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I. Introduction and statement of principal results. Let A = {} denote a sequence
of positive numbers, 0 < X, < X2 < • • • , let 0 < T < =o and let E( A, T) be the closed
subspace of L2(0, T) spanned by the functions

pk(t) = exp (—\kt) (k = 1, 2, • • •)• (1-1)

It is well known (see, e.g., [10]) that if

±r<(L2)k = l A k

then E(A, T) is a proper subspace of L2(0, T) and, moreover, if we designate by E(n, A, T)
the closed subspace of E(A, T) spanned by the functions pk , k ^ n, then

Pn <$ E(n, A, T).

If rn G E (n, A, T) is the unique element such that

||p» - rn\\LHa,T) = min ||p„ - r||L.(0.r) (1.3)
rE.E (n, A , T)

then the functions

q" = IIP. - r.||i",o.r, (L4)
all lie in E(A, T) and the sequence \qn} is a biorthogonal sequence for (pn\, that is

(<7n , Pt)t"(0,7') = &nk = 1, U = k,

= 0, n ^ k.
This is clear from (1.3), which implies that (qn, r)L>((liT) = 0 for all r G E(n, A, T) and
from the fact that

(<?" > Vu)l'{0,T) — {in iPt^L'iO.T) (in J OLi (0, T)

- ( Vn - rn _ \

Mbn - r.lli-W.r, n /
= 1.

La (0, r)
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It is of considerable interest for various applications (one of which is described in
the final section of this paper) to be able to estimate the norm of qn :

I |?n I |ta(0, D = TT~ —n (1.5)
II Pn ~ 'n||L»(0,D

A number of results of this type are already available for individual sequences A satisfying
certain additional restrictions. Luxemburg and Korevaar [8] have shown that for complex
{A*} satisfying

Re X„ > 5 |X„| , |X„ — X„| >\m - n\ p

(5 and p positive constants) and (1/|X„|) < » one has

||«»IU«<o.d < exp (e Re X„) (n = 1, 2, • ■ •)

for any e > 0 provided that n > N, N sufficiently large. Also, the present authors have
shown in an earlier paper [6] that if the X„ are real and satisfy the asymptotic relationship

Xn = K(n + a)e + o(nff-1) (n -> ») (1.6)

where K > 0, f) > 1 and a is real, then there exist constants K > 0, Kp > 0 such that

||g»IU*«..-, < K exp [(K, + o(l))X„1/?J in > 1) (1.7)

where o(l) indicates a term tending to 0 as n tends to infinity. The constant Kt, is ex-
plicitly computed in [6].

The proofs of the above results do not yield much, if any, information on the way in
which the constants K, Kp , depend on the particular sequence A in question. In this
paper we present results which are "uniform" in that the constants which appear in
the formulae for estimation of ||<f»||f«>.r) are independent of the particular sequence A,
provided that A is taken to lie in a class of sequences satisfying certain properties.
Thus these constants depend only upon the conditions imposed on A rather than upon
the particular sequence A.

As in [6], we begin by studying the problem formulated above in the special case
where T = + ». The first result, proved in Sec. 2, is

Theorem 1.1. Let p be a positive number and let 9l(«) be a positive integer-valued
function defined for «> 0. Denote by £ (p, 91) the class of all sequences of positive numbers
A = {X„} that satisfy the conditions

Xi > P, X„+I — Xn > p (n = 1,2,-. •)> (1.8)

E f < €, € > 0. (1.9)n = 91(6)

Then there is a positive function K(e), defined for t > 0 and determined solely by p
and 31, such that

||?»IU»(o.») < K(t) exp (eXn), (ft = 1, 2, • • •) (1.10)

where {g„} is the biorthogonal sequence for |pk) (pk given by (1.1)) described above
and A is any sequence in £(p, 91).

We remark that 91 would ordinarily be taken to be a decreasing function of e satisfying
lim«10 9l(«) = oo.
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A result more precise than the foregoing can be obtained if we impose more stringent
requirements on the sequence A. This is done in Sees. 3 and 4, where we prove

Theorem 1.2. Let the function F be convex and strictly increasing on [0, °°), with

£m<" (111'112)
and let G be the inverse of F, i.e. G(F{v)) = v, v £ [0, ). Assume that for some constant
C > 0

G(uv) < CG(u)G(v) (0 < u, v < »). (1.13)

Finally, let I be a positive constant. We denote by 9Tl(F, I) the class of all sequences of
positive numbers A = {} which satisfy

Wj_ = (?(Xi) > I, (1-14)

wk+l — wk = G(\k+1) - G(\k) > I (k = 1, 2, • • •)• (1.15)

Then there is a constant K, determined solely by I and F such that

||g»IU>(o,«) < exp [KG(\n)] (n = 1, 2, • • •) (1.16)

where {qn} is the biorthogonal sequence for \pkj described at the beginning of this
section and A is any sequence in 91Z(F, I).

Once these uniform results have been obtained in the case T = °° one can obtain
corresponding results for T < °° rather simply by means of a "uniform" version of a
theorem of Schwartz [10] on "comparison of norms". We describe briefly how this is
done. Let pk, as in (1.1), be thought of as an element of L2(0, °°), and let pk denote the
restriction of pk to the interval [0, T], where T is a fixed positive number, 0 < T < <».
Clearly, pk El L2[0, T], The restriction operator R : L2(0, co) —> L2(0, T) is bounded
(by 1) and maps linear combinations of the {pk} into linear combinations of the {ftk}.
Then it is clear that its restriction S to E(A, °°) maps this space into E( A, T) (and, as
it is easy to see, with norm 1). The above mentioned result of Schwartz enables us to
conclude that S has a bounded inverse whenever (1.2) holds. Our "uniformization"
of this result is

Theorem 1.3. Let T (0 < T < «>) be fixed and let A be a sequence in a class
£(p, 91) as described in Theorem 1. Then the operator S maps E( A, °°) onto E( A, T)
in a one-to-one fashion and thus has an inverse S'1 :E(A, T) —> E(A, co). Moreover,
there is a positive constant B determined solely by p, 91 and T such that

ii-ni < b (i.i7)
for any sequence A £ £(p, 91).

The proof will be given in Sec. 5. Note that Theorem 1.3 does not contain Schwartz'
result as the "separation condition" (1.8) is not used by Schwartz.

We note next that if 311 (F, I) is a class of sequences as described in Theorem 1.2,
then 311 (F, I) is included in one of the classes £(p, 91) of Theorem 1. In fact, we may
take p = F(l). For, since F is increasing, Xj = F(wi) > F(l) = p. On the other hand,
let / be the function whose graph is a straight line through (wk , F(wk)) and (wk+i ,
F(wk+0) (fc > 1), i.e.
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M = F(wk) + (^Wk+,) _ - wk)
\ +1 Wk /

and let

which passes through (0, 0) = (0, F(0)) and (I, F(l)). Since F is convex and 0 < I < wk ,

/(0) < F(0) = /(0), f(wk) < F(wk) = j(wk).

Since / and / are both affine functions, the above inequalities imply that

= F(wk+1) F(wk) ^ ]'(y) = .
wt+1 - wk - 11

Then the inequality wk+l — wk > I implies F(wk+i) — F(wk) > p, i.e. \k+i — Xk > p
(k = 1, 2, • • •). To find 31(e), we note that, for n > 2,

V — = V 1 < V 1 fWk < A f dv 18-,
fe! A* ^ F(wk) - f^wk - Wt-y Jwt_, F(v) - I JWn_, F{v)

From (1.18) we see that we may take 91(e) to be the least integer n for which n > 2 and

A r <■i €'
Accordingly, we have

Corollary 1.4. The result of Theorem 3 is valid for sequences A in a class 3Tl(F, I)
as described in Theorem 2; the constant B in (1.17) is determined solely by F, I and T.

We proceed now to the construction of biorthogonal sequences in L2(0, T). Since
both E(A, °°) and E(A, T) are Hilbert spaces, the adjoint S* :E{A, T) —> °°)
is well defined; moreover,

IK'S"1)*!! = ||S-1H < B( = B(p, 91)) (1.19)

if A lies in a class £(p, 31). Since

((S )*qn J Pk) L2 {0, T) = (in , S Ph)L'( 0,«)

= (in , Vk>L'{0,co) = S„k ,

we conclude that the sequence {pk} has a biorthogonal sequence {} in E(A, T) given
by <ln = (S~l)*qn (n = 1, 2, • • •). Inequality (1.19) implies

I I I i3(0. D ^ B | |Q,n||z,»(0.oo) •

Thus we have proved
Theorem 1.5. The results of Theorems 1.1 and 1.2 remain valid with L2(0, °°)

replaced by L2(0, T) (0 < T < °°) provided that

a) In Theorem 1.1, inequality (1.10) becomes

||gn|U*(o.r) < BK(e) exp (eX„) (n = 1, 2, ■ • •); (1.20)
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b) In Theorem 1.2, inequality (1.16) is replaced by

||g„IUo.r, < B exp (KG(\n)) (n = 1, 2, ■ • •)• (1.21)

It should be noted that the biorthogonal elements qn of Theorems 1 and 2 lie in
E{ A, oo); consequently, the biorthogonal elements q„ in Theorem 4 lie in E(A, T). This
implies that qn and qn have minimal norms in L\0, oo) and L2(0, T), respectively, as
compared with other possible biorthogonal elements for the sequences \pk) and \pt\
respectively. Thus, while improvements over the bounds obtained in Theorems 1, 2 and 4
are not ruled out, such improvements cannot arise out of a different specification of
the biorthogonal elements. (Since E(A, oo)1 and E(A, T)x are both known to be infinite-
dimensional in L2(0, oo) and L2(0, T), respectively, there are infinitely many possible
biorthogonal systems for \pk\ and \pk[, respectively.)

We note also that when working in L2(0, oo) we need Xk > 0 to ensure that pk lies
in L2(0, oo). This is no longer necessary in L2(0, T); on the other hand—as will be seen
in Sec. 6—the condition \k > 0 is an inconvenient restriction in some applications. Let
us consider, then, a sequence A = {XA} with the property that A + l0 = {X* + l0]
satisfies (1.8) and (1.9) or (1.14) and (1.15), that is, lies in a class £(p, 91) or a class
3Tl(F, I). We define E{A, T) as we did E(A, T) above. Let \k = \k + l0 and

pk(t) = exp (—(Xt + l0)t) = exp (—\kt) (0 < t < T, k > 1).

Theorem 4 yields bounds on the norms of biorthogonal elements qrl for this sequence
in L2(0, T). It is very simple to verify that the functions qn(t) = qn(t) exp (— l,,t) (0 < t <
T, n > 1) are biorthogonal to the functions pk(t) = exp (— %kt) (k > 1) in L2(0, T).
Since |exp ( — l0t)\ < 1 for t > 0, we obtain immediately the following corollary to
Theorem 1.4.

Corollary 1.6. Let £(p, 91) and W.(F, I) denote classes of sequences A such that
A + l0 lies in £(p, 91) or ;)Yl(F, I), respectively. The real number l0 is assumed non-negative
but may be different for different sequences A. Then, for n = 1, 2, • • • the biorthogonal
elements q„ satisfy

||$»IUvo,r> < BK(e) exp [e(X„ + l„)], A G £(p, 91). (1.22)

ll^nlUvo.D < B exp [KG'(X„ + l0)], A E £(F, I). (1.23)

where K(t), K and B are as described in Theorems 1, 2 and 3.
There is no reason to suppose that Corollary 6 is the best possible in any sense.
We shall apply in Sec. 6 the results herein described—specifically, inequality (1.23)—

to solve a boundary controllability problem for the heat equation in a n-dimenslonal
sphere. It turns out that we will need to deduce an estimate of the type of (1.23), but
for the L°(0, T)-norm of qn instead of the L2(0, T')-norm. This can be obtained by an
almost direct application of Corollary 1.6. We refer the reader to Sec. 6 for statements
and proofs of these estimates as well as for a precise description of the control problem.
We note that the results contained in Sec. 2 are not used for the control problem.

In addition to the other results mentioned earlier, we also refer the reader to the
paper of Mizel and Seidman [9], who have obtained the uniform result expressed in our
Theorem 1.1 using essentially the hypotheses of our Theorem 1.2 with P(x) = /3 > 1.
Moreover, our proof of Theorem 1.3 utilizes the same method which they employed in
their proof of the analogous assertion in [9]. They also give application of this result to
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parabolic partial differential equations. Indded, they study an observability problem
which is dual, in a certain sense, to the control problem we treat in Sec. 6.

2. Proof of Theorem 1.1. We make use of (1.5) combined with the explicit calcula-
tion of ||p„ — r„|| carried out by Kaczmarz and Steinhaus [7], According to them,

a \ 1/2 n [1 + <XA;)]
lkn||tMo.=o) = [f) ^  (2.1)

IT |1 - <K/h)\
1 = 1

where II' indicates that j n in the infinite product.
The estimation of the infinite product in the numerator of (2.1) is trivial. Given

H (> + £)-1H1 + fc) ,4 (1 + £)-
Since X, > p (j > 1),

9t(e)-l / \ \ / \ \31<«)-1U + {l +7)
For the remaining factors we use the inequality 1 + x < e" valid for x > 0.

fl (l + T1) < II exp = exp |Xn( X) 7") < exP (fXn)>
j = 31 ( e) \ Ay/ j = 31 ( «) \Ay/ L V=3l(«) Ay/ J

the last inequality following from (1.9). Thus,

n(l+^) <(l+ jY'1 1 exp (*X„) (» ^ 1). (2.2)

The estimation of the infinite product in the denominator of (2.1) requires more care'
We shall use a method that appears in the paper of Luxemburg and Korevaar [8]-
Divide a sequence A £ £(p, 31) in three parts, depending on a given integer n:

Ai(«) = {X,- £ A; X, < ^X„),

A2(ra) = {X,- £ A; |X„ < X,- < 2X„},

A3(n) = {X, £ A; X,- > 2X„).

Plainly,

n
X ,• £ A i (n)

1 ~ A, > n 1 = 1. (2.3)
X y £ A i (n)

Just as plainly, if n > 31(e),

log ( n |l - H - £ log U-b)> -2k. £ ^ > 2tX„ ,
\X/£A3(n) | A | / X/EA* (n) \ Ay/ X,€A3(n) Ay

where we have used the inequality log (1 — x) > —2x (or, equivalently, e~2x < 1 — x)
valid at least for 0 < x < 5. Accordingly,
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n
X j E A 3 (n)

1   Xn~ X,. > exp ( —2eXn). (2.4)

On the other hand,

n'
X, G A 2 (»)

1 ~~ X, = IT
X / G A a (n)

X, > n- JiirLf'm
X j G A 2 (n)

Tn+Sn

where r„ (resp. s„) is the number of A,'s in A2(n) with X,- < X„ (resp. X,- > X„); note that
in the deduction of (2.5) we have used the inequality

|X; - x„[ > I j - n\p
which is an immediate consequence of (1.8). Now,

r-~^ = E' or < E' r- < E' y (2-6)
Xj€Aj(n) X/GA2(n) X/>Xn/2

We wish to show that we can make this last quantity as small as we wish—uniformly
for all A G J£(p, 31)—by choosing n sufficiently large. We have

E' f- 2' f + EfX j >Xn/2 Ay Xn>Xj >Xn/2 AJ j>n A,-

Let 5 > 0, n > 291(5/5) + 2. Then

E f < E f < 5/5 (2.7)j>n | j>91(5/5)

and

^ 1 /2 \ , n 1 . ^ 1 . 1 4
E x < nU j - 4 o X — 4 Z x ^ X_tS

\„>X;>W2 AJ \An' ^ A» i-ln/2) Ai i-M(6/5) "i O

Combining (2.7) and (2.8) we obtain

(2.8)

E (n > 231(5/5) + 2) (2.9)
X/>X„/2 A,

for any sequence A G £(p, 31). Going back to (2.6), this implies that

rn = VnK , S» = Vn\n (2.10)

where

lim ?j„ = lim vn = 0 (2.11)

uniformly for A G £(p, 3t)-
We recall now Stirling's formula, according to which we have log rn! = r„ log r„ — rn +

5 log 2irr„ + /3(r„) 03(rn) —> 0 as rn = r?„Xn —> <*>) and we use it to show that

log ^n! J = log rj + r„ log ~ - rn log X„

= rn log + 5 log 2irrn + /3(r„). (2.12)
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A similar calculation applies with r„ replaced by sn :

log [sj J = sn log + \ log 2ts„ + ft(s„). (2.13)

From (2.12) and (2.13) we obtain
\ Vn / \ ''nH Xn

2ir(?jnj>n)1/2\n exp [|S(r„) + /3(s„)].'■"(£ -M'&Y]
Combining this with (2.5) and making use of (2.3) and (2.4) we see that, given i > 0
we can find a constant K(e) > 0 such that

IT 1 ^~ x,. > M(i) exp ( —3e\n) (n > 1)

for any A £ £(p, 3l), M(i) independent of A. Going back to (2.1) and makinguseof (2.2)»
we see that for any i > 0 there exists K(e) > 0 such that, for any A £ £(p, 31),

A \ 1/2

||3»IU-(o,-) < (■fj K(e) exp (4«X„),

from which the conclusion of Theorem 1.1 follows immediately.

3. Proof of Theorem 1.2. We begin by establishing some simple results concerning
the function F and its inverse.

Lemma 3.1.

a) lim (G(u)/u) = 0 (3.1)
u—*co

b) [~ G(u) —2 < co . (3.2)
J i u

Proof: Convex functions are absolutely continuous [13, p. 24]. This justifies the
following change of variables and integration by parts:

f G(u) -2 + ^ = ru) F'(v)dv + ^ = G(l) + f(OU) (u> 1). (3.3)
J1 u u Jaw F(v) u Jaw F{V)

This inequality shows, taking (1.12) into account, that J\" G(u) (du/u ) is bounded as
m —> oo, which implies (3.2). It also shows that lima_„ (G(u)/u) exists; if it were not zero,
this would contradict (3.2).

The following result shows that the restrictions on F and G in the statement of
Theorem 1.2 are quite severe. We note that only the second inequality in (3.4) and the
first inequality in (3.5) will be used in the proof of Theorem 1.2.

Lemma 3.2. There exist positive constants a0 , ax , b0 , , c0 , Ci such that

b0ua° < G(u) < biu'1 (0 < u < 1), (3.4)

c0u"' < G(u) < c{u° (1 < m < oo). (3.5)

Proof. We begin with the right-hand side of (3.4). Let H = CG (C the constant
in (1.13)). Then H is continuous and increasing, 11(0) = 0 and

H(uv) < H(u)H(v) («, v > 0). (3.6)
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It follows from (3.6) that for any real number s

//(exp ( —s)) < //(exp ( — s/n))n (n > 1).

Since H is continuous and vanishes at the origin, we must have, for a > 0 and sufficiently
large, //(exp (— <r)) < 1. For 0 < u < 1 there exists n > 1 such that exp (—an) < u <
exp (<r(n — 1)). Then

H(u) < //(exp (~<r(n - 1))) < //(exp (-<r))n-l < H(exp (-<r))-l08U/I

= exp (ai log a) =

where

0l = -logiy(exp(-(T)) > 0.
a

This immediately establishes the right-hand side of (3.4). As for the left-hand side of (3.4),
observe that 0 < H(l) < H(en)H(e~n) < H(e)nH(e~n) and that H(e~") —> 0 as n —> oo ;
thus H{e) > 1. Let u, n be as before, with a replaced by 1:

H(u) > H(e~n) > H(l)H(e)'n > H(l)iir(e)aogu-1)

= H( 1) exp (a0(log u - 1)) =
tJXp \CLoJ

where a0 = log //(e) > 0. To prove (3.5) we proceed in a rather similar way. Let u > 1
and choose n > 1 in such a way that

Then

H(u) < H(en) < //(e)" < exp (a0(log u + 1)) = exp (a0).

On the other hand, with exp a(n — 1))<m< exp an) we have

//(1) < //(exp (<r(n - 1))/Z(exp (-<r(n - 1)) < //(exp (<r(n - l))//(exp (-<r))"+1

so that

H(u) > //(exp (a(n - 1))) > //(l)//(exp (-<7))-(n"1)

= //(I) exp (Ol(log« - 1)) = u".

This ends the proof of (3.5) and of Lemma 3.2.
It is natural to ask whether hypothesis (1.13) is a consequence of the other assump-

tions in Theorem 1.2. The answer is trivially in the negative; for an immediate counter-
example is F(v) = e" — 1 (v > 0); in fact, its inverse function G(u) = log (1 + u) fails
to satisfy the left-hand side of (3.5) for any positive constants d0 , c0 . A less trivial task
is to construct a function satisfying all the assumptions in Theorem 2 plus inequalities
of the type of (3.4), (3.5) but failing to satisfy (1.13). One such example can be con-
structed as follows. Let

F(v) = („ > o).
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We have

F'(e") = e~" ~ F(e") = e~v ~ (e"+"I/a) = + hy~l/2) = ew'(l + \y'U2).

From this it is clear that there exists a v0 > 1 such that F'(v0) > 0 and F' is monotone
increasing (hence F is convex) in [vQ , °°)- Let

F{v) = F(v) (v > v0) (3.7)

= F(v0) + F'(v0)(v — v0) (v < v0) (3.8)

and

F(v) = F(v) - F(0) (v > 0). (3.9)

Then it is clear that F is convex and strictly increasing, F(0) = 0. As for condition (1.12),
we have

f" dv _ r  dv 
J„0 F(v) ~ JVo _ FqF(0)

Through the change of variables v = e", this integral becomes

f * % - - - f -nr-%—<Ji.„. e" - ^(0) Ji.... e" - F(0)e~"

Thus, (1.12) is satisfied.
It is not difficult to verify that G satisfies (3.4), (3.5) for a„ > 1, at < 1 and con-

venient b0 , , c0 , Ci > 0.
Let v > ?;<) . It follows from the definition (3.7)-(3.8)-(3.9) of F that

f(~) = F'(v0) - , F(v) = _ F(0).

Thus,

Fl-(±)f(«,) = #'(,„)[*/

Clearly lim„^„ F(l/v)F(v) = °°, whereas F(l/t>-i>) = F(l). Accordingly, for arbitrarily
large constants C

f(Af(v) > CF( 1) (3.10)

for v large enough.
Let w = F(\/v), z = F(v). Then

G(w)G(z) = g{f(^G(F(v)) = jv = 1. (3.11)

Applying the monotone increasing function G to both sides of (3.10), we have

G(wz) > G(CF( 1)) = G(CF(l))G(w)G(z)
because of (3.11). Since lira, G(v) = co, G(CF( 1)) becomes arbitrarily large as c —* °°.
This shows that condition (1.13) cannot hold for G.
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It is a rather interesting question whether an estimate of the form (1.16) would still
hold if (1.13) is replaced by a less stringent condition. That some such condition is
necessary is shown as follows. Let F be a positive function defined in v > 0 and let
{gr„} be any sequence in L2(0, <»), biorthogonal to {exp [ — F(k)t\\, k > 1. Assume that
an inequality of the type of (1.16) takes place. Then,

||g»IU'«>,=o) < exp (Kn) (n > 1). (3.12)

However,

1 f qn(t)e-FMt dt < [2F(n)]-1/2 \\qn\
Jo

|L»(0,<*>)

which, together with (3.8), implies

F{n) < \ exp (2Kn) (n > 1). (3.13)

Somewhere between (1.13) and (3.13) one might hope to find a condition both
necessary and sufficient, together with (1.11) and (1.12), for the validity of Theorem 1.2
but no such condition is known to the authors at this writing.

We continue with some more results needed in the proof of Theorem 2.
The counting junction N (u) for a sequence A = {\tj is defined by

N(u) = 0 (u < Xi),

N(u) = k (\k < u < Xfc+O, k = 1, 2, 3 • • • .

Imbedding Lemma 3.3. Let A be a sequence satisfying the conditions in Theorem
1.2. Then there exists a sequence M = {/n, ) such that

(a) mi = F(l) (3.14)
(b) for each \k there exists a j(k) such that

Mi(k) = X* . (3.15)

(c) If N (u) is the counting function for M, then

N(u) - ^ < 1 (0 < u < °o). (3.16)

(d) Let Vj = ('(p.,) (j > 1). Then any subinterval of [0, ) of length </ contains
at most two of the Vj .

Proof. Let /, (j > 1) be the intervals defined by

I0 = [0, I] = ((; - 1)1, jl], j = 1, 2, 3, • • • .

Condition (1.15) shows that each /,• contains at most one wkU) . If J, contains such a
wk(.i) we set v,- = wkU) ; if not Vj = jl. Clearly, if N(v) is the counting function of {vj},
then

N(v) - ] < 1 (v > 0). (3.17)

Let now ju, = F(i>,) (j > 1). Then N(u) — N(G(u)) is the counting function for M.
If we let v = G(u), (3.1) implies that
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G(u)(«) - m
l N(G(u)) I < 1 (« > 0).

Parts (b) and (c) of the lemma have thus been proved. Part (a) is an immediate conse-
quence of the fact that > I. Part (d) follows from the fact that each interval of
length <1 meets at most two of the /, , each of which contains exactly one », .

Imbedding Lemma 3.4. There exists a positive number 5 such that for any positive
integer n the sequence M of Lemma 3.3 can be modified in such a way that if /u, = A„
then X„ — fXi_i > 8, nl + 1 — Xn > <5 and

(X./m«-x) -1 = 1- (X„/Mi + 1). (3.18)

Properties (a) and (b) of Lemma 3.3 are retained and property (c) is replaced by

|AT„(w) - G(u)/l\ <3 (u > 0), (3.19)
Nn(u) being the counting function for the modified sequence Mn .

Proof: It was observed in Sec. 1 that if A £ 9Tl(F, I), there exists a number 50 > 0
(independent of A) such that

> 80 , \k+i A/t > 50 (k = 1, 2, • • •).

Take 6 < 50/2 and set

n = X„ + 5, p. = X„ — d,

where 8 is determined so that

^ n |   -j   i Xn   | Xn

M- ~ K - 5~ ~ ~ \n + 8 ~ ~~ M '

This is true if and only if

5 5
K + 8

from which it is clear that exactly one such 5 exists and 5 < 8.
Let w — ib = G(8). Since G is concave, for every u0 > 0 there exists a positive

y such that

\G(u) — (?(t>)| < 7 \u — v\ , (u, v > u0 > 0).

Then, as jX = X„ — 8 = F(wn) — 8 > F(wi) — 80 > 0,

iv — H) < y(n — p) < 2y8. (3.20)

We reduce 8 further, if necessary, so that

0 < 2y8 < I. (3.21)

Then, from (d) of Lemma 3.3, the interval [ib, w] contains at most one Vj in addition to
f; = wn . It is clear from (3.20), (3.21) and (1.15) that f, is not one of the wk . If w <
Vj < wn = vi then j = I — 1. We discard v,- = and rename w as vt-x . Then we
rename w as vt + 1 and vk as vk+1 for k > I. This is illustrated as follows (M„ denotes the
modified sequence):
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M • ■ • i/;_ 2 ® wn — vi w vi+1 • ■ ■

Mn ■ ■ • Vi-2 Vi-X Wn = vt vl + i Vi + 2 • • •

Similar renamings are employed if wn < Vj < w or if [%b, w] contains no p,- other than
vi = wn . These two cases can be visualized as follows.

M ■ ■ ■ ® Wn = Vl Vl + i w vi+ 2 ■ ■ ■

Mn ■ ■ • Vi-i Vi + 1 Vi+ 2 vt+ 3

M ■ ■ ■ vi-j ib wn = vi w vi + i

Mn • ■ ■ Vl-l Vl Vl + 1 Vi +2 Vu

It is plain that, if Nn(u) is the counting function of the modified sequence M„ ,
then we have

|N(u) — Nn(u) | <1 (u > 0)

(ft the counting function of the sequence {c,}) whenever the interval [i2); w) contains
a Vj other than vt ; otherwise,

\ft(u) - Nn(u)| <2 (u > 0).

It is then clear from (3.16) that (3.19) is satisfied. The fact that (a) and (b) of Lemma 3.3
still hold is evident.

We conclude by defining n0 = F(l) — S0 . Clearly 0 < /u0 < ixk (k = 1, 2, • • •)• If

Mn = Stn {„„}

and Nn is the counting function of Mn , then |iVn(w) — N„(u)\ < 1; this combined with
(3.16) yields

|JV„(tt) - G(u)/l\ < 4. (3.22)

4. Proof of Theorem 1.2 (continuation). We proceed now to estimate ||g„|j accord-
ing to the formula (1.5). It is clear that ||pn — r„|| , the distance from pn to E(n, A, °°)
must be at least as large as the distance ]|pn — f„|| , where fn is the closest point to j>„
lying in the closed subspace E(l, Mn , ») spanned by the functions exp (—t), j t6 I,
where Mn = {/x,} is the sequence constructed in Lemmas 3.3 and 3.4 and the paragraphs
thereafter. Then ||g„||i,»«>,«» is majorized by a formula similar to (2.1):

i I, . 1 _ (K\/2
~ \\Vn ~ fn\| \2 / I

1+^
u,

Uj

(4.1)

where II' indicates that the term j = I (m = K) should be omitted.
In order to obtain an upper bound for ||g„|| we must obtain estimates on the infinite

products in (4.1). We shall carry out these estimates in much the same way as corre-
sponding estimates were obtained in [6], to which paper the reader is referred for details.
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We begin with the easier infinite product in the numerator. We have

,os [fii1+y] - § "* (>+7) - Llog (■+«)dNM

- b (>+ + »■ £ -- »■ £ <«>
The vanishing of the boundary terms follows, on the one hand, from the fact that
Nn(no-) — 0. On the other hand (according to Lemma 3.1 (b)), G(u)/u —* 0 as u —* <*> t
so that Nn(u)/u —» 0 as u —> Since log (1 + (\n/u)) = 0(l/w) as u —* 00, we have

log (1 + (\n/u))Nn(u) —> 0 as u —■> co.

Now, it follows from (3.22) that

Nn(u) du An [" G(u) dur i¥B(w) du _K f
I " Jixo w(m + X„) I u(u + X„)

£ 4X- £ ^Tk) - 4 log (■ + ^ £ 4 log (Is)• (4-3)

This enables us to restrict attention to the second integral between the absolute value
signs in (4.2). If we set u = A„t>, that integral becomes

1 r
1 L

Making use of hypothesis (1.13), this integral can be estimated as follows:

G(Kv) dv
.A. v(v + 1)

1 t"° G(Kv) dv CG(\n) r G(v) dv CG(\) f G(tQ (fa _ „ .
z i..A.®(® +1) s i JoKf + 1) ^ ;

where

^ C f" G(t>) dv , rN' = T i„ *+T) < ° <4 5)

by virtue of Lemma 3.1 and the right-hand inequality (3.2). Putting (4.2), (4.3) and
(4.4) together, we obtain

log [n (1 + ^ < C1G(\„) + 4 1og(^)- (4.6)

For the infinite product appearing in the denominator of (4.1) we use similar ideas but
the work is slightly more complicated. We define

Nn(u) = Nn(u), 0 < u < nt = X„ ,

= Nn(u) — 1, hi < u < 00.

Then we have
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1 - ̂ 0 - Clog £ - 0di)M+L-log (' - u) «•<«>
- [».<„) iog - !)];;;■ + [i?,M i„g (i - £)];_

f~' Nn(u) du f Nn(u) du .
J a, u(K — u) " u(\n — u)+ Xn

Observing that Nn(iu0-) = 0, Nn(u) = o{u) as u —> co and combining the equality
Nn{ni-i) = Nn(pi+i-) with (3.14), we see that the boundary terms cancel out. Now,
making use of (3.22) in the same way as in the treatment of the infinite product in (4.2),
we see that

log In (l — -) = T f" y dU, + T f ?}U) dV\ + P, (4-8)
I ,_o \ M,/ I J„. U(\n — u) I JM+1 u(\„ — u)

where

|P S 'iA" J,. «(>„ - uj + }„„ «(a - J
- 3[Iog t, ~') -log it,-1)-log (' " ^l).

£ 3['°8 fe) -2 log ('+ tr).
- 3 [log 0=) + 2 log (—+ < C, log i. . (4.9)

We observe here that n0 (see Sec. 3) and S are chosen in a way depending only on F and I,
so that (4.9) holds for any A £ £(F, I).

We turn now to the integrals involving G in the right-hand side of (4.8). Setting
u = \nv, we obtain

K f" G{u) du K f G(u) du
I Jut w(A„ — u) I J„l+t w(A„ — u)

1 r-lA" G(\nv) dv If G(\nv) dv
I L,/u f(l — v) I v(l — v)

To estimate these integrals, we need some more information about G. Observe that if
w > 0 then it follows immediately from the fact that G is concave and increasing that

(G(w)/w)(u — io) < G(u) — G(w) <0 (0 < u < w). (4.11)

On the other hand, we must have

{G(w)/w){u — w) > G(u) — G(w) >0 (m > w). (4.12)

In fact, if G(u) > G(w) + (G(w)/w)(u — w) for some u > w then the chord joining the
origin and (w, G(u)) would have points of the graph of G (namely, (w, G(w)) lying below
it, which would contradict the concavity of G. Putting (4.11) and (4.12) together,
we see that
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G(u) — G{w) = (G(w)/w)(u — w)H(u, w) (u, w > 0) (4.13)

where

0 < H(u, w) < 1 (u,w> 0). (4.14)

We shall use (4.13) in a slightly different form: setting u = \nv, w = X„ , we get

G(\nv) = G(X„) + G(\n)(v - 1 )H(\nv, X„). (4.15)

Let p = no/F(l) = 1 — S0/F(l). Then, since X„ > F(l) for all n,

/fo ̂  , S0 1  S_ JL _
K - P<1 2F(l) - F(Z) - 1 Xn Xn '

Next let 72 = 1 + S0/2F(l); then

r > 1+F{t) -1+x„ r-
We can then write

1 G(x.t>) 1 r G(X.y) dv
I /..a. f(l - «) * L,/>. "(1 - f)

= 1 r G(\nv) dv 1 r'-/x" G(\„v) dv
I -La, f(l — v) I J, v(l - v)

f a# r !M*. (416)
•WiA. K1 — «0 Jr f(l - f)

Since we need to estimate (4.16) from below, we may discard the first integral, which is
positive. The last, which is negative, can be estimated as follows:

U'Irrfa-WO, (4.17)
where

c r G(v) dv
°3~ I JR v(v - 1) < 00

by virtue of Lemma 3.1. The second and third integrals will be estimated with the aid
of (4.15) and (4.14). We have

1 G(X.t>) dv 1 rR G(Kv) dv
I Jp i>(l — v) I v(l - v)

_ goo r r~'/xn dv 4- r ,h i
/ Li, v{\ - v) J„+l/i.v(l - 1>)J

_ gcxj r r'",/Xn xj r H(Kv, x„) J
' Up V J„l + W\n « J

 +m^)]i }-w> G(\



UNIFORM BOUNDS ON BIORTHOGONAL FUNCTIONS 61

= —y- [log 1 p P + log p R t - log R + log p'R - 1

= -ylogf^-G(An) = -CtG(K). (4.18)

Putting together (4.9), (4.17) and (4.18), we obtain

log [n 1 - ^|] > -c, log X„ - (Cs + C4)G(K). (4.19)

We obtain from the first inequality in (3.5) that

log X„ < CbG(X„) (n = 1, 2, • • •) (4.20)

where C5 > 0. Putting together (4.1), (4.6), (4.19) and (4.20), we plainly obtain an
estimate of the form (1.16). This ends the proof of Theorem 1.2.

5. Proof of Theorem 1.3. We shall show that if Theorem 1.3 does not hold we are led
to a contradiction. Assume that for some T > 0 there exists an infinite collection {Am},
A„ = {X„„} of sequences in £(p, 91) and corresponding exponential polynomials

JV(m)

PM) = Yj «- exp (-\mnt)
n= 1

such that

||f\»IL-(o.r> —» 0, m—> co, (5.1)

while

||Pm|Uo,»> = 1 (»» > 1). (5.2)

For each m > 1 let \qmn\ be the biorthogonal sequence for the functions pk(t) =
exp provided by Theorem 1.1. Multiplying Pm(t) by qmn(t) and integrating
in (0, oo), we obtain, with the aid of (1.10) and of the Schwarz inequality that, for any
e > 0,

\amn\ < K(e) exp (eX„n) ||Pm||£.(o.») = K(e) exp («X„n),

K(e) the constant in (1.10). But then, if z is any complex number such that Re z > 2e,
we have

JV(m)

1^)1 < E I Q'mn | exp (—RezXm„)
n = 1

00

< K(e) ]T exp [—(Rez — «)Xm„]
n = 1

< Kit) E exp [ — t(n — l)p] exp [— p(Rez — e)]
n = 1

= R{t) exp [ —p(Rez — «)] (5.3)

where we have used the fact that \mn > np (m, n = 1, 2, ■ ■ ■). Using Montel's theorem
on normal families of holomorphic functions together with the estimate (5.3) and the
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Lebesgue dominated-convergence theorem, one readily shows that, if necessary passing
to a subsequence,

lim ||Pm — P|U.(2t,.) = 0 (5.4)
m—>oo

where P(z) is a function holomorphic in the half plane Re z > 2e. We now make use
of (5.4) with € < T/2. Taking (5.1) into consideration, we see that

Pit) =0 (2e < t < T)

so that P(z) vanishes identically in Re z > 2e. Then (5.4) implies

lim ||Pm|U»(2«,co) = 0
m—* oo

which, combined with (5.1) yields

lim ||Pm||i.(o.„) = 0,
m—* oo

contradicting (5.2). We then conclude that there exists a constant B = B(p, 31, T)
such that

||P||i»(o,=o) < B ||P||t«(o,r)

for any exponential polynomial

P(t) = X)a» exP ("M, A = {\„}e£(p, 91).
n = 1

Since such polynomials are dense in E{A, c°), Theorem 1.3 follows.

6. A control problem. We consider the parabolic partial differential equation

dw . d2u ■>
- = kA u = (6-1)

where u(x, t) is a function defined in SR 0 [0, T]:

SR = \x = (®» , • • • , xP) G Ev | |x| = (x* + • • • + x„2)1/2 < R}.

The numbers k, R and T are assumed positive and p > 1. For p = 1, 2 or 3 this equation
governs the temperature distribution u in a body with the above geometry and uniform
coefficient of heat conductivity k.

We assume that u(x, t) also satisfies the boundary condition

u(x, t) = f(x, t)((x, t) G Br® [0, T\) (6.2)

where BR = {x G E" | |x| = R} is the boundary of SR in E". We interpret ](x, t) as a
control or steering function by means of which we may influence the evolution of solutions
u of (6.1). For p = 1, 2 or 3, j(x, t) represents the boundary temperature distribution
imposed by an external heating-cooling device.

The basic existence and uniqueness theorem which we shall employ is
Theorem 6.1. Let u0 = u0(x) be a function defined and continuous in SR and let

/ = f(x, t) be a function defined and continuous in BR (x) [0, T\. Let the compatibility
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condition

u0(z) = f(x, 0) (x £ Br) (6.3)

be satisfied. Then there exists in SR 0 [0, T] a unique solution u of (6.1), (6.2) with

u(x, 0) = u0(x) (x E SB). (6.4)

This theorem is a particular case of a result stated in Milgram's appendix to [1].
A proof for p = 1 that can be readily extended to p > I can be found in [11], We note
that the word "solution" in Theorem 6.1 is understood in the classical sense; i.e., u is
continuous in the region SR® [0, T] and has derivatives of all orders in the interior of
this region.

In what follows we shall study the following controllability problem. Given, in addition
to the initial condition (6.4), a terminal condition

u(x, T) = uT(x) (x E SR) (6.5)

where uT is, say, continuous in SR , can we find a function /, continuous in BR (x) [0, T],
satisfying (6.3), and such that the solution of (6.1), (6.2), (6.4) satisfies (6.5)?

We derive below conditions on u0, uT sufficient for solution of the above controllabil-
ity problem. We begin with a very elementary decomposition. Let f0(x, t) be a continuous
function defined on BR (x) [0, T] such that

/0(x, 0) = u0(x) (:x E BR) (6.6)

and also

/„(*, 0=0 (xEBR,tE [T/2, T]). (6.7)
Let u0(x, t) satisfy (6.1), (6.2) (with / replaced by /0) and (6.4). Then we can solve our
controllability problem if we can find a function ux(x, t) defined on SR (x) [0, T\ and a
function jx(x, t) defined on BR 0 [0, T] such that ux satisfies (6.1), Ui and /1 together
satisfy (6.2),

Ui(x, 0) s 0 (x E SR), (6.8)

U(x, 0) S 0 (x E Br), (6.9)

and

Ui(x, T) = uT(x) = uT{x) — u0(x, T) (x E SR). (6.10)

It is clear that under these circumstances u(x, t) = u0(x, t) + Ui(x, t) and f(x, t) =
/0(x, t) + ji{x, t) provide a solution of the original problem, for (6.1), (6.2), (6.3), (6.4)
and (6.5) will all be satisfied. Therefore, we will direct our attention below to the con-
struction of Ui and /i satisfying the requirements described here. Also, in the work to
follow we shall assume p > 2. The case p = 1 has already been studied in [6].

Let A be the operator in L2(SR) defined by Au = Au (cf. (6.1)), with domain D
consisting of all functions u E L2(SR) such that Au (understood in the sense of distri-
bution) belongs to L2(SR) and

u(x) = 0 (x E BR). (6.11)

It is well known (see [3] or [4]) that A is self-adjoint and that it has pure point spectrum:
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the eigenvalues of A are { — X„„ | m — 0, 1, 2, ■ ■ ■ , n = 1, 2, ■ • •}, where
r <n)~l2

(¥]■
(1) (2)

Vm , Vm , ■ • • being the positive zeros of the Bessel function

a(m, p) = [m(m + p - 2) + (& - 1 )

Each of these eigenvalues has an eigenspace 3C„„ of dimension

(6.12)

Km, p) = m + p — 1

V ~ 1

m + p — 3

V ~ 1
(m = 1,2, •••) (6.13)

and of dimension 1 (= /3(0, p)) when m = 0. An orthonormal basis for 3Cm„ is given by
the formula

<pmnk(x) = Kmn \x\

(m = 0, 1, ■ • ■ , n = 1, 2, ■ ■ ■ , k = 1, 2, • • ■ , /3(m, p)), (6.14)

where YmA , ■ ■ ■ , is an orthonormal basis (with respect to the scalar product
in L2(Br)) of the space Sm,v of p-dimensional spherical harmonics of degree m. (Recall
that a p-dimensional spherical harmonic of degree m is a function of the form \x\~mHm(x),
Hm a homogeneous harmonic polynomial in Xi , ■ ■ ■ , xv of degree m.) The normalization
constant Kmn is given by

Kmn = 2U2R{v-3,/V«<m,v) + l(VJn))rl im > 0, n > 1).

The functions (6.14) constitute a complete orthonormal set of eigenfunctions for A.
(For proofs and further details see [2], [5] and [12].)

To avoid repetition, we shall understand throughout what follows that the indices
m, n, k always vary in the ranges indicated in (6.14).

Returning to the controllability problem, we develop ilT(x) (cf. (6.10)) in Fourier
series with respect to the eigenfunctions of A, i.e.,

UT(x) = X) fimnk<Pmnk(x). (6.15)
m ,n ,k

The function
wmnk(x, t) = exp (\mn(t — T))<!>mnk{x))

satisfies
dwmnk

dt = —wmnk {(x, 0 6 S, (x) [0, T])

and vanishes identically in BR 0 [0, T], It then follows from the divergence theorem
and (6.8) that

0 = f Wmnk(^rJ — kAu,) dx dt
JSr<S)10,T] \ Ol /

= [ uT(x)4>mnk(x) dx + K [ [ exp (Xm„(< — r))/,(x, t) <pmnk(x) da dt, (6.16)
Jsr Jo Jbr ov
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where d/dv and da indicate the outer normal derivative and the area differential in B,t ,
respectively. Now

^ r\l/2 (») t/ / (n)\ cyl/2 (n) /q\ \l/2
® /„\   ^ v a (m,y) \V m J t/ / \   ^ T/ / \   f ^^mk 1 \r / \
dv<emM) - r3/2 ■j0(m.I>)+1(fm<")) (^ ~ fl3/2 ^

the second equality being obtained from [12], p. 45. We can then rewrite (6.16), after
replacing t — 7' by t in the last integral and setting g{x, t) = fi(x, t — T), as

where

rr / ^ \ 1/2
J^ exp (-KJ)gmk(t) dt = j £•»»* (6-17)

9mk(t) = [ g(x, t)Ymk{x) do. (6.18)
J B p

Taking into account that the Ymk form an orthonormal basis for L2(BR) (see [2]), we
have, at least formally,

g{x, t) = X Qmk{t)Ymk(x). (6.19)
m, k

The infinite collection of moment problems (6.17) (one moment problem for each pair
m, k) will be solved as follows. For each fixed m > 0. Let {qmn} be a sequence of elements
of L2(0, T) biorthogonal to pmn(t) = exp ( — \mnt), n > 1. Then, at least formally, if
we set

9mk{t) = X cmnkqmn(t), (6.20)
n = 1

where

Cmnk ^ Mmnt j (6.21)

gmk is a solution of (6.17) for each m, k. We need, then, estimates on the qmk to ensure
convergence of (6.19) and (6.20). Although these estimates—in L2(0, T)—norm—are
provided by Corollary 1.6, it is more convenient for the present purpose to have at our
disposal uniform pointwise estimates on qmn(t), which we will obtain by a slightly different
application of Corollary 1.6.

We proceed first to prove that the \mrl satisfy the conditions of Theorem 1.2. We note
that for any a, the function z1/2Ja(z) is annihilated by

^+(1_2l=rtZi). (6.22,

On the other hand, if va<n) is the nth positive zero of Ja the function sin (z — vaU))
vanishes at va <n> and is annihilated by (d2/dz2) + 1. If a >

thus it follows from the Sturm oscillation theorem [4, p. 1462] that sin (z — va(n') must
have a zero in (i>avain+"). This plainly implies that

<n+1) - - (n> > 7T (n > 1, « > -I). (6.23)
"a



66 H. O. FATTORINI AND D. L. RUSSELL

The range a > § takes care of all values of a(m, p) in (6.12) except for the case p = 2,
where a(0, 2) = 0. To settle this case, we observe that

1 + h -1 + (* - "°<n))-

Then the function sin (1 + (l/4vo<n))1/2(z — fo<n>), which is annihilated by

(<i2/dz2) + 1 + l/4c0<n>,

must have a zero in (v0M, "oU+1>), which implies that

"0<n+1) — Co'"1 > (l + 4^00) T > (l + 4^0) (6.24)

We observe finally that, for a > 0
2 1/4 / , , 1

x ? <1+^ (6.25)

so that z1/2J0(,z) must have a zero in (0, fa<u); then

fa'" > ^o'1' (a > 0). (6.26)

(We observe that this last application of the oscillation theorem is slightly nonstandard'
as the coefficients in (6.25) become infinite at one of the extremes of the interval; how-
ever, a look at the proof in [4] shows that the result still holds in this case.) It is true
that much finer information about the zeros of /„ can be obtained both by Sturm's
theorem and by other methods; the reader is referred to [12] for these results. The crude
estimates just obtained are, however, sufficient for our purpose.

Let us define the sequences {Xm„} by

A„0 = 0, = «[^r-] (n > 1)

for m = 0, 1, 2, • • • . Let l0 be any positive number. Then it is clear from (6.23), (6.24),
(6.26) that the sequences {\mn + Z0) satisfy the hypotheses of Theorem 1.2. Thus Corol-
lary 1.6 applies to show that for each m > 0 there exists a sequence {q„Jt)}, biorthogonal
to exp ( — n > 0, and such that

11Qmn\|La<o. t) < B exp K(\mn + l0)1/2 (n > 0, to > 0), (6.27)

where the constants B and K are independent of in and n. Now define

qmn(t) = Kn [ qm„(s) ds (0 < t < T, TO > 0, n > 1). (6.28)
Jo

Since qmn , n > 1 is orthogonal to exp ( — = 1, we have

gm*(0) = qmn(T) =0 (to > 0, n > 1). (6.29)

Thus, integrating by parts,

[ qmn(t) exp (—\mit) dt — [ qmn{t) exp (-Xm,«) = 5n/ (n, j > 1).
^0 J 0
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Accordingly, {qmn\ is biorthogonal to exp ( — \mnt) for n > 1 and, it follows from (6.27),
(6.28) and the fact that (a + b)1/2 < a1/2 + b1/2 for a, b > 0 that

|?m»(OI < B exp K\mn1/2 (0 < t < T, m > 0, n > 1), (6.30)

(where B and K are not necessarily the same as in (6.27)).
Assume now that the coefficients cmnk given by (6.21) satisfy

|c-«t| < M exp ( — K\mn1/2) (m > 0, n > 1) (6.31)

for some M > 0 and K > K (K the constant in (6.30). Then, by virtue of the estimate
(6.30), the series (6.20) converges absolutely and uniformly in [0, T] for each m, k and
thus the function gmk is a continuous function solving the moment problem (6.17). We
have, moreover,

IfiUOl < M £ exp (-(^ - K)\l2) (6.32)
n = 1

To ascertain convergence of (6.19) we need pointwise bounds on the normalized
spherical harmonics Ymk . Such bounds are available and are expressed by the inequality

\Ymk(x)\ < Cto<p_2)/2 (x e Br), (6.33)

where C may depend on p but not on rn or k. To see that this is true, consider the function

R(x, y) = "if Ymk(x)Ymk(y).
k = 1

Evidently, R is a reproducing kernel for the space Sm,p of p-dimensional spherical har-
monics of degree m; that is, if Q £ Sm,p ,

Q(x) = [ Q{x)R(x, y) (la,j , (6.34)
J Br

da being the surface differential in BR . Now, if w is a rotation in R" (an orthogonal
transformation with determinant +1), it is easy to see with the aid of the change of
variable y' = wy that Q(ivx, wy) is also a reproducing kernel for ; that is, Q(wx, wy)
also satisfies (6.34) for any Q (E S„.p . Observe next that rotation of the variable trans-
forms an element of Sra.p into another element of Sra,„ ; thus, for each fixed x, S(y) =
R(x, y) — R(vjx, wy) belongs to Sm,„ and its scalar product with an arbitrary element
of Sm,„ vanishes; then S(y) = 0, i.e. R(x, y) = R(wx, wy) for any x, y £ BR and any
rotation w. Since any two points in BH can be mapped into each other by a rotation,
R(x, x) must be a constant:

Since

we have

/3(m,p)

R(x, x) = Ymk2(x) = Cm (x £ Br , m > 0).
A: = 1

[ Ymk2(x) da = 1 (m > 0, k = 1, ■ • • , 0(m, p))
JBr

cm
Hm'v) P(m,p)-j /» p lw ,p)

= ~ E Ymk\x) da =
JBr k = 1
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(<r the area of BR). Thus

|y..wi<cr <(fe£>)"
from which (6.33) follows from the immediate inequality

/3(wi, p) < Cm"~2, (6.35)

the constant C being independent of m.
It is well known (see [12]) that vmil) is bounded below by a positive multiple of a

positive power of m. Combined with (6.32), (6.33), (6.35) this implies that the numerical
series

± E ™3<P"2>/2 exP [-(^ - (6.36)
m = 0 n = 1

is convergent. It follows then that the series (6.19), (6.20) is uniformly convergent for
x £ Br , t £ [0, T], since it is then dominated term by term by a constant multiple
of (6.36). The sum g(x, t) of (6.19) is therefore a continuous function which, using (6.29),
satisfies

g(x, 0) = g(x, T) = 0 (x £ BR). (6.37)

We have shown then, that if uT(x) (cf. (6.10)) is given by the expansion (6.15) and
if the coefficients umnk are such that (cf. (6.21)), (6.31)
(D \ 1/2

2^-j |Pmnt| < M exp (—K\mn1/2) (m > 0,n> l,fc = 1,2, ••• (6.38)

then there exists a function <j(x, t) given by (6.19), (6.20) such that h(x, t) = g(x, T — t)
satisfies (6.16) for these values of m, n and k. It is clear from (6.37) that /i satisfies (6.9).

Since f0(x, t) is continuous and satisfies the consistency condition (6.6), u„(x, T/2)
is continuous for x £ SR . This combined with (6.7) is enough to show that if

U0(X, T) = X) Umnk<Pmnk{x)
m,n ,k

then there is a constant M0 such that

\Umnk\ < Mo exp {-T/2 Xmn) (m > 0, n > 1, k = 1, 2, • • • , /3(m, p)).

Thus we see that if

UT(x) = UT(x) + Uo(x, T) = 53 Hmnk>Pmnk(x) (6.39)
m ,n ,k

is such that
/ 7? V/2
\2kX~/ - Ml exP (~K\J/2) (m > 0,n > 1, k = 1, 2, • • • , fi(m, p)) (6.40)

for some MY > 0, then (6.38) is satisfied by the coefficients /lmnk = ixmnk — jXmnk for some
constant M > 0. Therefore we have proved the following controllability result, wherein
we take f(x, t) = f0(x, t) + fi(x, t) x £ BR , t £ [0, T],

Theorem 6.2. Let the initial state u0 be continuous in SR and let the desired
terminal state uT{x) have an expansion (6.39) such that (6.40) is satisfied for some
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Mi > 0, it being the constant in (6.31). Then there exists a continuous control function
f(x, t) which satisfies (6.3) such that the solution u(x, t) of the initial-boundary value
problem (6.1), (6.2), (6.4) also satisfies the terminal condition (6.5).

The sufficient condition for controllability (6.40) agrees with the condition obtained
in [6] for the case p = 1. It can easily be shown that this is not a necessary condition.
The mathematically attractive goal of a necessary and sufficient condition on uT(x) in
order that the controllability problem should have a solution j{x, t) lying in an appropriate
space is not yet in sight. Such a result would appear to require a much deeper analysis
than the one presented here.
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