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Abstract. A semilinear model of the wave equation with nonlinear boundary conditions 

and nonlinear boundary velocity feedback is considered. Under the assumption that the ve

locity boundary feedback is dissipative and that the other nonlinear terms are conservative, 

uniform decay rates for the solutions are established. 

1. Introduction. Consider the semilinear equation 

Ytt = D..y- fo(Y) inn X (O,oo), 

~ = -g(yt lr)- !l(y lr) on r1 x (0, oo), 

y = 0 on r 0 x (O,oo), 
(1.1) 

y(O) =Yo E Hf0 (f2), Yt(O) = Y1 E L2(f2). 

Here f2 is a bounded open region in lRn, n ~ 1, with a smooth boundary r = r 0 ur1 

and Hf,0 (f2) ={hE H1(f2): h lro = 0}, where ro and r1 are closed and disjoint; 1 

is an outer unit vector normal to the boundary r 1· The following assumptions are 
made on the nonlinear functions Ji, i = 0, 1, and g: 

(H-1) (i) g(s) is a continuous, monotone, increasing function on JR; 

(ii) g(s)s > 0 for s -1- 0; 

(iii) M2s2 ~ g(s) s ~ M1s2 for lsi ~ 1, for some M1. M2, 0 < M2 ~ M1; 

(H-2) (i) fo(s) is a W 1 ~';'(1R), piecewise C 1 (1R) function, differentiable at s = 0; 

(ii) fo(s)s ~ 0 for s E JR; 

(iii) lf0(s)l ~ N(1 + lslko-1), 1 < ko < n::_2 for lsi> N, N large enough, n ~ 2; 

(H-3) (i) f1(s) is a continuous function, differentiable at s = 0; 

(ii) f1(s)s ~ 0 for s E lR; 

(iii) l!l(s)l ~ Mlslk1 + Alsl for s E JR, k1 < ~=~' M, A given constants. 
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508 I. LASIECKA AND D. TATARU 

The main goal of this paper is to prove that under the above hypotheses, solutions 

to {1.1) exist in C{O, oo; Hf0 {!l)) nC1{0, oo; L2{!l)) and, moreover, that they decay 
to 0 with uniform rates when t -+ oo. 

The problem of proving uniform decay rates for the solutions to the wave equation 

with a boundary dissipation has attracted a lot of attention in recent years. Indeed, 

the linear problem {i.e., when g(y) = y and fi(y) = 0) has been treated by several 
authors; see for instance [6], [10], [16], [18], [9]. When the boundary conditions are 

nonlinear, the only cases considered so far in the literature {[1], [8], [7], [11], [13], 
[19], [20]) are marked by both of the following features: 

{i) the nonlinearities give rise to a monotone problem {modulo Lipschitz per
turbations); 

{ii) the dissipative term on the boundary is of a preassigned polynomial growth 

at the origin. 

These assumptions are critically invoked in the proofs in the literature in the fol

lowing ways: 

{a) monotonicity (modulo Lipschitz perturbations) plays an essential role in as

serting well-posedness of the problem (existence, uniqueness, and regularity 

of the solutions); 

{b) the polynomial growth of the origin of the boundary dissipation contributes 

{among other things) to confer a specific structure to the equation, that 
allows the construction of a standard Lyapunov-function, which is then used 
to yield desired decay rates. 

With motivations coming from various physical applications, our goal in this pa
per is to dispense entirely with both of the above assumptions (i) and {ii). Indeed, 

in our formulation, the presence of the nonlinear functions fo and, particularly, h 
entirely destroys monotonicity and, moreover, no growth assumption at the origin 
is imposed on the function g. As a consequence, the resulting problem is now faced 

with major technical difficulties, which require the development of new approaches 

and new techniques in successfully solving both (a) the problem of existence of so

lutions (no claim of uniqueness is, however, made) and (b) the problem of obtaining 
global, uniform decay rates. 

Orientation. Existe:r;J.ce and regularity. Our basic approach in proving exis
tence of solutions (without claiming uniqueness) relies on a rather special construc
tion of suitable approximating problems (see {2.11)) and on careful estimates of the 

approximating solutions (difficulties are primarily due to the presence of the term 
JI). Passage to the limit then produces the desired claim of existence of solutions to 
the original problem. However, the absence of a claim of uniqueness (uniqueness can 
be asserted only if g is coercive, see Corollary 1) is a source of another difficulty. 
Given a solution (perhaps different from the one asserted through the aforemen

tioned existence argument), p.d.e's estimates require that it be approximated by 
solutions with some regularity properties to carry out and justify computations. 
An important point to be stressed is that we cannot, in the present case, adopt 
the usual procedure of first restricting to smooth initial data, next obtain for these 
solutions the desired estimates, and finally extend them by density. No matter how 
smooth the initial data are, the corresponding solutions of the nonlinear problem 
need not be regular; besides, they do not necessarily depend continuously on the 
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initial data. Nevertheless, a strategy is needed for approximating a given solution 

with regular functions. Since in the absence of uniqueness a given solution need not 

be the one produced by the existence approximating argument mentioned before, 

a second approximating scheme is then needed (see Lemma 2.2) which is defined 

in terms of a given solution of the original problem (1.1) and which produces reg

ular/smooth approximations of this (given) solution. This scheme, by necessity, is 

then different from the one employed in the existence proof (notice the different 

boundary conditions in (2.11) and (2.39)). The need for approximating regular 

solutions appears already at the very preliminary step of the analysis when we de

rive the basic energy identity of Proposition 2.1. This proposition can be obtained 

formally by means of usual integration by part arguments, if one takes for granted 

that solutions are regular. A similar need arises in Proposition 3.1, which likewise 

requires p.d.e. estimates, hence regularity of approximations. A passage to the limit 

(on the final estimates) produces the desired estimates for the original problem. 

Global, uniform estimates. In order to prove uniform decay rates for all 

solutions, we follow an approach which is based on the following two steps. 

(i) We first obtain certain integral estimates for the energy functional (in place 

of the usual differential estimates as in the Lyapunov approach of prior liter

ature). These integral estimates have the advantage of allowing application 

of certain nonlinear compactness-uniqueness arguments which in turn lead 

to a nonlinear functional (not differential) relation for the energy function; 

see Lemma 3.2 (this idea was first employed in [12]). 

(ii) Next, we prove comparison theorems which relate the asymptotic behaviour 

of the energy and of the solutions to an appropriate nonlinear ordinary 

differential equation. 

Below we state our main results. 

Theorem 1. 

(i) Assume (H-1)-(H-3). Then, for each (yo, Yl) E Hf. 0 (n) x L2 (n), problem 

(1.1) has at least one solution y E Cloc(O,oo;Hf.o(n)) n C 1 ~c(O,oo;L2(f!)) 
such that 

Yt E L2,loc(O,oo;rl), (1.2) 

Remark 1.1. Actually, Theorem 1 can be proven under somewhat more general 

hypotheses assumed on the functions fi ( s). Indeed, modification of some arguments 
in the proof of Theorem 1 allows us to replace conditions (H-2)-(H-3) (iii) by the 

requirement that fo, h are compact (as Nemytskii's operators) from H 1 (f2) to 

L2(n), L2(r1), resp. 

Corollary 1. In addition to the hypotheses of Theorem 1, we assume that either 

h = 0 or else [g(sl)- g(s2)][s1- s2] 2': o:ls1- s2l 2 and h is locally Lipschitz from 

H 1 (n) into L 2 (r). Then the solution (y, Yt) is unique. 

In order to state our stability result, we introduce some notation. Let h( s) be 

a real valued function which is defined for s 2': 0, it is concave, strictly increasing, 

h(O) = 0 and it satisfies 

h(sg(s)) 2': s2 + g2 (s) for lsi:::; N, for some N > 0. (1.3) 
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Such a function can be always constructed by virtue of hypothesis (H-1). Indeed, 
define the increasing functions kt, k2 on lR 1 by 

Then the function 

kt(8g(8)) ~ 82 + g2(8) for 8 ~ 0, 

k2(8g(8)) ~ 82 + g2(8) for 8 $ 0. 

h = conc(max{kt, k2}) (concave envelope) 

has the desired properties. Let 

h(x) = h[-x-], x ~ 0, 
mesEt 

where Lt = rl X (0, T) and Tis a given constant. Since ii is monotone increasing, 

for every c ~ 0, c + ii is invertible. Define 

p(x) = (cl + ii)- 1(Kx), (1.4) 

where K is a positive constant. Then p is a positive, continuous, strictly increasing 
function with p(O) = 0. Let 

q(x) =:X- (I+ p)-1(x), X> 0. (1.5) 

Since p(x) is positive, increasing, so is q(x). Let E(t) denotes the energy of the 

solution (y, Yt)i i.e., 

(1.6) 

where 

Fi(8) =los fi(t) dt. 

It will be shown that E(t) remains bounded for the solutions in a bounded set of 

Hf.0 (n) x L 2 (0). We are ready to state our stabilization result. We shall need the 

following additional hypotheses. 

(H-4) With h = x - x0 , x0 E lRn, the following geometric condition holds on the 

uncontrolled portion of the boundary ro: 

(H-5) At least one of the following conditions holds: 

(i) fo is linear; 

(ii) ro = 0 and f 0 (u)u ~ w 2 for some c: > 0 or ft(u)u ~ w 2 for some c: > 0; 

(iii) ro = ant =f 0, where nl is convex and nl n n = 0. 
We note that condition (H-5) will be necessary only in the compactness-uniqueness 
argument. 
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Theorem 2. Assume hypotheses (H-1)-(H-5). Let (y, Yt) be a solution to (1.1), 

with the properties listed in Theorem 1. Then for some To > 0, 

t 
E(t):::; S(To - 1)(E(O)) fort> T0 , (1. 7) 

where S(t) is the solution (contraction semigroup) of the differential equation 

d 
dt S(t) + q(S(t)) = 0, S(O) = E(O) (1.8) 

and q(s) is given by (1.5), (1.4) with the constant K in (1.4) depending in general 

( unless k = 1, where k = max(ko, k1)) on E(O), and the constant c = ~(M 1 + mes..:... 1 

Mil) 

Remark 1.2. Uniform decay rates for the wave equation with nonlinear monotone 

boundary feedback were obtained in [19]. However, the problem considered in [19] is 

fully monotone Uo and hare zero), the nonlinear feedback g(s) satisfies in addition 

to the hypothesis (H-1) a polynomial growth condition at the origin and, moreover, 

geometric restrictions on the domain n of "star-shaped" type are imposed. Thus, 

the result of [19] obtained by multipliers methods as in [6] or [10] combined with 

Liapunov technique of [21] is a very special case of Theorem 2. 

If we additionally assume that the function g(s) is of a polynomial growth at the 

origin, the following explicit decay rates are obtained. 

Corollary 2. Assume in addition to (H-1)-(H-5) that for some positive constants 

a, b, 

g(s)s:::; bs2 for each real s, 

g(s)s;::;: alsiP+l for lsi :::; 1, for some p;::;: 1. 

Then 

E(t) :::; Ce-at if p = 1, 

2 

E(t):::; Ctl-v ifp > 1, 

where both constants C > 0 and a> 0 depend in general on E(O) (unless k = 1). 

Proof of Corollary 2. It is enough to construct a function h with the property 

(1.3). Indeed, we can take h(s) = a- v~ 1 (1 + b2)sm where m = v!l :::; 1. Then 

p(s) = (ci + h)- 1 (Ks); i.e., cp + d(a,b)sm = Ks where dis a suitable constant 

depending on a, b. Also, recall that 

q(s) = s- (I+ p)-1 (s). 

Since asymptotically (for s small) we have, for some constant a > 0 depending in 

general (unless k = 1) on E(O), 

p(s) "'as-A and therefore q(s) "'as-A, 
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by solving equation (1.8) with q as above we obtain 

() { 
c1(t+c2x~)~ ifp> 1 

8 t X= 

e-atx if p = 1, 

where c1, c2 depend only on a, p. The conclusion now follows from Theorem 2. 

Remark 1.3. Theorem 2 may be easily extended to the case when the function 

ft is not Lipschitz at "0". However, in this case, our proof does not provide a 

computable rate of energy decay. 

Remark 1.4. Note that our results do not require any geometric conditions on 

the controlled portion of the boundary r 1. This is in contrast with most of the 

literature ([6], [10], [15], [18], [19], [9]), where the geometric restrictions on r 1 were 

imposed. In the linear case, stabilization results with r o = Q and without any 
geometric conditions assumed on the boundary r 1 were obtained in [14]. The linear 

case when r 0 =f. Q has been treated in [5], where sharp results are expressed in 

terms of geometric optics conditions. 

2. Proof of Theorem 1. The proof of Theorem 1 follows from the following 

two step procedure. We first construct an auxiliary approximating problem for 

which the existence of the unique solution will be established by the arguments of 

nonlinear semigroup theory. In the second step, we obtain the solutions of problem 

(1.1) as the limits of the approximating equations. 

To accomplish this, the following result will be needed. 

Proposition 2.1. Let u be a given function in C[O,T;H1(!1)] n C 1 [0,T;L2(!1)] 

such that 

and, moreover, 

{ 

Utt - tl.u = f E Ll[O, T; L2(!1)], 

u(O) = Uo E H 1(!1), Ut(O) = U1 E £2(!1) 

{ 
Ut and ~~ lr are in L2(0, T; L 2(r1)), 

u = 0 on :Eo. 

Then the following energy identity holds for each t > 0: 

El(t)- t r ~u I Utdrlds- t r futdf!ds=El(O), 
lo lr1 ur r lo lo. 

where 
1 2 2 

E1(t) = 2(1V'u(t)IL2 (o.) + lut(t)IL2 (o.)). 

(2.1i) 

(2.1ii) 

Notice that the result of Proposition 2.1 can be formally obtained by using 
Green's formula and integration by parts in time. However, without the additional 

smoothness of the solutions u, such a procedure is only formal. Since we do not 
have any additional information on the smoothness of the solution (which is typical 

for nonlinear problems) and, moreover, the solution u may not depend continuously 
on the initial data, we must resort to a different approach which will be based on a 

certain approximation type of argument. 

This argument, rather technical and independent from the main body of the 

proof of Theorem 1, is deferred to the end of this section. 
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Theorem 2.1. Assume that 

the functions fo(s) and ft(s) are Lipschitz continuous on IR, (2.2i) 

g(st)- g(s2) ~ a(s1 - s2) for all s1- s2 ~ 0 and fixed a> 0. 

(2.2ii) 

Then, problem (1.1) has an unique solutiony E C(O,oo;Hf.0 (0))nC1 (0,oo;L2 (0)). 

Moreover, if g satisfies hypothesis (H-1) (iii), then 

(2.3) 

Proof of Theorem 2.1. This follows from nonlinear semigroup theory. Let A : 
L2(0) --+ L2(0) be the operator defined by 

Au= -~u with V(A) = { u E Hf0 (0): ~~ 1r
1 
= 0, u Ira= 0 }, 

where Hf. 0 (0) = H2(0) n Hf.0 (0). Let N: L2(0)--+ L2(0) be the Neumann map 

It is well known that 

(2.4) 

and 

N* A*v = -v 1r
1 

for v E V(A112). (2.5) 

Next define 

A [ ~] = [ ~(u- N[g(v) + ft(u)]) + fo(u)] 

with 

V(A) := { u E Hf0 (0), v E Hf0 (0): u- N[g(v) + ft(u)] E V(A) }. 

Then (1.1) can be written as 

[ y] =A[y] 
Yt t Yt 

We shall prove that A is w-accreative on the space E = Hf.0 x L2 equipped with a 

norm 

1 This definition is meaningful when ro # 0. Otherwise, we consider (fl.- l)N g = 0. 
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Indeed, with [ ~~], [ ~:] E V(A) and Lo, LI Lipschitz constants for J0 , JI, resp., 

we have 

= -(AII2(vi - v2), AII2(ui- u2))£2(n) + (A(ui - u2), VI - v2)L2 (n) 

+ (g(vi)- g(v2),vi- v2)L2(r) + (fi(ui)- fi(u2),vi- v2)L2(r) 

+ Uo(ui)- fo(u2), VI- v2)£2(n) ~(a- e)lvi- v2IL(r) 

LII 12 Lo 12 2 
- 4e UI- u2 L2(rl)- 21ui- u2 L2(n) -lvi- v21L2(n)· 

Applying the Trace Theorem, taking e < a and w suitably large gives the desired 
conclusion. 

We shall next prove that A + w I is maximal monotone. To this end, it suffices 

to prove (by Minty's Theorem) that for A > 0 large enough the equation 

has a solution [ ~] E E for any hE E; 

{ 
- v +AU= hi, 

A(u- N(g(v) + fi(u /r))) + fo(u) + AV = h2. 
(2.6) 

Hence, u = t(hi + v) and 

1 1 1 
AV + -;\A(v)- ANg(v /r)- ANJI(-;\(v /r +hi /r) + fo(-;\(hi +v)) 

=- ~A(hi) + h2 E V(AI/2)'. 

(2.7) 

Let 

1 
B(v) = AN(g(v /r)- !I(-;\(v /r +hi)), (2.8) 

,\ 1 1 
C(v) = 2v + fo( -;\hi+ v) +-;\A. (2.9) 

In what follows, we consider the dual pair {Hf-0 (0), (Hf-0 (0))'} with respect to the 

L 2 duality. For Aa > LI, g(·)- JIC}{ +hi)) is increasing, therefore B is maximal 

monotone in Hf-0 (0) (B may be written in the form B = 8¢, where ¢ is a convex 

integrand on 8 0) (see [4] p.33). For >.2
2 > £ 2 , ~ · + fo(t(· + v)) is also increasing, 

therefore C is lipschitz and monotone, continuous and coercive in Hf0 (0). Then, 

using standard perturbation results (see [3], Theorem 1.7, p.46), it follows that 
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B + C is maximal monotone and coercive, therefore the left hand term in (2.7) is 

surjective (see [3]). Hence, v E Hf. 0 (n) and from the first equation in (2.6) we infer 

that u E Hf.0 (n). 
This completes the proof of the maximal monotonicity of A+wl. From nonlinear 

semigroup theory and the density of V(A) in E, we obtain unique existence of the 

solution y E C(O, T; Hf.0 (S1))nC1 (0, T; L2(S1)) for any finite T > 0. To obtain (2.3), 

we first notice that with [ ~~] E V(A), we have 

v0 IrE H 112(r) 

and after using assumption (H-1) (iii) and (2.2i), 

auo I 
81 E L2(ri), g(vo r) E L2(ri). 

Let (y(t), Yt(t)) denote the solution of (1.1) corresponding to the initial state 

(u0 ,v0 ) E V(A). Then, by the semigroup property, we have (y(t),Yt(t)) E V(A) 
and consequently 

Yt lr E L(XJ(o, T; L2(ri)), ~Y I E L(XJ(o, T; L2(r1)). 
1 u"( r1 

By the result of Proposition 2.1 and assumptions (2.2i) and (2.2ii), we obtain 

IVy(t)l~ + IYt(t)l~ + ~ 1t 1Ytlf1 dt :=:: c[IVuol~ + lvol~ + luol~]. (2.10) 

Since V(A) is dense in E, the above inequality can be extended by density to all u0 , 

v0 E Hf. 0 x L2(S1). Moreover, from hypothesis H-1 (iii) and from (2.10), it follows 

that g(yt lr) E L2(0, oo; L2(ri), and so from the equation we obtain ~ E L2(:L1) 

as desired for (2.3) 

Remark 2.1. By using the technique from Proposition 2.9 [3], one could show that 

if g is also Lipschitz continuous then V(A) c {u E H 2(S1) n Hf.0 (S1), v E Hf.0 (S1)}; 

therefore, for all (yo, YI) E V(A) the solution (y, Yt) satisfies y E £CXl[O, T; H 2 (S1)] n 
Wf'[O, T; Hf.0 (S1)]. 

We consider next the following approximation of equation (1.1). With l ...... oo as 

the parameter of approximation, 

Yltt = IJ.yl- fot(Yt) inn X (O,oo), 

~ = -g(yu lr)- Jylt lr -(fll(Yt) lr) on r1 X (0, oo), 

Yl =0 onro X (O,oo), 
(2.11) 

Yt(t = 0) =Yo E Hf.0 (S1), Yu(t = 0) = Y1 E L2(S1), 

where the fil are defined by 

{ 

fi(s), lsi :::; l 

fil ( s) = fi ( l)' s ::::: l 

fi(-l), s:::; -l 

i = 1, 2. (2.12) 
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Notice that for each value of the parameter l, the functions fil, i = 0, 1, and 

g1(s) = g(s) + is satisfy the hypothesis of Theorem 2.1.2 Thus, there exists a 

solution (y1, Ylt) of (2.11) such that 

Yl E C(O, oo; Hf0 (0)) n C 1 (0, oo; L2(f!)) 

and 

~~ E L2(0, oo; Hfo (0)), Ylt 1r1 E L2(E1), 9!(Yt) 1r1 E L2(0, oo; Hf0 (0)). (2.13) 

We shall prove that the above sequence of solutions Yl(t) has, on a subsequence, an 
appropriate limit which is a solution of the original problem (1.1). To accomplish 

this, we need the following. 

Lemma 2.1. Under the assumptions of Theorem 1, we have, as l---+ oo and u1 ~ u 

in H 1(n), 

fo F01(u) dO+ i Fu(u lr) dr ~ C(luiHl(OJ), 

{ 

(i) !I1(ul lr)---+ fi(u lr) in L2(r) 

and 

(ii) !01(ul)---+ fo(u) in L2(f!), 

where the constant C(luiHl(OJ) depends only on the H 1 norm of u. 

Proof of Lemma 2.1. Let u E H 1 (0). By Sobolev's Imbeddings, 

(2.14) 

(2.15) 

{ 
H 1 (0) c L...an..._(O), H 112 (r) c L~(r), n > 2, 

H 1(0) C L:~~), H 112(r) c Lv(r;~ 2 
1 ~ p < oo, n = 2, (

2
.
16

) 

and the following injections are compact: 

{ 
H 1(n) c L2ko(n), H 112(0) c L2k1 (r), n > 2; 

H 1(0) c Lp(O), H 112 (r) c Lv(r), p < oo, n = 2. 

According to (H-2) (iii), we get lfo(s)l ~ A+ B lslko, therefore also l!01(s)l < 
A+ Blslko. Hence, F01(s) ~ A1 + B1lslk+1 and 

ll F01(u(x)) dxl ~ l (AI+ B1lu(x)lko+l) dx ~ c(iuiHl(O))· 

For the last inequality, we have used the Sobolev imbedding Lko+I(O) c H 1 (0). 
Applying the same argument to the term F11(u lr) (after using the Trace Theorem 

and injections (2.16)), we arrive at (2.14). As for (2.15) (i), we write 

i I!H(ul lr)- fi(ul lrWdr ~ 2 [i, lfi(ul lrWdr1 + lr, I!I(l)l +I !I( -l)l2drt], 
(2.17) 

2 Here, without loss of generality, we have assumed that fi(s) is locally Lipschitz. Otherwise, 

it is enough to define fH(s) = ]i(s), lsi :<:::: l, where J1(s) is a suitable Lipschitz approximation of 

h(s). 
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where rt :::: {x E r : \uz(x)\ > l}. Then, by Sobolev's Imbeddings, we have for 

n > 2, 

therefore 

(2.18) 

Analogously, for n = 2 the above inequality is valid with any exponent for l. 

By assumption (H-3) and by (2.16), (2.18), 

f \ft(uz lrW drz :s: c f luzl 2k 1 drz 
lrt lrt 

(2.19) 

since k1(n- 2) < n -1. 

(2.20) 

where C(\uk\Hl(n)) is a constant depending only on \uk\Hl(O)· Combining the 
results of (2.17), (2.19), (2.20) gives (2.15i). The proof of (2.15ii) is similar, hence 

omitted. 

By using regularity properties (2.13), we are in a position to apply the energy 

equality (see Proposition 2.1); for each t > 0, we obtain 

Ez(t) + 21t l Yzt(g(yu) + ~yu)drds = Ez(O), (2.21) 

where Ez(t) is defined by (1.6) withy (respectively f) replaced by yz (respectively 

fz). By result (2.14) of Lemma 2.1, we obtain 

From hypothesis (H-1) and from (2.21), (2.22), we infer that 

IYuiL2(E) :S C(IYoiH 1 , IYI\£2), 

1Yzlc(o,T;Ht0 (n)) + \Yu\c(o,T;L2(n)) :S C. 

(2.22) 

(2.23) 

(2.24) 

If r 0 -1- 0, then \Y'u\£ 2 (n) is an equivalent norm in Hf. 0 (!1) and (2.23), (2.24) follow. 

Otherwise, we also need to obtain an estimate for IYI\£2(11)· But we have 

hence using Gronwall's Lemma we obtain the desired estimate. 
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Therefore, on a subsequence we have 

Yt ---+ y weakly in H 1(n x [0, T]) 

and by [17] and the Trace Theorem, 

Yl lr---+ Y lr strongly in L00 (0, T; L2(r)), 

Ytt lr---+ Yt lr weakly in L2(E). 

(2.25) 

(2.26) 

(2.27) 

Hypotheses (H-1)-(H-3) together with the compactness of the imbeddings in (2.16) 
and (2.26) also give 

fo(Yt) ---+ fo(y) in Loo(O, T; L2{f2)), 

!I(Yt lr)---+ fi(y lr) in Loo{O,T;L2{r)), 

g(ylt lr) __.go E L2(E) weakly in L2(E) for some go E L2(E). 

(2.28) 

(2.29) 

(2.30) 

Let Yt(Ym) be the solutions to (2.11) corresponding to the parameter l (resp. m). 
Then from the energy identity 

l\7(yl - Ym)(t)IL(n) + I(Ylt - Ymt)(t)II2 (fl) 

+ t f (g(ytt lr) - g(Ymt lr)HYtt lr -Ymt lrl dr1 dt 
lo lr1 

~ [i + !] h
1 

IYttl 2dE1 + [i + !] J IYmtl 2dE1 

+ r IYlt- Ymtll!u(Yt)- !lm(Ym)ldEl + r IYtt- Ymtllfot(yt)- fom(Ym)ldQ. 
J~l }q 

{2.31) 

The result {2.15) of Lemma 2.1 together with {2.25), {2.27) and (2.23) imply the 

convergence to zero {when l, m---+ oo) of the last two terms on the RHS of {2.31). 

Similarly, by {2.27) the first two terms on the RHS of {2.31) converge to zero as 

well. Thus, we have obtained 

Yt ---+ y in C[O, T; Hf0 {0.)] n C1 [0, T; L2{f2)] {2.32) 

and 

1 ,E~oo l
1 
(g(ylt lr) - g(Ymt lr))(Ytt lr -Ymt lr) dE1 = 0. {2.33) 

From (2.27), (2.30) and {2.33), we also obtain 

!lim [ { g(ytt)Ytt - f g(ytt)Yt - f 9oYtt] + lim { g(Ymt)Ymt = 0. 
-+oo J~l J~l J~l m-+oo J~l 

Hence, again using {2.27), {2.30) and changing m to l, we obtain 

2 lim { g(ytt)Ytt = 2 { 9oYt· 
l-+oo J~l J~l 

{2.34) 
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But (2.34) combined with (2.27), (2.30) and the monotonicity of g, by virtue of 
Lemma 13, p.42 [3], yields 

(2.35) 

This (together with (2.25)-(2.30)) allows us to pass to the limit in equation (2.11) 

giving 

with the regularity 

Ytt = ~y- fo(Y) in V'(Q), 

~~ = -g(yt lr)- ft(y lr) in £2(0, oo; rl), 

y(O) =Yo, Yt(O) = Yt. 

The proof of Theorem 1 is thus complete. 

(2.36) 

The uniqueness statement of Corollary 1 follows from a standard energy estimate 

which can be justified by virtue of Proposition 2.1. The reason why we can replace 
global Lipschitz continuity of ft with local Lipschitz continuity is that we have a 

priori bounds for the solutions, given by the energy estimates. Indeed, let y = y1 -y2 

where y1 , y2 are two possible solutions satisfying regularity properties as in Theorem 

1. By virtue of Proposition 2.1, we are in a position to apply the energy estimate; 

IV''fi(t)IL(n) + liit(t)IL(n) + ao lot liit(s)IL(rl) ds 

~lot l/o(Yt)- /o(Y2)1L2(n)IYt(s)IL2(n)ds 

+lot ift(yt)- ft(y2)IL2(r)liitiL2(r)ds 

~ C(E(O)) [lot (IV'iiiL(o) + liitiL(n))ds] 

+ C(E(O)) [ L: 1t (IV'iiiL(n) + eliit1L(r1 ))ds]. 

It remains to prove Proposition 2.1. To accomplish this, we prove the following 
approximation result. 

Lemma 2.2. Assume that a given function u E C[O,T;H1 (n)] n C 1 [0,T;L2 (n)] 
satisfies (2.1). Then, there exists a sequence of functions 
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Utt ---t Ut 

!b!:J. ---t au 
8-y 8-y 

in C[O, T; H 1(n)], 

in C[O, T; L2(n)], 

in L2(:E1), 

in L2(:E1). 

(2.38) 

Proof. Let !1 be any sequence in C[O, T; Hf0 (n)] such that !1---tf in £ 1 (0, T; L2(n)]. 
Consider the sequence of linear equations 

Vttt = tl.v1 + !1 in Q, 

v1(0) = vw, vu(O) = Vll inn, 

VI= 0 on :Eo 
(2.39) 

8 
8-y VI + Vtt = 9l on :E1, 

where (v10 ,vll) E 'D(AF) = {(x,y) E H 2(n) x H 1(n) : x = 0 on r 0 , f-rx = 

-yonri} with AF [~] = [~[u-Nv]] and (v10 ,vll) ---t (u0 ,ui) in Hf0 (n) x 

L2(n). Moreover, we have selected a sequence 91 such that 

! 91 E H 1(0, T; L2(r1) n C(O, T; H 112(ri)), 

9t(t=0)=0, 

8u 
91 ---t a, +ut lr in L2(:E1)· 

(2.40) 

It is well known [6] that the operator AF generates a strongly stable sernigroup of 
contractions eAFt on the space E = Hf0 x L2(n). Moreover, the operator 

(L9)(t) := t eAp(t-r) [0 ] dr 
} 0 AN9(r) 

(2.41) 

is bounded from £ 2 (:E1) ---t C[O, T; E]. We shall show that for all 9 such that 

9(t = 0) = 0 we have 

d 
\Lg\c\O,T;H2 (n)] +I dt LgjC[O,T;Hl(n)] ::::: C[I91Hl(O,T;L2 (r))] + l9lc[o,T;Hl/2(r)J· (2.42) 

Indeed, we can write 

_ -1 0 Apt -1 0 Ap(t-s) -1 0 [ ] [ ] 1T [ ] (L9)(t)- AF AN9(t) - e AF AN9(0) + o e AF ANg(s) ds. 

Hence, 

(Lg)(t) = [ N~(t)] + AF1 (Lg)(t). 
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Since N E .C(H112(rt) --+ H 2(0)) and AJ;1 L E .C(L2(~1), C(O, T; V(AF )), we ob

tain (with g(t = 0) = 0) 

ILglc(o,T;H2(0))J :::; C[lgiHl(O,T;L2(rl)] + lglc(o,T;Hl/2(rl)Jl· (2.43) 

To establish the regularity of ftLg, we notice that 

A-1 [ 0 ] = [Nu] 
F ANu 0 ' 

and the conclusion in (2.42) follows from (2.43) and (2.41). On the other hand, the 

solution V! to (2.39) can be written as (see [2]) 

[ v1(t)] = eApt [vw] + t eAp(t-s) [ 0 ] ds + Lgl(t). 
vlt(t) vn } 0 fl(s) 

Since [ ~~~] E V(AF) and [~] E V(AF ), by standard semigroup arguments and 

by (2.42) we obtain 

Thus, we are in a position to apply the standard energy identity to equation (2.39). 
Let v1 and Vm be the solutions corresponding to (2.39). We take the difference of 

the two equations, we multiply by V!t - Vmt and we integrate by parts. This gives 

2 2 11t 1 2 IY'(v!- Vm)(t)ln + l(vlt- Vmt)(t)ln + 2 lv!t- Vmtl dr1 ds 
o r1 

:::; t {(fl-fm)(v!t-Vmt)dOds+~ t { lg!-gml 2drl 
lo ln 2 lo lr 1 

+ IY'(vw- Vmo)l~ + lvn- Vmll~· 

Using Gronwall's inequality and passing to the limit, we obtain 

{ 
v1 --+ v in C[O, T; H 1 (0)] n C[O, T; L2 (0)], 

V!t Jr--+ Vt lr in L2(~ 1 ), 

and from equation (2.39), trvl--+ -Vt lr +~~ + Ut lr in L2(~1). Passing to the 

limit in equation (2.39), we obtain 

Vtt = ~v + J, 

v(O) = uo, Vt(O) = u1, 

a au 
-v = -Vt + - + Ut J on ~b a, a, r 

(2.44) 

v lro = O. 
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Since the function u satisfies the same equation (2.44), by the uniqueness of the 
solution to (2.44) v must be equal to u. Thus, the Ut = Vt constructed in (2.39) are 
the desired approximations of the function u. 

Now we are ready to complete the proof of Proposition 2.1. 

Proof. We first derive the energy identity for the approximating smooth solutions 

Ut, 

i(i'Vut(t)iL(o) + iult(t)iL(o)) -1t fr
1 
~~ lr uu df'1ds -1t k ftultdf!ds 

1 2 2 
= 2(i'Vut(O)IL2(o) + iu~t(O)IL 2 (o), 

and then, by virtue of Lemma 2.2, we pass to the limit. 

3. Proof of Theorem 2. We recall thenotationQ =: f!x(O,T), Ei = rix(O,T). 

Proposition 3.1. Assume that the hypothesis (H-4) is fulfilled. Let u E C(O, T; H 1 

{f!)) n C1[0, T; L2{f!)] be such that {2.1) holds. Then 

iT-a [I'Vu(t)IL<o) + lut(t)IL(o)Jdt ~ C[IV'uiL,.,[o,T;L2(o)J + lutli""(o,T;L2(o))l 

+C[h
1 
I :1' ul

2 
dE1 + h

1 
lutl 2dEl + k lfl 2dQ] + CTiuiL[o,T;Hli2+P(O)]' 

{3.1) 

where the constant C does not depend on T, and a, 1/2 > p > 0 are small enough, 

arbitrary but fixed. 

Proof. By virtue of Lemma 2.2, it is enough to prove inequality {3.1) for smooth 

solutions u E C[O, T; H 2{f!)] n C1 [0, T; Hf0 {f!)] satisfying {2.1). We multiply (2.1) 

by h · 'Vu with h = x- x0 for some x 0 E JR.n and we integrate by parts (see [6], [10]). 
This gives 

f Utth'VudQ = f UthV'udf!i~- 1/2 f hf'iutl 2dEl + ~ f iutl 2dQ, (3.2i) 
JQ lo }r;l JQ 

k l:l.uh'VudQ =1/2 l ~~~~ 2 
h · 7dE1- 1/2 .h

1 
IY'rul 2h · 7dE1 

(3.2ii) 

-l
1 

h · 'Vru ~udE1 + (~ -1) k i'Vui 2dQ, 

where 'V r stands for tangential gradient. 
From (3.2) and (H-4), we obtain 

i k [iutl~ - i'Vui~] dQ + ~ k iV'ui 2dQ 

~ C[lutlioo(O,T;£2(0)) + IV'ulioo(O,T;£2(0)) (3.3i) 

+ [ iutl 2dEl + [ IY'ul2dE1 + [ lfl 2dQ]. 
}r;l }r;l JQ 
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Multiplying (2.1) by u and integrating by parts gives 

k[-lutl 2 + IVul]2dQ ~ c[i
1 
[~~:~1 2 

+clu1 2
] dE1 

+lutiL"(o,T;L2(0)J + lu1L"co,T;L2(0)) + ~ k l/1 2dQ + c k iui 2dQ]. 

(3.3ii) 

where c > 0 can be taken arbitrarily small. Combining (3.3i) with (3.3ii) and 
applying trace theory yields 

1T [IVu(t)ILco> + lut(t)ILco>l ~ C[IVuiL"!o,T;L2(o)J 

+ lut1Lo(o,T;L2(o))] +C[l 1 1~u~ 2 dEl (3.4) 

+ ll lutl 2 + 1vu1f dQdE1 + k ltl 2dQ + k lul 2dQJ. 

From Lemma 7.2, inequality 7.5 in [14], we have 

iT-ex £
1 

IV.,.ul 2drldt ~ cp,ex[ll 1:~ur + lutl 2dEl 

+ CTiui~2[0,T;Hl/2+P(O)] + k l/l 2dQ], 

(3.5) 

where a, pare as in the hypotheses. Applying (3.4) with (0, T) replaced by (a, T-a) 

and using the regularity result in (3.5) yields the final result in (3.1). 

By virtue of Theorem 1, the solution (y, Yt) to (1.1) possesses the regularity 
properties listed in (2.1). Thus, we are in a position to apply the energy identity of 

Proposition 2.1. Hence, for all solutions (y, Yt) of (1.1) we have 

E(t) + t { g(yt)Yt dr1 ds = E(O). 
Jo Jr1 

(3.6) 

Similarly, the result of Proposition 3.1 holds for these solutions as well. Hence, by 

(3.1) and (3.6), 

iT-ex [IVy(t)ILco> + IYt(t)ILco)l dt ~ C[E(T) 

+ ll [g2 (Yt) + f?(y) + 1Ytl 21 dEl + k f:i(y) dQ + IYI~2[0,T;Hl/2+P(0)]1· 

On the other hand, for a fixed a, 

1ex [IVy(t)ILco) + IYt(t)ILco)l dt + h~ex [IVy(t)ILco) + IYt(t)ILco)l dt 

~ 2aE(O) ~ 2a[E(T) + { (g2 (Yt) + Yi) dE1. 
lr.l 
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Hence, 

f [IY'YI 2 + 1Ytl 2] dQ ~ C[E(T) + f [g2 (yt) + /f(y) + 1Ytl 2] dE1 JQ jE1 

+ h f5(y) dQ + 1Yii2[0,T;Hl/2+P(!1)Jj. 

(3.7) 

From hypotheses (H-2) and (H-3), we obtain 

and by Sobolev's Imbeddings, (2.16) and (3.6), 

where the function C(E(O)) remains bounded for bounded values of E(O). Collecting 

(3.6), (3. 7) and (3.8) and noticing that for any c > 0, 

1Yii2[0,T;Hl/2+P(!1)] ~ 1T ciV'Yii2(!1) + C(c)IYii2(!1) dt, 

we obtain the following. 

Proposition 3.2. Assume (H-1)-(H-4). Let (y, Yt) be a solution to (1.1) guaranteed 

by Theorem 1. Then 

Our next step is to estimate the nonlinear terms appearing in (3.9). 

Proposition 3.3. Assume (H-1)-(H-5). Let y be as above. Let c > 0 be arbitrarily 

small and C(c) be a constant depending on c and possibly on E(O). Then 

(3.10) 

1 ~ {T 1 
Q f5(y) dQ ~ ciE(O)I 1-•ko Jo E(t) + C(c) Q y2dE1. (3.11) 

If k = 1 then the first terms on the RHS of (3.10), (3.11) can be omitted and C(c) 
is independent of E(O). 

Proof. It is enough to prove this result fork> 1 (the case k = 1 is obvious). 
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Recalling hypothesis H-3 and applying interpolation inequalities for Lp spaces, 
i.e., 

1 1- q q 
-=--+
p 2 r 

with p = 2k1, r = 2k1 +sand 0 < s < 1/2, we obtain 

where 0 < q < 1 is now given by 

s 
q = 1 + -,....----...,... 

k1(2- 2k1- s) 

Using the inequality 

0 h 1 d - 1 bt 0 w1t p = (1-q)k 1 an p = 1_k1 ( 1-q), we o am 

1 1 
-+-=1 
p j5 

For s < 2;::2
2 - 2k1 (which is positive by (H-3)), hypothesis (H-3) and Sobolev's 

Imbedding (2.16) combined with the Trace Theorem gives 

Combining the above inequality with (3.13) yields 

(3.14) 

Notice that 

jy(t)!Hl(O) ::::; CE(O). 

Indeed, if ro =1- 0 then the above inequality follows from Poincare's Inequality. 

Otherwise, according to (H-5) (ii), we have either F0 (x) ;::: cx2 or F1(x) ;::: cx2 , 

hence 

E(t) ::2': IV'y(t)IL(o) + cly(t)IL(o) ::2': cjy(t)l~fl(O) 

or 

E(t) ::2': IV'y(t)IL(o) + cly(t)IL(r) ::2': cjy(t)lkl(O) 

which together with (3.6) gives the desired inequality. 
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Integrating the inequality (3.14) over (0, T), using 

and rescaling c = cc 1 '1 (1 q) gives 

as desired for (3.10). 

The proof of (3.11) is similar, hence omitted. 

Collecting the results of Propositions 3.2 and 3.3 gives that for any c > 0 (suitably 
small) and k = max{ko, kl}, 

{1- c(E{O)j2(k-l)) 1T E(t) dt ~ C(E(O)){ h
1 

[g2(yt) + Yi(t)] dE1 

+ C(c)[ h
1 

y2dE1 + k y2dQ] + E(T) }· 

(3.15) 

Our next step is to absorb the lower order terms on the RHS of (3.15). This will be 

accomplished by applying a suitable nonlinear version of a compactness argument. 

Lemma 3.1. Assume the hypotheses (H-1)-(H-5). Let (y, Yt) be a solution to {1.1). 

Then forT> To, where To is sufficiently large, we have 

Proof. We shall argue by contradiction. Let Yz(t) be a sequence of solutions to 
( 1.1) such that 

li I~1 Yl dEl + JQ Yl dQ 
l-+~ I~1 Ylt dEl + I~1 g2(ylt) dEl = oo, 

{3.17) 

while the energy of the initial data (yz(O), Yzt(O)) denoted by Ez(O) remains uniformly 

(in l) bounded by, say, Ez(O) ~ M. 
Since Ez(O) ~ M, by the basic energy identity (3.6) we have Ez(t) ::;; M. Hence, 

{ 
Yl--+ y weakly in H 1 (Q) and weakly* in L00 {0, T; H 1 (f!)), 

{3.18) 
Yl --+ y strongly in L2 (E) n L2 (Q). 

Case A. Assume that y f. 0. Then, we first notice that an Aubin's type com
pactness result {see (17)) gives 

Yl --+ y strongly in L00 {0, T; H 1-E(f!)) for c > 0. 
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Then, by hypotheses (H-2), (H-3), it follows easily that 

fo(Yt) - fo(Y) strongly in Loo(O, T; £ 2(0)), 

ft(Yt)- ft(y) strongly in Loo(O, T; L2(r)). 
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Also, by (3.17), Ylt, g(yu) --t 0 in L2(:E). Then, passing to the limit in the equation, 
we get for y, 

! Ytt - !:1y = - fo(y), 

oy 
O"f = ft(y), Yt = 0 on rl> (3.19) 

and for Yt = v, 

y = 0 on ro, 

! Vtt - !:1v = - f~(y)v, 

ov 
- =V =0 onr1 
0"( ' 

v = 0 on ro. 

Now, we consider the three possibilities in (H-5). 

(i) If fo is linear, then we get v = 0 by standard uniqueness results for the wave 
equation. 

(ii) If r 0 = 0, first note that y E L00 (0,T;H1 (n)) implies y E L~(Q) and, 
n-2 

according to (H-2) (iii), f0(y) E Ln(Q). Then for T > 2 diam n we may 
apply the uniqueness result of [15] (see Theorem 2) which yields 

v = Yt = 0. 

(iii) In this case, as in (ii), we get v = 0 using a straightforward adaptation of 

the results of [15]. The main idea is that 0 1 is the intersection of a family 

of balls and outside each ball we can use the technique in [15]. 

Hence, we have proven that Yt = 0. Then, by (3.19), we get for y the elliptic 

equation 

Multiplying by y, we obtain 

{ 
- !:1y = -fo(y), 

oy 
av = -It (y) on r 1· 

(3.20) 

Hence, 'Vy = 0. If r 0 =f. 0, it follows that y = 0. If r 0 = 0, by (H-5) (ii) and 
(3.20) we also obtain that either y = 0 in n or y = 0 in r, therefore y = 0. This 
contradicts our assumption that y =f. 0. 

Case B. Assume that y = 0. Denote Ct = (IYdL(E1 ) + IYdL(Q))112 , Yt = J, · Yl· 

Clearly, 
(3.21) 
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Also, because y = 0, we get Cz --t 0 as l --t oo. By (3.17) we obtain 

Ylt --t 0 in L2(EI). (3.22) 

On the other hand, from (3.15) and (3.6) we obtain, after using the estimate 

{T E(t) dt?. TE(T)?. TE(O)- T f Ytg(yt) dEt 
lo JE1 

and taking e suitable small, 

and again recalling (3.6), 

E(t)::; E(O)::; Cr(E(O)){ h
1 

[g2 (yt) + Yt + y2] dEt + h y2dQ }· (3.23) 

Dividing both sides of (3.23) (applied to the solution yz) by IYziL{El) + IYziL(Q) 
and invoking (3.17) yields 

IV''Yz(t)IL(n) + I'Ytt(t)IL(n)::; Cr(E(O)), 0::; t::; T. (3.24) 

Therefore, if r 0 =f. emptyset, fjz is bounded in H 1(Q). If we are in case (ii) of (H.5) 
then we also obtain in the L.H.S. of (3.24) the term ei'YziL(n) or ei'YziL(r)• therefore 

we still get boundedness of fjz in H 1(Q). Thus, on a subsequence we have 

{ ~~~~ 
yz--ty 

weakly in H 1(Q), 

strongly in L2(E) n L2(Q). 
(3.25) 

Moreover, fjz satisfies the equation 

- A- fo(Yz) 
Yltt = uyz - ---a;-, 

Yl = 0 on Eo, (3.26) 

8 - -g(ytt) - It (yz) 
a"(Yl = Cz 

In order to pass to the limit in (3.26), we need to determine the limits of nonlinear 
terms. 

Proposition 3.4. 

g(ylt) 0 . L (~ ) 
-- --t tn 2 .L.t 

Ct 

fo(yz) --t f~(O)fj in L2(Q) 
Ct 

ft(yz) --t fHO)y in L2(E) 
Ct 

as z-oo, (3.27) 

as z-oo, (3.28) 

as z- 00. (3.29) 
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Proof. {3.27) follows directly from {3.17). For {3.28), we estimate 

Then, according to (H-2), we get 

{3.30) 

where Pe = suplxl~e l/0{0) - !o£x> I, Pe --t 0 as c ---+ 0. It is enough to consider the 

case when ko > 1. Then, by {3.30), we get 

1 1Yd2ko 1 

fl.t :::; liJzli2(Q) · P~ + C · -C2 (1 + 2ko-2) dQ 
iYd>e l c 

< 
1

-
1
2 2 c 1 I l2ko 1- 12 2 c 1- l2ko c2ko-2 

- Yl £2(Q)Pe + e · C2 · Yl L 2k (Q) = Yl £2(Q) · Pe + e • Yl L 2k (Q) l · 
l 0 0 

But y1 is bounded in L00{H1{0)); therefore, according to Sobolev's Imbeddings, Yl 
is also bounded in L2ko(Q). Then as l --t 0 we get 

lim sup Llt :::; sup liJd£2(Q)P~, 
l-+oo l 

and as c ---+ 0, 
lim Llt = 0; 
l-+oo 

that is, we get {3.28). 
Also, {3.26) may be proven in the same way. 
Applying the result of Proposition 3.4 to equation {3.24) and passing to the limit 

l --t oo gives 

{ 
Ytt = Lli} - f~(O)i}, 

~fj = -f~(O)fj on :E1. 

{ 
i} = 0 

Yt = o 

Thus, v = Yt E C[O, T; L2(0)] satisfies 

l v; = ~v- f~(O)v, 

B-y v - 0 on :E1. 

v ir:=O. 

{3.31) 

(3.32) 
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We are in a position to apply standard uniqueness results for the wave equation, 

which yield for T large enough, 

v = Yt = o. 

Returning to (3.31) and exploiting (3.33) we obtain 

! !1fJ- J~(O)fJ = o in n, 

:'Yy = - ff (O)y on Et, 

f)= 0 on Eo. 

(3.33) 

(3.34) 

As in case A, multiplying the first equation in (3.34) by f) we get f) = 0, which 

contradicts (3.21). 

Using inequality (3.15) with c: suitably small and (3.16), we obtain the following. 

Proposition 3.5. LetT> 0 be sufficiently large. Then 

Our final estimate is the following. 

Lemma 3.2. With p(s) defined by (1.6) and T > 0 sufficiently large, we have 

Proof. Denote 

p(E(T)) + E(T)::; E(O). 

EA:::: {u E L2(E1): lui 2: N a.e. }, 

EB = El- EA. 

From hypothesis (H-1) (iii), we have 

On the other hand, from (1.3) and (H-1) (ii), 

{ (yz + l(Yt)) dEB::; { h(Yt9(Yt)) dEA. 
J~B J~B 

By Jensen's inequality, 

(3.36) 

(3.37) 
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Combining inequalities (3.35), (3.36), (3.37) with the result of Lemma 3.1 gives 

Setting 

we obtain 

E(T) :::;CT(E(O)) ( (Mt + M21) ( l
1 

Ytg(yt) dEt) 

+ mesE1 h ( l
1 

Ytg(yt) dEt)) . 

and 

p(E(T)) :::; { Yt g(yt) dEt = E(O)- E(T), 
Jr.l 

which gives the result of Lemma 3.2 

To conclude the proof of our theorem, we need the following. 

(3.38) 

Lemma 3.3. Let p be a positive, increasing function such that p(O) = 0. Since 

p is increasing, we can define an increasing function q, q(x) = x- (I+ p)-1(x). 
Consider a sequence Sn of positive numbers which satisfies 

(3.39) 

Then Sm :::; S(m) where S(t) is a solution of the differential equation 

d 
dt S(t) + q(S(t)) = 0, S(O) = s0 • (3.40) 

Moreover, if p(x) > 0 for x > 0 then limt-+oo S(t) = 0. 

Proof. Use induction. Assume Sm :::; S(m) and prove that Sm+l :::; S(m + 1). 

Inequality (3.39) is equivalent to 

(I+ p)sm+l :::; Sm 

and since (I +p)-1 is monotone increasing, Sm+l:::; (I +p)-1sm, hence Sm+l -sm:::; 

-q(sm) or 
(3.41) 

On the other hand, since q is an increasing function, the solution S(t) of equation 
(3.40) is described by a nonlinear contraction. In particular, 

S(t):::; S(r) for all t;::: T. (3.42) 

Integrating equation (3.40) from m tom+ 1 yields 

1m+l 
S(m + 1)- S(m) + m q(S(r)) dr = 0. 
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