) via (2). Assuming h(x) is known, then (36) can be solved completely 

for Uw. 

Straight Shoreline, Linear Profile 

Figure 8 displays a linearly sloping tidal flat of length L, where L is the shore-normal 
distance from the low to high water line. The depth of the tidal flat profile is: 

h(x) = (L-x) h0/L, (37) 

where h0 is the high-water depth at x = 0 and also is equal to the tidal range. 

Substituting (37) into (36) yields 

with 

d 3 

(L- x) •xx UW-1 + • UW-1 = C1 (L- x) -1/2 (38) 

4Cd L3/2 

C1 = gl/2 h 3/2' (39) 3n 0 

From the right hand side of (38), the particular solution for Uw -1 will have the form 

{Uw -1 }part = C2 (L - x)- 1/2. (40) 

Substituting (40) into (38) yields C2 = 4/5 C1. The homogeneous portion of (38) 
integrates to: 

{ UW -1 }homo = C3 (L - X) TM . (41) 

Finally, the boundary condition at x = 0 gives C 3 = UWo -1L -3/4 - C 2 L 
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x=0 x=L 

Figure 8. Schematic side view of a linearly sloping flat along a straight shoreline which is 

dominated by wind waves. H0 is offshore wave height, C g is wave velocity, h is local depth at 
high water, h 0 is high water depth at x = 0 and also equals the tidal range. 
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Figure 9. Maximum wave orbital velocity as a function of non-dimensional offshore wave 

height, lq 0, and of distance across a flat which slopes linearly away from a straight shoreline. 

Combining the above equations yields: 

UW(X)/Uw0 = { rio (1- x/L) -1/2 + (1- rio) (1 - x/L) TM }-1 , (42) 

where the non-dimensional forcing wave height, H o is given by 

-- 16 L Uw0 8 L H 0 
= -- = CO 2 (43) Hø 1•--• ca h 0 (gh0)1/2 15 •r h0 

No value of H o for a linearly sloping tidal flat results in a uniform distribution of Uw 
across the flat (Figure 9). Thus, according to the morphodynamic model applied 

here, a linearly sloping flat dominated by wind waves cannot be at 
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Straight Shoreline, Equilibrium Profile 

A tidal fiat profile is now derived which results in a uniform distribution of Uw 
across the entire fiat. A similar solution was found previously by Bruun (1954) who 

assumed energy dissipation to be uniform across an equilibrium shoreface. However 

Bruun ignored the effect of shoreline curvature (see below). 

Deriving an equilibrium profile with Uw = UWo everywhere is simpler than solving 

for Uw(x). If Uw is constant, the first term in (35) is zero, and (35) may be 
rewritten as 

16 g-1/2 h 1/2 dh = -•--• c d Uw0 (L- x). (44) 

Equation (44) integrates to 

h(x)/h0 = (1 - x/L) 2/3 , (45) 

where 

) 2/3 
8 -1/2 

h 0= •c aUw0g L . (46) 

Equation (46) can be crudely checked by comparison to the Korean values. If (46) 
is solved for UW o, then Cd = 0.01, L = 5 kin, and ho = 6 m give UW o = 1.1 ms -1, 
which is a value that is certainly capable of mobilizing sediment. Using (2), this 

velocity is equivalent to a forcing wave height of Ho = 1.7 m, which seems like a 
reasonable value for typical wave dominated conditions. 

The equilibrium profile given by (45) is illustrated in Figure 10a by the curve 
labeled bL/bo = 1. Figure 10a indicates that the equilibrium profile for a wave- 

dominated flat along a straight shoreline is concave relative to the linear profile. In 

Figure 10b, the curve labeled bL/bo = 1 displays the corresponding hypsometry, 

which is identical to the profile for the straight shoreline case. Thus (45) indicates 
wind-waves favor a concave hypsometry at equilibrium (at least along a straight 
shoreline), which is consistent with the observations summarized in the Introduction. 

Finally, (46) can be used to derive the equilibrium length for a flat under wave- 
dominated conditions. If Ho, ho and Cd are considered to be characteristic values, 

independent of the extent of the tidal flat, then (46) and (2) can be combined and 
solved for L: 

2 

3• ho 
L = . (47) 

4% H o 

Equation (47) seems qualitatively sensible in that it indicates that equilibrium tidal 
fiat width decreases with increasing wave height, Ho, and increases dramatically 

with increasing tidal range, ho. Equation (47) suggests that the position of the 
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Figure 10. Equilibrium flats dominated by wind waves. (a) profiles and (b) hypsometries. 
bL/b0 > I for an embayed shoreline, bL/b 0 = I for a straight shoreline, and bL/b 0 < I for a 
lobate shoreline. 

tide line should oscillate with seasonal variations in forcing wave height. This 

predicted oscillation is qualitatively consistent with the observations of Wells and 
Park (1992 ). 

Equation (47) may also help explain the associations of small tidal ranges with 
concave hypsometry and of large tidal ranges with convex hypsometry illustrated in 
Figure 2a (Dieckmann et al., 1987). If wave height is moderate and tidal range is 
small, (47) indicates that L will also be small. Before, UT was found to be directly 

proportional to L. Thus if L is small, UT will be small also. Under these conditions, 
Uw and xw will dominate UT and XT, and the equilibrium profile will be concave. If 
tidal range is large and waves are moderate, then (47) indicates L will be much 
larger (since L is geometrically dependent on h0). Since UT is proportional to L, UT 
will also be much larger. Uw and xw may no longer dominate UT and XT, at least 
under fair weather conditions, and the equilibrium profile may be more 
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Curved Shoreline, Equilibrium Profile 

The effect of shoreline curvature on equilibrium profiles and hypsometries dominated 
by Xw is now considered. For a curved shoreline which is radially symmetric (see 
Figure 7), conservation of energy is easily evaluated in polar coordinates: 

1 d {rE(r)Cg(r)}=-D(r) (48) r dr ' 

It is assumed that refraction has already caused the wind waves to propagate nearly 
perpendicular to the bathymetric contours by the time the waves reach the edge of 
the flat at r0 = r(x=0). 

Evaluation of (48) is straightforward if Uw = UW 0 across the entire profile. Using 

(2), (31), (34) and the relation Cg = (gh) 1/2, (48) integrates to 

rh3/2 4 gq/21 2 r2 I = c d r L - , (49) 3: Uw0 

where rL = r(x=L). 

expressed as 
Since b is proportional to r (see Figure 7), (49) may be re- 

h(r) 3/2 = • (b(rL)/b(r) + 
8 Cd Uw 0 

3 ngl/2 [r-rL[ ' 
Transforming back to the x-coordinate, (50) becomes 

h(x)/h0 = { B(L,x)/B(L,0) } 2/3 (1 - x/L) 2/3 
where 

(5O) 

and 

(51) 

) 2/3 8 g-l/2 h 0 = B(L,O) • C d UW0 L , (52) 

1 1) (53) B(L,x) = • (b L/b(x) + . 
B(L,x) is analogous to B(xf, x) in equation (22), and b(x) above is identical to (23). 

If shoreline curvature is negligible (i.e., bL/b0 = 1), then bL = b(x), B = 1, and (51) - 
(52) become identical to (45) - (46). 

Profiles given by (51) indicate that a lobate shoreline (bL/b0 < 1) only slightly 
increases the concavity of the profile, whereas an embayed shoreline (bL/b0 > 1) 
greatly decreases the concavity of the profile so much so that the equilibrium 
profile for a flat with bL/b0 = 4 is primarily convex (Figure 10a). The greater 
sensitivity of the profile to embayed shorelines is similar to that under tidal 
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(see Figure 6a) which follows from a dependence of the equilibrium profile on the 
function B, which is also more sensitive to embayed shorelines. 

Finally, the profiles of Figure 10a can be m-expressed as hypsometries (Figure 10b). 
Equilibrium hypsometries for lobate shorelines (bL/b0 < 1) are significantly more 
concave than the corresponding profiles, and hypsometries for erahayed shorelines 
COL/b0 > 1) are significantly less concave. In fact, the hypsometries for bL/b0 > 2 are 
primarily convex. The range of hypsometries in Figure 10b are qualitatively similar 
to the hypsometries observed by Kirby (1992) within the Severn Estuary (see Figure 
2). Kirby included a location map, reproduced in Figure 11, which outlines the 
shoreline along the Severn. The shoreline at Cardiff Bay (which has a convex 
hypsometry) is strongly erahayed, whereas the shoreline at Clevedon (which has a 
concave hypsometry) is straight to slightly lobate. Thus it is possible that shoreline 
shape has contributed to the hypsometric trends reported by Kirby. 

Figure 11. Location map showing flats along the Severn for which Kirby performed 
hypsometric analysis, modified from Kirby (1992). Cardiff Bay and Clevedon (underlined) 
have strongly convex and strongly concave hypsometries, respectively (see Figure 
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Conclusions 

Uniform Bottom Shear Stress 

Recent observations of tidal fiat hypsometry have correlated convexity with large 

tide ranges, long-term accretion and/or low wave activity. Concavity, in turn, has 
been correlated with small tide ranges, long-term erosion and/or high wave activity. 

This study demonstrates that much of this empirically observed variation in tidal flat 

hypsometry is consistent with a simple morphodynamic model which assumes tidal 

flats to be at equilibrium if maximum shear stress is uniform in space. Assuming a 

constant drag coefficient, this condition is equivalent to a uniform distribution of 

maximum velocity. 

In the absence of wind waves, maximum shear stress is a function of maximum tidal 

velocity, UT. Assuming the intertidal excursion to be much shorter than the tidal 

wave length, continuity may be solved kinematically to determine UT as a function 

of distance across the flat. For a flat which slopes linearly away from a straight 

shoreline, results show that UT is constant across the seaward half of the flat. 

Therefore the lower portion of a linearly sloping flat is potentially at morphologic 

equilibrium. Across the landward half, however, a dramatic decrease in UT is 

predicted, indicating disequilibrium. 

For a straight waveless shoreline, the equilibrium profile has a linear slope over the 

seaward portion of the flat, and UT occurs at mid-tide. Across the landward portion 

of the flat, UT is assumed to occur at the tidal front. The equilibrium value for UT is 

then proportional to the length of the tidal flat but is independent of tidal range. The 

resulting equilibrium profile is convex overall and demonstrates that tidal currents 

favor a convex hypsometry along a straight shoreline. 

For a curved waveless shoreline, the equilibrium flat is derived in a similar manner. 

Results indicate that an embayed shoreline significantly enhances the convexity of 

the equilibrium profile, whereas a lobate shoreline only slightly decreases the 

convexity. The nonlinear transformation from profiles to hypsometries, however, 

causes the hypsometry of embayed and lobate shorelines to be much more or much 

less convex than the corresponding profiles -- so much so that the effect of shoreline 

curvature on equilibrium hypsometry is potentially as strong as the effect of 

domination by tidal currents. 

In the presence of wind waves, shear stress is often dominated by the maximum 

wave orbital velocity, Uw. Assuming dissipative shallow water waves impinging at 

high water, conservation of energy is utilized to determine Uw as a function of 
distance across the flat. For a flat sloping linearly away from a straight shoreline, 

the solution may be expressed in terms of a single dimensionless forcing wave 

height, H o. No value of H 0 results in a uniform distribution of Uw, thus no part of a 

linearly sloping, wave-dominated flat is at equilibrium. 

The equilibrium flat along a straight, wave-dominated shoreline is derived by setting 

Uw constant in the previously derived governing equation for Uw -1. The resulting 
equilibrium profile has depth increasing as x 2/3, indicating wind waves favor 
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concave hypsometry. Under domination by waves, the equilibrium profile length, L, 

is proportional to h02/H0, where h0 is the tidal range and H0 is the forcing wave 
height. This expression suggests L should increase dramatically with tidal range. 

Since UT ~ L, the relative importance of tidal currents should also increase strongly 

with tidal range, favoring a transition from concave to convex hypsometry with 

increasing tidal range. 

An equilibrium flat along a curved, wave-dominated shoreline is derived in a similar 

manner. Like the no-wave case, results indicate that an embayed shoreline 

significantly decreases the concavity of the profile potentially to the point of 

convexity whereas a lobate shoreline only slightly increases concavity. Again, 

the nonlinear transformation from profiles to hypsometries causes the hypsometries to 

be much more or much less concave than the profiles. 
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Appendix- List of Symbols 

a tidal amplitude 

A cumulative horizontal basin area 

AL Aatx=L 

A m maximum value of A 

b width of flat parallel to shoreline 

bo batx=O 

bL batx=L 

B B(Xl,X2) = (b(Xl)/b(x2) + 1)/2 

Cd drag coefficient 

C1,2,3 constants 

Cg wind wave group velocity 

D energy dissipation by bottom friction 

E wave energy density 

g acceleration of gravity 

h still water depth or local elevation 

ho hatx=0 

hm maximum value of h 

H wave height 

Ho 
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^ 

Ho 

L 

L* 

ro 

rf 

rL 

Tw 

Ueq 

UW 

u 

u• 

UTo 

Uw 

UW o 

x 

xf 

z 

z* 

z 

z_ 

o 

p 

•T 

non-dimensional H0 

shore-normal length of tidal flat 

shore-normal length of lower profile 

shore-normal co-ordinate for radially symmetric flat 

ratx=O 

ratx=xf 

ratx=L 

time 

wave period 

velocity 

equilibrium velocity 

depth-averaged tidal velocity 

wave orbital velocity 

maximum depth-averaged velocity 

maximum depth-averaged tidal velocity 

tYr atx = 0 

maximum wave orbital velocity 

Uw atx =0 

shore-normal co-ordinate 

position of tidal front 

vertical co-ordinate 

elevation of transition from lower to upper profile 

profile elevation 

upper profile elevation 

lower profile elevation 

tidal elevation 

angle between velocity and shoreline 

fluid density 

maximum bottom shear stress 

maximum tidal bottom shear stress 

maximum wave-generated bottom shear stress 

tidal frequency 
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